A Solution Manual For

Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima

Nasser M. Abbasi

May 15, 2024

Contents

1 Section 2.1. Page 40
2 Section 2.2. Page $48 \quad 411$
3 Section 2.4. Page 76 907
4 Section 2.5. Page $88 \quad 1111$
5 Section 2.6. Page $100 \quad 1147$
6 Miscellaneous problems, end of chapter 2. Page 133
7 Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144

8 Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164

9 Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172

10 Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190

11 Chapter 3, Second order linear equations, 3.7 Mechanical and Electrical Vibrations. page 203

12 Chapter 3, Second order linear equations, 3.7 Forced Vibrations. page 217

13 Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263

14 Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269

15 Chapter 7.5, Homogeneous Linear Systems with Constant Coefficients. page 407

17 Chapter 7.8, Repeated Eigenvalues. page 436
3671
18 Chapter 7.9, Nonhomogeneous Linear Systems. page 447
19 Chapter 9.1, The Phase Plane: Linear Systems. page 505
20 Chapter 9.2, Autonomous Systems and Stability. page 517
4092

1 Section 2.1. Page 40

1.1 problem 1 4
1.2 problem 2 17
1.3 problem 3 30
1.4 problem 4 42
1.5 problem 5 54
1.6 problem 6 67
1.7 problem 7 80
1.8 problem 8 92
1.9 problem 9 105
1.10 problem 10 118
1.11 problem 11 132
1.12 problem 12 145
1.13 problem 13 158
1.14 problem 14 171
1.15 problem 15 184
1.16 problem 16 198
1.17 problem 17 211
1.18 problem 18 225
1.19 problem 19 239
1.20 problem 20 253
1.21 problem 21 267
1.22 problem 22 280
1.23 problem 23 293
1.24 problem 24 306
1.25 problem 25 318
1.26 problem 26 330
1.27 problem 27 342
1.28 problem 28 356
1.29 problem 29 370
1.30 problem 30 384
1.31 problem 31 397

1.1 problem 1

1.1.1 Solving as linear ode 4
1.1.2 Solving as first order ode lie symmetry lookup ode 6
1.1.3 Solving as exact ode 10
1.1.4 Maple step by step solution 14

Internal problem ID [448]

Internal file name [OUTPUT/448_Sunday_June_05_2022_01_41_39_AM_4868104/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
3 y+y^{\prime}=\mathrm{e}^{-2 t}+t
$$

1.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =\mathrm{e}^{-2 t}+t
\end{aligned}
$$

Hence the ode is

$$
3 y+y^{\prime}=\mathrm{e}^{-2 t}+t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{-2 t}+t\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} y\right) & =\left(\mathrm{e}^{3 t}\right)\left(\mathrm{e}^{-2 t}+t\right) \\
\mathrm{d}\left(\mathrm{e}^{3 t} y\right) & =\left(\left(\mathrm{e}^{2 t} t+1\right) \mathrm{e}^{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} y=\int\left(\mathrm{e}^{2 t} t+1\right) \mathrm{e}^{t} \mathrm{~d} t \\
& \mathrm{e}^{3 t} y=\frac{\mathrm{e}^{3 t} t}{3}-\frac{\mathrm{e}^{3 t}}{9}+\mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
y=\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{3 t} t}{3}-\frac{\mathrm{e}^{3 t}}{9}+\mathrm{e}^{t}\right)+c_{1} \mathrm{e}^{-3 t}
$$

which simplifies to

$$
y=\frac{t}{3}-\frac{1}{9}+\mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{3}-\frac{1}{9}+\mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
y=\frac{t}{3}-\frac{1}{9}+\mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-3 t}
$$

Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3 y+\mathrm{e}^{-2 t}+t \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-3 y+\mathrm{e}^{-2 t}+t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =3 \mathrm{e}^{3 t} y \\
S_{y} & =\mathrm{e}^{3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{t}+\mathrm{e}^{3 t} t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}+\mathrm{e}^{3 R} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{3 R} R}{3}-\frac{\mathrm{e}^{3 R}}{9}+\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{3 t} y=\frac{\mathrm{e}^{3 t} t}{3}-\frac{\mathrm{e}^{3 t}}{9}+\mathrm{e}^{t}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 t} y=\frac{\mathrm{e}^{3 t} t}{3}-\frac{\mathrm{e}^{3 t}}{9}+\mathrm{e}^{t}+c_{1}
$$

Which gives

$$
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-3 y+\mathrm{e}^{-2 t}+t$		$\frac{d S}{d R}=\mathrm{e}^{R}+\mathrm{e}^{3 R} R$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty 29$
	$R=t$	
	$S=\mathrm{e}^{3 t} y$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-2 \rightarrow-8} \mid$
	$S=\mathrm{e}^{3 t} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ - ${ }_{\text {¢ }}+\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9}
$$

Verified OK.

1.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-3 y+\mathrm{e}^{-2 t}+t\right) \mathrm{d} t \\
\left(3 y-\mathrm{e}^{-2 t}-t\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =3 y-\mathrm{e}^{-2 t}-t \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-\mathrm{e}^{-2 t}-t\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 t}\left(3 y-\mathrm{e}^{-2 t}-t\right) \\
& =-\left(1+(-3 y+t) \mathrm{e}^{2 t}\right) \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 t}(1) \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\left(1+(-3 y+t) \mathrm{e}^{2 t}\right) \mathrm{e}^{t}\right)+\left(\mathrm{e}^{3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\left(1+(-3 y+t) \mathrm{e}^{2 t}\right) \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =\frac{(-3 t+9 y+1) \mathrm{e}^{3 t}}{9}-\mathrm{e}^{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 t}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(-3 t+9 y+1) \mathrm{e}^{3 t}}{9}-\mathrm{e}^{t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(-3 t+9 y+1) \mathrm{e}^{3 t}}{9}-\mathrm{e}^{t}
$$

The solution becomes

$$
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9}
$$

Verified OK.

1.1.4 Maple step by step solution

Let's solve

$$
3 y+y^{\prime}=\mathrm{e}^{-2 t}+t
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-3 y+\mathrm{e}^{-2 t}+t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $3 y+y^{\prime}=\mathrm{e}^{-2 t}+t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(3 y+y^{\prime}\right)=\mu(t)\left(\mathrm{e}^{-2 t}+t\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(3 y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\mathrm{e}^{-2 t}+t\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(\mathrm{e}^{-2 t}+t\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(\mathrm{e}^{-2 t}+t\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int\left(\mathrm{e}^{-2 t}+t\right) \mathrm{e}^{3 t} d t+c_{1}}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{t}\right)^{3} t}{3}-\frac{\left(\mathrm{e}^{t}\right)^{3}}{9}+\mathrm{e}^{t}+c_{1}}{\mathrm{e}^{3 t}}$
- Simplify
$y=\frac{\left(3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}+9 c_{1}\right) \mathrm{e}^{-3 t}}{9}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(3*y(t)+diff(y(t),t) = exp(-2*t)+t,y(t), singsol=all)
```

$$
y(t)=\frac{t}{3}-\frac{1}{9}+\mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 27
DSolve[3*y[t]+y'[t] == Exp [-2*t]+t,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{t}{3}+e^{-2 t}+c_{1} e^{-3 t}-\frac{1}{9}
$$

1.2 problem 2

1.2.1 Solving as linear ode . 17
1.2.2 Solving as first order ode lie symmetry lookup ode 19
1.2.3 Solving as exact ode . 23
1.2.4 Maple step by step solution . 27

Internal problem ID [449]
Internal file name [OUTPUT/449_Sunday_June_05_2022_01_41_40_AM_16129924/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-2 y+y^{\prime}=\mathrm{e}^{2 t} t^{2}
$$

1.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =\mathrm{e}^{2 t} t^{2}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=\mathrm{e}^{2 t} t^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{2 t} t^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)\left(\mathrm{e}^{2 t} t^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =t^{2} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int t^{2} \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=\frac{t^{3}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=\frac{\mathrm{e}^{2 t} t^{3}}{3}+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=\mathrm{e}^{2 t}\left(\frac{t^{3}}{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t}\left(\frac{t^{3}}{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t}\left(\frac{t^{3}}{3}+c_{1}\right)
$$

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 y+\mathrm{e}^{2 t} t^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+\mathrm{e}^{2 t} t^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=\frac{t^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=\frac{t^{3}}{3}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+\mathrm{e}^{2 t} t^{2}$		$\frac{d S}{d R}=R^{2}$
tottottrtatatatatat		
\%	$S=\mathrm{e}^{-2 t} y$	
:		
		, \rightarrow_{0}

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3}
$$

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+\mathrm{e}^{2 t} t^{2}\right) \mathrm{d} t \\
\left(-2 y-\mathrm{e}^{2 t} t^{2}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-2 y-\mathrm{e}^{2 t} t^{2} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-\mathrm{e}^{2 t} t^{2}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}\left(-2 y-\mathrm{e}^{2 t} t^{2}\right) \\
& =-2 \mathrm{e}^{-2 t} y-t^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-2 \mathrm{e}^{-2 t} y-t^{2}\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 \mathrm{e}^{-2 t} y-t^{2} \mathrm{~d} t \\
\phi & =-\frac{t^{3}}{3}+\mathrm{e}^{-2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}+\mathrm{e}^{-2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}+\mathrm{e}^{-2 t} y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3}
$$

Verified OK.

1.2.4 Maple step by step solution

Let's solve
$-2 y+y^{\prime}=\mathrm{e}^{2 t} t^{2}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+\mathrm{e}^{2 t} t^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-2 y+y^{\prime}=\mathrm{e}^{2 t} t^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-2 y+y^{\prime}\right)=\mu(t) \mathrm{e}^{2 t} t^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-2 y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{2 t} t^{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{2 t} t^{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \mathrm{e}^{2 t} t^{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \mathrm{e}^{2 t} t^{2} \mathrm{e}^{-2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{t^{3}}{3}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\frac{\mathrm{e}^{2 t}\left(t^{3}+3 c_{1}\right)}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(-2*y(t)+diff (y(t),t) = exp(2*t)*t^2,y(t), singsol=all)
```

$$
y(t)=\frac{\left(t^{3}+3 c_{1}\right) \mathrm{e}^{2 t}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 22
DSolve $[-2 * y[t]+y$ ' $[t]==\operatorname{Exp}[2 * t] * t \wedge 2, y[t], t, I n c l u d e S i n g u l a r S o l u t i o n s ~ \rightarrow>~ T r u e] ~$

$$
y(t) \rightarrow \frac{1}{3} e^{2 t}\left(t^{3}+3 c_{1}\right)
$$

1.3 problem 3

1.3.1 Solving as linear ode 30
1.3.2 Solving as first order ode lie symmetry lookup ode 32
1.3.3 Solving as exact ode 36
1.3.4 Maple step by step solution 40

Internal problem ID [450]
Internal file name [OUTPUT/450_Sunday_June_05_2022_01_41_41_AM_58171829/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+y^{\prime}=1+t \mathrm{e}^{-t}
$$

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =1+t \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y+y^{\prime}=1+t \mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(1+t \mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(y \mathrm{e}^{t}\right) & =\left(\mathrm{e}^{t}\right)\left(1+t \mathrm{e}^{-t}\right) \\
\mathrm{d}\left(y \mathrm{e}^{t}\right) & =\left(\mathrm{e}^{t}+t\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{t}=\int \mathrm{e}^{t}+t \mathrm{~d} t \\
& y \mathrm{e}^{t}=\frac{t^{2}}{2}+\mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t}$ results in

$$
y=\mathrm{e}^{-t}\left(\frac{t^{2}}{2}+\mathrm{e}^{t}\right)+c_{1} \mathrm{e}^{-t}
$$

which simplifies to

$$
y=1+\frac{\left(t^{2}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\frac{\left(t^{2}+2 c_{1}\right) \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=1+\frac{\left(t^{2}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\left(y \mathrm{e}^{t}-\mathrm{e}^{t}-t\right) \mathrm{e}^{-t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\left(y \mathrm{e}^{t}-\mathrm{e}^{t}-t\right) \mathrm{e}^{-t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{t} \\
S_{y} & =\mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{t}+t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}+R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t}=\frac{t^{2}}{2}+\mathrm{e}^{t}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{t}=\frac{t^{2}}{2}+\mathrm{e}^{t}+c_{1}
$$

Which gives

$$
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\left(y \mathrm{e}^{t}-\mathrm{e}^{t}-t\right) \mathrm{e}^{-t}$		$\frac{d S}{d R}=\mathrm{e}^{R}+R$
		$1+$
	$R=t$	
	$S=y \mathrm{e}^{t}$	
		t
		t

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{t}\right) \mathrm{d} y & =\left(-y \mathrm{e}^{t}+\mathrm{e}^{t}+t\right) \mathrm{d} t \\
\left(y \mathrm{e}^{t}-\mathrm{e}^{t}-t\right) \mathrm{d} t+\left(\mathrm{e}^{t}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y \mathrm{e}^{t}-\mathrm{e}^{t}-t \\
N(t, y) & =\mathrm{e}^{t}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \mathrm{e}^{t}-\mathrm{e}^{t}-t\right) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\mathrm{e}^{t}\right) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int y \mathrm{e}^{t}-\mathrm{e}^{t}-t \mathrm{~d} t \\
\phi & =\mathrm{e}^{t}(y-1)-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t}=\mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{t}(y-1)-\frac{t^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{t}(y-1)-\frac{t^{2}}{2}
$$

The solution becomes

$$
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot

Verification of solutions

$$
y=\frac{\left(t^{2}+2 \mathrm{e}^{t}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Verified OK.

1.3.4 Maple step by step solution

Let's solve
$y+y^{\prime}=1+\frac{t}{\mathrm{e}^{t}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\frac{\mathrm{e}^{t}+t}{\mathrm{e}^{t}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y+y^{\prime}=\frac{\mathrm{e}^{t}+t}{\mathrm{e}^{t}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y+y^{\prime}\right)=\frac{\mu(t)\left(\mathrm{e}^{t}+t\right)}{\mathrm{e}^{t}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t)\left(\mathrm{e}^{t}+t\right)}{\mathrm{e}^{t}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t)\left(e^{t}+t\right)}{\mathrm{e}^{t}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t)\left(\mathrm{e}^{t}+t\right)}{\mathrm{e}^{t}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}$
$y=\frac{\int \mathrm{e}^{t} \mathrm{e}^{-t}\left(\mathrm{e}^{t}+t\right) d t+c_{1}}{\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{t^{2}}{2}+\mathrm{e}^{t}+c_{1}}{\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}}$
- Simplify

$$
y=1+\frac{\left(t^{2}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(y(t)+diff(y(t),t) = 1+t/exp(t),y(t), singsol=all)
```

$$
y(t)=1+\frac{\left(t^{2}+2 c_{1}\right) \mathrm{e}^{-t}}{2}
$$

Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 27
DSolve[y[t]+y'[t] == $1+t / \operatorname{Exp}[t], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2} e^{-t}\left(t^{2}+2 e^{t}+2 c_{1}\right)
$$

1.4 problem 4

1.4.1 Solving as linear ode . 42
1.4.2 Solving as first order ode lie symmetry lookup ode 44
1.4.3 Solving as exact ode . 48
1.4.4 Maple step by step solution . 52

Internal problem ID [451]
Internal file name [OUTPUT/451_Sunday_June_05_2022_01_41_42_AM_48741648/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\frac{y}{t}+y^{\prime}=3 \cos (2 t)
$$

1.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=3 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
\frac{y}{t}+y^{\prime}=3 \cos (2 t)
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(3 \cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)(3 \cos (2 t)) \\
\mathrm{d}(t y) & =(3 \cos (2 t) t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int 3 \cos (2 t) t \mathrm{~d} t \\
& t y=\frac{3 \cos (2 t)}{4}+\frac{3 \sin (2 t) t}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=\frac{\frac{3 \cos (2 t)}{4}+\frac{3 \sin (2 t) t}{2}}{t}+\frac{c_{1}}{t}
$$

which simplifies to

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t} \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot

Verification of solutions

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+3 \cos (2 t) t}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 10: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t}} d y
\end{aligned}
$$

Which results in

$$
S=t y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-y+3 \cos (2 t) t}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \\
S_{y} & =t
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \cos (2 t) t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \cos (2 R) R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 \cos (2 R)}{4}+\frac{3 \sin (2 R) R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t=\frac{3 \cos (2 t)}{4}+\frac{3 \sin (2 t) t}{2}+c_{1}
$$

Which simplifies to

$$
y t=\frac{3 \cos (2 t)}{4}+\frac{3 \sin (2 t) t}{2}+c_{1}
$$

Which gives

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-y+3 \cos (2 t) t}{t}$		$\frac{d S}{d R}=3 \cos (2 R) R$
-		
	$R=t$	
	$S=t y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot

Verification of solutions

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(-y+3 \cos (2 t) t) \mathrm{d} t \\
(y-3 \cos (2 t) t) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y-3 \cos (2 t) t \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-3 \cos (2 t) t) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int y-3 \cos (2 t) t \mathrm{~d} t \\
\phi & =t y-\frac{3 \cos (2 t)}{4}-\frac{3 \sin (2 t) t}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t$. Therefore equation (4) becomes

$$
\begin{equation*}
t=t+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t y-\frac{3 \cos (2 t)}{4}-\frac{3 \sin (2 t) t}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t y-\frac{3 \cos (2 t)}{4}-\frac{3 \sin (2 t) t}{2}
$$

The solution becomes

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Verified OK.

1.4.4 Maple step by step solution

Let's solve
$\frac{y}{t}+y^{\prime}=3 \cos (2 t)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{t}+3 \cos (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $\frac{y}{t}+y^{\prime}=3 \cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(\frac{y}{t}+y^{\prime}\right)=3 \mu(t) \cos (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(\frac{y}{t}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=t$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \cos (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \cos (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) \cos (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t$
$y=\frac{\int 3 \cos (2 t) t d t+c_{1}}{t}$
- Evaluate the integrals on the rhs
$y=\frac{3 \cos (2 t)}{4}+\frac{3 \sin (2 t) t}{2}+c_{1}$
- Simplify

$$
y=\frac{6 \sin (2 t) t+3 \cos (2 t)+4 c_{1}}{4 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(y(t)/t+diff(y(t),t) = 3*\operatorname{cos}(2*t),y(t), singsol=all)
```

$$
y(t)=\frac{4 c_{1}+6 \sin (2 t) t+3 \cos (2 t)}{4 t}
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 30
DSolve[y[t]/t+y'[t] == $3 * \operatorname{Cos}[2 * t], y[t], t$,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{6 t \sin (2 t)+3 \cos (2 t)+4 c_{1}}{4 t}
$$

1.5 problem 5

1.5.1 Solving as linear ode . 54
1.5.2 Solving as first order ode lie symmetry lookup ode 56
1.5.3 Solving as exact ode . 60
1.5.4 Maple step by step solution . 64

Internal problem ID [452]
Internal file name [OUTPUT/452_Sunday_June_05_2022_01_41_43_AM_90446891/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 5 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-2 y+y^{\prime}=3 \mathrm{e}^{t}
$$

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =3 \mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=3 \mathrm{e}^{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 \mathrm{e}^{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)\left(3 \mathrm{e}^{t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\left(3 \mathrm{e}^{-t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int 3 \mathrm{e}^{-t} \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=-3 \mathrm{e}^{-t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=-3 \mathrm{e}^{2 t} \mathrm{e}^{-t}+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=-3 \mathrm{e}^{t}+c_{1} \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{t}+c_{1} \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot
Verification of solutions

$$
y=-3 \mathrm{e}^{t}+c_{1} \mathrm{e}^{2 t}
$$

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+3 \mathrm{e}^{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+3 \mathrm{e}^{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=-3 \mathrm{e}^{-t}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=-3 \mathrm{e}^{-t}+c_{1}
$$

Which gives

$$
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+3 \mathrm{e}^{t}$		$\frac{d S}{d R}=3 \mathrm{e}^{-R}$
		$1+1+4+\infty$
		+ $+S(\hat{1}$
Ptatat		俋
	$R=t$	
	$S=\mathrm{e}^{-2 t} y$	
	$S=\mathrm{e}^{-2 t} y$	
$1 L_{1}+1-2 \rightarrow 1$		
L4		
batbapapacpa		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot
Verification of solutions

$$
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t}
$$

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+3 \mathrm{e}^{t}\right) \mathrm{d} t \\
\left(-2 y-3 \mathrm{e}^{t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-3 \mathrm{e}^{t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-3 \mathrm{e}^{t}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}\left(-2 y-3 \mathrm{e}^{t}\right) \\
& =\left(-2 y-3 \mathrm{e}^{t}\right) \mathrm{e}^{-2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(-2 y-3 \mathrm{e}^{t}\right) \mathrm{e}^{-2 t}\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-2 y-3 \mathrm{e}^{t}\right) \mathrm{e}^{-2 t} \mathrm{~d} t \\
\phi & =3 \mathrm{e}^{-t}+\mathrm{e}^{-2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=3 \mathrm{e}^{-t}+\mathrm{e}^{-2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=3 \mathrm{e}^{-t}+\mathrm{e}^{-2 t} y
$$

The solution becomes

$$
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot
Verification of solutions

$$
y=-\left(3 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{2 t}
$$

Verified OK.

1.5.4 Maple step by step solution

Let's solve
$-2 y+y^{\prime}=3 \mathrm{e}^{t}$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative
$y^{\prime}=2 y+3 \mathrm{e}^{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-2 y+y^{\prime}=3 \mathrm{e}^{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-2 y+y^{\prime}\right)=3 \mu(t) \mathrm{e}^{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-2 y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \mathrm{e}^{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \mathrm{e}^{t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) e^{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int 3 \mathrm{e}^{t} \mathrm{e}^{-2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-3 \mathrm{e}^{-t}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=-3 \mathrm{e}^{t}+c_{1} \mathrm{e}^{2 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $(-2 * y(t)+\operatorname{diff}(y(t), t)=3 * \exp (t), y(t)$, singsol=all)

$$
y(t)=-3 \mathrm{e}^{t}+c_{1} \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 17
DSolve $\left[-2 * y[t]+y^{\prime}[t]==3 * \operatorname{Exp}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{t}\left(-3+c_{1} e^{t}\right)
$$

1.6 problem 6

1.6.1 Solving as linear ode . 67
1.6.2 Solving as first order ode lie symmetry lookup ode 69
1.6.3 Solving as exact ode . 73
1.6.4 Maple step by step solution . 78

Internal problem ID [453]
Internal file name [OUTPUT/453_Sunday_June_05_2022_01_41_43_AM_13381902/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+t y^{\prime}=\sin (t)
$$

1.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{\sin (t)}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\sin (t)}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{\sin (t)}{t}\right) \\
\mathrm{d}\left(t^{2} y\right) & =(t \sin (t)) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int t \sin (t) \mathrm{d} t \\
& t^{2} y=-t \cos (t)+\sin (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{-t \cos (t)+\sin (t)}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot

Verification of solutions

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Verified OK.

1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-2 y+\sin (t)}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 16: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-2 y+\sin (t)}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \sin (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R \cos (R)+\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=-t \cos (t)+\sin (t)+c_{1}
$$

Which simplifies to

$$
y t^{2}=-t \cos (t)+\sin (t)+c_{1}
$$

Which gives

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-2 y+\sin (t)}{t}$		$\frac{d S}{d R}=R \sin (R)$
		! !
		!
\triangle 边	$S=t^{2} y$	速

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(-2 y+\sin (t)) \mathrm{d} t \\
(2 y-\sin (t)) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y-\sin (t) \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y-\sin (t)) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((2)-(1)) \\
& =\frac{1}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t(2 y-\sin (t)) \\
& =(2 y-\sin (t)) t
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t(t) \\
& =t^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
((2 y-\sin (t)) t)+\left(t^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(2 y-\sin (t)) t \mathrm{~d} t \\
\phi & =t^{2} y+t \cos (t)-\sin (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{2} y+t \cos (t)-\sin (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{2} y+t \cos (t)-\sin (t)
$$

The solution becomes

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Verified OK.

1.6.4 Maple step by step solution

Let's solve
$2 y+t y^{\prime}=\sin (t)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{t}+\frac{\sin (t)}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\frac{\mu(t) \sin (t)}{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int t \sin (t) d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(2*y(t)+t*diff(y(t),t) = sin(t),y(t), singsol=all)
```

$$
y(t)=\frac{\sin (t)-\cos (t) t+c_{1}}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 19
DSolve[2*y[t]+t*y'[t]== Sin[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\sin (t)-t \cos (t)+c_{1}}{t^{2}}
$$

1.7 problem 7

1.7.1 Solving as linear ode . 80
1.7.2 Solving as first order ode lie symmetry lookup ode 82
1.7.3 Solving as exact ode . 86
1.7.4 Maple step by step solution . 90

Internal problem ID [454]
Internal file name [OUTPUT/454_Sunday_June_05_2022_01_41_44_AM_75941329/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y t+y^{\prime}=2 t \mathrm{e}^{-t^{2}}
$$

1.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 t \\
q(t) & =2 t \mathrm{e}^{-t^{2}}
\end{aligned}
$$

Hence the ode is

$$
2 y t+y^{\prime}=2 t \mathrm{e}^{-t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 t d t} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 t \mathrm{e}^{-t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(y \mathrm{e}^{t^{2}}\right) & =\left(\mathrm{e}^{t^{2}}\right)\left(2 t \mathrm{e}^{-t^{2}}\right) \\
\mathrm{d}\left(y \mathrm{e}^{t^{2}}\right) & =(2 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{t^{2}}=\int 2 t \mathrm{~d} t \\
& y \mathrm{e}^{t^{2}}=t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t^{2}}$ results in

$$
y=t^{2} \mathrm{e}^{-t^{2}}+c_{1} \mathrm{e}^{-t^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Verified OK.

1.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 t\left(y \mathrm{e}^{t^{2}}-1\right) \mathrm{e}^{-t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{t^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 t\left(y \mathrm{e}^{t^{2}}-1\right) \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \mathrm{e}^{t^{2}} \\
S_{y} & =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t^{2}}=t^{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{t^{2}}=t^{2}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 t\left(y \mathrm{e}^{t^{2}}-1\right) \mathrm{e}^{-t^{2}}$		$\frac{d S}{d R}=2 R$
		: $S_{\text {P } R \text { d }}$
b-4 ${ }^{\text {a }}$	$S=y \mathrm{e}^{t^{2}}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Verified OK.

1.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{t^{2}}\right) \mathrm{d} y & =\left(-2 t\left(y \mathrm{e}^{t^{2}}-1\right)\right) \mathrm{d} t \\
\left(2 t\left(y \mathrm{e}^{t^{2}}-1\right)\right) \mathrm{d} t+\left(\mathrm{e}^{t^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=2 t\left(y \mathrm{e}^{t^{2}}-1\right) \\
& N(t, y)=\mathrm{e}^{t^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 t\left(y \mathrm{e}^{t^{2}}-1\right)\right) \\
& =2 t \mathrm{e}^{t^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\mathrm{e}^{t^{2}}\right) \\
& =2 t \mathrm{e}^{t^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t\left(y \mathrm{e}^{t^{2}}-1\right) \mathrm{d} t \\
\phi & =-t^{2}+y \mathrm{e}^{t^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t^{2}}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t^{2}+y \mathrm{e}^{t^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t^{2}+y \mathrm{e}^{t^{2}}
$$

The solution becomes

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Verified OK.

1.7.4 Maple step by step solution

Let's solve
$2 y t+y^{\prime}=\frac{2 t}{\mathrm{e}^{t^{2}}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y t+\frac{2 t}{\mathrm{e}^{t^{2}}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $2 y t+y^{\prime}=\frac{2 t}{\mathrm{e}^{t^{2}}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(2 y t+y^{\prime}\right)=\frac{2 \mu(t) t}{\mathrm{e}^{t^{2}}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(2 y t+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t) t$
- Solve to find the integrating factor
$\mu(t)=\left(\mathrm{e}^{t^{2}}\right)^{2} \mathrm{e}^{-t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{2 \mu(t) t}{\mathrm{e}^{t^{2}}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{2 \mu(t) t}{\mathrm{e}^{t^{2}}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(t) t}{\mathrm{e}^{2} t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\left(\mathrm{e}^{t^{2}}\right)^{2} \mathrm{e}^{-t^{2}}$
$y=\frac{\int 2 t \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}} d t+c_{1}}{\left(\mathrm{e}^{t^{2}}\right)^{2} \mathrm{e}^{-t^{2}}}$
- Evaluate the integrals on the rhs

$$
y=\frac{t^{2}+c_{1}}{\left(\mathrm{e}^{2}\right)^{2} \mathrm{e}^{-t^{2}}}
$$

- Simplify

$$
y=\mathrm{e}^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve(2*t*y(t)+diff(y(t),t) = 2*t/exp(t^2),y(t), singsol=all)
```

$$
y(t)=\left(t^{2}+c_{1}\right) \mathrm{e}^{-t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 19

```
DSolve[2*t*y[t]+y'[t] == 2*t/Exp[t^2],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow e^{-t^{2}}\left(t^{2}+c_{1}\right)
$$

1.8 problem 8

1.8.1 Solving as linear ode 92
1.8.2 Solving as first order ode lie symmetry lookup ode 94
1.8.3 Solving as exact ode 98
1.8.4 Maple step by step solution 103

Internal problem ID [455]
Internal file name [OUTPUT/455_Sunday_June_05_2022_01_41_45_AM_39090059/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
4 y t+\left(t^{2}+1\right) y^{\prime}=\frac{1}{\left(t^{2}+1\right)^{2}}
$$

1.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{4 t}{t^{2}+1} \\
q(t) & =\frac{1}{\left(t^{2}+1\right)^{3}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 y t}{t^{2}+1}=\frac{1}{\left(t^{2}+1\right)^{3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4 t}{t^{2}+1} d t} \\
& =\left(t^{2}+1\right)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{1}{\left(t^{2}+1\right)^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\left(t^{2}+1\right)^{2} y\right) & =\left(\left(t^{2}+1\right)^{2}\right)\left(\frac{1}{\left(t^{2}+1\right)^{3}}\right) \\
\mathrm{d}\left(\left(t^{2}+1\right)^{2} y\right) & =\frac{1}{t^{2}+1} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(t^{2}+1\right)^{2} y=\int \frac{1}{t^{2}+1} \mathrm{~d} t \\
& \left(t^{2}+1\right)^{2} y=\arctan (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\left(t^{2}+1\right)^{2}$ results in

$$
y=\frac{\arctan (t)}{\left(t^{2}+1\right)^{2}}+\frac{c_{1}}{\left(t^{2}+1\right)^{2}}
$$

which simplifies to

$$
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot

Verification of solutions

$$
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 t^{5} y+8 t^{3} y+4 t y-1}{\left(t^{2}+1\right)^{3}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 22: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(t, y) & =0 \\
\eta(t, y) & =\frac{1}{\left(t^{2}+1\right)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\left(t^{2}+1\right)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\left(t^{2}+1\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{4 t^{5} y+8 t^{3} y+4 t y-1}{\left(t^{2}+1\right)^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =4\left(t^{2}+1\right) y t \\
S_{y} & =\left(t^{2}+1\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{t^{2}+1} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}+1}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
\left(t^{2}+1\right)^{2} y=\arctan (t)+c_{1}
$$

Which simplifies to

$$
\left(t^{2}+1\right)^{2} y=\arctan (t)+c_{1}
$$

Which gives

$$
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{4 t^{5} y+8 t^{3} y+4 t y-1}{\left(t^{2}+1\right)^{3}}$		$\frac{d S}{d R}=\frac{1}{R^{2}+1}$
		－
		$\rightarrow \rightarrow \rightarrow \rightarrow$－
分		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow$－オサー
	$R=t$	$\rightarrow+$
	$S=\left(t^{2}+1\right)^{2} y$	
	$S=\left(t^{2}+1\right) y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\rightarrow \rightarrow \rightarrow$－4，
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(t^{2}+1\right) \mathrm{d} y & =\left(-4 t y+\frac{1}{\left(t^{2}+1\right)^{2}}\right) \mathrm{d} t \\
\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right) \mathrm{d} t+\left(t^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=4 t y-\frac{1}{\left(t^{2}+1\right)^{2}} \\
& N(t, y)=t^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right) \\
& =4 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(t^{2}+1\right) \\
& =2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t^{2}+1}((4 t)-(2 t)) \\
& =\frac{2 t}{t^{2}+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{2 t}{t^{2}+1} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln \left(t^{2}+1\right)} \\
& =t^{2}+1
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t^{2}+1\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right) \\
& =\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right)\left(t^{2}+1\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t^{2}+1\left(t^{2}+1\right) \\
& =\left(t^{2}+1\right)^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right)\left(t^{2}+1\right)\right)+\left(\left(t^{2}+1\right)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(4 t y-\frac{1}{\left(t^{2}+1\right)^{2}}\right)\left(t^{2}+1\right) \mathrm{d} t \\
\phi & =t^{4} y+2 t^{2} y-\arctan (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{4}+2 t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(t^{2}+1\right)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(t^{2}+1\right)^{2}=t^{4}+2 t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{4} y+2 t^{2} y-\arctan (t)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{4} y+2 t^{2} y-\arctan (t)+y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y t^{4}+2 y t^{2}-\arctan (t)+y=c_{1} \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y t^{4}+2 y t^{2}-\arctan (t)+y=c_{1}
$$

Verified OK.

1.8.4 Maple step by step solution

Let's solve

$$
4 y t+\left(t^{2}+1\right) y^{\prime}=\frac{1}{\left(t^{2}+1\right)^{2}}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{4 y t}{t^{2}+1}+\frac{1}{\left(t^{2}+1\right)^{3}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{4 y t}{t^{2}+1}=\frac{1}{\left(t^{2}+1\right)^{3}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{4 y t}{t^{2}+1}\right)=\frac{\mu(t)}{\left(t^{2}+1\right)^{3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{4 y t}{t^{2}+1}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{4 \mu(t) t}{t^{2}+1}$
- Solve to find the integrating factor
$\mu(t)=\left(t^{2}+1\right)^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t)}{\left(t^{2}+1\right)^{3}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t)}{\left(t^{2}+1\right)^{3}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t)}{\left(t^{2}+1\right)^{3}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\left(t^{2}+1\right)^{2}$

$$
y=\frac{\int \frac{1}{t^{2}+1} d t+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

```
dsolve(4*t*y(t)+(t^2+1)*diff(y(t),t) = 1/(t^2+1)^2,y(t), singsol=all)
```

$$
y(t)=\frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 18
DSolve[4*t*y[t]+(t^2+1)*y'[t]==1/(t^2+1)^2,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\arctan (t)+c_{1}}{\left(t^{2}+1\right)^{2}}
$$

1.9 problem 9

1.9.1 Solving as linear ode . 105
1.9.2 Solving as first order ode lie symmetry lookup ode 107
1.9.3 Solving as exact ode . 111
1.9.4 Maple step by step solution . 116

Internal problem ID [456]
Internal file name [OUTPUT/456_Sunday_June_05_2022_01_41_46_AM_4296471/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+2 y^{\prime}=3 t
$$

1.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{2} \\
q(t) & =\frac{3 t}{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2}=\frac{3 t}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2} d t} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3 t}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(\mathrm{e}^{\frac{t}{2}}\right)\left(\frac{3 t}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(\frac{3 t \mathrm{e}^{\frac{t}{2}}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{t}{2}} y=\int \frac{3 t \mathrm{e}^{\frac{t}{2}}}{2} \mathrm{~d} t \\
& \mathrm{e}^{\frac{t}{2}} y=3(t-2) \mathrm{e}^{\frac{t}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{2}}$ results in

$$
y=3 \mathrm{e}^{-\frac{t}{2}}(t-2) \mathrm{e}^{\frac{t}{2}}+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

which simplifies to

$$
y=3 t-6+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 t-6+c_{1} \mathrm{e}^{-\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot
Verification of solutions

$$
y=3 t-6+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Verified OK.

1.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{2}+\frac{3 t}{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 25: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y}{2}+\frac{3 t}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{\mathrm{e}^{\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3 t \mathrm{e}^{\frac{t}{2}}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3 R \mathrm{e}^{\frac{R}{2}}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3(R-2) \mathrm{e}^{\frac{R}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{t}{2}} y=3(t-2) \mathrm{e}^{\frac{t}{2}}+c_{1}
$$

Which simplifies to

$$
(-3 t+y+6) \mathrm{e}^{\frac{t}{2}}-c_{1}=0
$$

Which gives

$$
y=\left(3 t \mathrm{e}^{\frac{t}{2}}-6 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y}{2}+\frac{3 t}{2}$		$\frac{d S}{d R}=\frac{3 R \mathrm{e}^{\frac{R}{2}}}{2}$
		axivitu2yta 1111111
		为
		$\pm \cdots$ a
	$R=t$	Nrinty
	$S=\mathrm{e}^{\frac{t}{2}} y$	
	$S=\mathrm{e}^{\frac{1}{2}} y$	
		aritiñory

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 t \mathrm{e}^{\frac{t}{2}}-6 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
y=\left(3 t \mathrm{e}^{\frac{t}{2}}-6 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}
$$

Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2) \mathrm{d} y & =(-y+3 t) \mathrm{d} t \\
(y-3 t) \mathrm{d} t+(2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=y-3 t \\
& N(t, y)=2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-3 t) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(2) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{2}((1)-(0)) \\
& =\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{t}{2}} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{t}{2}}(y-3 t) \\
& =(y-3 t) \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{t}{2}}(2) \\
& =2 \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((y-3 t) \mathrm{e}^{\frac{t}{2}}\right)+\left(2 \mathrm{e}^{\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(y-3 t) \mathrm{e}^{\frac{t}{2}} \mathrm{~d} t \\
\phi & =(-6 t+2 y+12) \mathrm{e}^{\frac{t}{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \mathrm{e}^{\frac{t}{2}}=2 \mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(-6 t+2 y+12) \mathrm{e}^{\frac{t}{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(-6 t+2 y+12) \mathrm{e}^{\frac{t}{2}}
$$

The solution becomes

$$
y=\frac{\left(6 t \mathrm{e}^{\frac{t}{2}}-12 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 t \mathrm{e}^{\frac{t}{2}}-12 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 t \mathrm{e}^{\frac{t}{2}}-12 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
$$

Verified OK.

1.9.4 Maple step by step solution

Let's solve
$y+2 y^{\prime}=3 t$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{2}+\frac{3 t}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{2}=\frac{3 t}{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=\frac{3 \mu(t) t}{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{2}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{3 \mu(t) t}{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{3 \mu(t) t}{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{3 \mu(t) t}{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{t}{2}}$
$y=\frac{\int \frac{3 t e^{\frac{t}{2}}}{2} d t+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{3(t-2) e^{\frac{t}{2}}+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Simplify

$$
y=3 t-6+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(y(t)+2*diff(y(t),t) = 3*t,y(t), singsol=all)
```

$$
y(t)=3 t-6+\mathrm{e}^{-\frac{t}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 20
DSolve[y[t] $+2 * \mathrm{y}^{\prime}[\mathrm{t}]==3 * \mathrm{t}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 3 t+c_{1} e^{-t / 2}-6
$$

1.10 problem 10

> 1.10.1 Solving as linear ode
1.10.2 Solving as homogeneousTypeD2 ode 120
1.10.3 Solving as first order ode lie symmetry lookup ode 121
1.10.4 Solving as exact ode 125
1.10.5 Maple step by step solution 130

Internal problem ID [457]
Internal file name [OUTPUT/457_Sunday_June_05_2022_01_41_47_AM_99710545/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
t y^{\prime}-y=t^{2} \mathrm{e}^{-t}
$$

1.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{1}{t} \\
q(t) & =t \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{t}=t \mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{t} d t} \\
& =\frac{1}{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t \mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t}\right) & =\left(\frac{1}{t}\right)\left(t \mathrm{e}^{-t}\right) \\
\mathrm{d}\left(\frac{y}{t}\right) & =\mathrm{e}^{-t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{t}=\int \mathrm{e}^{-t} \mathrm{~d} t \\
& \frac{y}{t}=-\mathrm{e}^{-t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t}$ results in

$$
y=-t \mathrm{e}^{-t}+c_{1} t
$$

which simplifies to

$$
y=t\left(-\mathrm{e}^{-t}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(-\mathrm{e}^{-t}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot
Verification of solutions

$$
y=t\left(-\mathrm{e}^{-t}+c_{1}\right)
$$

Verified OK.

1.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
t\left(u^{\prime}(t) t+u(t)\right)-u(t) t=t^{2} \mathrm{e}^{-t}
$$

Integrating both sides gives

$$
\begin{aligned}
u(t) & =\int \mathrm{e}^{-t} \mathrm{~d} t \\
& =-\mathrm{e}^{-t}+c_{2}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u t \\
& =t\left(-\mathrm{e}^{-t}+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(-\mathrm{e}^{-t}+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
y=t\left(-\mathrm{e}^{-t}+c_{2}\right)
$$

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\left(y \mathrm{e}^{t}+t^{2}\right) \mathrm{e}^{-t}}{t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 28: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{\left(y \mathrm{e}^{t}+t^{2}\right) \mathrm{e}^{-t}}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{y}{t^{2}} \\
S_{y} & =\frac{1}{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t}=-\mathrm{e}^{-t}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t}=-\mathrm{e}^{-t}+c_{1}
$$

Which gives

$$
y=-t\left(\mathrm{e}^{-t}-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{\left(y \mathrm{e}^{t}+t^{2}\right) \mathrm{e}^{-t}}{t}$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
	$R=t$	
$4{ }^{\text {a }}$	$S=\frac{y}{t}$	
		+ $+1+2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-t\left(\mathrm{e}^{-t}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot

Verification of solutions

$$
y=-t\left(\mathrm{e}^{-t}-c_{1}\right)
$$

Verified OK.

1.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =\left(t^{2} \mathrm{e}^{-t}+y\right) \mathrm{d} t \\
\left(-t^{2} \mathrm{e}^{-t}-y\right) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t^{2} \mathrm{e}^{-t}-y \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2} \mathrm{e}^{-t}-y\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((-1)-(1)) \\
& =-\frac{2}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{2}}\left(-t^{2} \mathrm{e}^{-t}-y\right) \\
& =\frac{-t^{2} \mathrm{e}^{-t}-y}{t^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{2}}(t) \\
& =\frac{1}{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-t^{2} \mathrm{e}^{-t}-y}{t^{2}}\right)+\left(\frac{1}{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-t^{2} \mathrm{e}^{-t}-y}{t^{2}} \mathrm{~d} t \\
\phi & =\frac{t \mathrm{e}^{-t}+y}{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t}=\frac{1}{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{t \mathrm{e}^{-t}+y}{t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{t \mathrm{e}^{-t}+y}{t}
$$

The solution becomes

$$
y=-t\left(\mathrm{e}^{-t}-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-t\left(\mathrm{e}^{-t}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
y=-t\left(\mathrm{e}^{-t}-c_{1}\right)
$$

Verified OK.

1.10.5 Maple step by step solution

Let's solve
$t y^{\prime}-y=\frac{t^{2}}{\mathrm{e}^{t}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{t}+\frac{t}{\mathrm{e}^{t}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{t}=\frac{t}{\mathrm{e}^{t}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{y}{t}\right)=\frac{\mu(t) t}{\mathrm{e}^{t}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=\frac{\mathrm{e}^{-t} \mathrm{e}^{t}}{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) t}{\mathrm{e}^{t}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) t}{\mathrm{e}^{t}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) t}{\mathrm{e}^{t}} d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\frac{\mathrm{e}^{-t} \mathrm{e}^{t}}{t}$
$y=\frac{t\left(\int \mathrm{e}^{-t} d t+c_{1}\right)}{\mathrm{e}^{-t} \mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{t\left(-\mathrm{e}^{-t}+c_{1}\right)}{\mathrm{e}^{-t} \mathrm{e}^{t}}$
- Simplify

$$
y=t\left(-\mathrm{e}^{-t}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(-y(t)+t*diff(y(t),t) = t^2/exp(t),y(t), singsol=all)
```

$$
y(t)=\left(-\mathrm{e}^{-t}+c_{1}\right) t
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 17
DSolve[-y[t]+t*y'[t] == t^2/Exp[t],y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow t\left(-e^{-t}+c_{1}\right)
$$

1.11 problem 11

> 1.11.1 Solving as linear ode
1.11.2 Solving as first order ode lie symmetry lookup ode 134
1.11.3 Solving as exact ode . 138
1.11.4 Maple step by step solution . 142

Internal problem ID [458]
Internal file name [OUTPUT/458_Sunday_June_05_2022_01_41_48_AM_82720145/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+y^{\prime}=5 \sin (2 t)
$$

1.11.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =5 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y+y^{\prime}=5 \sin (2 t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(5 \sin (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(y \mathrm{e}^{t}\right) & =\left(\mathrm{e}^{t}\right)(5 \sin (2 t)) \\
\mathrm{d}\left(y \mathrm{e}^{t}\right) & =\left(5 \mathrm{e}^{t} \sin (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{t}=\int 5 \mathrm{e}^{t} \sin (2 t) \mathrm{d} t \\
& y \mathrm{e}^{t}=-2 \mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t}$ results in

$$
y=\mathrm{e}^{-t}\left(-2 \mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t)\right)+c_{1} \mathrm{e}^{-t}
$$

which simplifies to

$$
y=\sin (2 t)-2 \cos (2 t)+c_{1} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (2 t)-2 \cos (2 t)+c_{1} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=\sin (2 t)-2 \cos (2 t)+c_{1} \mathrm{e}^{-t}
$$

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-y+5 \sin (2 t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 31: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-y+5 \sin (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{t} \\
S_{y} & =\mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=5 \mathrm{e}^{t} \sin (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=5 \mathrm{e}^{R} \sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\mathrm{e}^{R}(2 \cos (2 R)-\sin (2 R)) \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t}=c_{1}-\mathrm{e}^{t}(2 \cos (2 t)-\sin (2 t))
$$

Which simplifies to

$$
y \mathrm{e}^{t}=c_{1}-\mathrm{e}^{t}(2 \cos (2 t)-\sin (2 t))
$$

Which gives

$$
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-y+5 \sin (2 t)$		$\frac{d S}{d R}=5 \mathrm{e}^{R} \sin (2 R)$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \text { S }]{ } \rightarrow$
	$R=t$	
	$S=y \mathrm{e}^{t}$	
		\rightarrow
		- 2
		,
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right)
$$

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y+5 \sin (2 t)) \mathrm{d} t \\
(y-5 \sin (2 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y-5 \sin (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-5 \sin (2 t)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}(y-5 \sin (2 t)) \\
& =(y-5 \sin (2 t)) \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(1) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((y-5 \sin (2 t)) \mathrm{e}^{t}\right)+\left(\mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(y-5 \sin (2 t)) \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =\mathrm{e}^{t}(y+2 \cos (2 t)-\sin (2 t))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t}=\mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{t}(y+2 \cos (2 t)-\sin (2 t))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{t}(y+2 \cos (2 t)-\sin (2 t))
$$

The solution becomes

$$
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}\right)
$$

Verified OK.

1.11.4 Maple step by step solution

Let's solve
$y+y^{\prime}=5 \sin (2 t)$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative

$$
y^{\prime}=-y+5 \sin (2 t)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y+y^{\prime}=5 \sin (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y+y^{\prime}\right)=5 \mu(t) \sin (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 5 \mu(t) \sin (2 t) d t+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(t) y=\int 5 \mu(t) \sin (2 t) d t+c_{1}$
- Solve for y
$y=\frac{\int 5 \mu(t) \sin (2 t) d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int 5 \mathrm{e}^{t} \sin (2 t) d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{t} \sin (2 t)-2 \mathrm{e}^{t} \cos (2 t)+c_{1}}{\mathrm{e}^{t}}$
- Simplify

$$
y=\sin (2 t)-2 \cos (2 t)+c_{1} \mathrm{e}^{-t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(y(t)+diff(y(t),t) = 5*sin(2*t),y(t), singsol=all)
```

$$
y(t)=\sin (2 t)-2 \cos (2 t)+\mathrm{e}^{-t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 24
DSolve[y[t]+y'[t] == $5 * \operatorname{Sin}[2 * t], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \sin (2 t)-2 \cos (2 t)+c_{1} e^{-t}
$$

1.12 problem 12

1.12.1 Solving as linear ode . 145
1.12.2 Solving as first order ode lie symmetry lookup ode 147
1.12.3 Solving as exact ode . 151
1.12.4 Maple step by step solution . 156

Internal problem ID [459]
Internal file name [OUTPUT/459_Sunday_June_05_2022_01_41_49_AM_20042804/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+2 y^{\prime}=3 t^{2}
$$

1.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{2} \\
q(t) & =\frac{3 t^{2}}{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2}=\frac{3 t^{2}}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2} d t} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3 t^{2}}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(\mathrm{e}^{\frac{t}{2}}\right)\left(\frac{3 t^{2}}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(\frac{3 t^{2} \mathrm{e}^{\frac{t}{2}}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{t}{2}} y=\int \frac{3 t^{2} \mathrm{e}^{\frac{t}{2}}}{2} \mathrm{~d} t \\
& \mathrm{e}^{\frac{t}{2}} y=3\left(t^{2}-4 t+8\right) \mathrm{e}^{\frac{t}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{2}}$ results in

$$
y=3 \mathrm{e}^{-\frac{t}{2}}\left(t^{2}-4 t+8\right) \mathrm{e}^{\frac{t}{2}}+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

which simplifies to

$$
y=3 t^{2}-12 t+24+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 t^{2}-12 t+24+c_{1} \mathrm{e}^{-\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
y=3 t^{2}-12 t+24+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Verified OK.

1.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{2}+\frac{3 t^{2}}{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 34: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y}{2}+\frac{3 t^{2}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{\mathrm{e}^{\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3 t^{2} \mathrm{e}^{\frac{t}{2}}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3 R^{2} \mathrm{e}^{\frac{R}{2}}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3\left(R^{2}-4 R+8\right) \mathrm{e}^{\frac{R}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{t}{2}} y=3\left(t^{2}-4 t+8\right) \mathrm{e}^{\frac{t}{2}}+c_{1}
$$

Which simplifies to

$$
\left(-3 t^{2}+12 t+y-24\right) \mathrm{e}^{\frac{t}{2}}-c_{1}=0
$$

Which gives

$$
y=\left(3 t^{2} \mathrm{e}^{\frac{t}{2}}-12 t \mathrm{e}^{\frac{t}{2}}+24 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y}{2}+\frac{3 t^{2}}{2}$		$\frac{d S}{d R}=\frac{3 R^{2} e \frac{R}{2}}{2}$
	$R=t$	
	$S=\mathrm{e}^{\frac{t}{2}} y$	
	$S=\mathrm{e}^{\frac{1}{2}} y$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 t^{2} \mathrm{e}^{\frac{t}{2}}-12 t \mathrm{e}^{\frac{t}{2}}+24 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot

Verification of solutions

$$
y=\left(3 t^{2} \mathrm{e}^{\frac{t}{2}}-12 t \mathrm{e}^{\frac{t}{2}}+24 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}
$$

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2) \mathrm{d} y & =\left(3 t^{2}-y\right) \mathrm{d} t \\
\left(-3 t^{2}+y\right) \mathrm{d} t+(2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-3 t^{2}+y \\
& N(t, y)=2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(2) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{2}((1)-(0)) \\
& =\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{t}{2}} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{t}{2}}\left(-3 t^{2}+y\right) \\
& =\left(-3 t^{2}+y\right) \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{t}{2}}(2) \\
& =2 \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(-3 t^{2}+y\right) \mathrm{e}^{\frac{t}{2}}\right)+\left(2 \mathrm{e}^{\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-3 t^{2}+y\right) \mathrm{e}^{\frac{t}{2}} \mathrm{~d} t \\
\phi & =-6\left(t^{2}-4 t-\frac{1}{3} y+8\right) \mathrm{e}^{\frac{t}{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \mathrm{e}^{\frac{t}{2}}=2 \mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-6\left(t^{2}-4 t-\frac{1}{3} y+8\right) \mathrm{e}^{\frac{t}{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-6\left(t^{2}-4 t-\frac{1}{3} y+8\right) \mathrm{e}^{\frac{t}{2}}
$$

The solution becomes

$$
y=\frac{\left(6 t^{2} \mathrm{e}^{\frac{t}{2}}-24 t \mathrm{e}^{\frac{t}{2}}+48 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 t^{2} \mathrm{e}^{\frac{t}{2}}-24 t \mathrm{e}^{\frac{t}{2}}+48 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 t^{2} \mathrm{e}^{\frac{t}{2}}-24 t \mathrm{e}^{\frac{t}{2}}+48 \mathrm{e}^{\frac{t}{2}}+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
$$

Verified OK.

1.12.4 Maple step by step solution

Let's solve
$y+2 y^{\prime}=3 t^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{2}+\frac{3 t^{2}}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{2}=\frac{3 t^{2}}{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=\frac{3 \mu(t) t^{2}}{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{2}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{3 \mu(t) t^{2}}{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{3 \mu(t) t^{2}}{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{3 \mu(t) t^{2}}{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{t}{2}}$
$y=\frac{\int \frac{3 t^{2} \mathrm{e}^{\frac{t}{2}}}{2} d t+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{3\left(t^{2}-4 t+8\right) \mathrm{e}^{\frac{t}{2}}+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Simplify

$$
y=3 t^{2}-12 t+24+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve(y(t)+2*diff(y(t),t) = 3*t^2,y(t), singsol=all)
```

$$
y(t)=3 t^{2}-12 t+24+\mathrm{e}^{-\frac{t}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 25

```
DSolve[y[t]+2*y'[t] == 3*t^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow 3 t^{2}-12 t+c_{1} e^{-t / 2}+24
$$

1.13 problem 13

1.13.1 Existence and uniqueness analysis 158
1.13.2 Solving as linear ode . 159
1.13.3 Solving as first order ode lie symmetry lookup ode 160
1.13.4 Solving as exact ode . 164
1.13.5 Maple step by step solution . 169

Internal problem ID [460]
Internal file name [OUTPUT/460_Sunday_June_05_2022_01_41_49_AM_58508263/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-y+y^{\prime}=2 \mathrm{e}^{2 t} t
$$

With initial conditions

$$
[y(0)=1]
$$

1.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=2 \mathrm{e}^{2 t} t
\end{aligned}
$$

Hence the ode is

$$
-y+y^{\prime}=2 \mathrm{e}^{2 t} t
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{2 t} t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 \mathrm{e}^{2 t} t\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)\left(2 \mathrm{e}^{2 t} t\right) \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\left(2 t \mathrm{e}^{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int 2 t \mathrm{e}^{t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=2 \mathrm{e}^{t}(-1+t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=2 \mathrm{e}^{2 t}(-1+t)+c_{1} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1}-2
$$

$$
c_{1}=3
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Verified OK.

1.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y+2 \mathrm{e}^{2 t} t \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+2 \mathrm{e}^{2 t} t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t \mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2(R-1) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t} y=2 \mathrm{e}^{t}(-1+t)+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-t} y=2 \mathrm{e}^{t}(-1+t)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{t}\left(2 t \mathrm{e}^{t}-2 \mathrm{e}^{t}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+2 \mathrm{e}^{2 t} t$		$\frac{d S}{d R}=2 R \mathrm{e}^{R}$
		$\rightarrow+$
		vir
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty+1+1$	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty \times 1]{ } \rightarrow$
	$S=\mathrm{e}^{-t} y$	
bitbity		
+1. 5^{+1}		
bly		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=c_{1}-2
$$

$$
c_{1}=3
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Verified OK.

1.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(y+2 \mathrm{e}^{2 t} t\right) \mathrm{d} t \\
\left(-y-2 \mathrm{e}^{2 t} t\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y-2 \mathrm{e}^{2 t} t \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y-2 \mathrm{e}^{2 t} t\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}\left(-y-2 \mathrm{e}^{2 t} t\right) \\
& =-\mathrm{e}^{-t} y-2 t \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{-t} y-2 t \mathrm{e}^{t}\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t} y-2 t \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =\mathrm{e}^{-t} y-2 \mathrm{e}^{t}(-1+t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{-t} y-2 \mathrm{e}^{t}(-1+t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{-t} y-2 \mathrm{e}^{t}(-1+t)
$$

The solution becomes

$$
y=\mathrm{e}^{t}\left(2 t \mathrm{e}^{t}-2 \mathrm{e}^{t}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-2 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=2 \mathrm{e}^{2 t} t-2 \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

Verified OK.

1.13.5 Maple step by step solution

Let's solve
$\left[-y+y^{\prime}=2 \mathrm{e}^{2 t} t, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+2 \mathrm{e}^{2 t} t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-y+y^{\prime}=2 \mathrm{e}^{2 t} t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-y+y^{\prime}\right)=2 \mu(t) \mathrm{e}^{2 t} t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \mathrm{e}^{2 t} t d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \mathrm{e}^{2 t} t d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) \mathrm{e}^{2 t} t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int 2 \mathrm{e}^{2 t} t \mathrm{e}^{-t} d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{2 \mathrm{e}^{t}(-1+t)+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=(2 t-2)\left(\mathrm{e}^{t}\right)^{2}+c_{1} \mathrm{e}^{t}$
- Use initial condition $y(0)=1$
$1=c_{1}-2$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=(2 t-2) \mathrm{e}^{2 t}+3 \mathrm{e}^{t}$
- Solution to the IVP
$y=(2 t-2) \mathrm{e}^{2 t}+3 \mathrm{e}^{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([-y(t)+diff(y(t),t) = 2*exp(2*t)*t,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=(2 t-2) \mathrm{e}^{2 t}+3 \mathrm{e}^{t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 19
DSolve $\left[\left\{-\mathrm{y}[\mathrm{t}]+\mathrm{y} \mathrm{'}^{[\mathrm{t}]}==2 * \operatorname{Exp}[2 * \mathrm{t}] * \mathrm{t}, \mathrm{y}[0]==1\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{t}\left(2 e^{t}(t-1)+3\right)
$$

1.14 problem 14

$$
\text { 1.14.1 Existence and uniqueness analysis } 171
$$

1.14.2 Solving as linear ode 172
1.14.3 Solving as first order ode lie symmetry lookup ode 174
1.14.4 Solving as exact ode 178
1.14.5 Maple step by step solution 182

Internal problem ID [461]
Internal file name [OUTPUT/461_Sunday_June_05_2022_01_41_50_AM_10145323/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
2 y+y^{\prime}=t \mathrm{e}^{-2 t}
$$

With initial conditions

$$
[y(1)=0]
$$

1.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 \\
& q(t)=t \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
2 y+y^{\prime}=t \mathrm{e}^{-2 t}
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=t \mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t \mathrm{e}^{-2 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(y \mathrm{e}^{2 t}\right) & =\left(\mathrm{e}^{2 t}\right)\left(t \mathrm{e}^{-2 t}\right) \\
\mathrm{d}\left(y \mathrm{e}^{2 t}\right) & =t \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{2 t}=\int t \mathrm{~d} t \\
& y \mathrm{e}^{2 t}=\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\mathrm{e}^{-2 t}\left(\frac{t^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\mathrm{e}^{-2}\left(2 c_{1}+1\right)}{2} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}-1\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}-1\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}-1\right)}{2}
$$

Verified OK.

1.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\left(2 y \mathrm{e}^{2 t}-t\right) \mathrm{e}^{-2 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 40: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{2 t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\left(2 y \mathrm{e}^{2 t}-t\right) \mathrm{e}^{-2 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 y \mathrm{e}^{2 t} \\
S_{y} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{2 t}=\frac{t^{2}}{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{2 t}=\frac{t^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\left(2 y \mathrm{e}^{2 t}-t\right) \mathrm{e}^{-2 t}$		$\frac{d S}{d R}=R$
dodytyttyty		
1.10 .10	$R=t$	
	$S=y \mathrm{e}^{2 t}$	

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{-2} c_{1}+\frac{\mathrm{e}^{-2}}{2} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2}
$$

Verified OK.

1.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{2 t}\right) \mathrm{d} y & =\left(-2 y \mathrm{e}^{2 t}+t\right) \mathrm{d} t \\
\left(2 y \mathrm{e}^{2 t}-t\right) \mathrm{d} t+\left(\mathrm{e}^{2 t}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y \mathrm{e}^{2 t}-t \\
N(t, y) & =\mathrm{e}^{2 t}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y \mathrm{e}^{2 t}-t\right) \\
& =2 \mathrm{e}^{2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\mathrm{e}^{2 t}\right) \\
& =2 \mathrm{e}^{2 t}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 y \mathrm{e}^{2 t}-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+y \mathrm{e}^{2 t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+y \mathrm{e}^{2 t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+y \mathrm{e}^{2 t}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}+2 c_{1}\right)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{-2} c_{1}+\frac{\mathrm{e}^{-2}}{2} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t} t^{2}}{2}-\frac{\mathrm{e}^{-2 t}}{2}
$$

Verified OK.

1.14.5 Maple step by step solution

Let's solve

$$
\left[2 y+y^{\prime}=\frac{t}{\mathrm{e}^{2 t}}, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+\frac{t}{\mathrm{e}^{2 t}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $2 y+y^{\prime}=\frac{t}{\mathrm{e}^{2 t}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(2 y+y^{\prime}\right)=\frac{\mu(t) t}{\mathrm{e}^{2 t}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(2 y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\left(\mathrm{e}^{2 t}\right)^{2} \mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) t}{\mathrm{e}^{2 t}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) t}{\mathrm{e}^{2 t}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) t}{\mathrm{e}^{2 t}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\left(\mathrm{e}^{2 t}\right)^{2} \mathrm{e}^{-2 t}$
$y=\frac{\int t \mathrm{e}^{-2 t} \mathrm{e}^{2 t} d t+c_{1}}{\left(\mathrm{e}^{2 t}\right)^{2} \mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{t^{2}}{2}+c_{1}}{\left(\mathrm{e}^{2 t}\right)^{2} \mathrm{e}^{-2 t}}$
- Simplify

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}+2 c_{1}\right)}{2}
$$

- Use initial condition $y(1)=0$
$0=\frac{\mathrm{e}^{-2}\left(2 c_{1}+1\right)}{2}$
- \quad Solve for c_{1}

$$
c_{1}=-\frac{1}{2}
$$

- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$y=\frac{\mathrm{e}^{-2 t}\left(t^{2}-1\right)}{2}$
- Solution to the IVP

$$
y=\frac{\mathrm{e}^{-2 t}\left(t^{2}-1\right)}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([2*y(t)+diff(y(t),t) = t/exp(2*t),y(1) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{\left(t^{2}-1\right) \mathrm{e}^{-2 t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 19
DSolve[\{2*y[t]+y'[t] == t/Exp[2*t],y[1]==0\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2} e^{-2 t}\left(t^{2}-1\right)
$$

1.15 problem 15

1.15.1 Existence and uniqueness analysis 184
1.15.2 Solving as linear ode . 185
1.15.3 Solving as first order ode lie symmetry lookup ode 187
1.15.4 Solving as exact ode . 191
1.15.5 Maple step by step solution . 195

Internal problem ID [462]
Internal file name [OUTPUT/462_Sunday_June_05_2022_01_41_51_AM_24139145/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+t y^{\prime}=t^{2}-t+1
$$

With initial conditions

$$
\left[y(1)=\frac{1}{2}\right]
$$

1.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{t^{2}-t+1}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{t^{2}-t+1}{t}
$$

The domain of $p(t)=\frac{2}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=\frac{t^{2}-t+1}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.15.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{2}-t+1}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{t^{2}-t+1}{t}\right) \\
\mathrm{d}\left(t^{2} y\right) & =\left(\left(t^{2}-t+1\right) t\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int\left(t^{2}-t+1\right) t \mathrm{~d} t \\
& t^{2} y=\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+12 c_{1}}{12 t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=c_{1}+\frac{5}{12} \\
c_{1}=\frac{1}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-t^{2}+t+2 y-1}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 43: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{-t^{2}+t+2 y-1}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{3}-t^{2}+t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{3}-R^{2}+R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{4} R^{4}-\frac{1}{3} R^{3}+\frac{1}{2} R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

Which simplifies to

$$
y t^{2}=\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

Which gives

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+12 c_{1}}{12 t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{-t^{2}+t+2 y-1}{t}$		$\frac{d S}{d R}=R^{3}-R^{2}+R$
	$R=t$	
	$S=t^{2} y$	
		- $)^{4}+4+1+1$
+1. ${ }_{\text {a }}$		

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=c_{1}+\frac{5}{12} \\
c_{1}=\frac{1}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Verified OK.

1.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =\left(t^{2}-t-2 y+1\right) \mathrm{d} t \\
\left(-t^{2}+t+2 y-1\right) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{2}+t+2 y-1 \\
& N(t, y)=t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}+t+2 y-1\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((2)-(1)) \\
& =\frac{1}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t\left(-t^{2}+t+2 y-1\right) \\
& =-t\left(t^{2}-t-2 y+1\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t(t) \\
& =t^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-t\left(t^{2}-t-2 y+1\right)\right)+\left(t^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t\left(t^{2}-t-2 y+1\right) \mathrm{d} t \\
\phi & =-\frac{t^{2}\left(t^{2}-\frac{4}{3} t-4 y+2\right)}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}\left(t^{2}-\frac{4}{3} t-4 y+2\right)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}\left(t^{2}-\frac{4}{3} t-4 y+2\right)}{4}
$$

The solution becomes

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+12 c_{1}}{12 t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=c_{1}+\frac{5}{12} \\
c_{1}=\frac{1}{12}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

Verified OK.

1.15.5 Maple step by step solution

Let's solve

$$
\left[2 y+t y^{\prime}=t^{2}-t+1, y(1)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-\frac{2 y}{t}+\frac{t^{2}-t+1}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{2 y}{t}=\frac{t^{2}-t+1}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\frac{\mu(t)\left(t^{2}-t+1\right)}{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t)\left(t^{2}-t+1\right)}{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t)\left(t^{2}-t+1\right)}{t} d t+c_{1}$
- Solve for y
$y=\frac{\int^{\mu(t)\left(t^{2}-t+1\right)}}{t^{2}(t)} d t+c_{1}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int\left(t^{2}-t+1\right) t d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}}{t^{2}}$
- Simplify
$y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+12 c_{1}}{12 t^{2}}$
- Use initial condition $y(1)=\frac{1}{2}$
$\frac{1}{2}=c_{1}+\frac{5}{12}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{12}$
- Substitute $c_{1}=\frac{1}{12}$ into general solution and simplify

$$
y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}
$$

- Solution to the IVP
$y=\frac{3 t^{4}-4 t^{3}+6 t^{2}+1}{12 t^{2}}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve([2*y(t)+t*\operatorname{diff}(y(t),t) = t^2-t+1,y(1) = 1/2],y(t), singsol=all)
```

$$
y(t)=\frac{t^{2}}{4}-\frac{t}{3}+\frac{1}{2}+\frac{1}{12 t^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 22

```
DSolve[{2*y[t]+t*y'[t] == t^2-t+1,y[1]==1/2},y[t],t,IncludeSingularSolutions }->>\mathrm{ True]
```

$$
y(t) \rightarrow \frac{1}{12}\left(3 t^{2}+\frac{1}{t^{2}}-4 t+6\right)
$$

1.16 problem 16

1.16.1 Existence and uniqueness analysis 198
1.16.2 Solving as linear ode . 199
1.16.3 Solving as first order ode lie symmetry lookup ode 201
1.16.4 Solving as exact ode . 205
1.16.5 Maple step by step solution . 209

Internal problem ID [463]
Internal file name [OUTPUT/463_Sunday_June_05_2022_01_41_52_AM_63516619/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{2 y}{t}=\frac{\cos (t)}{t^{2}}
$$

With initial conditions

$$
[y(\pi)=0]
$$

1.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{\cos (t)}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{\cos (t)}{t^{2}}
$$

The domain of $p(t)=\frac{2}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=\pi$ is inside this domain. The domain of $q(t)=\frac{\cos (t)}{t^{2}}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

1.16.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\cos (t)}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{\cos (t)}{t^{2}}\right) \\
\mathrm{d}\left(t^{2} y\right) & =\cos (t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int \cos (t) \mathrm{d} t \\
& t^{2} y=\sin (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{\sin (t)}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
y=\frac{\sin (t)+c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{c_{1}}{\pi^{2}} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (t)}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (t)}{t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (t)}{t^{2}}
$$

Verified OK.

1.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-2 t y+\cos (t)}{t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 46: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-2 t y+\cos (t)}{t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=\sin (t)+c_{1}
$$

Which simplifies to

$$
y t^{2}=\sin (t)+c_{1}
$$

Which gives

$$
y=\frac{\sin (t)+c_{1}}{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-2 t y+\cos (t)}{t^{2}}$		$\frac{d S}{d R}=\cos (R)$
		$\rightarrow \underbrace{\text { a }}$
		$\rightarrow \rightarrow$ 为 x_{1}
		$\rightarrow \rightarrow \underbrace{*}$
	$R=t$	\rightarrow vidy
	$S=t^{2} y$	
	$S=t^{2} y$	
		$\rightarrow \rightarrow+x_{1}$
		$\rightarrow x^{\text {a }}$

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{c_{1}}{\pi^{2}} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (t)}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (t)}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sin (t)}{t^{2}}
$$

Verified OK.

1.16.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(t^{2}\right) \mathrm{d} y & =(-2 t y+\cos (t)) \mathrm{d} t \\
(2 t y-\cos (t)) \mathrm{d} t+\left(t^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 t y-\cos (t) \\
N(t, y) & =t^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 t y-\cos (t)) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(t^{2}\right) \\
& =2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t y-\cos (t) \mathrm{d} t \\
\phi & =t^{2} y-\sin (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{2} y-\sin (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{2} y-\sin (t)
$$

The solution becomes

$$
y=\frac{\sin (t)+c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{c_{1}}{\pi^{2}} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sin (t)}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (t)}{t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (t)}{t^{2}}
$$

Verified OK.

1.16.5 Maple step by step solution

Let's solve
$\left[y^{\prime}+\frac{2 y}{t}=\frac{\cos (t)}{t^{2}}, y(\pi)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{t}+\frac{\cos (t)}{t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{t}=\frac{\cos (t)}{t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\frac{\mu(t) \cos (t)}{t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \cos (t)}{t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \cos (t)}{t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \cos (t)}{t^{2}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int \cos (t) d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (t)+c_{1}}{t^{2}}$
- Use initial condition $y(\pi)=0$

$$
0=\frac{c_{1}}{\pi^{2}}
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\frac{\sin (t)}{t^{2}}$
- \quad Solution to the IVP
$y=\frac{\sin (t)}{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve([2*y(t)/t+diff(y(t),t) = cos(t)/t^2,y(Pi) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{\sin (t)}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 11

```
DSolve[{2*y[t]/t+y'[t] == Cos[t]/t^2,y[Pi]==0},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{\sin (t)}{t^{2}}
$$

1.17 problem 17

1.17.1 Existence and uniqueness analysis 211
1.17.2 Solving as linear ode . 212
1.17.3 Solving as first order ode lie symmetry lookup ode 214
1.17.4 Solving as exact ode . 218
1.17.5 Maple step by step solution . 222

Internal problem ID [464]
Internal file name [OUTPUT/464_Sunday_June_05_2022_01_41_53_AM_28340272/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-2 y+y^{\prime}=\mathrm{e}^{2 t}
$$

With initial conditions

$$
[y(0)=2]
$$

1.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-2 \\
& q(t)=\mathrm{e}^{2 t}
\end{aligned}
$$

Hence the ode is

$$
-2 y+y^{\prime}=\mathrm{e}^{2 t}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\mathrm{e}^{2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.17.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{2 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)\left(\mathrm{e}^{2 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int \mathrm{d} t \\
& \mathrm{e}^{-2 t} y=t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=\mathrm{e}^{2 t} t+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=\mathrm{e}^{2 t}\left(t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{2 t}(2+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t}(2+t) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t}(2+t)
$$

Verified OK.

1.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+\mathrm{e}^{2 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 49: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+\mathrm{e}^{2 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{2 t}\left(t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+\mathrm{e}^{2 t}$		$\frac{d S}{d R}=1$
	$R=t$	
	$S=\mathrm{e}^{-2 t} y$	
$\Vdash_{\bullet} \rightarrow 1$, 1 1		
! ! ! d ! d d apatatata		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t}
$$

Verified OK.

1.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+\mathrm{e}^{2 t}\right) \mathrm{d} t \\
\left(-2 y-\mathrm{e}^{2 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-\mathrm{e}^{2 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-\mathrm{e}^{2 t}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}\left(-2 y-\mathrm{e}^{2 t}\right) \\
& =-2 \mathrm{e}^{-2 t} y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-2 \mathrm{e}^{-2 t} y-1\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 \mathrm{e}^{-2 t} y-1 \mathrm{~d} t \\
\phi & =-t+\mathrm{e}^{-2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t+\mathrm{e}^{-2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t+\mathrm{e}^{-2 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{2 t}\left(t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t} t+2 \mathrm{e}^{2 t}
$$

Verified OK.

1.17.5 Maple step by step solution

Let's solve
$\left[-2 y+y^{\prime}=\mathrm{e}^{2 t}, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+\mathrm{e}^{2 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-2 y+y^{\prime}=\mathrm{e}^{2 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-2 y+y^{\prime}\right)=\mu(t) \mathrm{e}^{2 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-2 y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{2 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{2 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \mathrm{e}^{2 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \mathrm{e}^{-2 t} \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{t+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\mathrm{e}^{2 t}\left(t+c_{1}\right)$
- Use initial condition $y(0)=2$
$2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=\mathrm{e}^{2 t}(2+t)$
- \quad Solution to the IVP
$y=\mathrm{e}^{2 t}(2+t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([-2*y(t)+diff(y(t),t) = exp(2*t),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=(2+t) \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 14
DSolve $[\{-2 * y[t]+y$ ' $[t]==\operatorname{Exp}[2 * t], y[0]==2\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{2 t}(t+2)
$$

1.18 problem 18

1.18.1 Existence and uniqueness analysis 225
1.18.2 Solving as linear ode . 226
1.18.3 Solving as first order ode lie symmetry lookup ode 228
1.18.4 Solving as exact ode . 232
1.18.5 Maple step by step solution . 236

Internal problem ID [465]
Internal file name [OUTPUT/465_Sunday_June_05_2022_01_41_54_AM_98318111/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+t y^{\prime}=\sin (t)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=1\right]
$$

1.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{2}{t} \\
q(t) & =\frac{\sin (t)}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t}
$$

The domain of $p(t)=\frac{2}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(t)=\frac{\sin (t)}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

1.18.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\sin (t)}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{\sin (t)}{t}\right) \\
\mathrm{d}\left(t^{2} y\right) & =(t \sin (t)) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int t \sin (t) \mathrm{d} t \\
& t^{2} y=-t \cos (t)+\sin (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{-t \cos (t)+\sin (t)}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{4+4 c_{1}}{\pi^{2}} \\
& c_{1}=\frac{\pi^{2}}{4}-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Verified OK.

1.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y-\sin (t)}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 52: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{2 y-\sin (t)}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \sin (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R \cos (R)+\sin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=-t \cos (t)+\sin (t)+c_{1}
$$

Which simplifies to

$$
y t^{2}=-t \cos (t)+\sin (t)+c_{1}
$$

Which gives

$$
y=-\frac{t \cos (t)-\sin (t)-c_{1}}{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{2 y-\sin (t)}{t}$		$\frac{d S}{d R}=R \sin (R)$
		! !
		! 1
\rightarrow 崖	$S=t^{2} y$	${ }_{\text {d }}^{4}$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{4+4 c_{1}}{\pi^{2}} \\
& c_{1}=\frac{\pi^{2}}{4}-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Verified OK.

1.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(-2 y+\sin (t)) \mathrm{d} t \\
(2 y-\sin (t)) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y-\sin (t) \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y-\sin (t)) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((2)-(1)) \\
& =\frac{1}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t(2 y-\sin (t)) \\
& =(2 y-\sin (t)) t
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t(t) \\
& =t^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
((2 y-\sin (t)) t)+\left(t^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(2 y-\sin (t)) t \mathrm{~d} t \\
\phi & =t^{2} y+t \cos (t)-\sin (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{2} y+t \cos (t)-\sin (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{2} y+t \cos (t)-\sin (t)
$$

The solution becomes

$$
y=-\frac{t \cos (t)-\sin (t)-c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\frac{\pi}{2}$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{4+4 c_{1}}{\pi^{2}} \\
& c_{1}=\frac{\pi^{2}}{4}-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{-4 t \cos (t)+\pi^{2}+4 \sin (t)-4}{4 t^{2}}
$$

Verified OK.

1.18.5 Maple step by step solution

Let's solve

$$
\left[2 y+t y^{\prime}=\sin (t), y\left(\frac{\pi}{2}\right)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{t}+\frac{\sin (t)}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\frac{\mu(t) \sin (t)}{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \sin (t)}{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int t \sin (t) d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-t \cos (t)+\sin (t)+c_{1}}{t^{2}}$
- Use initial condition $y\left(\frac{\pi}{2}\right)=1$
$1=\frac{4\left(1+c_{1}\right)}{\pi^{2}}$
- \quad Solve for c_{1}
$c_{1}=\frac{\pi^{2}}{4}-1$
- Substitute $c_{1}=\frac{\pi^{2}}{4}-1$ into general solution and simplify
$y=\frac{-t \cos (t)+\sin (t)+\frac{\pi^{2}}{4}-1}{t^{2}}$
- Solution to the IVP
$y=\frac{-t \cos (t)+\sin (t)+\frac{\pi^{2}}{4}-1}{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve([2*y(t)+t*diff(y(t),t) = sin(t),y(1/2*Pi) = 1],y(t), singsol=all)
```

$$
y(t)=\frac{\sin (t)-\cos (t) t+\frac{\pi^{2}}{4}-1}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 26
DSolve[\{2*y[t]+t*y'[t] ==Sin[t],y[Pi/2]==1\},y[t],t,IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow \frac{4 \sin (t)-4 t \cos (t)+\pi^{2}-4}{4 t^{2}}
$$

1.19 problem 19

1.19.1 Existence and uniqueness analysis 239
1.19.2 Solving as linear ode . 240
1.19.3 Solving as first order ode lie symmetry lookup ode 242
1.19.4 Solving as exact ode . 246
1.19.5 Maple step by step solution . 250

Internal problem ID [466]
Internal file name [DUTPUT/466_Sunday_June_05_2022_01_41_55_AM_9788455/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
4 y t^{2}+y^{\prime} t^{3}=\mathrm{e}^{-t}
$$

With initial conditions

$$
[y(-1)=0]
$$

1.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{4}{t} \\
q(t) & =\frac{\mathrm{e}^{-t}}{t^{3}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{4 y}{t}=\frac{\mathrm{e}^{-t}}{t^{3}}
$$

The domain of $p(t)=\frac{4}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=-1$ is inside this domain. The domain of $q(t)=\frac{\mathrm{e}^{-t}}{t^{3}}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

1.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{4}{t} d t} \\
=t^{4}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{-t}}{t^{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{4} y\right) & =\left(t^{4}\right)\left(\frac{\mathrm{e}^{-t}}{t^{3}}\right) \\
\mathrm{d}\left(t^{4} y\right) & =\left(t \mathrm{e}^{-t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{4} y=\int t \mathrm{e}^{-t} \mathrm{~d} t \\
& t^{4} y=-\mathrm{e}^{-t}(t+1)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{4}$ results in

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}+\frac{c_{1}}{t^{4}}
$$

which simplifies to

$$
y=\frac{(-t-1) \mathrm{e}^{-t}+c_{1}}{t^{4}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Verified OK.

1.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-4 t^{2} y+\mathrm{e}^{-t}}{t^{3}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 55: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{4}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{4}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{4} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-4 t^{2} y+\mathrm{e}^{-t}}{t^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =4 t^{3} y \\
S_{y} & =t^{4}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-(R+1) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{4}=-\mathrm{e}^{-t}(t+1)+c_{1}
$$

Which simplifies to

$$
y t^{4}=-\mathrm{e}^{-t}(t+1)+c_{1}
$$

Which gives

$$
y=-\frac{t \mathrm{e}^{-t}+\mathrm{e}^{-t}-c_{1}}{t^{4}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-4 t^{2} y+\mathrm{e}^{-t}}{t^{3}}$		$\frac{d S}{d R}=R \mathrm{e}^{-R}$
		d \downarrow d \downarrow d $\downarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		准
		1，$x_{0} 0$
	$R=t$	
	$S=t^{4} y$	
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		－$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		校

Initial conditions are used to solve for c_{1} ．Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration．

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Verified OK.

1.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(t^{3}\right) \mathrm{d} y & =\left(-4 t^{2} y+\mathrm{e}^{-t}\right) \mathrm{d} t \\
\left(4 t^{2} y-\mathrm{e}^{-t}\right) \mathrm{d} t+\left(t^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=4 t^{2} y-\mathrm{e}^{-t} \\
& N(t, y)=t^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 t^{2} y-\mathrm{e}^{-t}\right) \\
& =4 t^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(t^{3}\right) \\
& =3 t^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t^{3}}\left(\left(4 t^{2}\right)-\left(3 t^{2}\right)\right) \\
& =\frac{1}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t\left(4 t^{2} y-\mathrm{e}^{-t}\right) \\
& =4 t^{3} y-t \mathrm{e}^{-t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t\left(t^{3}\right) \\
& =t^{4}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(4 t^{3} y-t \mathrm{e}^{-t}\right)+\left(t^{4}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 4 t^{3} y-t \mathrm{e}^{-t} \mathrm{~d} t \\
\phi & =t \mathrm{e}^{-t}+\mathrm{e}^{-t}+t^{4} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{4}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{4}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{4}=t^{4}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t \mathrm{e}^{-t}+\mathrm{e}^{-t}+t^{4} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t \mathrm{e}^{-t}+\mathrm{e}^{-t}+t^{4} y
$$

The solution becomes

$$
y=-\frac{t \mathrm{e}^{-t}+\mathrm{e}^{-t}-c_{1}}{t^{4}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}
$$

Verified OK.

1.19.5 Maple step by step solution

Let's solve
$\left[4 y t^{2}+y^{\prime} t^{3}=\mathrm{e}^{-t}, y(-1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{4 y}{t}+\frac{\mathrm{e}^{-t}}{t^{3}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{4 y}{t}=\frac{\mathrm{e}^{-t}}{t^{3}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{4 y}{t}\right)=\frac{\mu(t) \mathrm{e}^{-t}}{t^{3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{4 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{4 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{4}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \mathrm{e}^{-t}}{t^{3}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \mathrm{e}^{-t}}{t^{3}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) e^{-t}}{t^{3}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{4}$
$y=\frac{\int t \mathrm{e}^{-t} d t+c_{1}}{t^{4}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{-t}(t+1)+c_{1}}{t^{4}}$
- Simplify
$y=\frac{(-t-1) \mathrm{e}^{-t}+c_{1}}{t^{4}}$
- Use initial condition $y(-1)=0$
$0=c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}$
- \quad Solution to the IVP
$y=-\frac{\mathrm{e}^{-t}(t+1)}{t^{4}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve([4*t^2*y(t)+t^3*diff(y(t),t) = exp(-t),y(-1) = 0],y(t), singsol=all)
```

$$
y(t)=-\frac{(t+1) \mathrm{e}^{-t}}{t^{4}}
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 18
DSolve[\{4*t^2*y[t]+t^3*y'[t]==Exp[-t],y[-1]==0\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{e^{-t}(t+1)}{t^{4}}
$$

1.20 problem 20

$$
\text { 1.20.1 Existence and uniqueness analysis } 253
$$

1.20.2 Solving as linear ode . 254
1.20.3 Solving as first order ode lie symmetry lookup ode 256
1.20.4 Solving as exact ode . 260
1.20.5 Maple step by step solution . 264

Internal problem ID [467]
Internal file name [OUTPUT/467_Sunday_June_05_2022_01_41_56_AM_59241620/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(t+1) y+t y^{\prime}=t
$$

With initial conditions

$$
[y(\ln (2))=1]
$$

1.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{-t-1}{t} \\
& q(t)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-t-1) y}{t}=1
$$

The domain of $p(t)=-\frac{-t-1}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=\ln (2)$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=\ln (2)$ is also inside this domain. Hence solution exists and is unique.

1.20.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-t-1}{t} d t} \\
& =\mathrm{e}^{t+\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=t \mathrm{e}^{t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t \mathrm{e}^{t} y\right) & =t \mathrm{e}^{t} \\
\mathrm{~d}\left(t \mathrm{e}^{t} y\right) & =t \mathrm{e}^{t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t \mathrm{e}^{t} y=\int t \mathrm{e}^{t} \mathrm{~d} t \\
& t \mathrm{e}^{t} y=\mathrm{e}^{t}(-1+t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t \mathrm{e}^{t}$ results in

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t}(-1+t)}{t}+\frac{c_{1} \mathrm{e}^{-t}}{t}
$$

which simplifies to

$$
y=\frac{c_{1} \mathrm{e}^{-t}+t-1}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\ln (2)$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}+2 \ln (2)-2}{2 \ln (2)} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-1+2 \mathrm{e}^{-t}+t}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-1+2 \mathrm{e}^{-t}+t}{t} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{-1+2 \mathrm{e}^{-t}+t}{t}
$$

Verified OK.

1.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{t y-t+y}{t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 58: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t-\ln (t)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t-\ln (t)}} d y
\end{aligned}
$$

Which results in

$$
S=t \mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{t y-t+y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{t}(t+1) \\
S_{y} & =t \mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=(R-1) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t \mathrm{e}^{t} y=\mathrm{e}^{t}(-1+t)+c_{1}
$$

Which simplifies to

$$
t \mathrm{e}^{t} y=\mathrm{e}^{t}(-1+t)+c_{1}
$$

Which gives

$$
y=\frac{\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right) \mathrm{e}^{-t}}{t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{t y-t+y}{t}$		$\frac{d S}{d R}=R \mathrm{e}^{R}$
		$\rightarrow \rightarrow$
		-
	$R=t$	
	$S=t \mathrm{e}^{t} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \boldsymbol{P} \boldsymbol{\prime}$

Initial conditions are used to solve for c_{1}. Substituting $t=\ln (2)$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}+2 \ln (2)-2}{2 \ln (2)} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t}
$$

Verified OK.

1.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(-(t+1) y+t) \mathrm{d} t \\
((t+1) y-t) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =(t+1) y-t \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}((t+1) y-t) \\
& =t+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((t+1)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}((t+1) y-t) \\
& =((y-1) t+y) \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(t) \\
& =t \mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(((y-1) t+y) \mathrm{e}^{t}\right)+\left(t \mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int((y-1) t+y) \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =(1+(y-1) t) \mathrm{e}^{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
t \mathrm{e}^{t}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(1+(y-1) t) \mathrm{e}^{t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(1+(y-1) t) \mathrm{e}^{t}
$$

The solution becomes

$$
y=\frac{\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right) \mathrm{e}^{-t}}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\ln (2)$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}+2 \ln (2)-2}{2 \ln (2)} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{t} t-\mathrm{e}^{-t} \mathrm{e}^{t}+2 \mathrm{e}^{-t}}{t}
$$

Verified OK.

1.20.5 Maple step by step solution

Let's solve
$\left[(t+1) y+t y^{\prime}=t, y(\ln (2))=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=1-\frac{(t+1) y}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(t+1) y}{t}=1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)(t+1)}{t}$
- Solve to find the integrating factor
$\mu(t)=t \mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t \mathrm{e}^{t}$
$y=\frac{\int t \mathrm{e}^{t} d t+c_{1}}{t \mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{t}(-1+t)+c_{1}}{t \mathrm{e}^{t}}$
- Simplify
$y=\frac{c_{1} \mathrm{e}^{-t}+t-1}{t}$
- Use initial condition $y(\ln (2))=1$
$1=\frac{\frac{c_{1}}{2}+\ln (2)-1}{\ln (2)}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$y=\frac{-1+2 \mathrm{e}^{-t}+t}{t}$
- \quad Solution to the IVP
$y=\frac{-1+2 \mathrm{e}^{-t}+t}{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([(1+t)*y(t)+t*diff(y(t),t) = t,y(ln(2)) = 1],y(t), singsol=all)
```

$$
y(t)=\frac{t-1+2 \mathrm{e}^{-t}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 23
DSolve $\left[\left\{(1+\mathrm{t}) * \mathrm{y}[\mathrm{t}]+\mathrm{t} * \mathrm{y}^{\prime}[\mathrm{t}]==\mathrm{t}, \mathrm{y}[\log [2]]==1\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow \frac{e^{-t}\left(e^{t}(t-1)+2\right)}{t}
$$

1.21 problem 21

1.21.1 Existence and uniqueness analysis 267
1.21.2 Solving as linear ode 268
1.21.3 Solving as first order ode lie symmetry lookup ode 269
1.21.4 Solving as exact ode 273
1.21.5 Maple step by step solution 278

Internal problem ID [468]
Internal file name [OUTPUT/468_Sunday_June_05_2022_01_41_57_AM_10339982/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-\frac{y}{2}+y^{\prime}=2 \cos (t)
$$

With initial conditions

$$
[y(0)=a]
$$

1.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{2} \\
& q(t)=2 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
-\frac{y}{2}+y^{\prime}=2 \cos (t)
$$

The domain of $p(t)=-\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2} d t} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(2 \cos (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =\left(\mathrm{e}^{-\frac{t}{2}}\right)(2 \cos (t)) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =\left(2 \cos (t) \mathrm{e}^{-\frac{t}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t}{2}} y=\int 2 \cos (t) \mathrm{e}^{-\frac{t}{2}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t}{2}} y=-\frac{4 \cos (t) \mathrm{e}^{-\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{-\frac{t}{2}}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t}{2}}$ results in

$$
y=\mathrm{e}^{\frac{t}{2}}\left(-\frac{4 \cos (t) \mathrm{e}^{-\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{-\frac{t}{2}}}{5}\right)+c_{1} \mathrm{e}^{\frac{t}{2}}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{\frac{t}{2}}+\frac{8 \sin (t)}{5}-\frac{4 \cos (t)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=c_{1}-\frac{4}{5} \\
& c_{1}=\frac{4}{5}+a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(\frac{4}{5}+a\right) \mathrm{e}^{\frac{t}{2}}+\frac{8 \sin (t)}{5}-\frac{4 \cos (t)}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{4}{5}+a\right) \mathrm{e}^{\frac{t}{2}}+\frac{8 \sin (t)}{5}-\frac{4 \cos (t)}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{4}{5}+a\right) \mathrm{e}^{\frac{t}{2}}+\frac{8 \sin (t)}{5}-\frac{4 \cos (t)}{5}
$$

Verified OK.

1.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{2}+2 \cos (t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 61: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{y}{2}+2 \cos (t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \cos (t) \mathrm{e}^{-\frac{t}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \cos (R) \mathrm{e}^{-\frac{R}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\frac{4 \mathrm{e}^{-\frac{R}{2}}(\cos (R)-2 \sin (R))}{5} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t}{2}} y=c_{1}-\frac{4 \mathrm{e}^{-\frac{t}{2}}(\cos (t)-2 \sin (t))}{5}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t}{2}} y=c_{1}-\frac{4 \mathrm{e}^{-\frac{t}{2}}(\cos (t)-2 \sin (t))}{5}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{\frac{t}{2}}\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-5 c_{1}\right)}{5}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{y}{2}+2 \cos (t)$		$\frac{d S}{d R}=2 \cos (R) \mathrm{e}^{-\frac{R}{2}}$
${ }_{4}$		早: 1
		${ }_{\text {d }}$
	$R=t$	
	$S=\mathrm{e}^{-\frac{t}{2}} y$	
+		$\cdots{ }^{81} 408$
atititiot		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=c_{1}-\frac{4}{5} \\
& c_{1}=\frac{4}{5}+a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5}
$$

Verified OK.

1.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{2}+2 \cos (t)\right) \mathrm{d} t \\
\left(-\frac{y}{2}-2 \cos (t)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{y}{2}-2 \cos (t) \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{2}-2 \cos (t)\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{1}{2}\right)-(0)\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t}{2}} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t}{2}}\left(-\frac{y}{2}-2 \cos (t)\right) \\
& =-\frac{(y+4 \cos (t)) \mathrm{e}^{-\frac{t}{2}}}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t}{2}}(1) \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\frac{(y+4 \cos (t)) \mathrm{e}^{-\frac{t}{2}}}{2}\right)+\left(\mathrm{e}^{-\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{(y+4 \cos (t)) \mathrm{e}^{-\frac{t}{2}}}{2} \mathrm{~d} t \\
\phi & =\frac{(5 y+4 \cos (t)-8 \sin (t)) \mathrm{e}^{-\frac{t}{2}}}{5}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{t}{2}}=\mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(5 y+4 \cos (t)-8 \sin (t)) \mathrm{e}^{-\frac{t}{2}}}{5}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(5 y+4 \cos (t)-8 \sin (t)) \mathrm{e}^{-\frac{t}{2}}}{5}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{\frac{t}{2}}\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-5 c_{1}\right)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=c_{1}-\frac{4}{5} \\
& c_{1}=\frac{4}{5}+a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(4 \cos (t) \mathrm{e}^{-\frac{t}{2}}-8 \sin (t) \mathrm{e}^{-\frac{t}{2}}-4-5 a\right) \mathrm{e}^{\frac{t}{2}}}{5}
$$

Verified OK.

1.21.5 Maple step by step solution

Let's solve
$\left[-\frac{y}{2}+y^{\prime}=2 \cos (t), y(0)=a\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{2}+2 \cos (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-\frac{y}{2}+y^{\prime}=2 \cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-\frac{y}{2}+y^{\prime}\right)=2 \mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-\frac{y}{2}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{2}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
$y=\frac{\int 2 \cos (t) \mathrm{e}^{-\frac{t}{2}} d t+c_{1}}{\mathrm{e}^{-\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{4 \cos (t) \mathrm{e}^{-\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{-\frac{t}{2}}}{\mathrm{e}^{-\frac{t}{2}}}+c_{1}}{\mathrm{e}^{-\frac{1}{2}}}$
- Simplify

$$
y=c_{1} \mathrm{e}^{\frac{t}{2}}+\frac{8 \sin (t)}{5}-\frac{4 \cos (t)}{5}
$$

- Use initial condition $y(0)=a$

$$
a=c_{1}-\frac{4}{5}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{4}{5}+a
$$

- \quad Substitute $c_{1}=\frac{4}{5}+a$ into general solution and simplify

$$
y=\mathrm{e}^{\frac{t}{2}} a-\frac{4 \cos (t)}{5}+\frac{8 \sin (t)}{5}+\frac{4 \mathrm{e}^{\frac{t}{2}}}{5}
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{t}{2}} a-\frac{4 \cos (t)}{5}+\frac{8 \sin (t)}{5}+\frac{4 \mathrm{e}^{\frac{t}{2}}}{5}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([-1/2*y(t)+diff(y(t),t) = 2*cos(t),y(0) = a],y(t), singsol=all)
```

$$
y(t)=-\frac{4 \cos (t)}{5}+\frac{8 \sin (t)}{5}+\mathrm{e}^{\frac{t}{2}} a+\frac{4 \mathrm{e}^{\frac{t}{2}}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 31
DSolve $\left[\left\{-1 / 2 * \mathrm{y}[\mathrm{t}]+\mathrm{y} \mathrm{'}^{[\mathrm{t}]}==2 * \operatorname{Cos}[\mathrm{t}], \mathrm{y}[0]==\mathrm{a}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{5}\left((5 a+4) e^{t / 2}+8 \sin (t)-4 \cos (t)\right)
$$

1.22 problem 22

1.22.1 Existence and uniqueness analysis 280
1.22.2 Solving as linear ode . 281
1.22.3 Solving as first order ode lie symmetry lookup ode 282
1.22.4 Solving as exact ode . 286
1.22.5 Maple step by step solution . 290

Internal problem ID [469]
Internal file name [OUTPUT/469_Sunday_June_05_2022_01_41_59_AM_35727842/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-y+2 y^{\prime}=\mathrm{e}^{\frac{t}{3}}
$$

With initial conditions

$$
[y(0)=a]
$$

1.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{2} \\
& q(t)=\frac{\mathrm{e}^{\frac{t}{3}}}{2}
\end{aligned}
$$

Hence the ode is

$$
-\frac{y}{2}+y^{\prime}=\frac{\mathrm{e}^{\frac{t}{3}}}{2}
$$

The domain of $p(t)=-\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{\mathrm{e}^{\frac{t}{3}}}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2} d t} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{\frac{t}{3}}}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =\left(\mathrm{e}^{-\frac{t}{2}}\right)\left(\frac{\mathrm{e}^{\frac{t}{3}}}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =\left(\frac{\mathrm{e}^{-\frac{t}{6}}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t}{2}} y=\int \frac{\mathrm{e}^{-\frac{t}{6}}}{2} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t}{2}} y=-3 \mathrm{e}^{-\frac{t}{6}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t}{2}}$ results in

$$
y=-3 \mathrm{e}^{\frac{t}{2}} \mathrm{e}^{-\frac{t}{6}}+c_{1} \mathrm{e}^{\frac{t}{2}}
$$

which simplifies to

$$
y=-3 \mathrm{e}^{\frac{t}{3}}+c_{1} \mathrm{e}^{\frac{t}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=-3+c_{1} \\
c_{1}=3+a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-3 \mathrm{e}^{\frac{t}{3}}+(3+a) \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3 \mathrm{e}^{\frac{t}{3}}+(3+a) \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-3 \mathrm{e}^{\frac{t}{3}}+(3+a) \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

1.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y}{2}+\frac{\mathrm{e}^{\frac{t}{3}}}{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 64: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{y}{2}+\frac{\mathrm{e}^{\frac{t}{3}}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{t}{6}}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{R}{6}}}{2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \mathrm{e}^{-\frac{R}{6}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
\mathrm{e}^{-\frac{t}{2}} y=-3 \mathrm{e}^{-\frac{t}{6}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t}{2}} y=-3 \mathrm{e}^{-\frac{t}{6}}+c_{1}
$$

Which gives

$$
y=-\left(3 \mathrm{e}^{-\frac{t}{6}}-c_{1}\right) \mathrm{e}^{\frac{t}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{y}{2}+\frac{\mathrm{e}^{\frac{t}{3}}}{2}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{R}{6}}}{2}$
		召为が号
		分分枵
	$R=t$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0$	$S=\mathrm{e}^{-\frac{t}{2}} y$	
		$\rightarrow 8$
为		刀，
		\nrightarrow
1． 1.15		刀刀刀口力

Initial conditions are used to solve for c_{1} ．Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration．

$$
a=-3+c_{1}
$$

$$
c_{1}=3+a
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\left(3 \mathrm{e}^{-\frac{t}{6}}-3-a\right) \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(3 \mathrm{e}^{-\frac{t}{6}}-3-a\right) \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\left(3 \mathrm{e}^{-\frac{t}{6}}-3-a\right) \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

1.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2) \mathrm{d} y & =\left(y+\mathrm{e}^{\frac{t}{3}}\right) \mathrm{d} t \\
\left(-y-\mathrm{e}^{\frac{t}{3}}\right) \mathrm{d} t+(2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y-\mathrm{e}^{\frac{t}{3}} \\
N(t, y) & =2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y-\mathrm{e}^{\frac{t}{3}}\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(2) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{2}((-1)-(0)) \\
& =-\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t}{2}} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t}{2}}\left(-y-\mathrm{e}^{\frac{t}{3}}\right) \\
& =-\left(y+\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t}{2}}(2) \\
& =2 \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\left(y+\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{-\frac{t}{2}}\right)+\left(2 \mathrm{e}^{-\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\left(y+\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{-\frac{t}{2}} \mathrm{~d} t \\
\phi & =2 \mathrm{e}^{-\frac{t}{2}} y+6 \mathrm{e}^{-\frac{t}{6}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{-\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \mathrm{e}^{-\frac{t}{2}}=2 \mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 \mathrm{e}^{-\frac{t}{2}} y+6 \mathrm{e}^{-\frac{t}{6}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 \mathrm{e}^{-\frac{t}{2}} y+6 \mathrm{e}^{-\frac{t}{6}}
$$

The solution becomes

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{t}{6}}-c_{1}\right) \mathrm{e}^{\frac{t}{2}}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=-3+\frac{c_{1}}{2} \\
& c_{1}=6+2 a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{t}{6}}-6-2 a\right) \mathrm{e}^{\frac{t}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(6 \mathrm{e}^{-\frac{t}{6}}-6-2 a\right) \mathrm{e}^{\frac{t}{2}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{t}{6}}-6-2 a\right) \mathrm{e}^{\frac{t}{2}}}{2}
$$

Verified OK.

1.22.5 Maple step by step solution

Let's solve
$\left[-y+2 y^{\prime}=\mathrm{e}^{\frac{t}{3}}, y(0)=a\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{2}+\frac{\mathrm{e}^{\frac{t}{3}}}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-\frac{y}{2}+y^{\prime}=\frac{\mathrm{e}^{\frac{t}{3}}}{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-\frac{y}{2}+y^{\prime}\right)=\frac{\mu(t) \mathrm{e}^{\frac{t}{3}}}{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$

$$
\mu(t)\left(-\frac{y}{2}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}
$$

- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{2}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \mathrm{e}^{\frac{t}{3}}}{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \mathrm{e}^{\frac{t}{3}}}{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t)^{\frac{t}{3}}}{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
$y=\frac{\int e^{\frac{t}{3}}-\frac{t}{2} d t+c_{1}}{\mathrm{e}^{-\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{-3 \mathrm{e}^{-\frac{t}{6}}+c_{1}}{\mathrm{e}^{-\frac{t}{2}}}$
- Simplify
$y=\mathrm{e}^{\frac{t}{3}}\left(\mathrm{e}^{\frac{t}{6}} c_{1}-3\right)$
- Use initial condition $y(0)=a$
$a=-3+c_{1}$
- \quad Solve for c_{1}
$c_{1}=3+a$
- Substitute $c_{1}=3+a$ into general solution and simplify
$y=\mathrm{e}^{\frac{t}{3}}\left(\mathrm{e}^{\frac{t}{6}}(3+a)-3\right)$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{t}{3}}\left(\mathrm{e}^{\frac{t}{6}}(3+a)-3\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([-y(t)+2*diff(y(t),t) = exp(1/3*t),y(0) = a],y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{\frac{t}{3}}\left(-3+(a+3) \mathrm{e}^{\frac{t}{6}}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 26
DSolve[\{-y[t]+2*y'[t] ==Exp[1/3*t],y[0]==a\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{t / 3}\left((a+3) e^{t / 6}-3\right)
$$

1.23 problem 23

1.23.1 Existence and uniqueness analysis 293
1.23.2 Solving as linear ode . 294
1.23.3 Solving as first order ode lie symmetry lookup ode 295
1.23.4 Solving as exact ode . 299
1.23.5 Maple step by step solution . 303

Internal problem ID [470]
Internal file name [OUTPUT/470_Sunday_June_05_2022_01_41_59_AM_31829908/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-2 y+3 y^{\prime}=\mathrm{e}^{-\frac{\pi t}{2}}
$$

With initial conditions

$$
[y(0)=a]
$$

1.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{3} \\
& q(t)=\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{3}=\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}
$$

The domain of $p(t)=-\frac{2}{3}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.23.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{3} d t} \\
& =\mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{2 t}{3}} y\right) & =\left(\mathrm{e}^{-\frac{2 t}{3}}\right)\left(\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{2 t}{3}} y\right) & =\left(\frac{\mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}}{3}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{2 t}{3}} y=\int \frac{\mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}}{3} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{2 t}{3}} y=-\frac{2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}}{3 \pi+4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{2 t}{3}}$ results in

$$
y=-\frac{2 \mathrm{e}^{\frac{2 t}{3}} \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}}{3 \pi+4}+c_{1} \mathrm{e}^{\frac{2 t}{3}}
$$

which simplifies to

$$
y=\frac{-2 \mathrm{e}^{-\frac{\pi t}{2}}+(3 \pi+4) c_{1} \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=\frac{3 \pi c_{1}+4 c_{1}-2}{3 \pi+4} \\
& c_{1}=\frac{3 \pi a+4 a+2}{3 \pi+4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-2 \mathrm{e}^{-\frac{\pi t}{2}}+(3 \pi a+4 a+2) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 \mathrm{e}^{-\frac{\pi t}{2}}+(3 \pi a+4 a+2) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-2 \mathrm{e}^{-\frac{\pi t}{2}}+(3 \pi a+4 a+2) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Verified OK.

1.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y}{3}+\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 67: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{2 t}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{2 t}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{2 t}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{2 y}{3}+\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 \mathrm{e}^{-\frac{2 t}{3}} y}{3} \\
S_{y} & =\mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}}{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{R\left(-\frac{\pi}{2}-\frac{2}{3}\right)}}{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2 \mathrm{e}^{-\frac{R(3 \pi+4)}{6}}}{3 \pi+4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{2 t}{3}} y=-\frac{2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}}{3 \pi+4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{2 t}{3}} y=-\frac{2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}}{3 \pi+4}+c_{1}
$$

Which gives

$$
y=\frac{\left(3 \pi c_{1}-2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+4 c_{1}\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{2 y}{3}+\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{R\left(-\frac{\pi}{2}-\frac{2}{3}\right)}}{3}$
		$\stackrel{1}{\text { a }}$
		(1)
	$S=\mathrm{e}^{-\frac{2 t}{3}} y$	
	$S=\mathrm{e}^{-\frac{3}{3}} y$	$\wedge{ }^{\text {¢ }}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=\frac{3 \pi c_{1}+4 c_{1}-2}{3 \pi+4} \\
& c_{1}=\frac{3 \pi a+4 a+2}{3 \pi+4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(\frac{3 \pi(3 \pi a+4 a+2)}{3 \pi+4}-2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{12 \pi a+16 a+8}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\frac{3 \pi(3 \pi a+4 a+2)}{3 \pi+4}-2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{12 \pi a+16 a+8}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\frac{3 \pi(3 \pi a+4 a+2)}{3 \pi+4}-2 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{12 \pi a+16 a+8}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Verified OK.

1.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3) \mathrm{d} y & =\left(2 y+\mathrm{e}^{-\frac{\pi t}{2}}\right) \mathrm{d} t \\
\left(-2 y-\mathrm{e}^{-\frac{\pi t}{2}}\right) \mathrm{d} t+(3) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-\mathrm{e}^{-\frac{\pi t}{2}} \\
N(t, y) & =3
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-\mathrm{e}^{-\frac{\pi t}{2}}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(3) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{3}((-2)-(0)) \\
& =-\frac{2}{3}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{3} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{2 t}{3}} \\
& =\mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{2 t}{3}}\left(-2 y-\mathrm{e}^{-\frac{\pi t}{2}}\right) \\
& =-\left(2 y+\mathrm{e}^{-\frac{\pi t}{2}}\right) \mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{2 t}{3}}(3) \\
& =3 \mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\left(2 y+\mathrm{e}^{-\frac{\pi t}{2}}\right) \mathrm{e}^{-\frac{2 t}{3}}\right)+\left(3 \mathrm{e}^{-\frac{2 t}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\left(2 y+\mathrm{e}^{-\frac{\pi t}{2}}\right) \mathrm{e}^{-\frac{2 t}{3}} \mathrm{~d} t \\
\phi & =\frac{6 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+3 y(3 \pi+4) \mathrm{e}^{-\frac{2 t}{3}}}{3 \pi+4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 \mathrm{e}^{-\frac{2 t}{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 \mathrm{e}^{-\frac{2 t}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 \mathrm{e}^{-\frac{2 t}{3}}=3 \mathrm{e}^{-\frac{2 t}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{6 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+3 y(3 \pi+4) \mathrm{e}^{-\frac{2 t}{3}}}{3 \pi+4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{6 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+3 y(3 \pi+4) \mathrm{e}^{-\frac{2 t}{3}}}{3 \pi+4}
$$

The solution becomes

$$
y=\frac{\left(3 \pi c_{1}-6 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+4 c_{1}\right) \mathrm{e}^{\frac{2 t}{3}}}{9 \pi+12}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& a=\frac{3 \pi c_{1}+4 c_{1}-6}{9 \pi+12} \\
& c_{1}=\frac{9 \pi a+12 a+6}{3 \pi+4}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(\frac{9 \pi(3 \pi a+4 a+2)}{3 \pi+4}-6 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{36 \pi a+48 a+24}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{9 \pi+12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\frac{9 \pi(3 \pi a+4 a+2)}{3 \pi+4}-6 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{36 \pi a+48 a+24}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{9 \pi+12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(\frac{9 \pi(3 \pi a+4 a+2)}{3 \pi+4}-6 \mathrm{e}^{-\frac{t(3 \pi+4)}{6}}+\frac{36 \pi a+48 a+24}{3 \pi+4}\right) \mathrm{e}^{\frac{2 t}{3}}}{9 \pi+12}
$$

Verified OK.

1.23.5 Maple step by step solution

Let's solve

$$
\left[-2 y+3 y^{\prime}=\mathrm{e}^{-\frac{\pi t}{2}}, y(0)=a\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=\frac{2 y}{3}+\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{3}=\frac{\mathrm{e}^{-\frac{\pi t}{2}}}{3}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{3}\right)=\frac{\mu(t) e^{-\frac{\pi t}{2}}}{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{3}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t)}{3}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{2 t}{3}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) e^{-\frac{\pi t}{2}}}{3} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) e^{-\frac{\pi t}{2}}}{3} d t+c_{1}$
- Solve for y
$y=\frac{\int^{\frac{\mu(t) e^{-\frac{\pi t}{2}}}{3}} 2 t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{-\frac{2 t}{3}}$
$y=\frac{\int \frac{e^{-\frac{\pi t}{2} e^{2}}-\frac{2 t}{5}}{3} d t+c_{1}}{\mathrm{e}^{-\frac{2 \pi}{3}}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{2 e^{-\frac{1}{3} \pi t-\frac{2}{3} t}}{3 \pi t}}{e^{-\frac{4 t}{3}}}+c_{1}$
- Simplify
$y=\frac{\left(3 \pi c_{1}-2 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+4 c_{1}\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}$
- Use initial condition $y(0)=a$
$a=\frac{3 \pi c_{1}+4 c_{1}-2}{3 \pi+4}$
- \quad Solve for c_{1}
$c_{1}=\frac{3 \pi a+4 a+2}{3 \pi+4}$
- \quad Substitute $c_{1}=\frac{3 \pi a+4 a+2}{3 \pi+4}$ into general solution and simplify

$$
y=\frac{\left(3 \pi a-2 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+4 a+2\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(3 \pi a-2 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+4 a+2\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve([-2*y(t)+3*diff(y(t),t) = exp(-1/2*Pi*t),y(0) = a],y(t), singsol=all)
```

$$
y(t)=\frac{\left(3 \pi a-2 \mathrm{e}^{t\left(-\frac{\pi}{2}-\frac{2}{3}\right)}+4 a+2\right) \mathrm{e}^{\frac{2 t}{3}}}{3 \pi+4}
$$

\checkmark Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 43

```
DSolve[{-2*y[t]+3*y'[t] == Exp[-1/2*Pi*t],y[0]==a},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{e^{2 t / 3}\left((4+3 \pi) a-2 e^{-\frac{1}{6}(4+3 \pi) t}+2\right)}{4+3 \pi}
$$

1.24 problem 24

1.24.1 Existence and uniqueness analysis 306
1.24.2 Solving as linear ode . 307]
1.24.3 Solving as first order ode lie symmetry lookup ode 308
1.24.4 Solving as exact ode . 312
1.24.5 Maple step by step solution . 315

Internal problem ID [471]
Internal file name [OUTPUT/471_Sunday_June_05_2022_01_42_00_AM_12055452/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(t+1) y+t y^{\prime}=2 t \mathrm{e}^{-t}
$$

With initial conditions

$$
[y(1)=a]
$$

1.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{-t-1}{t} \\
q(t) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-t-1) y}{t}=2 \mathrm{e}^{-t}
$$

The domain of $p(t)=-\frac{-t-1}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.24.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-t-1}{t} d t} \\
& =\mathrm{e}^{t+\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=t \mathrm{e}^{t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 \mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t \mathrm{e}^{t} y\right) & =\left(t \mathrm{e}^{t}\right)\left(2 \mathrm{e}^{-t}\right) \\
\mathrm{d}\left(t \mathrm{e}^{t} y\right) & =(2 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t \mathrm{e}^{t} y=\int 2 t \mathrm{~d} t \\
& t \mathrm{e}^{t} y=t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t \mathrm{e}^{t}$ results in

$$
y=t \mathrm{e}^{-t}+\frac{c_{1} \mathrm{e}^{-t}}{t}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}+c_{1}\right)}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\mathrm{e}^{-1}\left(1+c_{1}\right) \\
c_{1}=-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Verified OK.

1.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\left(t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t\right) \mathrm{e}^{-t}}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 70: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t-\ln (t)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t-\ln (t)}} d y
\end{aligned}
$$

Which results in

$$
S=t \mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{\left(t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t\right) \mathrm{e}^{-t}}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{t}(t+1) \\
S_{y} & =t \mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t \mathrm{e}^{t} y=t^{2}+c_{1}
$$

Which simplifies to

$$
t \mathrm{e}^{t} y=t^{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}+c_{1}\right)}{t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{\left(t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t\right) \mathrm{e}^{-t}}{t}$		$\frac{d S}{d R}=2 R$
		1,
$1+1+4 x_{4} \rightarrow \rightarrow \rightarrow-\infty$	$R=t$	
	$S=t \mathrm{e}^{t} y$	

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
a=\mathrm{e}^{-1} c_{1}+\mathrm{e}^{-1}
$$

$$
c_{1}=-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Verified OK.

1.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(t \mathrm{e}^{t}\right) \mathrm{d} y & =\left(-t \mathrm{e}^{t} y-y \mathrm{e}^{t}+2 t\right) \mathrm{d} t \\
\left(t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t\right) \mathrm{d} t+\left(t \mathrm{e}^{t}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t \\
& N(t, y)=t \mathrm{e}^{t}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t\right) \\
& =\mathrm{e}^{t}(t+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(t \mathrm{e}^{t}\right) \\
& =\mathrm{e}^{t}(t+1)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int t \mathrm{e}^{t} y+y \mathrm{e}^{t}-2 t \mathrm{~d} t \\
\phi & =-t\left(-y \mathrm{e}^{t}+t\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
t \mathrm{e}^{t}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t\left(-y \mathrm{e}^{t}+t\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t\left(-y \mathrm{e}^{t}+t\right)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}+c_{1}\right)}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\mathrm{e}^{-1} c_{1}+\mathrm{e}^{-1} \\
c_{1}=-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}\left(t^{2}-\left(\mathrm{e}^{-1}-a\right) \mathrm{e}\right)}{t}
$$

Verified OK.

1.24.5 Maple step by step solution

Let's solve

$$
\left[(t+1) y+t y^{\prime}=\frac{2 t}{\mathrm{e}^{t}}, y(1)=a\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(t+1) y}{t}+\frac{2}{\mathrm{e}^{t}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(t+1) y}{t}=\frac{2}{\mathrm{e}^{t}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\frac{2 \mu(t)}{\mathrm{e}^{t}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)(t+1)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=t\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{2 \mu(t)}{\mathrm{e}^{t}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{2 \mu(t)}{\mathrm{e}^{t}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(t)}{\mathrm{e}^{t}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}$
$y=\frac{\int 2 \mathrm{e}^{-t} \mathrm{e}^{t} t d t+c_{1}}{t\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{t^{2}+c_{1}}{t\left(\mathrm{e}^{t}\right)^{2} \mathrm{e}^{-t}}$
- Simplify
$y=\frac{\mathrm{e}^{-t}\left(t^{2}+c_{1}\right)}{t}$
- Use initial condition $y(1)=a$
$a=\mathrm{e}^{-1}\left(1+c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=-\frac{\mathrm{e}^{-1}-a}{\mathrm{e}^{-1}}$
- Substitute $c_{1}=-\frac{\mathrm{e}^{-1}-a}{\mathrm{e}^{-1}}$ into general solution and simplify
$y=\frac{\mathrm{e}^{-t}\left(-1+\mathrm{e} a+t^{2}\right)}{t}$
- Solution to the IVP
$y=\frac{\mathrm{e}^{-t}\left(-1+\mathrm{e} a+t^{2}\right)}{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 21

```
dsolve([(1+t)*y(t)+t*diff(y(t),t) = 2*t/exp(t),y(1) = a],y(t), singsol=all)
```

$$
y(t)=\frac{\left(t^{2}+a \mathrm{e}-1\right) \mathrm{e}^{-t}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 22
DSolve [\{(1+t)*y[t]+t*y'[t] == $2 * t / \operatorname{Exp}[t], y[1]==a\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{e^{-t}\left(e a+t^{2}-1\right)}{t}
$$

1.25 problem 25

$$
\text { 1.25.1 Existence and uniqueness analysis } 318
$$

1.25.2 Solving as linear ode . 319
1.25.3 Solving as first order ode lie symmetry lookup ode 320
1.25.4 Solving as exact ode . 324
1.25.5 Maple step by step solution . 327

Internal problem ID [472]
Internal file name [OUTPUT/472_Sunday_June_05_2022_01_42_01_AM_79347504/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+t y^{\prime}=\frac{\sin (t)}{t}
$$

With initial conditions

$$
\left[y\left(-\frac{\pi}{2}\right)=a\right]
$$

1.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{\sin (t)}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t^{2}}
$$

The domain of $p(t)=\frac{2}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=-\frac{\pi}{2}$ is inside this domain. The domain of $q(t)=\frac{\sin (t)}{t^{2}}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=-\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

1.25.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\sin (t)}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{\sin (t)}{t^{2}}\right) \\
\mathrm{d}\left(t^{2} y\right) & =\sin (t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int \sin (t) \mathrm{d} t \\
& t^{2} y=-\cos (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=-\frac{\cos (t)}{t^{2}}+\frac{c_{1}}{t^{2}}
$$

which simplifies to

$$
y=\frac{-\cos (t)+c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-\frac{\pi}{2}$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\frac{4 c_{1}}{\pi^{2}} \\
c_{1}=\frac{\pi^{2} a}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-\cos (t)+\frac{\pi^{2} a}{4}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\cos (t)+\frac{\pi^{2} a}{4}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\cos (t)+\frac{\pi^{2} a}{4}}{t^{2}}
$$

Verified OK.

1.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-2 t y+\sin (t)}{t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-2 t y+\sin (t)}{t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=-\cos (t)+c_{1}
$$

Which simplifies to

$$
y t^{2}=-\cos (t)+c_{1}
$$

Which gives

$$
y=-\frac{\cos (t)-c_{1}}{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-2 t y+\sin (t)}{t^{2}}$		$\frac{d S}{d R}=\sin (R)$
分		

Initial conditions are used to solve for c_{1}. Substituting $t=-\frac{\pi}{2}$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
a=\frac{4 c_{1}}{\pi^{2}}
$$

$$
c_{1}=\frac{\pi^{2} a}{4}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}}
$$

Verified OK.

1.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(t^{2}\right) \mathrm{d} y & =(-2 t y+\sin (t)) \mathrm{d} t \\
(2 t y-\sin (t)) \mathrm{d} t+\left(t^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 t y-\sin (t) \\
N(t, y) & =t^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 t y-\sin (t)) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(t^{2}\right) \\
& =2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t y-\sin (t) \mathrm{d} t \\
\phi & =t^{2} y+\cos (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{2} y+\cos (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{2} y+\cos (t)
$$

The solution becomes

$$
y=-\frac{\cos (t)-c_{1}}{t^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-\frac{\pi}{2}$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\frac{4 c_{1}}{\pi^{2}} \\
c_{1}=\frac{\pi^{2} a}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\cos (t)-\frac{\pi^{2} a}{4}}{t^{2}}
$$

Verified OK.

1.25.5 Maple step by step solution

Let's solve

$$
\left[2 y+t y^{\prime}=\frac{\sin (t)}{t}, y\left(-\frac{\pi}{2}\right)=a\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-\frac{2 y}{t}+\frac{\sin (t)}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{t}=\frac{\sin (t)}{t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\frac{\mu(t) \sin (t)}{t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- \quad Solve to find the integrating factor

$$
\mu(t)=t^{2}
$$

- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \sin (t)}{t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \sin (t)}{t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \sin (t)}{t^{2}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int \sin (t) d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-\cos (t)+c_{1}}{t^{2}}$
- Use initial condition $y\left(-\frac{\pi}{2}\right)=a$
$a=\frac{4 c_{1}}{\pi^{2}}$
- \quad Solve for c_{1}
$c_{1}=\frac{\pi^{2} a}{4}$
- Substitute $c_{1}=\frac{\pi^{2} a}{4}$ into general solution and simplify
$y=\frac{-\cos (t)+\frac{\pi^{2} a}{4}}{t^{2}}$
- Solution to the IVP
$y=\frac{-\cos (t)+\frac{\pi^{2} a}{4}}{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve([2*y(t)+t*diff(y(t),t) = sin(t)/t,y(-1/2*Pi) = a],y(t), singsol=all)
```

$$
y(t)=\frac{-\cos (t)+\frac{a \pi^{2}}{4}}{t^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 22

```
DSolve[{2*y[t]+t*y'[t] == Sin[t]/t,y[-Pi/2]==a},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{\pi^{2} a-4 \cos (t)}{4 t^{2}}
$$

1.26 problem 26

$$
\text { 1.26.1 Solving as linear ode . } 330
$$

1.26.2 Solving as first order ode lie symmetry lookup ode 332
1.26.3 Solving as exact ode . 336
1.26.4 Maple step by step solution . 339

Internal problem ID [473]
Internal file name [OUTPUT/473_Sunday_June_05_2022_01_42_02_AM_28951275/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type

[_linear]

$$
\cos (t) y+\sin (t) y^{\prime}=\mathrm{e}^{t}
$$

With initial conditions

$$
[y(1)=a]
$$

1.26.1 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (t) d t} \\
& =\sin (t)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\csc (t) \mathrm{e}^{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\sin (t) y) & =(\sin (t))\left(\csc (t) \mathrm{e}^{t}\right) \\
\mathrm{d}(\sin (t) y) & =\mathrm{e}^{t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (t) y=\int \mathrm{e}^{t} \mathrm{~d} t \\
& \sin (t) y=\mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (t)$ results in

$$
y=\csc (t) \mathrm{e}^{t}+c_{1} \csc (t)
$$

which simplifies to

$$
y=\csc (t)\left(\mathrm{e}^{t}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\frac{\mathrm{e}+c_{1}}{\sin (1)} \\
c_{1}=-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\csc (t)\left(\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\csc (t)\left(\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\csc (t)\left(\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}\right)
$$

Verified OK.

1.26.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\cos (t) y-\mathrm{e}^{t}}{\sin (t)} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 76: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η				
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$				
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0				
quadrature ode	$y^{\prime}=f(x)$	0	1				
quadrature ode	$y^{\prime}=g(y)$	1	0				
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y				
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$				
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$				
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$				
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$					
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0
:---	:---	:---					
$e^{-\int(n-1) f(x) d x} y^{n}$							

The above table shows that

$$
\begin{align*}
\xi(t, y) & =0 \\
\eta(t, y) & =\frac{1}{\sin (t)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\sin (t)}} d y
\end{aligned}
$$

Which results in

$$
S=\sin (t) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{\cos (t) y-\mathrm{e}^{t}}{\sin (t)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\cos (t) y \\
S_{y} & =\sin (t)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\sin (t) y=\mathrm{e}^{t}+c_{1}
$$

Which simplifies to

$$
\sin (t) y=\mathrm{e}^{t}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{t}+c_{1}}{\sin (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{\cos (t) y-\mathrm{e}^{t}}{\sin (t)}$		$\frac{d S}{d R}=\mathrm{e}^{R}$
		$\rightarrow \rightarrow \rightarrow->1{ }^{1}$
		$\rightarrow \rightarrow \rightarrow$ (R)
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty 1]{ }{ }^{1}$
	$R=t$	
	$S=\sin (t) y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\frac{\mathrm{e}+c_{1}}{\sin (1)} \\
c_{1}=-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}}{\sin (t)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}}{\sin (t)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\operatorname{scc}(1)}}{\sin (t)}
$$

Verified OK.

1.26.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\sin (t)) \mathrm{d} y & =\left(-\cos (t) y+\mathrm{e}^{t}\right) \mathrm{d} t \\
\left(\cos (t) y-\mathrm{e}^{t}\right) \mathrm{d} t+(\sin (t)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =\cos (t) y-\mathrm{e}^{t} \\
N(t, y) & =\sin (t)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\cos (t) y-\mathrm{e}^{t}\right) \\
& =\cos (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(\sin (t)) \\
& =\cos (t)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \cos (t) y-\mathrm{e}^{t} \mathrm{~d} t \\
\phi & =\sin (t) y-\mathrm{e}^{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (t)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (t)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (t)=\sin (t)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sin (t) y-\mathrm{e}^{t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sin (t) y-\mathrm{e}^{t}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{t}+c_{1}}{\sin (t)}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=a$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
a=\frac{\mathrm{e}+c_{1}}{\sin (1)} \\
c_{1}=-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}}{\sin (t)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\operatorname{coc}(1)}}{\sin (t)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{t}-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}}{\sin (t)}
$$

Verified OK.

1.26.4 Maple step by step solution

Let's solve
$\left[\cos (t) y+\sin (t) y^{\prime}=\mathrm{e}^{t}, y(1)=a\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{\cos (t) y}{\sin (t)}+\frac{\mathrm{e}^{t}}{\sin (t)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\cos (t) y}{\sin (t)}=\frac{\mathrm{e}^{t}}{\sin (t)}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{\cos (t) y}{\sin (t)}\right)=\frac{\mu(t) e^{t}}{\sin (t)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{\cos (t) y}{\sin (t)}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t) \cos (t)}{\sin (t)}$
- Solve to find the integrating factor

$$
\mu(t)=\sin (t)
$$

- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) e^{t}}{\sin (t)} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \mathrm{e}^{t}}{\sin (t)} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t))^{t}}{\sin (t) d t+c_{1}}}{\mu(t)}$
- \quad Substitute $\mu(t)=\sin (t)$
$y=\frac{\int \mathrm{e}^{t} d t+c_{1}}{\sin (t)}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{t}+c_{1}}{\sin (t)}$
- \quad Simplify
$y=\csc (t)\left(\mathrm{e}^{t}+c_{1}\right)$
- Use initial condition $y(1)=a$
$a=\csc (1)\left(\mathrm{e}+c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}$
- Substitute $c_{1}=-\frac{\csc (1) \mathrm{e}-a}{\csc (1)}$ into general solution and simplify
$y=\csc (t)\left(a \sin (1)+\mathrm{e}^{t}-\mathrm{e}\right)$
- Solution to the IVP

$$
y=\csc (t)\left(a \sin (1)+\mathrm{e}^{t}-\mathrm{e}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve $([\cos (t) * y(t)+\sin (t) * \operatorname{diff}(y(t), t)=\exp (t), y(1)=a], y(t)$, singsol=all)

$$
y(t)=\csc (t)\left(\mathrm{e}^{t}+a \sin (1)-\mathrm{e}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 19
DSolve $[\{\operatorname{Cos}[t] * y[t]+\operatorname{Sin}[t] * y$ ' $[t]==\operatorname{Exp}[t], y[1]==a\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \csc (t)\left(a \sin (1)+e^{t}-e\right)
$$

1.27 problem 27

1.27.1 Existence and uniqueness analysis 342
1.27.2 Solving as linear ode . 343
1.27.3 Solving as first order ode lie symmetry lookup ode 345
1.27.4 Solving as exact ode . 349
1.27.5 Maple step by step solution . 354

Internal problem ID [474]
Internal file name [OUTPUT/474_Sunday_June_05_2022_01_42_03_AM_40812399/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+\frac{y}{2}=2 \cos (t)
$$

With initial conditions

$$
[y(0)=-1]
$$

1.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{2} \\
q(t) & =2 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{2}=2 \cos (t)
$$

The domain of $p(t)=\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.27.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2} d t} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(2 \cos (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(\mathrm{e}^{\frac{t}{2}}\right)(2 \cos (t)) \\
\mathrm{d}\left(\mathrm{e}^{\frac{t}{2}} y\right) & =\left(2 \cos (t) \mathrm{e}^{\frac{t}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{t}{2}} y=\int 2 \cos (t) \mathrm{e}^{\frac{t}{2}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{t}{2}} y=\frac{4 \cos (t) \mathrm{e}^{\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{\frac{t}{2}}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{2}}$ results in

$$
y=\mathrm{e}^{-\frac{t}{2}}\left(\frac{4 \cos (t) \mathrm{e}^{\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{\frac{t}{2}}}{5}\right)+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

which simplifies to

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =\frac{4}{5}+c_{1} \\
c_{1} & =-\frac{9}{5}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Verified OK.

1.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{2}+2 \cos (t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 79: Lie symmetry infinitesimal lookup table for known first order ODE's
$\left.\begin{array}{|l|l|l|l|}\hline \text { ODE class } & \text { Form } & \xi & \eta \\ \hline \hline \text { linear ode } & y^{\prime}=f(x) y(x)+g(x) & 0 & e^{\int f d x} \\ \hline \text { separable ode } & y^{\prime}=f(x) g(y) & \frac{1}{f} & 0 \\ \hline \text { quadrature ode } & y^{\prime}=f(x) & 0 & 1 \\ \hline \text { quadrature ode } & y^{\prime}=g(y) & 1 & 0 \\ \hline \begin{array}{l}\text { homogeneous ODEs of } \\ \text { Class A }\end{array} & y^{\prime}=f\left(\frac{y}{x}\right) & x & y \\ \hline \begin{array}{l}\text { homogeneous ODEs of } \\ \text { Class C }\end{array} & y^{\prime}=(a+b x+c y)^{\frac{n}{m}} & 1 & -\frac{b}{c} \\ \hline \text { homogeneous class D } & y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right) & x^{2} & x y \\ \hline \begin{array}{l}\text { First order } \\ \text { form ID 1 }\end{array} & \text { special } & y^{\prime}=g(x) e^{h(x)+b y}+f(x) & \frac{e^{-\int b f(x) d x-h(x)}}{g(x)} \\ \hline \text { polynomial type ode } & y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}} & \frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)} \\ \hline \text { Bernoulli ode } & y^{\prime}=f(x) y+g(x) y^{n} & 0 & a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right] \frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$.

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y}{2}+2 \cos (t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{\mathrm{e}^{\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \cos (t) \mathrm{e}^{\frac{t}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \cos (R) \mathrm{e}^{\frac{R}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{4 \mathrm{e}^{\frac{R}{2}}(\cos (R)+2 \sin (R))}{5} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{t}{2}} y=\frac{4 \mathrm{e}^{\frac{t}{2}}(\cos (t)+2 \sin (t))}{5}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{t}{2}} y=\frac{4 \mathrm{e}^{\frac{t}{2}}(\cos (t)+2 \sin (t))}{5}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-\frac{t}{2}}\left(4 \cos (t) \mathrm{e}^{\frac{t}{2}}+8 \sin (t) \mathrm{e}^{\frac{t}{2}}+5 c_{1}\right)}{5}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y}{2}+2 \cos (t)$		$\frac{d S}{d R}=2 \cos (R) \mathrm{e}^{\frac{R}{2}}$
51.15		
$\rightarrow \pm .1$		
$\rightarrow x_{1}$	$R=t$	
	$S=\mathrm{e}^{\frac{t}{2}} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty \rightarrow 0]{ } \rightarrow$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{4}{5}+c_{1} \\
c_{1}=-\frac{9}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Verified OK.

1.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{y}{2}+2 \cos (t)\right) \mathrm{d} t \\
\left(\frac{y}{2}-2 \cos (t)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =\frac{y}{2}-2 \cos (t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{2}-2 \cos (t)\right) \\
& =\frac{1}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\frac{1}{2}\right)-(0)\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{t}{2}} \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{t}{2}\left(\frac{y}{2}-2 \cos (t)\right)} \\
& =\frac{(y-4 \cos (t)) \mathrm{e}^{\frac{t}{2}}}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{t}{2}}(1) \\
& =\mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{(y-4 \cos (t)) \mathrm{e}^{\frac{t}{2}}}{2}\right)+\left(\mathrm{e}^{\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{(y-4 \cos (t)) \mathrm{e}^{\frac{t}{2}}}{2} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{\frac{t}{2}}(-5 y+4 \cos (t)+8 \sin (t))}{5}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{t}{2}}=\mathrm{e}^{\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{\frac{t}{2}}(-5 y+4 \cos (t)+8 \sin (t))}{5}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{\frac{t}{2}}(-5 y+4 \cos (t)+8 \sin (t))}{5}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-\frac{t}{2}}\left(4 \cos (t) \mathrm{e}^{\frac{t}{2}}+8 \sin (t) \mathrm{e}^{\frac{t}{2}}+5 c_{1}\right)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-1 & =\frac{4}{5}+c_{1} \\
c_{1} & =-\frac{9}{5}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Verified OK.

1.27.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+\frac{y}{2}=2 \cos (t), y(0)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{2}+2 \cos (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{2}=2 \cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=2 \mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{2}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{2}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{t}{2}}$
$y=\frac{\int 2 \cos (t) \mathrm{e}^{\frac{t}{2}} d t+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{4 \cos (t) \mathrm{e}^{\frac{t}{2}}}{5}+\frac{8 \sin (t) \mathrm{e}^{\frac{t}{2}}}{5}+c_{1}}{\mathrm{e}^{\frac{t}{2}}}$
- Simplify

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}+c_{1} \mathrm{e}^{-\frac{t}{2}}
$$

- Use initial condition $y(0)=-1$
$-1=\frac{4}{5}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{9}{5}$
- \quad Substitute $c_{1}=-\frac{9}{5}$ into general solution and simplify
$y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}$
- \quad Solution to the IVP

$$
y=\frac{8 \sin (t)}{5}+\frac{4 \cos (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve([1/2*y(t)+diff(y(t),t) = 2*\operatorname{cos}(t),y(0) = -1],y(t), singsol=all)
```

$$
y(t)=\frac{4 \cos (t)}{5}+\frac{8 \sin (t)}{5}-\frac{9 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 27
DSolve[\{1/2*y[t]+y'[t] ==2*Cos[t],y[0]==-1\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{5}\left(-9 e^{-t / 2}+8 \sin (t)+4 \cos (t)\right)
$$

1.28 problem 28

$$
\text { 1.28.1 Solving as linear ode . } 356
$$

1.28.2 Solving as first order ode lie symmetry lookup ode 358
1.28.3 Solving as exact ode . 362
1.28.4 Maple step by step solution . 367

Internal problem ID [475]
Internal file name [OUTPUT/475_Sunday_June_05_2022_01_42_04_AM_90970000/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
\frac{2 y}{3}+y^{\prime}=-\frac{t}{2}+1
$$

1.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{3} \\
& q(t)=-\frac{t}{2}+1
\end{aligned}
$$

Hence the ode is

$$
\frac{2 y}{3}+y^{\prime}=-\frac{t}{2}+1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{3} d t} \\
& =\mathrm{e}^{\frac{2 t}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(-\frac{t}{2}+1\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{2 t}{3}} y\right) & =\left(\mathrm{e}^{\frac{2 t}{3}}\right)\left(-\frac{t}{2}+1\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{2 t}{3}} y\right) & =\left(-\frac{(t-2) \mathrm{e}^{\frac{2 t}{3}}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{2 t}{3}} y=\int-\frac{(t-2) \mathrm{e}^{\frac{2 t}{3}}}{2} \mathrm{~d} t \\
& \mathrm{e}^{\frac{2 t}{3}} y=-\frac{3(2 t-7) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{2 t}{3}}$ results in

$$
y=-\frac{3 \mathrm{e}^{-\frac{2 t}{3}}(2 t-7) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1} \mathrm{e}^{-\frac{2 t}{3}}
$$

which simplifies to

$$
y=-\frac{3 t}{4}+\frac{21}{8}+c_{1} \mathrm{e}^{-\frac{2 t}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 t}{4}+\frac{21}{8}+c_{1} \mathrm{e}^{-\frac{2 t}{3}} \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot
Verification of solutions

$$
y=-\frac{3 t}{4}+\frac{21}{8}+c_{1} \mathrm{e}^{-\frac{2 t}{3}}
$$

Verified OK.

1.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y}{3}-\frac{t}{2}+1 \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 82: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{2 t}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{2 t}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{2 t}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{2 y}{3}-\frac{t}{2}+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{2 \mathrm{e}^{\frac{2 t}{3}} y}{3} \\
S_{y} & =\mathrm{e}^{\frac{2 t}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(-\frac{t}{2}+1\right) \mathrm{e}^{\frac{2 t}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(-\frac{R}{2}+1\right) \mathrm{e}^{\frac{2 R}{3}}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{3(2 R-7) \mathrm{e}^{\frac{2 R}{3}}}{8}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
\mathrm{e}^{\frac{2 t}{3}} y=-\frac{3(2 t-7) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{2 t}{3}} y=-\frac{3(2 t-7) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1}
$$

Which gives

$$
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{2 y}{3}-\frac{t}{2}+1$		$\frac{d S}{d R}=\left(-\frac{R}{2}+1\right) \mathrm{e}^{\frac{2 R}{3}}$
		，$\rightarrow \rightarrow+\infty$
		$\rightarrow \rightarrow \rightarrow-\infty{ }^{\text {che }}$
		$\rightarrow \rightarrow \rightarrow-\infty$－
		$\rightarrow \rightarrow+\infty$
	$S=\mathrm{e}^{\frac{2 t}{3}} y$	
＋		$\rightarrow \rightarrow \infty-\infty$－${ }_{0}$
		$\rightarrow \rightarrow \rightarrow \rightarrow カ$ アオオオア
		－A A
		シサッタリアオ

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8} \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot

Verification of solutions

$$
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8}
$$

Verified OK.

1.28.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{2 y}{3}-\frac{t}{2}+1\right) \mathrm{d} t \\
\left(\frac{2 y}{3}+\frac{t}{2}-1\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =\frac{2 y}{3}+\frac{t}{2}-1 \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 y}{3}+\frac{t}{2}-1\right) \\
& =\frac{2}{3}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\frac{2}{3}\right)-(0)\right) \\
& =\frac{2}{3}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{2}{3} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{2 t}{3}} \\
& =\mathrm{e}^{\frac{2 t}{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{2 t}{3}}\left(\frac{2 y}{3}+\frac{t}{2}-1\right) \\
& =\frac{(4 y+3 t-6) \mathrm{e}^{\frac{2 t}{3}}}{6}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{2 t}{3}}(1) \\
& =\mathrm{e}^{\frac{2 t}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{(4 y+3 t-6) \mathrm{e}^{\frac{2 t}{3}}}{6}\right)+\left(\mathrm{e}^{\frac{2 t}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{(4 y+3 t-6) \mathrm{e}^{\frac{2 t}{3}}}{6} \mathrm{~d} t \\
\phi & =\frac{(6 t+8 y-21) \mathrm{e}^{\frac{2 t}{3}}}{8}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{2 t}{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{2 t}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{2 t}{3}}=\mathrm{e}^{\frac{2 t}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(6 t+8 y-21) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(6 t+8 y-21) \mathrm{e}^{\frac{2 t}{3}}}{8}
$$

The solution becomes

$$
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=-\frac{\left(6 \mathrm{e}^{\frac{2 t}{3}} t-21 \mathrm{e}^{\frac{2 t}{3}}-8 c_{1}\right) \mathrm{e}^{-\frac{2 t}{3}}}{8}
$$

Verified OK.

1.28.4 Maple step by step solution

Let's solve
$\frac{2 y}{3}+y^{\prime}=-\frac{t}{2}+1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{3}-\frac{t}{2}+1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $\frac{2 y}{3}+y^{\prime}=-\frac{t}{2}+1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(\frac{2 y}{3}+y^{\prime}\right)=\mu(t)\left(-\frac{t}{2}+1\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(\frac{2 y}{3}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{3}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{2 t}{3}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(-\frac{t}{2}+1\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(-\frac{t}{2}+1\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(-\frac{t}{2}+1\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{2 t}{3}}$
$y=\frac{\int\left(-\frac{t}{2}+1\right) \mathrm{e}^{\frac{2 t}{3}} d t+c_{1}}{\mathrm{e}^{\frac{2 t}{3}}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{3(2 t-7) \mathrm{e}^{\frac{2 t}{3}}}{8}+c_{1}}{\mathrm{e}^{\frac{2 t}{3}}}$
- Simplify

$$
y=-\frac{3 t}{4}+\frac{21}{8}+c_{1} \mathrm{e}^{-\frac{2 t}{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $(2 / 3 * y(t)+\operatorname{diff}(y(t), t)=1-1 / 2 * t, y(t)$, singsol=all)

$$
y(t)=-\frac{3 t}{4}+\frac{21}{8}+\mathrm{e}^{-\frac{2 t}{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 24
DSolve[2/3*y[t]+y'[t] == 1-1/2*t,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow-\frac{3 t}{4}+c_{1} e^{-2 t / 3}+\frac{21}{8}
$$

1.29 problem 29

1.29.1 Existence and uniqueness analysis 370
1.29.2 Solving as linear ode . 371
1.29.3 Solving as first order ode lie symmetry lookup ode 373
1.29.4 Solving as exact ode . 377
1.29.5 Maple step by step solution . 382

Internal problem ID [476]
Internal file name [OUTPUT/476_Sunday_June_05_2022_01_42_05_AM_51193873/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
\frac{y}{4}+y^{\prime}=3+2 \cos (2 t)
$$

With initial conditions

$$
[y(0)=0]
$$

1.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{4} \\
& q(t)=3+2 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
\frac{y}{4}+y^{\prime}=3+2 \cos (2 t)
$$

The domain of $p(t)=\frac{1}{4}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3+2 \cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.29.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{4} d t} \\
& =\mathrm{e}^{\frac{t}{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(3+2 \cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t}{4}} y\right) & =\left(\mathrm{e}^{\frac{t}{4}}\right)(3+2 \cos (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{\frac{t}{4}} y\right) & =\left((3+2 \cos (2 t)) \mathrm{e}^{\frac{t}{4}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{t}{4}} y=\int(3+2 \cos (2 t)) \mathrm{e}^{\frac{t}{4}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{t}{4}} y=12 \mathrm{e}^{\frac{t}{4}}+\frac{8 \cos (2 t) \mathrm{e}^{\frac{t}{4}}}{65}+\frac{64 \sin (2 t) \mathrm{e}^{\frac{t}{4}}}{65}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{4}}$ results in

$$
y=\mathrm{e}^{-\frac{t}{4}}\left(12 \mathrm{e}^{\frac{t}{4}}+\frac{8 \cos (2 t) \mathrm{e}^{\frac{t}{4}}}{65}+\frac{64 \sin (2 t) \mathrm{e}^{\frac{t}{4}}}{65}\right)+c_{1} \mathrm{e}^{-\frac{t}{4}}
$$

which simplifies to

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12+c_{1} \mathrm{e}^{-\frac{t}{4}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{788}{65}+c_{1} \\
c_{1}=-\frac{788}{65}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Verified OK.

1.29.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{4}+3+2 \cos (2 t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 85: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{t}{4}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t}{4}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t}{4}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y}{4}+3+2 \cos (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{\mathrm{e}^{\frac{t}{4}} y}{4} \\
S_{y} & =\mathrm{e}^{\frac{t}{4}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(3+2 \cos (2 t)) \mathrm{e}^{\frac{t}{4}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(3+2 \cos (2 R)) \mathrm{e}^{\frac{R}{4}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=12 \mathrm{e}^{\frac{R}{4}}+c_{1}+\frac{8 \mathrm{e}^{\frac{R}{4}}(\cos (2 R)+8 \sin (2 R))}{65} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{t}{4}} y=12 \mathrm{e}^{\frac{t}{4}}+c_{1}+\frac{8 \mathrm{e}^{\frac{t}{4}}(\cos (2 t)+8 \sin (2 t))}{65}
$$

Which simplifies to

$$
\frac{(65 y-8 \cos (2 t)-64 \sin (2 t)-780) \mathrm{e}^{\frac{t}{4}}}{65}-c_{1}=0
$$

Which gives

$$
y=\frac{\mathrm{e}^{-\frac{t}{4}}\left(8 \cos (2 t) \mathrm{e}^{\frac{t}{4}}+64 \sin (2 t) \mathrm{e}^{\frac{t}{4}}+780 \mathrm{e}^{\frac{t}{4}}+65 c_{1}\right)}{65}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y}{4}+3+2 \cos (2 t)$		$\frac{d S}{d R}=(3+2 \cos (2 R)) \mathrm{e}^{\frac{R}{4}}$
\rightarrow Pr $_{\rightarrow+1}$		
	$R=t$	
	$S=\mathrm{e}^{\frac{t}{4}} y$	$\rightarrow \mathrm{O}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{788}{65}+c_{1} \\
c_{1}=-\frac{788}{65}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Verified OK.

1.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-\frac{y}{4}+3+2 \cos (2 t)\right) \mathrm{d} t \\
\left(\frac{y}{4}-3-2 \cos (2 t)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =\frac{y}{4}-3-2 \cos (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{4}-3-2 \cos (2 t)\right) \\
& =\frac{1}{4}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\frac{1}{4}\right)-(0)\right) \\
& =\frac{1}{4}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{4} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{t}{4}} \\
& =\mathrm{e}^{\frac{t}{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{t}{4}}\left(\frac{y}{4}-3-2 \cos (2 t)\right) \\
& =\frac{(y-12-8 \cos (2 t)) \mathrm{e}^{\frac{t}{4}}}{4}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{t}{4}}(1) \\
& =\mathrm{e}^{\frac{t}{4}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(\frac{(y-12-8 \cos (2 t)) \mathrm{e}^{\frac{t}{4}}}{4}\right)+\left(\mathrm{e}^{\frac{t}{4}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{(y-12-8 \cos (2 t)) \mathrm{e}^{\frac{t}{4}}}{4} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{\frac{t}{4}}(780-65 y+8 \cos (2 t)+64 \sin (2 t))}{65}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{t}{4}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{t}{4}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{t}{4}}=\mathrm{e}^{\frac{t}{4}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{\frac{t}{4}}(780-65 y+8 \cos (2 t)+64 \sin (2 t))}{65}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{\frac{t}{4}}(780-65 y+8 \cos (2 t)+64 \sin (2 t))}{65}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-\frac{t}{4}}\left(8 \cos (2 t) \mathrm{e}^{\frac{t}{4}}+64 \sin (2 t) \mathrm{e}^{\frac{t}{4}}+780 \mathrm{e}^{\frac{t}{4}}+65 c_{1}\right)}{65}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{788}{65}+c_{1} \\
c_{1}=-\frac{788}{65}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Verified OK.

1.29.5 Maple step by step solution

Let's solve
$\left[\frac{y}{4}+y^{\prime}=3+2 \cos (2 t), y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{4}+3+2 \cos (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $\frac{y}{4}+y^{\prime}=3+2 \cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(\frac{y}{4}+y^{\prime}\right)=\mu(t)(3+2 \cos (2 t))$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(\frac{y}{4}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{4}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{t}{4}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)(3+2 \cos (2 t)) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)(3+2 \cos (2 t)) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)(3+2 \cos (2 t)) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{t}{4}}$
$y=\frac{\int(3+2 \cos (2 t)) \mathrm{e}^{\frac{t}{4}} d t+c_{1}}{\mathrm{e}^{\frac{t}{4}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{8 \cos (2 t) e^{\frac{t}{4}}}{65}+\frac{64 \sin (2 t) \mathrm{e}^{\frac{t}{4}}}{65}+12 \mathrm{e}^{\frac{t}{4}}+c_{1}}{\mathrm{e}^{\frac{5}{4}}}$
- Simplify

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12+c_{1} \mathrm{e}^{-\frac{t}{4}}
$$

- Use initial condition $y(0)=0$
$0=\frac{788}{65}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{788}{65}$
- Substitute $c_{1}=-\frac{788}{65}$ into general solution and simplify

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

- \quad Solution to the IVP

$$
y=\frac{64 \sin (2 t)}{65}+\frac{8 \cos (2 t)}{65}+12-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve([1/4*y(t)+diff(y(t),t) = 3+2*\operatorname{cos}(2*t),y(0) = 0],y(t), singsol=all)
```

$$
y(t)=12+\frac{8 \cos (2 t)}{65}+\frac{64 \sin (2 t)}{65}-\frac{788 \mathrm{e}^{-\frac{t}{4}}}{65}
$$

\checkmark Solution by Mathematica
Time used: 0.158 (sec). Leaf size: 32

```
DSolve[{1/4*y[t]+y'[t] == 3+2*Cos[2*t],y[0]==0},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{4}{65}\left(-197 e^{-t / 4}+16 \sin (2 t)+2 \cos (2 t)+195\right)
$$

1.30 problem 30

> 1.30.1 Solving as linear ode
1.30.2 Solving as first order ode lie symmetry lookup ode 386
1.30.3 Solving as exact ode . 390
1.30.4 Maple step by step solution . 394

Internal problem ID [477]
Internal file name [OUTPUT/477_Sunday_June_05_2022_01_42_06_AM_27968450/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-y+y^{\prime}=1+3 \sin (t)
$$

1.30.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=1+3 \sin (t)
\end{aligned}
$$

Hence the ode is

$$
-y+y^{\prime}=1+3 \sin (t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(1+3 \sin (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)(1+3 \sin (t)) \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\left((1+3 \sin (t)) \mathrm{e}^{-t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int(1+3 \sin (t)) \mathrm{e}^{-t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=-\mathrm{e}^{-t}-\frac{3 \mathrm{e}^{-t} \cos (t)}{2}-\frac{3 \mathrm{e}^{-t} \sin (t)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=\mathrm{e}^{t}\left(-\mathrm{e}^{-t}-\frac{3 \mathrm{e}^{-t} \cos (t)}{2}-\frac{3 \mathrm{e}^{-t} \sin (t)}{2}\right)+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{t}-\frac{3 \cos (t)}{2}-\frac{3 \sin (t)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1} \mathrm{e}^{t}-\frac{3 \cos (t)}{2}-\frac{3 \sin (t)}{2} \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot

Verification of solutions

$$
y=-1+c_{1} \mathrm{e}^{t}-\frac{3 \cos (t)}{2}-\frac{3 \sin (t)}{2}
$$

Verified OK.

1.30.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y+1+3 \sin (t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 88: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+1+3 \sin (t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(1+3 \sin (t)) \mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(1+3 \sin (R)) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1}-\frac{3 \mathrm{e}^{-R}(\cos (R)+\sin (R))}{2} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t} y=-\mathrm{e}^{-t}+c_{1}-\frac{3 \mathrm{e}^{-t}(\cos (t)+\sin (t))}{2}
$$

Which simplifies to

$$
\frac{(2 y+3 \cos (t)+3 \sin (t)+2) \mathrm{e}^{-t}}{2}-c_{1}=0
$$

Which gives

$$
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+1+3 \sin (t)$		$\frac{d S}{d R}=(1+3 \sin (R)) \mathrm{e}^{-R}$
- 4 ¢ 4		¢ 4
		成 ${ }_{\text {d }}$
	$R=t$	
	$S=\mathrm{e}^{-t} y$	
	$S=\mathrm{e}^{-t} y$	
		$\xrightarrow{\rightarrow}$
$\rightarrow+1$.		$\xrightarrow{+}$
At.		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2} \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Verified OK.

1.30.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y+1+3 \sin (t)) \mathrm{d} t \\
(-y-1-3 \sin (t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-y-1-3 \sin (t) \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y-1-3 \sin (t)) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}(-y-1-3 \sin (t)) \\
& =-\mathrm{e}^{-t}(y+1+3 \sin (t))
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{-t}(y+1+3 \sin (t))\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t}(y+1+3 \sin (t)) \mathrm{d} t \\
\phi & =\frac{(2 y+3 \cos (t)+3 \sin (t)+2) \mathrm{e}^{-t}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(2 y+3 \cos (t)+3 \sin (t)+2) \mathrm{e}^{-t}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(2 y+3 \cos (t)+3 \sin (t)+2) \mathrm{e}^{-t}}{2}
$$

The solution becomes

$$
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=-\frac{\left(3 \mathrm{e}^{-t} \sin (t)+3 \mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Verified OK.

1.30.4 Maple step by step solution

Let's solve
$-y+y^{\prime}=1+3 \sin (t)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=y+1+3 \sin (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-y+y^{\prime}=1+3 \sin (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-y+y^{\prime}\right)=\mu(t)(1+3 \sin (t))$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)(1+3 \sin (t)) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)(1+3 \sin (t)) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)(1+3 \sin (t)) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int(1+3 \sin (t)) \mathrm{e}^{-t} d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{1}{\mathrm{e}^{t}}-\frac{3 \mathrm{e}^{-t} \cos (t)}{2}-\frac{3 \mathrm{e}^{-t} \sin (t)}{2}+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=-1+c_{1} \mathrm{e}^{t}-\frac{3 \cos (t)}{2}-\frac{3 \sin (t)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(-y(t)+diff(y(t),t) = 1+3*sin(t),y(t), singsol=all)
```

$$
y(t)=-1-\frac{3 \cos (t)}{2}-\frac{3 \sin (t)}{2}+\mathrm{e}^{t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 25

```
DSolve[-y[t]+y'[t] == 1+3*Sin[t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow-\frac{3 \sin (t)}{2}-\frac{3 \cos (t)}{2}+c_{1} e^{t}-1
$$

1.31 problem 31

$$
\text { 1.31.1 Solving as linear ode . } 397
$$

1.31.2 Solving as first order ode lie symmetry lookup ode 399
1.31.3 Solving as exact ode 403
1.31.4 Maple step by step solution 408

Internal problem ID [478]
Internal file name [OUTPUT/478_Sunday_June_05_2022_01_42_07_AM_9283464/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.1. Page 40
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
-\frac{3 y}{2}+y^{\prime}=2 \mathrm{e}^{t}+3 t
$$

1.31.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{3}{2} \\
& q(t)=2 \mathrm{e}^{t}+3 t
\end{aligned}
$$

Hence the ode is

$$
-\frac{3 y}{2}+y^{\prime}=2 \mathrm{e}^{t}+3 t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{2} d t} \\
& =\mathrm{e}^{-\frac{3 t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 \mathrm{e}^{t}+3 t\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{3 t}{2}} y\right) & =\left(\mathrm{e}^{-\frac{3 t}{2}}\right)\left(2 \mathrm{e}^{t}+3 t\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{3 t}{2}} y\right) & =\left(\left(2 \mathrm{e}^{t}+3 t\right) \mathrm{e}^{-\frac{3 t}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{3 t}{2}} y=\int\left(2 \mathrm{e}^{t}+3 t\right) \mathrm{e}^{-\frac{3 t}{2}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{3 t}{2}} y=-2 \mathrm{e}^{-\frac{3 t}{2}} t-\frac{4 \mathrm{e}^{-\frac{3 t}{2}}}{3}-4 \mathrm{e}^{-\frac{t}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{3 t}{2}}$ results in

$$
y=\mathrm{e}^{\frac{3 t}{2}}\left(-2 \mathrm{e}^{-\frac{3 t}{2}} t-\frac{4 \mathrm{e}^{-\frac{3 t}{2}}}{3}-4 \mathrm{e}^{-\frac{t}{2}}\right)+c_{1} \mathrm{e}^{\frac{3 t}{2}}
$$

which simplifies to

$$
y=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+c_{1} \mathrm{e}^{\frac{3 t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+c_{1} \mathrm{e}^{\frac{3 t}{2}} \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot
Verification of solutions

$$
y=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+c_{1} \mathrm{e}^{\frac{3 t}{2}}
$$

Verified OK.

1.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 y}{2}+2 \mathrm{e}^{t}+3 t \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 91: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{3 t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{3 t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{3 t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{3 y}{2}+2 \mathrm{e}^{t}+3 t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{3 \mathrm{e}^{-\frac{3 t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{-\frac{3 t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \mathrm{e}^{-\frac{t}{2}}+3 \mathrm{e}^{-\frac{3 t}{2} t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \mathrm{e}^{-\frac{R}{2}}+3 \mathrm{e}^{-\frac{3 R}{2}} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \mathrm{e}^{-\frac{3 R}{2}} R-\frac{4 \mathrm{e}^{-\frac{3 R}{2}}}{3}-4 \mathrm{e}^{-\frac{R}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{3 t}{2}} y=-2 \mathrm{e}^{-\frac{3 t}{2}} t-\frac{4 \mathrm{e}^{-\frac{3 t}{2}}}{3}-4 \mathrm{e}^{-\frac{t}{2}}+c_{1}
$$

Which simplifies to

$$
\frac{(6 t+3 y+4) \mathrm{e}^{-\frac{3 t}{2}}}{3}-c_{1}+4 \mathrm{e}^{-\frac{t}{2}}=0
$$

Which gives

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{3 y}{2}+2 \mathrm{e}^{t}+3 t$		$\frac{d S}{d R}=2 \mathrm{e}^{-\frac{R}{2}}+3 \mathrm{e}^{-\frac{3 R}{2}} R$
1! ! : \rightarrow ¢ $4+4+4+1$		
	$R=t$: $: 1$
	$S=\mathrm{e}^{-\frac{3 t}{2}} y$	
-		-2,
		-

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3} \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3}
$$

Verified OK.

1.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{3 y}{2}+2 \mathrm{e}^{t}+3 t\right) \mathrm{d} t \\
\left(-\frac{3 y}{2}-2 \mathrm{e}^{t}-3 t\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{3 y}{2}-2 \mathrm{e}^{t}-3 t \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 y}{2}-2 \mathrm{e}^{t}-3 t\right) \\
& =-\frac{3}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{3}{2}\right)-(0)\right) \\
& =-\frac{3}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{3}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{3 t}{2}} \\
& =\mathrm{e}^{-\frac{3 t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{3 t}{2}}\left(-\frac{3 y}{2}-2 \mathrm{e}^{t}-3 t\right) \\
& =-\frac{\left(3 y+4 \mathrm{e}^{t}+6 t\right) \mathrm{e}^{-\frac{3 t}{2}}}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{3 t}{2}}(1) \\
& =\mathrm{e}^{-\frac{3 t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\frac{\left(3 y+4 \mathrm{e}^{t}+6 t\right) \mathrm{e}^{-\frac{3 t}{2}}}{2}\right)+\left(\mathrm{e}^{-\frac{3 t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{\left(3 y+4 \mathrm{e}^{t}+6 t\right) \mathrm{e}^{-\frac{3 t}{2}}}{2} \mathrm{~d} t \\
\phi & =\frac{(6 t+3 y+4) \mathrm{e}^{-\frac{3 t}{2}}}{3}+4 \mathrm{e}^{-\frac{t}{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{3 t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{3 t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{3 t}{2}}=\mathrm{e}^{-\frac{3 t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(6 t+3 y+4) \mathrm{e}^{-\frac{3 t}{2}}}{3}+4 \mathrm{e}^{-\frac{t}{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(6 t+3 y+4) \mathrm{e}^{-\frac{3 t}{2}}}{3}+4 \mathrm{e}^{-\frac{t}{2}}
$$

The solution becomes

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3} \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=-\frac{\left(6 \mathrm{e}^{-\frac{3 t}{2}} t+4 \mathrm{e}^{-\frac{3 t}{2}}+12 \mathrm{e}^{-\frac{t}{2}}-3 c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{3}
$$

Verified OK.

1.31.4 Maple step by step solution

Let's solve
$-\frac{3 y}{2}+y^{\prime}=2 \mathrm{e}^{t}+3 t$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{2}+2 \mathrm{e}^{t}+3 t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$-\frac{3 y}{2}+y^{\prime}=2 \mathrm{e}^{t}+3 t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(-\frac{3 y}{2}+y^{\prime}\right)=\mu(t)\left(2 \mathrm{e}^{t}+3 t\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(-\frac{3 y}{2}+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{3 \mu(t)}{2}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{3 t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(2 \mathrm{e}^{t}+3 t\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(2 \mathrm{e}^{t}+3 t\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(2 \mathrm{e}^{t}+3 t\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{3 t}{2}}$
$y=\frac{\int\left(2 \mathrm{e}^{t}+3 t\right) \mathrm{e}^{-\frac{3 t}{2}} d t+c_{1}}{\mathrm{e}^{-\frac{3 t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{-2 \mathrm{e}^{-\frac{3 t}{2}} t-\frac{4 \mathrm{e}^{-\frac{3 t}{2}}}{3}-4 \mathrm{e}^{-\frac{t}{2}}+c_{1}}{\mathrm{e}^{-\frac{3 t}{2}}}$
- Simplify
$y=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+c_{1} \mathrm{e}^{\frac{3 t}{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve $(-3 / 2 * y(t)+\operatorname{diff}(y(t), t)=2 * \exp (t)+3 * t, y(t)$, singsol=all)

$$
y(t)=-2 t-\frac{4}{3}-4 \mathrm{e}^{t}+\mathrm{e}^{\frac{3 t}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 27
DSolve $[-3 / 2 * y[t]+y$ ' $[t]==2 * \operatorname{Exp}[t]+3 * t, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-2 t-4 e^{t}+c_{1} e^{3 t / 2}-\frac{4}{3}
$$

2 Section 2.2. Page 48

2.1 problem 1 412
2.2 problem 2 425
2.3 problem 3 437
2.4 problem 4 451
2.5 problem 5 464
2.6 problem 6 476
2.7 problem 7 488
2.8 problem 8 491
2.9 problem 9 509
2.10 problem 10 525
2.11 problem 11 543
2.12 problem 12 557
2.13 problem 13 572
2.14 problem 14 586
2.15 problem 15 602
2.16 problem 16 621
2.17 problem 17 635
2.18 problem 18 647
2.19 problem 19 659
2.20 problem 20 672
2.21 problem 21 685
2.22 problem 22 700
2.23 problem 23 713
2.24 problem 24 729
2.25 problem 25 [741]
2.26 problem 26 754
2.27 problem 27 770
2.28 problem 28 788
2.29 problem 29 806
2.30 problem 31 809
2.31 problem 32 820
2.32 problem 33 835
2.33 problem 34 844
2.34 problem 35 855
2.35 problem 36 865
2.36 problem 37 877
2.37 problem 38 892

2.1 problem 1

2.1.1 Solving as separable ode . 412
2.1.2 Solving as differentialType ode 414
2.1.3 Solving as first order ode lie symmetry lookup ode 415
2.1.4 Solving as exact ode . 419
2.1.5 Maple step by step solution . 423

Internal problem ID [479]
Internal file name [OUTPUT/479_Sunday_June_05_2022_01_42_08_AM_65104678/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2}}{y}=0
$$

2.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}}{y}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=x^{2} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int x^{2} d x \\
\frac{y^{2}}{2} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3} \\
& y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3} \tag{1}\\
& y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}
$$

Verified OK.

$$
y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}
$$

Verified OK.

2.1.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x^{2}}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=\left(x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(x^{2}\right) d x=d\left(\frac{x^{3}}{3}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{x^{3}}{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1} \\
& y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1} \tag{1}\\
& y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1} \tag{2}
\end{align*}
$$

Figure 78: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1}
$$

Verified OK.

$$
y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}+c_{1}
$$

Verified OK.

2.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 94: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{3}}{3}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}}{3}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}}{y}$		$\frac{d S}{d R}=R$
	$S=\frac{x^{3}}{}$	
$H^{\text {a }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{3}}{3}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
\frac{x^{3}}{3}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

2.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 80: Slope field plot
Verification of solutions

$$
-\frac{x^{3}}{3}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

2.1.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x^{2}}{y}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y y^{\prime}=x^{2}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{x^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}, y=\frac{\sqrt{6 x^{3}+18 c_{1}}}{3}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(x),x) = x^2/y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{6 x^{3}+9 c_{1}}}{3} \\
& y(x)=\frac{\sqrt{6 x^{3}+9 c_{1}}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 50
DSolve[y'[x] == $x \wedge 2 / y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{\frac{2}{3}} \sqrt{x^{3}+3 c_{1}} \\
& y(x) \rightarrow \sqrt{\frac{2}{3}} \sqrt{x^{3}+3 c_{1}}
\end{aligned}
$$

2.2 problem 2

2.2.1 Solving as separable ode . 425
2.2.2 Solving as first order ode lie symmetry lookup ode 427
2.2.3 Solving as exact ode . 431
2.2.4 Maple step by step solution . 435

Internal problem ID [480]
Internal file name [OUTPUT/480_Sunday_June_05_2022_01_42_09_AM_72882121/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2}}{\left(x^{3}+1\right) y}=0
$$

2.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}}{\left(x^{3}+1\right) y}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}}{x^{3}+1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=\frac{x^{2}}{x^{3}+1} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{x^{2}}{x^{3}+1} d x \\
\frac{y^{2}}{2} & =\frac{\ln \left(x^{3}+1\right)}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3} \\
& y=-\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3} \tag{1}\\
& y=-\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3}
$$

Verified OK.

$$
y=-\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3}
$$

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}}{\left(x^{3}+1\right) y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{3}+1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{3}+1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{3}+1\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}}{\left(x^{3}+1\right) y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x^{2}}{\left(x^{2}-x+1\right)(x+1)} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (x+1)}{3}+\frac{\ln \left(x^{2}-x+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (x+1)}{3}+\frac{\ln \left(x^{2}-x+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (x+1)}{3}+\frac{\ln \left(x^{2}-x+1\right)}{3}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
\frac{\ln (x+1)}{3}+\frac{\ln \left(x^{2}-x+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x \\
\left(-\frac{x^{2}}{x^{3}+1}\right) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x^{2}}{x^{3}+1} \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}}{x^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}}{x^{3}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{3}+1\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 83: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(x^{3}+1\right)}{3}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

2.2.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x^{2}}{\left(x^{3}+1\right) y}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y y^{\prime}=\frac{x^{2}}{x^{3}+1}
$$

- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int \frac{x^{2}}{x^{3}+1} d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=\frac{\ln \left(x^{3}+1\right)}{3}+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3}, y=\frac{\sqrt{6 \ln \left(x^{3}+1\right)+18 c_{1}}}{3}\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff(y(x),x) = x^2/(x^3+1)/y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{6 \ln \left(x^{3}+1\right)+9 c_{1}}}{3} \\
& y(x)=\frac{\sqrt{6 \ln \left(x^{3}+1\right)+9 c_{1}}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 56
DSolve[y'[x] == $x^{\wedge} 2 /\left(x^{\wedge} 3+1\right) / y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{\frac{2}{3}} \sqrt{\log \left(x^{3}+1\right)+3 c_{1}} \\
& y(x) \rightarrow \sqrt{\frac{2}{3}} \sqrt{\log \left(x^{3}+1\right)+3 c_{1}}
\end{aligned}
$$

2.3 problem 3

2.3.1 Solving as separable ode 437
2.3.2 Solving as first order ode lie symmetry lookup ode 439
2.3.3 Solving as exact ode 443
2.3.4 Solving as riccati ode 447
2.3.5 Maple step by step solution 449

Internal problem ID [481]
Internal file name [OUTPUT/481_Sunday_June_05_2022_01_42_10_AM_4186121/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima

Section: Section 2.2. Page 48
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sin (x) y^{2}+y^{\prime}=0
$$

2.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\sin (x) y^{2}
\end{aligned}
$$

Where $f(x)=-\sin (x)$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =-\sin (x) d x \\
\int \frac{1}{y^{2}} d y & =\int-\sin (x) d x
\end{aligned}
$$

$$
-\frac{1}{y}=\cos (x)+c_{1}
$$

Which results in

$$
y=-\frac{1}{\cos (x)+c_{1}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\cos (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\cos (x)+c_{1}}
$$

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\sin (x) y^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{\sin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{\sin (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\cos (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\sin (x) y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\sin (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\cos (x)=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\cos (x)=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=-\frac{1}{\cos (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\sin (x) y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }{ }^{\text {¢ }}$
		$\cdots 1+1+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$S=\cos (x)$	
	$S=\cos (x)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$1{ }^{1}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
,		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$ - $+1+\uparrow,+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\cos (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\cos (x)-c_{1}}
$$

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =(\sin (x)) \mathrm{d} x \\
(-\sin (x)) \mathrm{d} x+\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\sin (x) \\
N(x, y) & =-\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sin (x) \mathrm{d} x \\
\phi & =\cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\cos (x)+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\cos (x)+\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{\cos (x)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\cos (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\cos (x)-c_{1}}
$$

Verified OK.

2.3.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\sin (x) y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\sin (x) y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=-\sin (x)$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\sin (x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\cos (x) \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\sin (x) u^{\prime \prime}(x)+\cos (x) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\cos (x) c_{2}
$$

The above shows that

$$
u^{\prime}(x)=-c_{2} \sin (x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{1}+\cos (x) c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{c_{3}+\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{c_{3}+\cos (x)} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y=-\frac{1}{c_{3}+\cos (x)}
$$

Verified OK.

2.3.5 Maple step by step solution

Let's solve

$$
\sin (x) y^{2}+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-\sin (x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int-\sin (x) d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{y}=\cos (x)+c_{1}$
- \quad Solve for y
$y=-\frac{1}{\cos (x)+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve $(\sin (x) * y(x) \sim 2+\operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{1}{-\cos (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.133 (sec). Leaf size: 19
DSolve[Sin $[x] * y[x] \sim 2+y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\cos (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.4 problem 4

2.4.1 Solving as separable ode 451
2.4.2 Solving as differentialType ode 453
2.4.3 Solving as first order ode lie symmetry lookup ode 454
2.4.4 Solving as exact ode 458
2.4.5 Maple step by step solution 462

Internal problem ID [482]
Internal file name [OUTPUT/482_Sunday_June_05_2022_01_42_11_AM_75746612/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{3 x^{2}-1}{3+2 y}=0
$$

2.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{3 x^{2}-1}{3+2 y}
\end{aligned}
$$

Where $f(x)=3 x^{2}-1$ and $g(y)=\frac{1}{3+2 y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{3+2 y}} d y=3 x^{2}-1 d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{3+2 y}} d y & =\int 3 x^{2}-1 d x \\
y^{2}+3 y & =x^{3}+c_{1}-x
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2} \\
& y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2} \tag{1}\\
& y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2} \tag{2}
\end{align*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}
$$

Verified OK.

$$
y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}
$$

Verified OK.

2.4.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{3 x^{2}-1}{3+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(3+2 y) d y=\left(3 x^{2}-1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(3 x^{2}-1\right) d x=d\left(x^{3}-x\right)
$$

Hence (2) becomes

$$
(3+2 y) d y=d\left(x^{3}-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1} \\
& y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1} \tag{1}\\
& y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1} \tag{2}
\end{align*}
$$

Figure 89: Slope field plot

Verification of solutions

$$
y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1}
$$

Verified OK.

$$
y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}+c_{1}
$$

Verified OK.

2.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 x^{2}-1}{3+2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 103: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x^{2}-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x^{2}-1}} d x
\end{aligned}
$$

Which results in

$$
S=x^{3}-x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x^{2}-1}{3+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x^{2}-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{3}-x=y^{2}+c_{1}+3 y
$$

Which simplifies to

$$
x^{3}-x=y^{2}+c_{1}+3 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x^{2}-1}{3+2 y}$		$\frac{d S}{d R}=3+2 R$
	$R=y$	$\underline{\square}$
	$S=x^{3}-x$	
10,		-
$\rightarrow-\infty$		
${ }_{\text {d }}$		+!

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{3}-x=y^{2}+c_{1}+3 y \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
x^{3}-x=y^{2}+c_{1}+3 y
$$

Verified OK.

2.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3+2 y) \mathrm{d} y & =\left(3 x^{2}-1\right) \mathrm{d} x \\
\left(-3 x^{2}+1\right) \mathrm{d} x+(3+2 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 x^{2}+1 \\
N(x, y) & =3+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{2}+1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3+2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-3 x^{2}+1 \mathrm{~d} x \\
\phi & =-x^{3}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
3+2 y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3+2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(3+2 y) \mathrm{d} y \\
f(y) & =y^{2}+3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{3}+y^{2}+x+3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{3}+y^{2}+x+3 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x^{3}+y^{2}+3 y+x=c_{1} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
-x^{3}+y^{2}+3 y+x=c_{1}
$$

Verified OK.

2.4.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{3 x^{2}-1}{3+2 y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
(3+2 y) y^{\prime}=3 x^{2}-1
$$

- Integrate both sides with respect to x

$$
\int(3+2 y) y^{\prime} d x=\int\left(3 x^{2}-1\right) d x+c_{1}
$$

- Evaluate integral

$$
y^{2}+3 y=x^{3}+c_{1}-x
$$

- \quad Solve for y

$$
\left\{y=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}, y=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

```
dsolve(diff(y(x),x) = (3*x^2-1)/(3+2*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{3}{2}-\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2} \\
& y(x)=-\frac{3}{2}+\frac{\sqrt{4 x^{3}+4 c_{1}-4 x+9}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 59
DSolve[y'[x] == (3*x~2-1)/(3+2*y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-3-\sqrt{4 x^{3}-4 x+9+4 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-3+\sqrt{4 x^{3}-4 x+9+4 c_{1}}\right)
\end{aligned}
$$

2.5 problem 5

2.5.1 Solving as separable ode 464
2.5.2 Solving as first order ode lie symmetry lookup ode 466
2.5.3 Solving as exact ode 470
2.5.4 Maple step by step solution 474

Internal problem ID [483]
Internal file name [OUTPUT/483_Sunday_June_05_2022_01_42_12_AM_72792709/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\cos (x)^{2} \cos (2 y)^{2}=0
$$

2.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\cos (x)^{2} \cos (2 y)^{2}
\end{aligned}
$$

Where $f(x)=\cos (x)^{2}$ and $g(y)=\cos (2 y)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (2 y)^{2}} d y & =\cos (x)^{2} d x \\
\int \frac{1}{\cos (2 y)^{2}} d y & =\int \cos (x)^{2} d x \\
\frac{\tan (2 y)}{2} & =\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\frac{\arctan \left(\cos (x) \sin (x)+2 c_{1}+x\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arctan \left(\cos (x) \sin (x)+2 c_{1}+x\right)}{2} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=\frac{\arctan \left(\cos (x) \sin (x)+2 c_{1}+x\right)}{2}
$$

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\cos (x)^{2} \cos (2 y)^{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 106: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{\cos (x)^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{\cos (x)^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\cos (x)^{2} \cos (2 y)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{\cos (2 x)}{2}+\frac{1}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sec (2 y)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sec (2 R)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\tan (2 R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\sin (2 x)}{4}+\frac{x}{2}=\frac{\tan (2 y)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\sin (2 x)}{4}+\frac{x}{2}=\frac{\tan (2 y)}{2}+c_{1}
$$

Which gives

$$
y=-\frac{\arctan \left(-\frac{\sin (2 x)}{2}-x+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\cos (x)^{2} \cos (2 y)^{2}$		$\frac{d S}{d R}=\sec (2 R)^{2}$
	$R=y$	
	$x)$	
	$\frac{1}{4}+\frac{x}{2}$	
$\xrightarrow{\rightarrow+\infty}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\arctan \left(-\frac{\sin (2 x)}{2}-x+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
y=-\frac{\arctan \left(-\frac{\sin (2 x)}{2}-x+2 c_{1}\right)}{2}
$$

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\cos (2 y)^{2}}\right) \mathrm{d} y & =\left(\cos (x)^{2}\right) \mathrm{d} x \\
\left(-\cos (x)^{2}\right) \mathrm{d} x+\left(\frac{1}{\cos (2 y)^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\cos (x)^{2} \\
& N(x, y)=\frac{1}{\cos (2 y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\cos (x)^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\cos (2 y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x)^{2} \mathrm{~d} x \\
\phi & =-\frac{\sin (2 x)}{4}-\frac{x}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\cos (2 y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\cos (2 y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\cos (2 y)^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\sec (2 y)^{2}\right) \mathrm{d} y \\
f(y) & =\frac{\tan (2 y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sin (2 x)}{4}-\frac{x}{2}+\frac{\tan (2 y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sin (2 x)}{4}-\frac{x}{2}+\frac{\tan (2 y)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{2}-\frac{\sin (2 x)}{4}+\frac{\tan (2 y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
-\frac{x}{2}-\frac{\sin (2 x)}{4}+\frac{\tan (2 y)}{2}=c_{1}
$$

Verified OK.

2.5.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\cos (x)^{2} \cos (2 y)^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\cos (2 y)^{2}}=\cos (x)^{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\cos (2 y)^{2}} d x=\int \cos (x)^{2} d x+c_{1}
$$

- Evaluate integral

$$
\frac{\tan (2 y)}{2}=\frac{\cos (x) \sin (x)}{2}+\frac{x}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\arctan \left(\cos (x) \sin (x)+2 c_{1}+x\right)}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve(diff(y(x),x) = cos(x)^2*\operatorname{cos}(2*y(x))^2,y(x), singsol=all)
```

$$
y(x)=\frac{\arctan \left(x+2 c_{1}+\frac{\sin (2 x)}{2}\right)}{2}
$$

\checkmark Solution by Mathematica
Time used: 1.312 (sec). Leaf size: 63
DSolve[y'[x] == $\operatorname{Cos}[x]^{\sim} 2 * \operatorname{Cos}[2 * y[x]]^{\sim} 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2} \arctan \left(x+\sin (x) \cos (x)+\frac{c_{1}}{4}\right) \\
& y(x) \rightarrow \frac{1}{2} \arctan \left(x+\sin (x) \cos (x)+\frac{c_{1}}{4}\right) \\
& y(x) \rightarrow-\frac{\pi}{4} \\
& y(x) \rightarrow \frac{\pi}{4}
\end{aligned}
$$

2.6 problem 6

2.6.1 Solving as separable ode . 476
2.6.2 Solving as first order ode lie symmetry lookup ode 478
2.6.3 Solving as exact ode . 482
2.6.4 Maple step by step solution . 486

Internal problem ID [484]
Internal file name [OUTPUT/484_Sunday_June_05_2022_01_42_13_AM_90091053/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} x-\sqrt{1-y^{2}}=0
$$

2.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sqrt{-y^{2}+1}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\sqrt{-y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{-y^{2}+1}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{-y^{2}+1}} d y & =\int \frac{1}{x} d x \\
\arcsin (y) & =\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\sin \left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
y=\sin \left(\ln (x)+c_{1}\right)
$$

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sqrt{-y^{2}+1}}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 109: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{-y^{2}+1}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{\sqrt{-y^{2}+1}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{\sqrt{-R^{2}+1}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arcsin (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\arcsin (y)+c_{1}
$$

Which simplifies to

$$
\ln (x)=\arcsin (y)+c_{1}
$$

Which gives

$$
y=-\sin \left(-\ln (x)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sqrt{-y^{2}+1}}{x}$	$\begin{aligned} R & =y \\ S & =\ln (x) \end{aligned}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sin \left(-\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot
Verification of solutions

$$
y=-\sin \left(-\ln (x)+c_{1}\right)
$$

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{\sqrt{-y^{2}+1}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{\sqrt{-y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{\sqrt{-y^{2}+1}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{\sqrt{-y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{\sqrt{-y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =\arcsin (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\arcsin (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\arcsin (y)
$$

The solution becomes

$$
y=\sin \left(\ln (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(\ln (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot
Verification of solutions

$$
y=\sin \left(\ln (x)+c_{1}\right)
$$

Verified OK.

2.6.4 Maple step by step solution

Let's solve

$$
y^{\prime} x-\sqrt{1-y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sqrt{1-y^{2}}}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\sqrt{1-y^{2}}} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\arcsin (y)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\sin \left(\ln (x)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(x*diff (y(x),x) = (1-y(x)~2)^(1/2),y(x), singsol=all)
```

$$
y(x)=\sin \left(\ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 29
DSolve[x*y'[x] == (1-y[x] 2 $)^{\wedge}(1 / 2), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \cos \left(\log (x)+c_{1}\right) \\
& y(x) \rightarrow-1 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow \text { Interval }[\{-1,1\}]
\end{aligned}
$$

2.7 problem 7

Internal problem ID [485]
Internal file name [OUTPUT/485_Sunday_June_05_2022_01_42_14_AM_30092807/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[`y=_G(x, $\left.\left.y^{\prime}\right)^{\prime}\right]$
Unable to solve or complete the solution.

$$
y^{\prime}-\frac{-\mathrm{e}^{-x}+x}{\mathrm{e}^{y}+x}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4
`, --> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = -y(x)/x, y(x)` *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x), y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x), y(x)` *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods99---
    trying a quadrature
    trying 1st order linear
```

X Solution by Maple
dsolve $(\operatorname{diff}(y(x), x)=(-\exp (-x)+x) /(\exp (y(x))+x), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[y{ }^{\prime}[x]==(-\operatorname{Exp}[-x]+x) /(\operatorname{Exp}[y[x]]+x), y[x], x\right.$, IncludeSingularSolutions $->$ True]
Not solved

2.8 problem 8

$$
\text { 2.8.1 Solving as separable ode . } 491
$$

2.8.2 Solving as differentialType ode 495
2.8.3 Solving as first order ode lie symmetry lookup ode 499
2.8.4 Solving as exact ode 503
2.8.5 Maple step by step solution 507

Internal problem ID [486]

Internal file name [DUTPUT/486_Sunday_June_05_2022_01_42_16_AM_5493618/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2}}{1+y^{2}}=0
$$

2.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}}{y^{2}+1}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=\frac{1}{y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y^{2}+1}} d y=x^{2} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y^{2}+1}} d y & =\int x^{2} d x \\
\frac{1}{3} y^{3}+y & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
y= & \frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& \left.+\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}\right) \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}\right)}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2} \tag{1}\\
& -\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \tag{2}\\
& +\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& \left.+\frac{1}{2}\right) \\
& -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2 \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{{ }_{4}}{2}\right)}
\end{align*}
$$

(3)

Figure 98: Slope field plot

Verification of solutions

$$
y=\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

2.8.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x^{2}}{1+y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}+1\right) d y=\left(x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(x^{2}\right) d x=d\left(\frac{x^{3}}{3}\right)
$$

Hence (2) becomes

$$
\left(y^{2}+1\right) d y=d\left(\frac{x^{3}}{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}+c_{1} \\
& y=-\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4}+\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{1}{4}\right.}{4}+\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(\frac{\left.1 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{}\right.}{y=-\frac{1}{4}} .
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2} \tag{1}\\
& -\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}+c_{1} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \tag{2}\\
& +\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}\right)}{2}+c_{1} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \tag{3}\\
& \left.+\frac{1}{2}+4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}+c_{1}
\end{align*}
$$

Figure 99: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2} \\
& -\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}\right)}{2}+c_{1}
\end{aligned}
$$

Verified OK.

2.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}}{y^{2}+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 112: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}}{y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y^{2}+1 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only．This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying．This gives

$$
\frac{d S}{d R}=R^{2}+1
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{x^{3}}{3}=\frac{y^{3}}{3}+y+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}}{3}=\frac{y^{3}}{3}+y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$		$\frac{d S}{d R}=R^{2}+1$
タ刀パー		
	$R=y$	
	$S=\frac{x}{3}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{3}}{3}=\frac{y^{3}}{3}+y+c_{1} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot
Verification of solutions

$$
\frac{x^{3}}{3}=\frac{y^{3}}{3}+y+c_{1}
$$

Verified OK.

2.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}+1\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(y^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=y^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}+1\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}+1$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}+1=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}+1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}+1\right) \mathrm{d} y \\
f(y) & =\frac{1}{3} y^{3}+y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{3} x^{3}+\frac{1}{3} y^{3}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{3} x^{3}+\frac{1}{3} y^{3}+y
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}+\frac{y^{3}}{3}+y=c_{1} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
-\frac{x^{3}}{3}+\frac{y^{3}}{3}+y=c_{1}
$$

Verified OK.

2.8.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x^{2}}{1+y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\left(1+y^{2}\right) y^{\prime}=x^{2}$
- Integrate both sides with respect to x
$\int\left(1+y^{2}\right) y^{\prime} d x=\int x^{2} d x+c_{1}$
- Evaluate integral

$$
\frac{y^{3}}{3}+y=\frac{x^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right.}{)^{\frac{1}{3}}}-\frac{2}{2}-\frac{2}{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 268

```
dsolve(diff(y(x),x) = x^2/(1+y(x)^2),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
& \left.y(x)=-\frac{(1+i \sqrt{3})\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{2}{3}}+4 i \sqrt{3}-4}{4\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right.}\right)^{\frac{1}{3}}
\end{aligned}
$$

$$
y(x)
$$

$$
=\frac{i\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{2}{3}} \sqrt{3}+4 i \sqrt{3}-\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{2}{3}}+4}{4\left(4 x^{3}+12 c_{1}+4 \sqrt{x^{6}+6 c_{1} x^{3}+9 c_{1}^{2}+4}\right)^{\frac{1}{3}}}
$$

\checkmark Solution by Mathematica
Time used: 2.246 (sec). Leaf size: 307
DSolve[y' $[x]==x^{\wedge} 2 /(1+y[x] \sim 2), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{-2+\sqrt[3]{2}\left(x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}\right)^{2 / 3}}{2^{2 / 3} \sqrt[3]{x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}}} \\
y(x) \rightarrow & \frac{i(\sqrt{3}+i) \sqrt[3]{x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}}}{2 \sqrt[3]{2}} \\
& +\frac{1+i \sqrt{3}}{2^{2 / 3} \sqrt[3]{x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}}} \\
y(x) \rightarrow & \frac{1-i \sqrt{3}}{2^{2 / 3} \sqrt[3]{x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{x^{3}+\sqrt{x^{6}+6 c_{1} x^{3}+4+9 c_{1}^{2}}+3 c_{1}}}{2 \sqrt[3]{2}}
\end{aligned}
$$

2.9 problem 9

2.9.1 Existence and uniqueness analysis 509
2.9.2 Solving as separable ode . 510
2.9.3 Solving as first order ode lie symmetry lookup ode 512
2.9.4 Solving as exact ode . 516
2.9.5 Solving as riccati ode . 520
2.9.6 Maple step by step solution . 523

Internal problem ID [487]
Internal file name [OUTPUT/487_Sunday_June_05_2022_01_42_17_AM_24604466/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-(1-2 x) y^{2}=0
$$

With initial conditions

$$
\left[y(0)=-\frac{1}{6}\right]
$$

2.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-y^{2}(2 x-1)
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-\frac{1}{6}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{6}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}(2 x-1)\right) \\
& =-2(2 x-1) y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-\frac{1}{6}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{6}$ is inside this domain. Therefore solution exists and is unique.

2.9.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =(1-2 x) y^{2}
\end{aligned}
$$

Where $f(x)=1-2 x$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =1-2 x d x \\
\int \frac{1}{y^{2}} d y & =\int 1-2 x d x \\
-\frac{1}{y} & =-x^{2}+c_{1}+x
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{-x^{2}+c_{1}+x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{1}{6}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
-\frac{1}{6} & =-\frac{1}{c_{1}} \\
c_{1} & =6
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{x^{2}-x-6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}-x-6} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{x^{2}-x-6}
$$

Verified OK.

2.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y^{2}(2 x-1) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 115: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{1-2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{1-2 x}} d x
\end{aligned}
$$

Which results in

$$
S=-x^{2}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y^{2}(2 x-1)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =1-2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x^{2}+x=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
-x^{2}+x=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{x^{2}+c_{1}-x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y^{2}(2 x-1)$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
		$\rightarrow \rightarrow \infty$
		-14 4
	$R=y$	$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
04*	$S=-x^{2}+x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow- \pm]{ } \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
- 1.		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{1}{6}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{6}=\frac{1}{c_{1}} \\
c_{1}=-6
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{x^{2}-x-6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}-x-6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{x^{2}-x-6}
$$

Verified OK.

2.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y^{2}}\right) \mathrm{d} y & =(2 x-1) \mathrm{d} x \\
(1-2 x) \mathrm{d} x+ & \left(-\frac{1}{y^{2}}\right) \mathrm{d} y \tag{2~A}
\end{align*}=0
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1-2 x \\
N(x, y) & =-\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1-2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 1-2 x \mathrm{~d} x \\
\phi & =-x^{2}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}+x+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}+x+\frac{1}{y}
$$

The solution becomes

$$
y=\frac{1}{x^{2}+c_{1}-x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{1}{6}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{6}=\frac{1}{c_{1}} \\
c_{1}=-6
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{x^{2}-x-6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}-x-6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{x^{2}-x-6}
$$

Verified OK.

2.9.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-y^{2}(2 x-1)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-2 x y^{2}+y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=1-2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(1-2 x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(1-2 x) u^{\prime \prime}(x)+2 u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+c_{2}\left(x-\frac{1}{2}\right)^{2}
$$

The above shows that

$$
u^{\prime}(x)=c_{2}(2 x-1)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}(2 x-1)}{(1-2 x)\left(c_{1}+c_{2}\left(x-\frac{1}{2}\right)^{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{4}{4 x^{2}+4 c_{3}-4 x+1}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=-\frac{1}{6}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{1}{6}=\frac{4}{4 c_{3}+1}
$$

$$
c_{3}=-\frac{25}{4}
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{1}{x^{2}-x-6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x^{2}-x-6} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{1}{x^{2}-x-6}
$$

Verified OK.

2.9.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-(1-2 x) y^{2}=0, y(0)=-\frac{1}{6}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=1-2 x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int(1-2 x) d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=-x^{2}+c_{1}+x$
- \quad Solve for y
$y=-\frac{1}{-x^{2}+c_{1}+x}$
- Use initial condition $y(0)=-\frac{1}{6}$
$-\frac{1}{6}=-\frac{1}{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=6$
- Substitute $c_{1}=6$ into general solution and simplify

$$
y=\frac{1}{x^{2}-x-6}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{x^{2}-x-6}
$$

Maple trace

```
`Methods for first order ODEs:
    Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 14
dsolve([diff $(y(x), x)=(1-2 * x) * y(x) \sim 2, y(0)=-1 / 6], y(x)$, singsol=all)

$$
y(x)=\frac{1}{x^{2}-x-6}
$$

\checkmark Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 15
DSolve $\left[\left\{y^{\prime}[\mathrm{x}]=(1-2 * x) * y[\mathrm{x}] \sim 2, \mathrm{y}[0]==-1 / 6\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{x^{2}-x-6}
$$

2.10 problem 10

2.10.1 Existence and uniqueness analysis 526
2.10.2 Solving as separable ode . 526
2.10.3 Solving as differentialType ode 528
2.10.4 Solving as homogeneousTypeMapleC ode 529
2.10.5 Solving as first order ode lie symmetry lookup ode 533
2.10.6 Solving as exact ode . 537
2.10.7 Maple step by step solution . 541

Internal problem ID [488]
Internal file name [OUTPUT/488_Sunday_June_05_2022_01_42_18_AM_32830898/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{1-2 x}{y}=0
$$

With initial conditions

$$
[y(1)=-2]
$$

2.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{2 x-1}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x-1}{y}\right) \\
& =\frac{2 x-1}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

2.10.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1-2 x}{y}
\end{aligned}
$$

Where $f(x)=1-2 x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =1-2 x d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int 1-2 x d x \\
\frac{y^{2}}{2} & =-x^{2}+c_{1}+x
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-2 x^{2}+2 c_{1}+2 x} \\
& y=-\sqrt{-2 x^{2}+2 c_{1}+2 x}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-\sqrt{c_{1}} \sqrt{2} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\sqrt{c_{1}} \sqrt{2}
$$

Summary

Warning: Unable to solve for constant of integration.
The solution(s) found are the following

$$
y=-\sqrt{-2 x^{2}+2 x-}
$$

Verification of solutions

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Verified OK.

2.10.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{1-2 x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\text { (y) } d y=(1-2 x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(1-2 x) d x=d\left(-x^{2}+x\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(-x^{2}+x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-2 x^{2}+2 c_{1}+2 x}+c_{1} \\
& y=-\sqrt{-2 x^{2}+2 c_{1}+2 x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-\sqrt{c_{1}} \sqrt{2}+c_{1} \\
c_{1}=\sqrt{2}\left(\frac{\sqrt{2}}{2}+\frac{i \sqrt{6}}{2}\right)-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{-2 x^{2}-2+2 i \sqrt{3}+2 x}-1+i \sqrt{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\sqrt{c_{1}} \sqrt{2}+c_{1}
$$

Summary
The solution(s) found are the following
Warning: Unable to solve for constant of integration.

$$
y=-\sqrt{-2 x^{2}-2+2 i \sqrt{3}+2}
$$

Verification of solutions

$$
y=-\sqrt{-2 x^{2}-2+2 i \sqrt{3}+2 x}-1+i \sqrt{3}
$$

Verified OK.

2.10.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{2 X+2 x_{0}-1}{Y(X)+y_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =\frac{1}{2} \\
y_{0} & =0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{2 X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{2 X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-2 X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =-\frac{2}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{-\frac{2}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{-\frac{2}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}+2=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+2}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+2}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+2}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+2\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+2}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+2}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\sqrt{u(X)^{2}+2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\sqrt{u(X)^{2}+2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\sqrt{\frac{Y(X)^{2}}{X^{2}}+2}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\sqrt{\frac{Y(X)^{2}+2 X^{2}}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y \\
& X=x+\frac{1}{2}
\end{aligned}
$$

Then the solution in y becomes

$$
\sqrt{\frac{y^{2}+2\left(x-\frac{1}{2}\right)^{2}}{\left(x-\frac{1}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x-\frac{1}{2}}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3 \sqrt{2}=2 c_{3} \mathrm{e}^{c_{2}} \\
& c_{2}=\frac{\ln \left(\frac{9}{2 c_{3}^{2}}\right)}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sqrt{\frac{y^{2}+2\left(x-\frac{1}{2}\right)^{2}}{\left(x-\frac{1}{2}\right)^{2}}}=\frac{3 c_{3} \sqrt{2} \sqrt{\frac{1}{c_{3}^{2}}}}{2 x-1}
$$

The above simplifies to

$$
\sqrt{2}\left(2 \sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}} x-3 c_{3} \sqrt{\frac{1}{c_{3}^{2}}}-\sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}}\right)=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\sqrt{2}\left(2 \sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}} x-3 \operatorname{csgn}\left(\frac{1}{c_{3}}\right)-\sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}}\right)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{2}\left(2 \sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}} x-3 \operatorname{csgn}\left(\frac{1}{c_{3}}\right)-\sqrt{\frac{4 x^{2}+2 y^{2}-4 x+1}{(2 x-1)^{2}}}\right)=0
$$

Verified OK.

2.10.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 x-1}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 118: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{1-2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{1-2 x}} d x
\end{aligned}
$$

Which results in

$$
S=-x^{2}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x-1}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =1-2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x^{2}+x=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-x^{2}+x=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x-1}{y}$		$\frac{d S}{d R}=R$
	$R=y$	
	$S=-x^{2}+x$	$\mathrm{L}^{-4} \mathrm{~L}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}+2 \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-x^{2}+x=\frac{y^{2}}{2}-2
$$

Solving for y from the above gives

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{-2 x^{2}+2 x+4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Verified OK. \{positive\}

2.10.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y) \mathrm{d} y & =(2 x-1) \mathrm{d} x \\
(1-2 x) \mathrm{d} x+(-y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1-2 x \\
N(x, y) & =-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1-2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 1-2 x \mathrm{~d} x \\
\phi & =-x^{2}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y$. Therefore equation (4) becomes

$$
\begin{equation*}
-y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}-\frac{1}{2} y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}-\frac{1}{2} y^{2}+x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x^{2}-\frac{1}{2} y^{2}+x=-2
$$

Solving for y from the above gives

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{-2 x^{2}+2 x+4} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Verified OK. \{positive\}

2.10.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{1-2 x}{y}=0, y(1)=-2\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y y^{\prime}=1-2 x
$$

- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int(1-2 x) d x+c_{1}$
- Evaluate integral

$$
\frac{y^{2}}{2}=-x^{2}+c_{1}+x
$$

- \quad Solve for y

$$
\left\{y=\sqrt{-2 x^{2}+2 c_{1}+2 x}, y=-\sqrt{-2 x^{2}+2 c_{1}+2 x}\right\}
$$

- Use initial condition $y(1)=-2$
$-2=\sqrt{c_{1}} \sqrt{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(1)=-2$
$-2=-\sqrt{c_{1}} \sqrt{2}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify $y=-\sqrt{-2 x^{2}+2 x+4}$
- Solution to the IVP

$$
y=-\sqrt{-2 x^{2}+2 x+4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 18

```
dsolve([diff(y(x),x) = (1-2*x)/y(x),y(1) = -2],y(x), singsol=all)
```

$$
y(x)=-\sqrt{-2 x^{2}+2 x+4}
$$

\checkmark Solution by Mathematica
Time used: 0.094 (sec). Leaf size: 24
DSolve[\{y' $[x]==(1-2 * x) / y[x], y[1]==-2\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\sqrt{2} \sqrt{-x^{2}+x+2}
$$

2.11 problem 11

2.11.1 Existence and uniqueness analysis 543
2.11.2 Solving as separable ode . 544
2.11.3 Solving as first order ode lie symmetry lookup ode 546
2.11.4 Solving as exact ode . 551
2.11.5 Maple step by step solution . 554

Internal problem ID [489]
Internal file name [OUTPUT/489_Sunday_June_05_2022_01_42_19_AM_46023698/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} \mathrm{e}^{-x} y=-x
$$

With initial conditions

$$
[y(0)=1]
$$

2.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x \mathrm{e}^{x}}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x \mathrm{e}^{x}}{y}\right) \\
& =\frac{x \mathrm{e}^{x}}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.11.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x \mathrm{e}^{x}}{y}
\end{aligned}
$$

Where $f(x)=-x \mathrm{e}^{x}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-x \mathrm{e}^{x} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-x \mathrm{e}^{x} d x \\
\frac{y^{2}}{2} & =-(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+2 c_{1}} \\
& y=-\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\sqrt{2+2 c_{1}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\sqrt{2+2 c_{1}} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Verified OK.

2.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x \mathrm{e}^{x}}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 121: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\mathrm{e}^{-x}}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\mathrm{e}^{-x}}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-(x-1) \mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x \mathrm{e}^{x}}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \mathrm{e}^{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-(x-1) \mathrm{e}^{x}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-(x-1) \mathrm{e}^{x}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x \mathrm{e}^{x}}{y}$		$\frac{d S}{d R}=R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$S=-(x-1) \mathrm{e}^{x}$	
$\rightarrow \rightarrow \rightarrow$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{2}+c_{1} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-(x-1) \mathrm{e}^{x}=\frac{y^{2}}{2}+\frac{1}{2}
$$

Solving for y from the above gives

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Verified OK.

2.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y) \mathrm{d} y & =\left(x \mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-x \mathrm{e}^{x}\right) \mathrm{d} x+(-y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \mathrm{e}^{x} \\
N(x, y) & =-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x \mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-(x-1) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y$. Therefore equation (4) becomes

$$
\begin{equation*}
-y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-(x-1) \mathrm{e}^{x}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-(x-1) \mathrm{e}^{x}-\frac{y^{2}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-(x-1) \mathrm{e}^{x}-\frac{y^{2}}{2}=\frac{1}{2}
$$

Solving for y from the above gives

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

Verified OK.

2.11.5 Maple step by step solution

Let's solve
$\left[\frac{y y^{\prime}}{\mathrm{e}^{x}}=-x, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$y y^{\prime}=-x \mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int y y^{\prime} d x=\int-x \mathrm{e}^{x} d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=-(x-1) \mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+2 c_{1}}, y=-\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+2 c_{1}}\right\}$
- Use initial condition $y(0)=1$
$1=\sqrt{2+2 c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify

$$
y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}
$$

- Use initial condition $y(0)=1$
$1=-\sqrt{2+2 c_{1}}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=\sqrt{-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 17

```
dsolve([x+y(x)*diff(y(x),x)/exp(x) = 0,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\sqrt{-1-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}}
$$

\checkmark Solution by Mathematica
Time used: 1.763 (sec). Leaf size: 19
DSolve[\{x+y[x]*y'[x]/Exp[x]==0,y[0]==1\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sqrt{-2 e^{x}(x-1)-1}
$$

2.12 problem 12

2.12.1 Existence and uniqueness analysis 557
2.12.2 Solving as separable ode . 558
2.12.3 Solving as first order ode lie symmetry lookup ode 560
2.12.4 Solving as exact ode . 564
2.12.5 Solving as riccati ode . 568
2.12.6 Maple step by step solution . 570

Internal problem ID [490]
Internal file name [OUTPUT/490_Sunday_June_05_2022_01_42_20_AM_13382328/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
r^{\prime}-\frac{r^{2}}{x}=0
$$

With initial conditions

$$
[r(1)=2]
$$

2.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
r^{\prime} & =f(x, r) \\
& =\frac{r^{2}}{x}
\end{aligned}
$$

The x domain of $f(x, r)$ when $r=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The r domain of $f(x, r)$ when $x=1$ is

$$
\{-\infty<r<\infty\}
$$

And the point $r_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\frac{\partial}{\partial r}\left(\frac{r^{2}}{x}\right) \\
& =\frac{2 r}{x}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial r}$ when $r=2$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The r domain of $\frac{\partial f}{\partial r}$ when $x=1$ is

$$
\{-\infty<r<\infty\}
$$

And the point $r_{0}=2$ is inside this domain. Therefore solution exists and is unique.

2.12.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
r^{\prime} & =F(x, r) \\
& =f(x) g(r) \\
& =\frac{r^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(r)=r^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{r^{2}} d r & =\frac{1}{x} d x \\
\int \frac{1}{r^{2}} d r & =\int \frac{1}{x} d x \\
-\frac{1}{r} & =\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
r=-\frac{1}{\ln (x)+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $r=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-\frac{1}{c_{1}} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=-\frac{2}{2 \ln (x)-1} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Verified OK.

2.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
r^{\prime} & =\frac{r^{2}}{x} \\
r^{\prime} & =\omega(x, r)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{r}-\xi_{x}\right)-\omega^{2} \xi_{r}-\omega_{x} \xi-\omega_{r} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 124: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, r)=x \\
& \eta(x, r)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, r) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d r}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial r}\right) S(x, r)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=r
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{x} d x
\end{aligned}
$$

Which results in

$$
S=\ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, r) S_{r}}{R_{x}+\omega(x, r) R_{r}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{r}, S_{x}, S_{r}$ are all partial derivatives and $\omega(x, r)$ is the right hand side of the original ode given by

$$
\omega(x, r)=\frac{r^{2}}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{r} & =1 \\
S_{x} & =\frac{1}{x} \\
S_{r} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{r^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, r in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, r coordinates. This results in

$$
\ln (x)=-\frac{1}{r}+c_{1}
$$

Which simplifies to

$$
\ln (x)=-\frac{1}{r}+c_{1}
$$

Which gives

$$
r=-\frac{1}{\ln (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, r coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d r}{d x}=\frac{r^{2}}{x}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow{\rightarrow}$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
-		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$R=r$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$ -
		$\xrightarrow{\rightarrow+\square \rightarrow \rightarrow-2}$
$\rightarrow \rightarrow 0{ }^{\text {a }}$	$S=\ln (x)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
bly		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $r=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=\frac{1}{c_{1}} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=-\frac{2}{2 \ln (x)-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Verified OK.

2.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, r) \mathrm{d} x+N(x, r) \mathrm{d} r=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{r^{2}}\right) \mathrm{d} r & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{r^{2}}\right) \mathrm{d} r & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, r)=-\frac{1}{x} \\
& N(x, r)=\frac{1}{r^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial r}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial r} & =\frac{\partial}{\partial r}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{r^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial r}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, r)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial r}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(r) \tag{3}
\end{align*}
$$

Where $f(r)$ is used for the constant of integration since ϕ is a function of both x and r. Taking derivative of equation (3) w.r.t r gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial r}=0+f^{\prime}(r) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial r}=\frac{1}{r^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{r^{2}}=0+f^{\prime}(r) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(r)$ gives

$$
f^{\prime}(r)=\frac{1}{r^{2}}
$$

Integrating the above w.r.t r gives

$$
\begin{aligned}
\int f^{\prime}(r) \mathrm{d} r & =\int\left(\frac{1}{r^{2}}\right) \mathrm{d} r \\
f(r) & =-\frac{1}{r}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(r)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{1}{r}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{1}{r}
$$

The solution becomes

$$
r=-\frac{1}{\ln (x)+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $r=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-\frac{1}{c_{1}} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=-\frac{2}{2 \ln (x)-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Verified OK.

2.12.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
r^{\prime} & =F(x, r) \\
& =\frac{r^{2}}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
r^{\prime}=\frac{r^{2}}{x}
$$

With Riccati ODE standard form

$$
r^{\prime}=f_{0}(x)+f_{1}(x) r+f_{2}(x) r^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=\frac{1}{x}$. Let

$$
\begin{align*}
r & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{x^{2}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x}+\frac{u^{\prime}(x)}{x^{2}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{2} \ln (x)+c_{1}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
r=-\frac{c_{2}}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
r=-\frac{1}{\ln (x)+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=1$ and $r=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=-\frac{1}{c_{3}} \\
& c_{3}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
r=-\frac{2}{2 \ln (x)-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Verified OK.

2.12.6 Maple step by step solution

Let's solve
$\left[r^{\prime}-\frac{r^{2}}{x}=0, r(1)=2\right]$

- Highest derivative means the order of the ODE is 1
r^{\prime}
- \quad Separate variables
$\frac{r^{\prime}}{r^{2}}=\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{r^{\prime}}{r^{2}} d x=\int \frac{1}{x} d x+c_{1}$
- Evaluate integral
$-\frac{1}{r}=\ln (x)+c_{1}$
- \quad Solve for r

$$
r=-\frac{1}{\ln (x)+c_{1}}
$$

- Use initial condition $r(1)=2$

$$
2=-\frac{1}{c_{1}}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{1}{2}
$$

- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$r=-\frac{2}{2 \ln (x)-1}$
- \quad Solution to the IVP

$$
r=-\frac{2}{2 \ln (x)-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([diff(r(x),x) = r(x)^2/x,r(1) = 2],r(x), singsol=all)
```

$$
r(x)=-\frac{2}{2 \ln (x)-1}
$$

\checkmark Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 15
DSolve $\left[\left\{r^{\prime}[x]==r[x] \sim 2 / x, r[1]==2\right\}, r[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
r(x) \rightarrow \frac{2}{1-2 \log (x)}
$$

2.13 problem 13

2.13.1 Existence and uniqueness analysis 572
2.13.2 Solving as separable ode . 573
2.13.3 Solving as first order ode lie symmetry lookup ode 575
2.13.4 Solving as exact ode . 580
2.13.5 Maple step by step solution . 583

Internal problem ID [491]
Internal file name [OUTPUT/491_Sunday_June_05_2022_01_42_21_AM_11702963/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 x}{y+x^{2} y}=0
$$

With initial conditions

$$
[y(0)=-2]
$$

2.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 x}{y\left(x^{2}+1\right)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x}{y\left(x^{2}+1\right)}\right) \\
& =-\frac{2 x}{y^{2}\left(x^{2}+1\right)}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

2.13.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 x}{y\left(x^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=\frac{2 x}{x^{2}+1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =\frac{2 x}{x^{2}+1} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{2 x}{x^{2}+1} d x \\
\frac{y^{2}}{2} & =\ln \left(x^{2}+1\right)+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{2 \ln \left(x^{2}+1\right)+2 c_{1}} \\
& y=-\sqrt{2 \ln \left(x^{2}+1\right)+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-\sqrt{c_{1}} \sqrt{2} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\sqrt{c_{1}} \sqrt{2}
$$

Summary

Warning: Unable to solve for constant of integration. The solution(s) found are the following

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Verified OK.

2.13.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x}{y\left(x^{2}+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 127: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{2}+1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}+1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=\ln \left(x^{2}+1\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x}{y\left(x^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{2 x}{x^{2}+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(x^{2}+1\right)=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\ln \left(x^{2}+1\right)=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x}{y\left(x^{2}+1\right)}$		$\frac{d S}{d R}=R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
Vix		
	$R=y$	
	$S=\ln \left(x^{2}+1\right)$	
	$S=\ln \left(x^{2}+1\right)$	
$\rightarrow \rightarrow$ - - -		
-		
$\xrightarrow{+} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow$ 为		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1}+2
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
\ln \left(x^{2}+1\right)=\frac{y^{2}}{2}-2
$$

Solving for y from the above gives

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Verified OK.

2.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{2}\right) \mathrm{d} y & =\left(\frac{x}{x^{2}+1}\right) \mathrm{d} x \\
\left(-\frac{x}{x^{2}+1}\right) \mathrm{d} x+\left(\frac{y}{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{x}{x^{2}+1} \\
N(x, y) & =\frac{y}{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x^{2}+1} \mathrm{~d} x \\
\phi & =-\frac{\ln \left(x^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{y^{2}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{y^{2}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln \left(x^{2}+1\right)}{2}+\frac{y^{2}}{4}=1
$$

Solving for y from the above gives

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Verified OK.

2.13.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 x}{y+x^{2} y}=0, y(0)=-2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
y y^{\prime}=\frac{2 x}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int \frac{2 x}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\ln \left(x^{2}+1\right)+c_{1}
$$

- \quad Solve for y
$\left\{y=\sqrt{2 \ln \left(x^{2}+1\right)+2 c_{1}}, y=-\sqrt{2 \ln \left(x^{2}+1\right)+2 c_{1}}\right\}$
- Use initial condition $y(0)=-2$
$-2=\sqrt{c_{1}} \sqrt{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(0)=-2$
$-2=-\sqrt{c_{1}} \sqrt{2}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

- \quad Solution to the IVP

$$
y=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve([diff $\left.(y(x), x)=2 * x /\left(y(x)+x^{\wedge} 2 * y(x)\right), y(0)=-2\right], y(x)$, singsol=all)

$$
y(x)=-\sqrt{2 \ln \left(x^{2}+1\right)+4}
$$

\checkmark Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 24
DSolve[\{y' x$\left.]=2 * \mathrm{x} /\left(\mathrm{y}[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]\right), \mathrm{y}[0]==-2\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\sqrt{2} \sqrt{\log \left(x^{2}+1\right)+2}
$$

2.14 problem 14

2.14.1 Existence and uniqueness analysis 587
2.14.2 Solving as separable ode . 587
2.14.3 Solving as first order ode lie symmetry lookup ode 589
2.14.4 Solving as exact ode . 594
2.14.5 Solving as riccati ode . 597
2.14.6 Maple step by step solution . 600

Internal problem ID [492]
Internal file name [OUTPUT/492_Sunday_June_05_2022_01_42_22_AM_57989922/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x y^{2}}{\sqrt{x^{2}+1}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x y^{2}}{\sqrt{x^{2}+1}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x y^{2}}{\sqrt{x^{2}+1}}\right) \\
& =\frac{2 x y}{\sqrt{x^{2}+1}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.14.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x y^{2}}{\sqrt{x^{2}+1}}
\end{aligned}
$$

Where $f(x)=\frac{x}{\sqrt{x^{2}+1}}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =\frac{x}{\sqrt{x^{2}+1}} d x \\
\int \frac{1}{y^{2}} d y & =\int \frac{x}{\sqrt{x^{2}+1}} d x \\
-\frac{1}{y} & =\sqrt{x^{2}+1}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{\sqrt{x^{2}+1}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{1+c_{1}} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\sqrt{x^{2}+1}-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Verified OK.

2.14.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y^{2}}{\sqrt{x^{2}+1}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 130: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\sqrt{x^{2}+1}}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\sqrt{x^{2}+1}}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\sqrt{x^{2}+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y^{2}}{\sqrt{x^{2}+1}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x}{\sqrt{x^{2}+1}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sqrt{x^{2}+1}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\sqrt{x^{2}+1}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=-\frac{1}{\sqrt{x^{2}+1}-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y^{2}}{\sqrt{x^{2}+1}}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }+4+\wedge \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-5]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\xrightarrow{-4} \rightarrow \rightarrow \rightarrow-2 \rightarrow \rightarrow$ 为		$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-20}$
	$S=\sqrt{x^{2}+1}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \pm]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow>}+\uparrow \uparrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{c_{1}-1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\sqrt{x^{2}+1}-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Verified OK.

2.14.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(\frac{x}{\sqrt{x^{2}+1}}\right) \mathrm{d} x \\
\left(-\frac{x}{\sqrt{x^{2}+1}}\right) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{\sqrt{x^{2}+1}} \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{\sqrt{x^{2}+1}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{\sqrt{x^{2}+1}} \mathrm{~d} x \\
\phi & =-\sqrt{x^{2}+1}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sqrt{x^{2}+1}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sqrt{x^{2}+1}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{\sqrt{x^{2}+1}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{1+c_{1}} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\sqrt{x^{2}+1}-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Verified OK.

2.14.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x y^{2}}{\sqrt{x^{2}+1}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x y^{2}}{\sqrt{x^{2}+1}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=\frac{x}{\sqrt{x^{2}+1}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{x u}{\sqrt{x^{2}+1}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =\frac{1}{\sqrt{x^{2}+1}}-\frac{x^{2}}{\left(x^{2}+1\right)^{\frac{3}{2}}} \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{x u^{\prime \prime}(x)}{\sqrt{x^{2}+1}}-\left(\frac{1}{\sqrt{x^{2}+1}}-\frac{x^{2}}{\left(x^{2}+1\right)^{\frac{3}{2}}}\right) u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+\sqrt{x^{2}+1} c_{2}
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2} x}{\sqrt{x^{2}+1}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{1}+\sqrt{x^{2}+1} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{c_{3}+\sqrt{x^{2}+1}}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{1}{c_{3}+1} \\
c_{3}=-2
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\sqrt{x^{2}+1}-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

Verified OK.

2.14.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{x y^{2}}{\sqrt{x^{2}+1}}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables
$\frac{y^{\prime}}{y^{2}}=\frac{x}{\sqrt{x^{2}+1}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{x}{\sqrt{x^{2}+1}} d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=\sqrt{x^{2}+1}+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{\sqrt{x^{2}+1}+c_{1}}
$$

- Use initial condition $y(0)=1$
$1=-\frac{1}{1+c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify
$y=-\frac{1}{\sqrt{x^{2}+1}-2}$
- Solution to the IVP
$y=-\frac{1}{\sqrt{x^{2}+1}-2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 17
dsolve([diff $\left.(y(x), x)=x * y(x) \wedge 2 /\left(x^{\wedge} 2+1\right) \wedge(1 / 2), y(0)=1\right], y(x)$, singsol=all)

$$
y(x)=-\frac{1}{\sqrt{x^{2}+1}-2}
$$

\checkmark Solution by Mathematica
Time used: 0.183 (sec). Leaf size: 20
DSolve[\{y' $\left.[x]==x * y[x] \wedge 2 /\left(x^{\wedge} 2+1\right)^{\wedge}(1 / 2), y[0]==1\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2-\sqrt{x^{2}+1}}
$$

2.15 problem 15

2.15.1 Existence and uniqueness analysis 603
2.15.2 Solving as separable ode . 604
2.15.3 Solving as differentialType ode 605
2.15.4 Solving as homogeneousTypeMapleC ode 607
2.15.5 Solving as first order ode lie symmetry lookup ode 611
2.15.6 Solving as exact ode . 615
2.15.7 Maple step by step solution . 618

Internal problem ID [493]
Internal file name [OUTPUT/493_Sunday_June_05_2022_01_42_24_AM_81327021/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 x}{1+2 y}=0
$$

With initial conditions

$$
[y(2)=0]
$$

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 x}{1+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\left\{y<-\frac{1}{2} \vee-\frac{1}{2}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x}{1+2 y}\right) \\
& =-\frac{4 x}{(1+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\left\{y<-\frac{1}{2} \vee-\frac{1}{2}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 x}{1+2 y}
\end{aligned}
$$

Where $f(x)=2 x$ and $g(y)=\frac{1}{1+2 y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{1+2 y}} d y & =2 x d x \\
\int \frac{1}{\frac{1}{1+2 y}} d y & =\int 2 x d x \\
y^{2}+y & =x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2} \\
& y=-\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{1}{2}-\frac{\sqrt{17+4 c_{1}}}{2}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{1}{2}+\frac{\sqrt{17+4 c_{1}}}{2} \\
c_{1}=-4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}
$$

Verified OK.

2.15.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{2 x}{1+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(1+2 y) d y=(2 x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(2 x) d x=d\left(x^{2}\right)
$$

Hence (2) becomes

$$
(1+2 y) d y=d\left(x^{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2}+c_{1} \\
& y=-\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{1}{2}-\frac{\sqrt{17+4 c_{1}}}{2}+c_{1} \\
c_{1}=\sqrt{5}+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 \sqrt{5}+5}}{2}+\sqrt{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{1}{2}+\frac{\sqrt{17+4 c_{1}}}{2}+c_{1} \\
c_{1}=-\sqrt{5}+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2}+\frac{\sqrt{4 x^{2}-4 \sqrt{5}+5}}{2}-\sqrt{5}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{2}+\frac{\sqrt{4 x^{2}-4 \sqrt{5}+5}}{2}-\sqrt{5} \tag{1}\\
& y=\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 \sqrt{5}+5}}{2}+\sqrt{5} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\frac{1}{2}+\frac{\sqrt{4 x^{2}-4 \sqrt{5}+5}}{2}-\sqrt{5}
$$

Verified OK.

$$
y=\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 \sqrt{5}+5}}{2}+\sqrt{5}
$$

Verified OK.

2.15.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{2 X+2 x_{0}}{1+2 Y(X)+2 y_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=0 \\
& y_{0}=-\frac{1}{2}
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-1}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (X)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (X)+2 c_{2}\right) \\
& =-2 \ln (X)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (X)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{X^{2}} \\
& =\frac{c_{3}}{X^{2}}
\end{aligned}
$$

The solution is

$$
u(X)^{2}-1=\frac{c_{3}}{X^{2}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{Y(X)^{2}}{X^{2}}-1=\frac{c_{3}}{X^{2}}
$$

Which simplifies to

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

Using the solution for $Y(X)$

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-\frac{1}{2} \\
& X=x
\end{aligned}
$$

Then the solution in y becomes

$$
-\left(x-y-\frac{1}{2}\right)\left(x+y+\frac{1}{2}\right)=c_{3}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{15}{4}=c_{3} \\
& c_{3}=-\frac{15}{4}
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
-\left(x-y-\frac{1}{2}\right)\left(x+y+\frac{1}{2}\right)=-\frac{15}{4}
$$

Solving for y from the above gives

$$
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}
$$

Verified OK.

2.15.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2 x}{1+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 133: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2 x}} d x
\end{aligned}
$$

Which results in

$$
S=x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x}{1+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2}=y^{2}+c_{1}+y
$$

Which simplifies to

$$
x^{2}=y^{2}+c_{1}+y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x}{1+2 y}$		$\frac{d S}{d R}=1+2 R$
		1 $+1 \times 1019$
\%		
		$1{ }^{1}+1 \leq 20094$
btitita		
	$R=y$	
	$S=x^{2}$	

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 4=c_{1} \\
& c_{1}=4
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{2}=y^{2}+y+4
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2}=y^{2}+y+4 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{2}=y^{2}+y+4
$$

Verified OK.

2.15.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y+\frac{1}{2}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(y+\frac{1}{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=y+\frac{1}{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y+\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y+\frac{1}{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
y+\frac{1}{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y+\frac{1}{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y+\frac{1}{2}\right) \mathrm{d} y \\
f(y) & =\frac{1}{2} y^{2}+\frac{1}{2} y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\frac{1}{2} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\frac{1}{2} y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{2} x^{2}+\frac{1}{2} y^{2}+\frac{1}{2} y=-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{y}{2}=-2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{y}{2}=-2
$$

Verified OK.

2.15.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 x}{1+2 y}=0, y(2)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
y^{\prime}(1+2 y)=2 x
$$

- Integrate both sides with respect to x

$$
\int y^{\prime}(1+2 y) d x=\int 2 x d x+c_{1}
$$

- Evaluate integral

$$
y^{2}+y=x^{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{1}{2}-\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2}, y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}+4 c_{1}+1}}{2}\right\}
$$

- Use initial condition $y(2)=0$

$$
0=-\frac{1}{2}-\frac{\sqrt{17+4 c_{1}}}{2}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(2)=0$
$0=-\frac{1}{2}+\frac{\sqrt{17+4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=-4$
- \quad Substitute $c_{1}=-4$ into general solution and simplify
$y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}$
- \quad Solution to the IVP
$y=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve([diff $(y(x), x)=2 * x /(1+2 * y(x)), y(2)=0], y(x)$, singsol=all)

$$
y(x)=-\frac{1}{2}+\frac{\sqrt{4 x^{2}-15}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 22
DSolve[\{y' $[x]==2 * x /(1+2 * y[x]), y[2]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{4 x^{2}-15}-1\right)
$$

2.16 problem 16

2.16.1 Existence and uniqueness analysis 622
2.16.2 Solving as separable ode . 622
2.16.3 Solving as differentialType ode 624
2.16.4 Solving as first order ode lie symmetry lookup ode 625
2.16.5 Solving as exact ode . 629
2.16.6 Maple step by step solution . 632

Internal problem ID [494]
Internal file name [OUTPUT/494_Sunday_June_05_2022_01_42_24_AM_46498650/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x\left(x^{2}+1\right)}{4 y^{3}}=0
$$

With initial conditions

$$
\left[y(0)=-\frac{\sqrt{2}}{2}\right]
$$

2.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x\left(x^{2}+1\right)}{4 y^{3}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-\frac{\sqrt{2}}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{\sqrt{2}}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x\left(x^{2}+1\right)}{4 y^{3}}\right) \\
& =-\frac{3 x\left(x^{2}+1\right)}{4 y^{4}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-\frac{\sqrt{2}}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{\sqrt{2}}{2}$ is inside this domain. Therefore solution exists and is unique.

2.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x\left(x^{2}+1\right)}{4 y^{3}}
\end{aligned}
$$

Where $f(x)=\frac{x\left(x^{2}+1\right)}{4}$ and $g(y)=\frac{1}{y^{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y^{3}}} d y & =\frac{x\left(x^{2}+1\right)}{4} d x \\
\int \frac{1}{\frac{1}{y^{3}}} d y & =\int \frac{x\left(x^{2}+1\right)}{4} d x \\
\frac{y^{4}}{4} & =\frac{\left(x^{2}+1\right)^{2}}{16}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{y^{4}}{4}-\frac{\left(x^{2}+1\right)^{2}}{16}-c_{1}=0
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-c_{1}=0 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{4} y^{4}-\frac{1}{16} x^{4}-\frac{1}{8} x^{2}-\frac{1}{16}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{4}}{4}-\frac{x^{4}}{16}-\frac{x^{2}}{8}-\frac{1}{16}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{4}}{4}-\frac{x^{4}}{16}-\frac{x^{2}}{8}-\frac{1}{16}=0
$$

Verified OK.

2.16.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x\left(x^{2}+1\right)}{4 y^{3}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(4 y^{3}\right) d y=\left(x\left(x^{2}+1\right)\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(x\left(x^{2}+1\right)\right) d x=d\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right)
$$

Hence (2) becomes

$$
\left(4 y^{3}\right) d y=d\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+c_{1}\right)^{\frac{1}{4}}+c_{1} \\
& y=i\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+c_{1}\right)^{\frac{1}{4}}+c_{1} \\
& y=-\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+c_{1}\right)^{\frac{1}{4}}+c_{1} \\
& y=-i\left(\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+c_{1}\right)^{\frac{1}{4}}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{\sqrt{2}}{2}=-i c_{1}^{\frac{1}{4}}+c_{1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{\sqrt{2}}{2}=-c_{1}^{\frac{1}{4}}+c_{1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{\sqrt{2}}{2}=i c_{1}^{\frac{1}{4}}+c_{1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{\sqrt{2}}{2}=c_{1}^{\frac{1}{4}}+c_{1}
$$

Warning: Unable to solve for constant of integration.

Verification of solutions N/A

2.16.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x\left(x^{2}+1\right)}{4 y^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 136: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{4}{\left(x^{2}+1\right) x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{4}{\left(x^{2}+1\right) x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\left(x^{2}+1\right)^{2}}{16}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x\left(x^{2}+1\right)}{4 y^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x\left(x^{2}+1\right)}{4} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{4}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\left(x^{2}+1\right)^{2}}{16}=\frac{y^{4}}{4}+c_{1}
$$

Which simplifies to

$$
\frac{\left(x^{2}+1\right)^{2}}{16}=\frac{y^{4}}{4}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x\left(x^{2}+1\right)}{4 y^{3}}$		$\frac{d S}{d R}=R^{3}$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$		
$\xrightarrow{\text { r }}$		
${ }_{\text {d }}$		
did ${ }_{\text {d }}$	$R=y$	
	$S=\underline{\left(x^{2}+1\right)^{2}}$	
	$S=\frac{\left(x^{2}+1\right)}{16}$	$\xrightarrow{\text { d }}$
		$\rightarrow \rightarrow+4+4+$
- $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{16}=\frac{1}{16}+c_{1}
$$

$$
c_{1}=0
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\left(x^{2}+1\right)^{2}}{16}=\frac{y^{4}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\left(x^{2}+1\right)^{2}}{16}=\frac{y^{4}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\left(x^{2}+1\right)^{2}}{16}=\frac{y^{4}}{4}
$$

Verified OK.

2.16.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(4 y^{3}\right) \mathrm{d} y & =\left(x\left(x^{2}+1\right)\right) \mathrm{d} x \\
\left(-x\left(x^{2}+1\right)\right) \mathrm{d} x+\left(4 y^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x\left(x^{2}+1\right) \\
& N(x, y)=4 y^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x\left(x^{2}+1\right)\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 y^{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x\left(x^{2}+1\right) \mathrm{d} x \\
\phi & =-\frac{\left(x^{2}+1\right)^{2}}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 y^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
4 y^{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(4 y^{3}\right) \mathrm{d} y \\
f(y) & =y^{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(x^{2}+1\right)^{2}}{4}+y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(x^{2}+1\right)^{2}}{4}+y^{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-\frac{\sqrt{2}}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\left(x^{2}+1\right)^{2}}{4}+y^{4}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\left(x^{2}+1\right)^{2}}{4}+y^{4}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\left(x^{2}+1\right)^{2}}{4}+y^{4}=0
$$

Verified OK.

2.16.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{x\left(x^{2}+1\right)}{4 y^{3}}=0, y(0)=-\frac{\sqrt{2}}{2}\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
y^{\prime} y^{3}=\frac{x\left(x^{2}+1\right)}{4}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} y^{3} d x=\int \frac{x\left(x^{2}+1\right)}{4} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{4}}{4}=\frac{\left(x^{2}+1\right)^{2}}{16}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\left(\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+4 c_{1}+\frac{1}{4}\right)^{\frac{1}{4}}, y=-\left(\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+4 c_{1}+\frac{1}{4}\right)^{\frac{1}{4}}\right\}
$$

- Use initial condition $y(0)=-\frac{\sqrt{2}}{2}$

$$
-\frac{\sqrt{2}}{2}=\left(\frac{1}{4}+4 c_{1}\right)^{\frac{1}{4}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(0)=-\frac{\sqrt{2}}{2}$
$-\frac{\sqrt{2}}{2}=-\left(\frac{1}{4}+4 c_{1}\right)^{\frac{1}{4}}$
- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=-\frac{\sqrt{2}\left(\left(x^{2}+1\right)^{2}\right)^{\frac{1}{4}}}{2}
$$

- Solution to the IVP

$$
y=-\frac{\sqrt{2}\left(\left(x^{2}+1\right)^{2}\right)^{\frac{1}{4}}}{2}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 15
dsolve([diff $\left.(y(x), x)=1 / 4 * x *\left(x^{\wedge} 2+1\right) / y(x) \wedge 3, y(0)=-1 / \operatorname{sqrt}(2)\right], y(x)$, singsol=all)

$$
y(x)=-\frac{\sqrt{2 x^{2}+2}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.23 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime}[x]==1 / 4 * x *\left(x^{\wedge} 2+1\right) / y[x] \sim 3, y[0]==-(1 /\right.\right.$ Sqrt $\left.[2])\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow-\frac{\sqrt[4]{\left(x^{2}+1\right)^{2}}}{\sqrt{2}}
$$

2.17 problem 17

2.17.1 Existence and uniqueness analysis 635
2.17.2 Solving as separable ode . 636
2.17.3 Solving as first order ode lie symmetry lookup ode 638
2.17.4 Solving as exact ode . 642
2.17.5 Maple step by step solution . 645

Internal problem ID [495]
Internal file name [OUTPUT/495_Sunday_June_05_2022_01_42_26_AM_66277094/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{-\mathrm{e}^{x}+3 x^{2}}{-5+2 y}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{-3 x^{2}+\mathrm{e}^{x}}{-5+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\left\{y<\frac{5}{2} \vee \frac{5}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-3 x^{2}+\mathrm{e}^{x}}{-5+2 y}\right) \\
& =\frac{-6 x^{2}+2 \mathrm{e}^{x}}{(-5+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\left\{y<\frac{5}{2} \vee \frac{5}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.17.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\mathrm{e}^{x}+3 x^{2}}{-5+2 y}
\end{aligned}
$$

Where $f(x)=-\mathrm{e}^{x}+3 x^{2}$ and $g(y)=\frac{1}{-5+2 y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{-5+2 y}} d y & =-\mathrm{e}^{x}+3 x^{2} d x \\
\int \frac{1}{\frac{1}{-5+2 y}} d y & =\int-\mathrm{e}^{x}+3 x^{2} d x \\
y^{2}-5 y & =x^{3}-\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{5}{2}+\frac{\sqrt{25+4 x^{3}-4 \mathrm{e}^{x}+4 c_{1}}}{2} \\
& y=\frac{5}{2}-\frac{\sqrt{25+4 x^{3}-4 \mathrm{e}^{x}+4 c_{1}}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{5}{2}-\frac{\sqrt{21+4 c_{1}}}{2} \\
c_{1}=-3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{5}{2}-\frac{\sqrt{13+4 x^{3}-4 \mathrm{e}^{x}}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{5}{2}+\frac{\sqrt{21+4 c_{1}}}{2}
$$

Summary
The solution(s) found are the following
Warning: Unable to solve for constant of integration.

Verification of solutions

$$
y=\frac{5}{2}-\frac{\sqrt{13+4 x^{3}-4 \mathrm{e}^{x}}}{2}
$$

Verified OK.

2.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-3 x^{2}+\mathrm{e}^{x}}{-5+2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 139: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{-\mathrm{e}^{x}+3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\mathrm{e}^{x}+3 x^{2}}
\end{aligned} d x
$$

Which results in

$$
S=x^{3}-\mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-3 x^{2}+\mathrm{e}^{x}}{-5+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\mathrm{e}^{x}+3 x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-5+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-5+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}-5 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{3}-\mathrm{e}^{x}=y^{2}+c_{1}-5 y
$$

Which simplifies to

$$
x^{3}-\mathrm{e}^{x}=y^{2}+c_{1}-5 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-3 x^{2}+\mathrm{e}^{x}}{-5+2 y}$		$\frac{d S}{d R}=-5+2 R$
${ }_{\text {d }}{ }_{\text {d }}$		
	$R=y$	
${ }_{\text {d }}$	$S=x^{3}-\mathrm{e}^{x}$	10, 1

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-4+c_{1} \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{3}-\mathrm{e}^{x}=y^{2}-5 y+3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}-\mathrm{e}^{x}=y^{2}-5 y+3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{3}-\mathrm{e}^{x}=y^{2}-5 y+3
$$

Verified OK.

2.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(5-2 y) \mathrm{d} y & =\left(-3 x^{2}+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}+3 x^{2}\right) \mathrm{d} x+(5-2 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x}+3 x^{2} \\
N(x, y) & =5-2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}+3 x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(5-2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}+3 x^{2} \mathrm{~d} x \\
\phi & =x^{3}-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=5-2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
5-2 y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=5-2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(5-2 y) \mathrm{d} y \\
f(y) & =-y^{2}+5 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}-y^{2}-\mathrm{e}^{x}+5 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}-y^{2}-\mathrm{e}^{x}+5 y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{3}-y^{2}-\mathrm{e}^{x}+5 y=3
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{3}-y^{2}-\mathrm{e}^{x}+5 y=3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{3}-y^{2}-\mathrm{e}^{x}+5 y=3
$$

Verified OK.

2.17.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{-\mathrm{e}^{x}+3 x^{2}}{-5+2 y}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$y^{\prime}(-5+2 y)=-\mathrm{e}^{x}+3 x^{2}$
- Integrate both sides with respect to x
$\int y^{\prime}(-5+2 y) d x=\int\left(-\mathrm{e}^{x}+3 x^{2}\right) d x+c_{1}$
- Evaluate integral
$y^{2}-5 y=x^{3}-\mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$\left\{y=\frac{5}{2}-\frac{\sqrt{25+4 x^{3}-4 \mathrm{e}^{x}+4 c_{1}}}{2}, y=\frac{5}{2}+\frac{\sqrt{25+4 x^{3}-4 \mathrm{e}^{x}+4 c_{1}}}{2}\right\}$
- Use initial condition $y(0)=1$
$1=\frac{5}{2}-\frac{\sqrt{21+4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=-3$
- Substitute $c_{1}=-3$ into general solution and simplify

$$
y=\frac{5}{2}-\frac{\sqrt{13+4 x^{3}-4 \mathrm{e}^{x}}}{2}
$$

- Use initial condition $y(0)=1$
$1=\frac{5}{2}+\frac{\sqrt{21+4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=\frac{5}{2}-\frac{\sqrt{13+4 x^{3}-4 \mathrm{e}^{x}}}{2}$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 21

```
dsolve([diff (y (x),x) = (-exp(x)+3*x^2)/(-5+2*y(x)),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{5}{2}-\frac{\sqrt{13+4 x^{3}-4 \mathrm{e}^{x}}}{2}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.891 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime}[x]==\left(-\operatorname{Exp}[x]+3 * x^{\wedge} 2\right) /(-5+2 * y[x]), y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ Tru

$$
y(x) \rightarrow \frac{1}{2}\left(5-\sqrt{4 x^{3}-4 e^{x}+13}\right)
$$

2.18 problem 18

2.18.1 Existence and uniqueness analysis 647
2.18.2 Solving as separable ode . 648
2.18.3 Solving as first order ode lie symmetry lookup ode 650
2.18.4 Solving as exact ode . 654
2.18.5 Maple step by step solution . 657

Internal problem ID [496]
Internal file name [OUTPUT/496_Sunday_June_05_2022_01_42_27_AM_16414608/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{-\mathrm{e}^{x}+\mathrm{e}^{-x}}{3+4 y}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.18.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{3+4 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{3+4 y}\right) \\
& =\frac{4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}}{(3+4 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.18.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\mathrm{e}^{x}+\mathrm{e}^{-x}}{3+4 y}
\end{aligned}
$$

Where $f(x)=-\mathrm{e}^{x}+\mathrm{e}^{-x}$ and $g(y)=\frac{1}{3+4 y}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{\frac{1}{3+4 y}} d y=-\mathrm{e}^{x}+\mathrm{e}^{-x} d x \\
\int \frac{1}{\frac{1}{3+4 y}} d y=\int-\mathrm{e}^{x}+\mathrm{e}^{-x} d x \\
2 y^{2}+3 y=-\mathrm{e}^{x}-\mathrm{e}^{-x}+c_{1}
\end{gathered}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{\left(3 \mathrm{e}^{x}-\sqrt{-8 \mathrm{e}^{3 x}+8 c_{1} \mathrm{e}^{2 x}+9 \mathrm{e}^{2 x}-8 \mathrm{e}^{x}}\right) \mathrm{e}^{-x}}{4} \\
& y=-\frac{\left(3 \mathrm{e}^{x}+\sqrt{-8 \mathrm{e}^{3 x}+8 c_{1} \mathrm{e}^{2 x}+9 \mathrm{e}^{2 x}-8 \mathrm{e}^{x}}\right) \mathrm{e}^{-x}}{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{3}{4}-\frac{\sqrt{-7+8 c_{1}}}{4}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{3}{4}+\frac{\sqrt{-7+8 c_{1}}}{4} \\
c_{1}=7
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{4}+\frac{\mathrm{e}^{-x} \sqrt{65 \mathrm{e}^{2 x}-8 \mathrm{e}^{x} \mathrm{e}^{2 x}-8 \mathrm{e}^{x}}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{4}+\frac{\mathrm{e}^{-x} \sqrt{65 \mathrm{e}^{2 x}-8 \mathrm{e}^{x} \mathrm{e}^{2 x}-8 \mathrm{e}^{x}}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{4}+\frac{\mathrm{e}^{-x} \sqrt{65 \mathrm{e}^{2 x}-8 \mathrm{e}^{x} \mathrm{e}^{2 x}-8 \mathrm{e}^{x}}}{4}
$$

Verified OK.

2.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{3+4 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 142: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{-\mathrm{e}^{x}+\mathrm{e}^{-x}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\mathrm{e}^{x}+\mathrm{e}^{-x}} d x
\end{aligned}
$$

Which results in

$$
S=-\mathrm{e}^{x}-\mathrm{e}^{-x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{3+4 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\mathrm{e}^{x}+\mathrm{e}^{-x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3+4 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3+4 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{2}+3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\mathrm{e}^{x}-\mathrm{e}^{-x}=2 y^{2}+c_{1}+3 y
$$

Which simplifies to

$$
-\mathrm{e}^{x}-\mathrm{e}^{-x}=2 y^{2}+c_{1}+3 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{3+4 y}$		$\frac{d S}{d R}=3+4 R$
		$1{ }^{1}$
		${ }_{S}^{(R R)} \rightarrow$ ¢
-4 ${ }_{\text {d }}$	$S=-\mathrm{e}^{x}-\mathrm{e}^{-x}$	
		t
		+

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=5+c_{1} \\
c_{1}=-7
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
-\mathrm{e}^{x}-\mathrm{e}^{-x}=2 y^{2}+3 y-7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{x}-\mathrm{e}^{-x}=2 y^{2}+3 y-7 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\mathrm{e}^{x}-\mathrm{e}^{-x}=2 y^{2}+3 y-7
$$

Verified OK.

2.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-3-4 y) \mathrm{d} y & =\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \mathrm{d} x+(-3-4 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x}+\mathrm{e}^{-x} \\
N(x, y) & =-3-4 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-3-4 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}+\mathrm{e}^{-x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}-\mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-3-4 y$. Therefore equation (4) becomes

$$
\begin{equation*}
-3-4 y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-3-4 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-3-4 y) \mathrm{d} y \\
f(y) & =-2 y^{2}-3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 y^{2}-\mathrm{e}^{x}-3 y-\mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 y^{2}-\mathrm{e}^{x}-3 y-\mathrm{e}^{-x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -7=c_{1} \\
& c_{1}=-7
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-2 y^{2}-\mathrm{e}^{x}-3 y-\mathrm{e}^{-x}=-7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 y^{2}-\mathrm{e}^{x}-3 y-\mathrm{e}^{-x}=-7 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-2 y^{2}-\mathrm{e}^{x}-3 y-\mathrm{e}^{-x}=-7
$$

Verified OK.

2.18.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{-\mathrm{e}^{x}+\mathrm{e}^{-x}}{3+4 y}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$y^{\prime}(3+4 y)=-\mathrm{e}^{x}+\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int y^{\prime}(3+4 y) d x=\int\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) d x+c_{1}$
- Evaluate integral
$2 y^{2}+3 y=-\mathrm{e}^{x}-\mathrm{e}^{-x}+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{3 \mathrm{e}^{x}-\sqrt{-8\left(\mathrm{e}^{x}\right)^{3}+8 c_{1}\left(\mathrm{e}^{x}\right)^{2}+9\left(\mathrm{e}^{x}\right)^{2}-8 \mathrm{e}^{x}}}{4 \mathrm{e}^{x}}, y=-\frac{3 \mathrm{e}^{x}+\sqrt{-8\left(\mathrm{e}^{x}\right)^{3}+8 c_{1}\left(\mathrm{e}^{x}\right)^{2}+9\left(\mathrm{e}^{x}\right)^{2}-8 \mathrm{e}^{x}}}{4 \mathrm{e}^{x}}\right\}$
- Use initial condition $y(0)=1$
$1=-\frac{3}{4}+\frac{\sqrt{-7+8 c_{1}}}{4}$
- \quad Solve for c_{1}
$c_{1}=7$
- \quad Substitute $c_{1}=7$ into general solution and simplify
$y=-\frac{3}{4}+\frac{\mathrm{e}^{-x} \sqrt{\left(-8 \mathrm{e}^{2 x}+65 \mathrm{e}^{x}-8\right) \mathrm{e}^{x}}}{4}$
- Use initial condition $y(0)=1$
$1=-\frac{3}{4}-\frac{\sqrt{-7+8 c_{1}}}{4}$
- Solution does not satisfy initial condition
- Solution to the IVP

$$
y=-\frac{3}{4}+\frac{\mathrm{e}^{-x} \sqrt{\left(-8 \mathrm{e}^{2 x}+65 \mathrm{e}^{x}-8\right) \mathrm{e}^{x}}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.235 (sec). Leaf size: 29

```
dsolve([diff (y(x),x) = (exp(-x)-exp(x))/(3+4*y(x)),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{3}{4}+\frac{\sqrt{\mathrm{e}^{x}\left(-8 \mathrm{e}^{2 x}+65 \mathrm{e}^{x}-8\right)} \mathrm{e}^{-x}}{4}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 1.347 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime}[x]==(\operatorname{Exp}[-x]-\operatorname{Exp}[x]) /(3+4 * y[x]), y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \frac{1}{4}\left(\sqrt{-8 e^{-x}-8 e^{x}+65}-3\right)
$$

2.19 problem 19

2.19.1 Existence and uniqueness analysis 659
2.19.2 Solving as separable ode . 660
2.19.3 Solving as first order ode lie symmetry lookup ode 662
2.19.4 Solving as exact ode . 666
2.19.5 Maple step by step solution . 670

Internal problem ID [497]
Internal file name [OUTPUT/497_Sunday_June_05_2022_01_42_28_AM_60921212/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\cos (3 y) y^{\prime}=-\sin (2 x)
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=0\right]
$$

2.19.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{\sin (2 x)}{\cos (3 y)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The y domain of $f(x, y)$ when $x=\frac{\pi}{2}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sin (2 x)}{\cos (3 y)}\right) \\
& =-\frac{3 \sin (2 x) \sin (3 y)}{\cos (3 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=\frac{\pi}{2}$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.19.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\sin (2 x) \sec (3 y)
\end{aligned}
$$

Where $f(x)=-\sin (2 x)$ and $g(y)=\sec (3 y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sec (3 y)} d y & =-\sin (2 x) d x \\
\int \frac{1}{\sec (3 y)} d y & =\int-\sin (2 x) d x \\
\frac{\sin (3 y)}{3} & =\frac{\cos (2 x)}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+3 c_{1}\right)}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\arcsin \left(-\frac{3}{2}+3 c_{1}\right)}{3} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Verified OK.

2.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\sin (2 x)}{\cos (3 y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 145: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{\sin (2 x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{\sin (2 x)}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\cos (2 x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\sin (2 x)}{\cos (3 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\sin (2 x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (3 y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (3 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\sin (3 R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\cos (2 x)}{2}=\frac{\sin (3 y)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\cos (2 x)}{2}=\frac{\sin (3 y)}{3}+c_{1}
$$

Which gives

$$
y=-\frac{\arcsin \left(-\frac{3 \cos (2 x)}{2}+3 c_{1}\right)}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\sin (2 x)}{\cos (3 y)}$		$\frac{d S}{d R}=\cos (3 R)$
分 (xx)		
	$s-\underline{\cos (2 x)}$	
-	$S=\frac{2}{2}$	
为		

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{\arcsin \left(\frac{3}{2}+3 c_{1}\right)}{3} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Verified OK.

2.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-\cos (3 y)) \mathrm{d} y & =(\sin (2 x)) \mathrm{d} x \\
(-\sin (2 x)) \mathrm{d} x+(-\cos (3 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\sin (2 x) \\
N(x, y) & =-\cos (3 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (2 x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-\cos (3 y)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\sin (2 x) \mathrm{d} x \\
\phi & =\frac{\cos (2 x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\cos (3 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
-\cos (3 y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\cos (3 y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-\cos (3 y)) \mathrm{d} y \\
f(y) & =-\frac{\sin (3 y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\cos (2 x)}{2}-\frac{\sin (3 y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\cos (2 x)}{2}-\frac{\sin (3 y)}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\frac{\pi}{2}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{2}=c_{1} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\cos (2 x)}{2}-\frac{\sin (3 y)}{3}=-\frac{1}{2}
$$

Solving for y from the above gives

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}
$$

Verified OK.

2.19.5 Maple step by step solution

Let's solve

$$
\left[\cos (3 y) y^{\prime}=-\sin (2 x), y\left(\frac{\pi}{2}\right)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int \cos (3 y) y^{\prime} d x=\int-\sin (2 x) d x+c_{1}$
- Evaluate integral
$\frac{\sin (3 y)}{3}=\frac{\cos (2 x)}{2}+c_{1}$
- \quad Solve for y
$y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+3 c_{1}\right)}{3}$
- Use initial condition $y\left(\frac{\pi}{2}\right)=0$
$0=\frac{\arcsin \left(-\frac{3}{2}+3 c_{1}\right)}{3}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{2}$
- Substitute $c_{1}=\frac{1}{2}$ into general solution and simplify
$y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}$
- \quad Solution to the IVP
$y=\frac{\arcsin \left(\frac{3 \cos (2 x)}{2}+\frac{3}{2}\right)}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.297 (sec). Leaf size: 15
dsolve ([sin $(2 * x)+\cos (3 * y(x)) * \operatorname{diff}(y(x), x)=0, y(1 / 2 * \operatorname{Pi})=0], y(x)$, singsol=all)

$$
y(x)=\frac{\arcsin \left(\frac{3}{2}+\frac{3 \cos (2 x)}{2}\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.614 (sec). Leaf size: 16
DSolve $[\{\operatorname{Sin}[2 * x]+\operatorname{Cos}[3 * y[x]] * y$ ' $[x]==0, y[P i / 2]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3} \arcsin \left(3 \cos ^{2}(x)\right)
$$

2.20 problem 20

$$
\text { 2.20.1 Existence and uniqueness analysis } 672
$$

2.20.2 Solving as separable ode . 673
2.20.3 Solving as first order ode lie symmetry lookup ode 675
2.20.4 Solving as exact ode . 679
2.20.5 Maple step by step solution . 682

Internal problem ID [498]
Internal file name [OUTPUT/498_Sunday_June_05_2022_01_42_30_AM_58411234/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\sqrt{-x^{2}+1} y^{2} y^{\prime}=\arcsin (x)
$$

With initial conditions

$$
[y(0)=1]
$$

2.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-1<x<1\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}}\right) \\
& =-\frac{2 \arcsin (x)}{\sqrt{-x^{2}+1} y^{3}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-1<x<1\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}}
\end{aligned}
$$

Where $f(x)=\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}$ and $g(y)=\frac{1}{y^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y^{2}}} d y & =\frac{\arcsin (x)}{\sqrt{-x^{2}+1}} d x \\
\int \frac{1}{\frac{1}{y^{2}}} d y & =\int \frac{\arcsin (x)}{\sqrt{-x^{2}+1}} d x \\
\frac{y^{3}}{3} & =\frac{\arcsin (x)^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2} \\
& y=-\frac{\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4} \\
& y=-\frac{\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{i c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}} \sqrt{3}}{4}-\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{4}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{i c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}} \sqrt{3}}{4}-\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{4}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{2} \\
c_{1}=\frac{1}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(12 \arcsin (x)^{2}+8\right)^{\frac{1}{3}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(12 \arcsin (x)^{2}+8\right)^{\frac{1}{3}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(12 \arcsin (x)^{2}+8\right)^{\frac{1}{3}}}{2}
$$

Verified OK.

2.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 148: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{\sqrt{-x^{2}+1}}{\arcsin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\sqrt{-x^{2}+1}}{\arcsin (x)}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\arcsin (x)^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{\arcsin (x)}{\sqrt{-x^{2}+1}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\arcsin (x)^{2}}{2}=\frac{y^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\frac{\arcsin (x)^{2}}{2}=\frac{y^{3}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\arcsin (x)}{\sqrt{-x^{2}+1} y^{2}}$	$\begin{aligned} R & =y \\ S & =\frac{\arcsin (x)^{2}}{2} \end{aligned}$	

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{1}{3}+c_{1}
$$

$$
c_{1}=-\frac{1}{3}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\arcsin (x)^{2}}{2}=\frac{y^{3}}{3}-\frac{1}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\arcsin (x)^{2}}{2}=\frac{y^{3}}{3}-\frac{1}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\arcsin (x)^{2}}{2}=\frac{y^{3}}{3}-\frac{1}{3}
$$

Verified OK.

2.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}\right) \mathrm{d} y & =\left(\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x \\
\left(-\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}\right) \mathrm{d} x+\left(y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\arcsin (x)}{\sqrt{-x^{2}+1}} \\
& N(x, y)=y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\arcsin (x)}{\sqrt{-x^{2}+1}} \mathrm{~d} x \\
\phi & =-\frac{\arcsin (x)^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\arcsin (x)^{2}}{2}+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\arcsin (x)^{2}}{2}+\frac{y^{3}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{3}=c_{1} \\
& c_{1}=\frac{1}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\arcsin (x)^{2}}{2}+\frac{y^{3}}{3}=\frac{1}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\arcsin (x)^{2}}{2}+\frac{y^{3}}{3}=\frac{1}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\arcsin (x)^{2}}{2}+\frac{y^{3}}{3}=\frac{1}{3}
$$

Verified OK.

2.20.5 Maple step by step solution

Let's solve

$$
\left[\sqrt{-x^{2}+1} y^{2} y^{\prime}=\arcsin (x), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} y^{2}=\frac{\arcsin (x)}{\sqrt{-x^{2}+1}}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} y^{2} d x=\int \frac{\arcsin (x)}{\sqrt{-x^{2}+1}} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{3}}{3}=\frac{\arcsin (x)^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(12 \arcsin (x)^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}
$$

- Use initial condition $y(0)=1$
$1=\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{2}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{3}$
- \quad Substitute $c_{1}=\frac{1}{3}$ into general solution and simplify

$$
y=\frac{\left(12 \arcsin (x)^{2}+8\right)^{\frac{1}{3}}}{2}
$$

- \quad Solution to the IVP
$y=\frac{\left(12 \arcsin (x)^{2}+8\right)^{\frac{1}{3}}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 16

```
dsolve([(-x^2+1)^(1/2)*y(x)^2*diff(y(x),x) = arcsin (x),y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\left(8+12 \arcsin (x)^{2}\right)^{\frac{1}{3}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.527 (sec). Leaf size: 19
DSolve $\left[\left\{\left(-x^{\wedge} 2+1\right)^{\wedge}(1 / 2) * y[x]^{\wedge} 2 * y y^{\prime}[x]==\operatorname{ArcSin}[x], y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions

$$
y(x) \rightarrow \sqrt[3]{\frac{3 \arcsin (x)^{2}}{2}+1}
$$

2.21 problem 21

2.21.1 Existence and uniqueness analysis 686
2.21.2 Solving as separable ode . 686
2.21.3 Solving as differentialType ode 689
2.21.4 Solving as first order ode lie symmetry lookup ode 690
2.21.5 Solving as exact ode . 694
2.21.6 Maple step by step solution . 697

Internal problem ID [499]
Internal file name [OUTPUT/499_Sunday_June_05_2022_01_42_31_AM_97879552/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{3 x^{2}+1}{-6 y+3 y^{2}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.21.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{3 x^{2}+1}{3 y(y-2)}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty \leq y<0,0<y<2,2<y \leq \infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{3 x^{2}+1}{3 y(y-2)}\right) \\
& =-\frac{3 x^{2}+1}{3 y^{2}(y-2)}-\frac{3 x^{2}+1}{3 y(y-2)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty \leq y<0,0<y<2,2<y \leq \infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.21.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}+\frac{1}{3}}{y(y-2)}
\end{aligned}
$$

Where $f(x)=x^{2}+\frac{1}{3}$ and $g(y)=\frac{1}{y(y-2)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y(y-2)}} d y & =x^{2}+\frac{1}{3} d x \\
\int \frac{1}{\frac{1}{y(y-2)}} d y & =\int x^{2}+\frac{1}{3} d x \\
\frac{1}{3} y^{3}-y^{2} & =\frac{1}{3} x^{3}+\frac{1}{3} x+c_{1}
\end{aligned}
$$

Which results in

$y=$

$$
\begin{aligned}
& -\frac{\left(8+4 x^{3}+12 c_{1}+4 x+4 \sqrt{x^{6}+6 c_{1} x^{3}+2 x^{4}+4 x^{3}+9 c_{1}^{2}+6 c_{1} x+x^{2}+12 c_{1}+4 x}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{\left(8+4 x^{3}+12 c_{1}+4 x+4 \sqrt{x^{6}+6 c_{1} x^{3}+2 x^{4}+4 x^{3}+9 c_{1}^{2}+6 c_{1} x+x^{2}+12 c_{1}+4 x}\right)^{\frac{1}{3}}} \\
& +1 \\
& -\frac{\left(\sqrt { 3 } \left(\frac{\left(8+4 x^{3}+12 c_{1}+4 x+4 \sqrt{x^{6}+6 c_{1} x^{3}+2 x^{4}+4 x^{3}+9 c_{1}^{2}+6 c_{1} x+x^{2}+12 c_{1}+4 x}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(8+4 x^{3}+12 c_{1}+4 x+4 \sqrt{x^{6}+6 c_{1} x^{3}+2 x^{4}+4 x^{3}+9 c}\right.}\right.\right.}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{-i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4 i \sqrt{3}-\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4\left(8+12 c_{1}+4 \sqrt{ }\right.}{4\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}-4 i \sqrt{3}-\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4\left(8+12 c_{1}+4 \sqrt{3}\right.}{4\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+2\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}+4}{2\left(8+12 c_{1}+4 \sqrt{3} \sqrt{3 c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration.
Verification of solutions N/A

2.21.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{3 x^{2}+1}{-6 y+3 y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(3 y^{2}-6 y\right) d y=\left(3 x^{2}+1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(3 x^{2}+1\right) d x=d\left(x^{3}+x\right)
$$

Hence (2) becomes

$$
\left(3 y^{2}-6 y\right) d y=d\left(x^{3}+x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(8+4 x^{3}+4 c_{1}+4 x+4 \sqrt{x^{6}+2 c_{1} x^{3}+2 x^{4}+4 x^{3}+c_{1}^{2}+2 c_{1} x+x^{2}+4 c_{1}+4 x}\right)^{\frac{1}{3}}}{2}+\frac{}{\left(8+4 x^{3}+4 c_{1}\right.} \\
& y=-\frac{\left(8+4 x^{3}+4 c_{1}+4 x+4 \sqrt{x^{6}+2 c_{1} x^{3}+2 x^{4}+4 x^{3}+c_{1}^{2}+2 c_{1} x+x^{2}+4 c_{1}+4 x}\right)^{\frac{1}{3}}}{4}-\frac{}{\left(8+4 x^{3}+4 c\right.} \\
& y=-\frac{\left(8+4 x^{3}+4 c_{1}+4 x+4 \sqrt{x^{6}+2 c_{1} x^{3}+2 x^{4}+4 x^{3}+c_{1}^{2}+2 c_{1} x+x^{2}+4 c_{1}+4 x}\right)^{\frac{1}{3}}}{4}-\frac{}{\left(8+4 x^{3}+4 c\right.}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.
$1=\frac{-i \sqrt{3}\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4 i \sqrt{3}-\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4 c_{1}\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}{4\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{i \sqrt{3}\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}-4 i \sqrt{3}-\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+4 c_{1}\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}+}{4\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{2}{3}}+2 c_{1}\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}+2\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}+4}{2\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration.
Verification of solutions N/A

2.21.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{3 x^{2}+1}{3 y(y-2)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 151: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}+\frac{1}{3}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}+\frac{1}{3}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{3} x^{3}+\frac{1}{3} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x^{2}+1}{3 y(y-2)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2}+\frac{1}{3} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y(y-2) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R(R-2)
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}-R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{1}{3} x^{3}+\frac{1}{3} x=\frac{y^{3}}{3}-y^{2}+c_{1}
$$

Which simplifies to

$$
\frac{1}{3} x^{3}+\frac{1}{3} x=\frac{y^{3}}{3}-y^{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x^{2}+1}{3 y(y-2)}$		$\frac{d S}{d R}=R(R-2)$
$\uparrow \uparrow \uparrow+{ }_{\text {¢ }}$		
	$R=y$	
	$S=\frac{1}{9} x^{3}+\frac{1}{9} x$	
フォフア		
$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \infty}$		

Initial conditions are used to solve for c_{1} ．Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration．

$$
0=-\frac{2}{3}+c_{1}
$$

$$
c_{1}=\frac{2}{3}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{3} x^{3}+\frac{1}{3} x=\frac{1}{3} y^{3}-y^{2}+\frac{2}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{3} x^{3}+\frac{1}{3} x=\frac{y^{3}}{3}-y^{2}+\frac{2}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{1}{3} x^{3}+\frac{1}{3} x=\frac{y^{3}}{3}-y^{2}+\frac{2}{3}
$$

Verified OK.

2.21.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3 y(y-2)) \mathrm{d} y & =\left(3 x^{2}+1\right) \mathrm{d} x \\
\left(-3 x^{2}-1\right) \mathrm{d} x+(3 y(y-2)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 x^{2}-1 \\
N(x, y) & =3 y(y-2)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{2}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3 y(y-2)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-3 x^{2}-1 \mathrm{~d} x \\
\phi & =-x^{3}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y(y-2)$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y(y-2)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y(y-2)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(3 y(y-2)) \mathrm{d} y \\
f(y) & =y^{3}-3 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{3}+y^{3}-3 y^{2}-x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{3}+y^{3}-3 y^{2}-x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x^{3}+y^{3}-3 y^{2}-x=-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x^{3}+y^{3}-3 y^{2}-x=-2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-x^{3}+y^{3}-3 y^{2}-x=-2
$$

Verified OK.

2.21.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{3 x^{2}+1}{-6 y+3 y^{2}}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$y^{\prime}\left(-6 y+3 y^{2}\right)=3 x^{2}+1$
- Integrate both sides with respect to x
$\int y^{\prime}\left(-6 y+3 y^{2}\right) d x=\int\left(3 x^{2}+1\right) d x+c_{1}$
- Evaluate integral
$y^{3}-3 y^{2}=x^{3}+c_{1}+x$
- \quad Solve for y

$$
y=\frac{\left(8+4 x^{3}+4 c_{1}+4 x+4 \sqrt{x^{6}+2 c_{1} x^{3}+2 x^{4}+4 x^{3}+c_{1}^{2}+2 c_{1} x+x^{2}+4 c_{1}+4 x}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(8+4 x^{3}+4 c_{1}+4 x+4 \sqrt{x^{6}+2 c_{1} x^{3}+2 x^{4}+4 x^{3}+c_{1}^{2}+2 c}\right.}
$$

- Use initial condition $y(0)=1$

$$
1=\frac{\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(8+4 c_{1}+4 \sqrt{c_{1}^{2}+4 c_{1}}\right)^{\frac{1}{3}}}+1
$$

- \quad Solve for c_{1}

$$
c_{1}=\operatorname{RootOf}\left(\left(8+4 _Z+4 \sqrt{Z^{2}+4 _Z}\right)^{\frac{2}{3}}+4\right)
$$

- \quad Substitute $c_{1}=\operatorname{Root} O f\left(\left(8+4 _Z+4 \sqrt{_^{Z}+4 _Z}\right)^{\frac{2}{3}}+4\right)$ into general solution and simplify

$$
y=\frac{\left(8+4 x^{3}+4 \operatorname{RootOf}\left(\left(8+4 _Z+4 \sqrt{_Z\left(_Z+4\right)}\right)^{\frac{2}{3}}+4\right)+4 x+4 \sqrt{\left(x^{3}+x+\operatorname{RootOf}\left(\left(8+4 _Z+4 \sqrt{_Z\left(_Z+4\right)}\right)^{\frac{2}{3}}+4\right)\right.}+\right.}{2\left(8+4 x^{3}+4 \operatorname{RootOf}((8+4)\right.}
$$

- Solution to the IVP

$$
y=\frac{\left(8+4 x^{3}+4 \operatorname{RootOf}\left(\left(8+4 _Z+4 \sqrt{-Z\left(_Z+4\right)}\right)^{\frac{2}{3}}+4\right)+4 x+4 \sqrt{\left(x^{3}+x+\text { RootOf }\left(\left(8+4 _Z+4 \sqrt{-Z\left(_Z+4\right)}\right)^{\frac{2}{3}}+4\right)\right.}+\right.}{2\left(8+4 x^{3}+4 \text { RootOf }((8+4)\right.}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 109
dsolve([diff $\left.(y(x), x)=\left(3 * x^{\wedge} 2+1\right) /\left(-6 * y(x)+3 * y(x)^{\wedge} 2\right), y(0)=1\right], y(x)$, singsol=all)
$y(x)=$

$$
-\frac{(1+i \sqrt{3})\left(4 x^{3}+4 x+4 \sqrt{x^{6}+2 x^{4}+x^{2}-4}\right)^{\frac{2}{3}}-4 i \sqrt{3}-4\left(4 x^{3}+4 x+4 \sqrt{x^{6}+2 x^{4}+x^{2}-4}\right)^{\frac{1}{3}}+4}{4\left(4 x^{3}+4 x+4 \sqrt{x^{6}+2 x^{4}+x^{2}-4}\right)^{\frac{1}{3}}}
$$

Solution by Mathematica
Time used: 4.019 (sec). Leaf size: 158
DSolve $\left[\left\{y^{\prime}[x]==\left(3 * x^{\wedge} 2+1\right) /(-6 * y[x]+3 * y[x] \sim 2), y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$
$y(x)$
$\rightarrow \frac{-i 2^{2 / 3} \sqrt{3}\left(x^{3}+\sqrt{x^{6}+2 x^{4}+x^{2}-4}+x\right)^{2 / 3}-2^{2 / 3}\left(x^{3}+\sqrt{x^{6}+2 x^{4}+x^{2}-4}+x\right)^{2 / 3}+4 \sqrt[3]{x^{3}+\sqrt{x^{6}+}}}{4 \sqrt[3]{x^{3}+\sqrt{x^{6}+2 x^{4}+x^{2}-4}+x}}$

2.22 problem 22

2.22.1 Solving as separable ode . 700
2.22.2 Solving as differentialType ode 703
2.22.3 Solving as first order ode lie symmetry lookup ode 704
2.22.4 Solving as exact ode . 708
2.22.5 Maple step by step solution . 711

Internal problem ID [500]
Internal file name [OUTPUT/500_Sunday_June_05_2022_01_42_32_AM_94693732/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{3 x^{2}}{-4+3 y^{2}}=0
$$

With initial conditions

$$
[y(1)=0]
$$

2.22.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{3 x^{2}}{3 y^{2}-4}
\end{aligned}
$$

Where $f(x)=3 x^{2}$ and $g(y)=\frac{1}{3 y^{2}-4}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{\frac{1}{3 y^{2}-4}} d y=3 x^{2} d x \\
\int \frac{1}{\frac{1}{3 y^{2}-4}} d y=\int 3 x^{2} d x \\
y^{3}-4 y=x^{3}+c_{1}
\end{gathered}
$$

Which results in

$$
\begin{aligned}
y= & \frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{6} \\
& +\frac{8}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}} \\
y= & -\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{12} \\
& -\frac{4}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{6}-\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{2}\right.}{2} \\
y= & -\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{12} \\
& -\frac{4}{\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{2}} \\
& i \sqrt{3}\left(\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{6}-\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-i \sqrt{3}\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}+48 i \sqrt{3}-\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right.}{12\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{-i \sqrt{3}\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}-\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}+48 i}{12\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{1}{3}}}$
Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{i \sqrt{3}\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}-48 i \sqrt{3}-\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)}{12\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{48+\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}}{6\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}}
$$

Summary
The solution(s) found are the following
Warning: Unable to solve for constant of integration. y

$$
=\frac{-i \sqrt{3}\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}}{12\left(108 x^{3}-108+\right.}
$$

Verification of solutions

y

$$
=\frac{-i \sqrt{3}\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}-\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}+48 i \sqrt{ }}{12\left(108 x^{3}-108+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{1}{3}}}
$$

Verified OK.

2.22.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{3 x^{2}}{-4+3 y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(3 y^{2}-4\right) d y=\left(3 x^{2}\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(3 x^{2}\right) d x=d\left(x^{3}\right)
$$

Hence (2) becomes

$$
\left(3 y^{2}-4\right) d y=d\left(x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{6}+\frac{8}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+8}\right.} \\
& y=-\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{12}-\frac{4}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+}\right.} \\
& y=-\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{12}-\frac{4}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+}\right.}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.
$0=\frac{-i \sqrt{3}\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}+48 i \sqrt{3}-\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right.}{12\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)}$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{i \sqrt{3}\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}-48 i \sqrt{3}-\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)}{12\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{2}{3}}+6 c_{1}\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}+48}{6\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration.
Verification of solutions N/A

2.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{3 x^{2}}{3 y^{2}-4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 154: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{3 x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{3 x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=x^{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{3 x^{2}}{3 y^{2}-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =3 x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 y^{2}-4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}-4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}-4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
x^{3}=y^{3}+c_{1}-4 y
$$

Which simplifies to

$$
x^{3}=y^{3}+c_{1}-4 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{3 x^{2}}{3 y^{2}-4}$		$\frac{d S}{d R}=3 R^{2}-4$
タップー $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$－		
		4 4 ${ }^{\text {a }}$
＋+ ＋		
¢ ${ }_{\text {a }}$		
1，	$R=y$	
	$S=x^{3}$	

Initial conditions are used to solve for c_{1} ．Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration．

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x^{3}=y^{3}-4 y+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}=y^{3}-4 y+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x^{3}=y^{3}-4 y+1
$$

Verified OK.

2.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}-\frac{4}{3}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(y^{2}-\frac{4}{3}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2} \\
& N(x, y)=y^{2}-\frac{4}{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}-\frac{4}{3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}-\frac{4}{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}-\frac{4}{3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}-\frac{4}{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}-\frac{4}{3}\right) \mathrm{d} y \\
f(y) & =\frac{1}{3} y^{3}-\frac{4}{3} y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{3} x^{3}+\frac{1}{3} y^{3}-\frac{4}{3} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{3} x^{3}+\frac{1}{3} y^{3}-\frac{4}{3} y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{3}=c_{1} \\
& c_{1}=-\frac{1}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{3} x^{3}+\frac{1}{3} y^{3}-\frac{4}{3} y=-\frac{1}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}+\frac{y^{3}}{3}-\frac{4 y}{3}=-\frac{1}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{x^{3}}{3}+\frac{y^{3}}{3}-\frac{4 y}{3}=-\frac{1}{3}
$$

Verified OK.

2.22.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{3 x^{2}}{-4+3 y^{2}}=0, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y^{\prime}\left(-4+3 y^{2}\right)=3 x^{2}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime}\left(-4+3 y^{2}\right) d x=\int 3 x^{2} d x+c_{1}
$$

- Evaluate integral

$$
y^{3}-4 y=x^{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}{6}+\frac{8}{\left(108 x^{3}+108 c_{1}+12 \sqrt{81 x^{6}+162 c_{1} x^{3}+81 c_{1}^{2}-768}\right)^{\frac{1}{3}}}
$$

- Use initial condition $y(1)=0$

$$
0=\frac{\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}}{6}+\frac{8}{\left(108+108 c_{1}+12 \sqrt{81 c_{1}^{2}+162 c_{1}-687}\right)^{\frac{1}{3}}}
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 73

```
dsolve([diff(y(x),x) = 3*x^2/(-4+3*y(x)^2),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=-\frac{(1+i \sqrt{3})\left(-108+108 x^{3}+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{2}{3}}-48 i \sqrt{3}+48}{12\left(-108+108 x^{3}+12 \sqrt{81 x^{6}-162 x^{3}-687}\right)^{\frac{1}{3}}}
$$

Solution by Mathematica
Time used: 9.526 (sec). Leaf size: 137

$$
\begin{aligned}
& \text { DSolve }\left[\left\{y^{\prime}[\mathrm{x}]==3 * \mathrm{x}^{\wedge} 2 /(-4+3 * \mathrm{y}[\mathrm{x}] \sim 2), \mathrm{y}[1]==0\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x} \text {, IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& y(x) \\
& \rightarrow \frac{-i \sqrt[3]{23^{2 / 3}}\left(9 x^{3}+\sqrt{81 x^{6}-162 x^{3}-687}-9\right)^{2 / 3}-\sqrt[3]{2} \sqrt[6]{3}\left(9 x^{3}+\sqrt{81 x^{6}-162 x^{3}-687}-9\right)^{2 / 3}-8 \sqrt{3}+}{22^{2 / 3} 3^{5 / 6} \sqrt[3]{9 x^{3}+\sqrt{81 x^{6}-162 x^{3}-687}-9}}
\end{aligned}
$$

2.23 problem 23

2.23.1 Existence and uniqueness analysis 713
2.23.2 Solving as separable ode 714
2.23.3 Solving as first order ode lie symmetry lookup ode 716
2.23.4 Solving as exact ode 720
2.23.5 Solving as riccati ode 724
2.23.6 Maple step by step solution 726

Internal problem ID [501]

Internal file name [OUTPUT/501_Sunday_June_05_2022_01_42_33_AM_10464111/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 y^{2}-x y^{2}=0
$$

With initial conditions

$$
[y(0)=1]
$$

2.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =x y^{2}+2 y^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{2}+2 y^{2}\right) \\
& =2 y x+4 y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.23.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y^{2}(2+x)
\end{aligned}
$$

Where $f(x)=2+x$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =2+x d x \\
\int \frac{1}{y^{2}} d y & =\int 2+x d x \\
-\frac{1}{y} & =2 x+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{2}{x^{2}+2 c_{1}+4 x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-\frac{1}{c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{x^{2}+4 x-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Verified OK.

2.23.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =x y^{2}+2 y^{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 157: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2+x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2+x}} d x
\end{aligned}
$$

Which results in

$$
S=2 x+\frac{1}{2} x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x y^{2}+2 y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2+x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 x+\frac{1}{2} x^{2}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
2 x+\frac{1}{2} x^{2}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{2}{-x^{2}+2 c_{1}-4 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x y^{2}+2 y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow-\infty \uparrow+\uparrow \xrightarrow{+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow>}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
	$S=2 x+\frac{1}{2} x^{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\rightarrow 8$ A ${ }^{\text {a }}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { - }]{\rightarrow \rightarrow+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{1}{c_{1}} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{x^{2}+4 x-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Verified OK.

2.23.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =(2+x) \mathrm{d} x \\
(-x-2) \mathrm{d} x+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-2 \\
& N(x, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-2) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x-2 \mathrm{~d} x \\
\phi & =-\frac{1}{2} x^{2}-2 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-2 x-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-2 x-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{2}{x^{2}+2 c_{1}+4 x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-\frac{1}{c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{x^{2}+4 x-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Verified OK.

2.23.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x y^{2}+2 y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x y^{2}+2 y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=0$ and $f_{2}(x)=2+x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(2+x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(2+x) u^{\prime \prime}(x)-u^{\prime}(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+c_{2}(2+x)^{2}
$$

The above shows that

$$
u^{\prime}(x)=2(2+x) c_{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{2 c_{2}}{c_{1}+c_{2}(2+x)^{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2}{x^{2}+c_{3}+4 x+4}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{2}{c_{3}+4} \\
c_{3}=-6
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{x^{2}+4 x-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{x^{2}+4 x-2}
$$

Verified OK.

2.23.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y^{2}-x y^{2}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=2+x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int(2+x) d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=2 x+\frac{1}{2} x^{2}+c_{1}$
- \quad Solve for y
$y=-\frac{2}{x^{2}+2 c_{1}+4 x}$
- Use initial condition $y(0)=1$
$1=-\frac{1}{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-1$
- \quad Substitute $c_{1}=-1$ into general solution and simplify $y=-\frac{2}{x^{2}+4 x-2}$
- \quad Solution to the IVP
$y=-\frac{2}{x^{2}+4 x-2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 16

```
dsolve([diff(y(x),x) = 2*y(x)^2+x*y(x)~2,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=-\frac{2}{x^{2}+4 x-2}
$$

\checkmark Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[x]==2 * y[x] \sim 2+x * y[x] \sim 2, y[0]==1\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{2}{x^{2}+4 x-2}
$$

2.24 problem 24

2.24.1 Existence and uniqueness analysis 729
2.24.2 Solving as separable ode . 730
2.24.3 Solving as first order ode lie symmetry lookup ode 732
2.24.4 Solving as exact ode . 736
2.24.5 Maple step by step solution . 739

Internal problem ID [502]
Internal file name [OUTPUT/502_Sunday_June_05_2022_01_42_34_AM_42187153/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2-\mathrm{e}^{x}}{3+2 y}=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{-2+\mathrm{e}^{x}}{3+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-2+\mathrm{e}^{x}}{3+2 y}\right) \\
& =\frac{-4+2 \mathrm{e}^{x}}{(3+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.24.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2-\mathrm{e}^{x}}{3+2 y}
\end{aligned}
$$

Where $f(x)=2-\mathrm{e}^{x}$ and $g(y)=\frac{1}{3+2 y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{3+2 y}} d y & =2-\mathrm{e}^{x} d x \\
\int \frac{1}{\frac{1}{3+2 y}} d y & =\int 2-\mathrm{e}^{x} d x \\
y^{2}+3 y & =2 x-\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{3}{2}+\frac{\sqrt{9-4 \mathrm{e}^{x}+4 c_{1}+8 x}}{2} \\
& y=-\frac{3}{2}-\frac{\sqrt{9-4 \mathrm{e}^{x}+4 c_{1}+8 x}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{3}{2}-\frac{\sqrt{5+4 c_{1}}}{2}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{3}{2}+\frac{\sqrt{5+4 c_{1}}}{2} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2}
$$

Verified OK.

2.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-2+\mathrm{e}^{x}}{3+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 160: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2-\mathrm{e}^{x}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2-\mathrm{e}^{x}}} d x
\end{aligned}
$$

Which results in

$$
S=2 x-\mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2+\mathrm{e}^{x}}{3+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =2-\mathrm{e}^{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 x-\mathrm{e}^{x}=y^{2}+c_{1}+3 y
$$

Which simplifies to

$$
2 x-\mathrm{e}^{x}=y^{2}+c_{1}+3 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-2+\mathrm{e}^{x}}{3+2 y}$		$\frac{d S}{d R}=3+2 R$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty \rightarrow \infty{ }_{\rightarrow \rightarrow \rightarrow \rightarrow+\infty}$		
$\rightarrow \rightarrow+$		
或 V1 1		
$\rightarrow-\infty \rightarrow 0 \rightarrow-\infty \rightarrow \infty$ 車		
$\rightarrow \rightarrow$ -	$R=y$	
	$S=2 x-\mathrm{e}^{x}$	
$x_{1} x_{1} x_{0} x^{\prime} \rightarrow$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
2 x-\mathrm{e}^{x}=y^{2}+3 y-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 x-\mathrm{e}^{x}=y^{2}+3 y-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
2 x-\mathrm{e}^{x}=y^{2}+3 y-1
$$

Verified OK.

2.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-3-2 y) \mathrm{d} y & =\left(-2+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(2-\mathrm{e}^{x}\right) \mathrm{d} x+(-3-2 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2-\mathrm{e}^{x} \\
N(x, y) & =-3-2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-3-2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =2 x-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-3-2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
-3-2 y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-3-2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-3-2 y) \mathrm{d} y \\
f(y) & =-y^{2}-3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-y^{2}-\mathrm{e}^{x}+2 x-3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-y^{2}-\mathrm{e}^{x}+2 x-3 y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-y^{2}-\mathrm{e}^{x}+2 x-3 y=-1
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-y^{2}-\mathrm{e}^{x}+2 x-3 y=-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-y^{2}-\mathrm{e}^{x}+2 x-3 y=-1
$$

Verified OK.

2.24.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2-\mathrm{e}^{x}}{3+2 y}=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
(3+2 y) y^{\prime}=2-\mathrm{e}^{x}
$$

- Integrate both sides with respect to x
$\int(3+2 y) y^{\prime} d x=\int\left(2-\mathrm{e}^{x}\right) d x+c_{1}$
- Evaluate integral
$y^{2}+3 y=2 x-\mathrm{e}^{x}+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{3}{2}-\frac{\sqrt{9-4 \mathrm{e}^{x}+4 c_{1}+8 x}}{2}, y=-\frac{3}{2}+\frac{\sqrt{9-4 \mathrm{e}^{x}+4 c_{1}+8 x}}{2}\right\}$
- Use initial condition $y(0)=0$
$0=-\frac{3}{2}-\frac{\sqrt{5+4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(0)=0$
$0=-\frac{3}{2}+\frac{\sqrt{5+4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify $y=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2}$
- \quad Solution to the IVP

$$
y=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 19

```
dsolve([diff(y(x),x) = (2-exp(x))/(3+2*y(x)),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=-\frac{3}{2}+\frac{\sqrt{13-4 \mathrm{e}^{x}+8 x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.737 (sec). Leaf size: 25
DSolve[\{y' $[x]==(2-\operatorname{Exp}[x]) /(3+2 * y[x]), y[0]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{8 x-4 e^{x}+13}-3\right)
$$

2.25 problem 25

2.25.1 Existence and uniqueness analysis 741
2.25.2 Solving as separable ode . 742
2.25.3 Solving as first order ode lie symmetry lookup ode 744
2.25.4 Solving as exact ode . 748
2.25.5 Maple step by step solution . 751

Internal problem ID [503]
Internal file name [OUTPUT/503_Sunday_June_05_2022_01_42_35_AM_21918699/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 \cos (2 x)}{3+2 y}=0
$$

With initial conditions

$$
[y(0)=-1]
$$

2.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 \cos (2 x)}{3+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 \cos (2 x)}{3+2 y}\right) \\
& =-\frac{4 \cos (2 x)}{(3+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

2.25.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 \cos (2 x)}{3+2 y}
\end{aligned}
$$

Where $f(x)=2 \cos (2 x)$ and $g(y)=\frac{1}{3+2 y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{3+2 y}} d y & =2 \cos (2 x) d x \\
\int \frac{1}{\frac{1}{3+2 y}} d y & =\int 2 \cos (2 x) d x \\
y^{2}+3 y & =\sin (2 x)+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{3}{2}+\frac{\sqrt{9+4 \sin (2 x)+4 c_{1}}}{2} \\
& y=-\frac{3}{2}-\frac{\sqrt{9+4 \sin (2 x)+4 c_{1}}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=-\frac{3}{2}-\frac{\sqrt{9+4 c_{1}}}{2}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{3}{2}+\frac{\sqrt{9+4 c_{1}}}{2} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2}
$$

Verified OK.

2.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 \cos (2 x)}{3+2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 163: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{2 \cos (2 x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{2 \cos (2 x)}} d x
\end{aligned}
$$

Which results in

$$
S=\sin (2 x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 \cos (2 x)}{3+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=0 \\
& R_{y}=1 \\
& S_{x}=2 \cos (2 x) \\
& S_{y}=0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\sin (2 x)=y^{2}+c_{1}+3 y
$$

Which simplifies to

$$
\sin (2 x)=y^{2}+c_{1}+3 y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 \cos (2 x)}{3+2 y}$		$\frac{d S}{d R}=3+2 R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow 0]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
\rightarrow		
	$R=y$	
	$S=\sin (2 x)$	
		$\leq{ }^{1}$
$\rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-2 \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\sin (2 x)=y^{2}+3 y+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (2 x)=y^{2}+3 y+2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sin (2 x)=y^{2}+3 y+2
$$

Verified OK.

2.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{3}{2}+y\right) \mathrm{d} y & =(\cos (2 x)) \mathrm{d} x \\
(-\cos (2 x)) \mathrm{d} x+\left(\frac{3}{2}+y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\cos (2 x) \\
& N(x, y)=\frac{3}{2}+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cos (2 x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{3}{2}+y\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (2 x) \mathrm{d} x \\
\phi & =-\frac{\sin (2 x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{3}{2}+y$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{3}{2}+y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{3}{2}+y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{3}{2}+y\right) \mathrm{d} y \\
f(y) & =\frac{3}{2} y+\frac{1}{2} y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sin (2 x)}{2}+\frac{3 y}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sin (2 x)}{2}+\frac{3 y}{2}+\frac{y^{2}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\sin (2 x)}{2}+\frac{3 y}{2}+\frac{y^{2}}{2}=-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\sin (2 x)}{2}+\frac{3 y}{2}+\frac{y^{2}}{2}=-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\sin (2 x)}{2}+\frac{3 y}{2}+\frac{y^{2}}{2}=-1
$$

Verified OK.

2.25.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 \cos (2 x)}{3+2 y}=0, y(0)=-1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
(3+2 y) y^{\prime}=2 \cos (2 x)
$$

- Integrate both sides with respect to x
$\int(3+2 y) y^{\prime} d x=\int 2 \cos (2 x) d x+c_{1}$
- Evaluate integral
$y^{2}+3 y=\sin (2 x)+c_{1}$
- \quad Solve for y

$$
\left\{y=-\frac{3}{2}-\frac{\sqrt{9+4 \sin (2 x)+4 c_{1}}}{2}, y=-\frac{3}{2}+\frac{\sqrt{9+4 \sin (2 x)+4 c_{1}}}{2}\right\}
$$

- Use initial condition $y(0)=-1$
$-1=-\frac{3}{2}-\frac{\sqrt{9+4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(0)=-1$

$$
-1=-\frac{3}{2}+\frac{\sqrt{9+4 c_{1}}}{2}
$$

- \quad Solve for c_{1}
$c_{1}=-2$
- \quad Substitute $c_{1}=-2$ into general solution and simplify

$$
y=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2}
$$

- \quad Solution to the IVP

$$
y=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.25 (sec). Leaf size: 18

```
dsolve([diff (y(x),x) = 2*\operatorname{cos}(2*x)/(3+2*y(x)),y(0) = -1],y(x), singsol=all)
```

$$
y(x)=-\frac{3}{2}+\frac{\sqrt{1+4 \sin (2 x)}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 23
DSolve[\{y'[x] == $2 * \operatorname{Cos}[2 * x] /(3+2 * y[x]), y[0]==-1\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}(\sqrt{4 \sin (2 x)+1}-3)
$$

2.26 problem 26

2.26.1 Existence and uniqueness analysis 7754
2.26.2 Solving as separable ode . 755
2.26.3 Solving as first order ode lie symmetry lookup ode 757
2.26.4 Solving as exact ode . 7761
2.26.5 Solving as riccati ode . 765
2.26.6 Maple step by step solution . 767

Internal problem ID [504]
Internal file name [OUTPUT/504_Sunday_June_05_2022_01_42_37_AM_55464902/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2(x+1)\left(1+y^{2}\right)=0
$$

With initial conditions

$$
[y(0)=0]
$$

2.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2(x+1)\left(y^{2}+1\right)
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(2(x+1)\left(y^{2}+1\right)\right) \\
& =4(x+1) y
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

2.26.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =(x+1)\left(2 y^{2}+2\right)
\end{aligned}
$$

Where $f(x)=x+1$ and $g(y)=2 y^{2}+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2 y^{2}+2} d y & =x+1 d x \\
\int \frac{1}{2 y^{2}+2} d y & =\int x+1 d x \\
\frac{\arctan (y)}{2} & =\frac{1}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Which results in

$$
y=\tan \left(x^{2}+2 c_{1}+2 x\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\tan \left(2 c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{2}+2 x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{2}+2 x\right) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\tan \left(x^{2}+2 x\right)
$$

Verified OK.

2.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2(x+1)\left(y^{2}+1\right) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 166: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x+1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x+1}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2} x^{2}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2(x+1)\left(y^{2}+1\right)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x+1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 y^{2}+2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R^{2}+2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\arctan (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{2} x^{2}+x=\frac{\arctan (y)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{1}{2} x^{2}+x=\frac{\arctan (y)}{2}+c_{1}
$$

Which gives

$$
y=-\tan \left(-x^{2}+2 c_{1}-2 x\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2(x+1)\left(y^{2}+1\right)$		$\frac{d S}{d R}=\frac{1}{2 R^{2}+2}$
		$\rightarrow \rightarrow \rightarrow$ 为
10:		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{ }$
		\rightarrow
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	1	$\xrightarrow{+\rightarrow \rightarrow \rightarrow-2 \rightarrow+0 \rightarrow 0}$
	$S=\frac{1}{2} x^{2}+x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\pm{ }^{1}+{ }^{2}+$		\rightarrow,
		$\rightarrow \rightarrow \rightarrow$
		\rightarrow

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\tan \left(2 c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{2}+2 x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{2}+2 x\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\tan \left(x^{2}+2 x\right)
$$

Verified OK.

2.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y^{2}+2}\right) \mathrm{d} y & =(x+1) \mathrm{d} x \\
(-x-1) \mathrm{d} x+ & \left(\frac{1}{2 y^{2}+2}\right) \mathrm{d} y \tag{2A}
\end{align*}=0
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x-1 \\
& N(x, y)=\frac{1}{2 y^{2}+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y^{2}+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x-1 \mathrm{~d} x \\
\phi & =-\frac{1}{2} x^{2}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y^{2}+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y^{2}+2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y^{2}+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y^{2}+2}\right) \mathrm{d} y \\
f(y) & =\frac{\arctan (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-x+\frac{\arctan (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-x+\frac{\arctan (y)}{2}
$$

The solution becomes

$$
y=\tan \left(x^{2}+2 c_{1}+2 x\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\tan \left(2 c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(x^{2}+2 x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{2}+2 x\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(x^{2}+2 x\right)
$$

Verified OK.

2.26.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =2(x+1)\left(y^{2}+1\right)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 x y^{2}+2 y^{2}+2 x+2
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=2+2 x, f_{1}(x)=0$ and $f_{2}(x)=2+2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(2+2 x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =(2+2 x)^{3}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(2+2 x) u^{\prime \prime}(x)-2 u^{\prime}(x)+(2+2 x)^{3} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(x^{2}+2 x\right)+c_{2} \cos \left(x^{2}+2 x\right)
$$

The above shows that

$$
u^{\prime}(x)=-2(x+1)\left(c_{2} \sin \left(x^{2}+2 x\right)-c_{1} \cos \left(x^{2}+2 x\right)\right)
$$

Using the above in (1) gives the solution

$$
y=\frac{2(x+1)\left(c_{2} \sin \left(x^{2}+2 x\right)-c_{1} \cos \left(x^{2}+2 x\right)\right)}{(2+2 x)\left(c_{1} \sin \left(x^{2}+2 x\right)+c_{2} \cos \left(x^{2}+2 x\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\sin \left(x^{2}+2 x\right)-c_{3} \cos \left(x^{2}+2 x\right)}{c_{3} \sin \left(x^{2}+2 x\right)+\cos \left(x^{2}+2 x\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-c_{3} \\
c_{3}=0
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{\sin (x(2+x))}{\cos (x(2+x))}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x(2+x))}{\cos (x(2+x))} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (x(2+x))}{\cos (x(2+x))}
$$

Verified OK.

2.26.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2(x+1)\left(1+y^{2}\right)=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
- Separate variables
$\frac{y^{\prime}}{1+y^{2}}=2+2 x$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y^{2}} d x=\int(2+2 x) d x+c_{1}$
- Evaluate integral
$\arctan (y)=x^{2}+c_{1}+2 x$
- \quad Solve for y
$y=\tan \left(x^{2}+c_{1}+2 x\right)$
- Use initial condition $y(0)=0$
$0=\tan \left(c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\tan \left(x^{2}+2 x\right)$
- \quad Solution to the IVP

$$
y=\tan \left(x^{2}+2 x\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 12

```
dsolve([diff(y(x),x) = 2*(1+x)*(1+y(x)^2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\tan \left(x^{2}+2 x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 11
DSolve[\{y' $[x]==2 *(1+x) *(1+y[x] \sim 2), y[0]==0\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \tan (x(x+2))
$$

2.27 problem 27

2.27.1 Solving as separable ode . 770
2.27.2 Solving as first order ode lie symmetry lookup ode 772
2.27.3 Solving as bernoulli ode . 776
2.27.4 Solving as exact ode . 780
2.27.5 Solving as riccati ode . 783
2.27.6 Maple step by step solution . 786

Internal problem ID [505]
Internal file name [OUTPUT/505_Sunday_June_05_2022_01_42_38_AM_39711965/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t(4-y) y}{3}=0
$$

2.27.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{t y(y-4)}{3}
\end{aligned}
$$

Where $f(t)=-\frac{t}{3}$ and $g(y)=y(y-4)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y(y-4)} d y & =-\frac{t}{3} d t \\
\int \frac{1}{y(y-4)} d y & =\int-\frac{t}{3} d t \\
\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4} & =-\frac{t^{2}}{6}+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{4}\right)(\ln (y-4)-\ln (y)) & =-\frac{t^{2}}{6}+2 c_{1} \\
\ln (y-4)-\ln (y) & =(4)\left(-\frac{t^{2}}{6}+2 c_{1}\right) \\
& =-\frac{2 t^{2}}{3}+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-4)-\ln (y)}=\mathrm{e}^{-\frac{2 t^{2}}{3}+4 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{y-4}{y} & =4 c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}} \\
& =c_{2} \mathrm{e}^{-\frac{2 t^{2}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{4}{-1+c_{2} \mathrm{e}^{-\frac{2 t^{2}}{3}}} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot

Verification of solutions

$$
y=-\frac{4}{-1+c_{2} \mathrm{e}^{-\frac{2 t^{2}}{3}}}
$$

Verified OK.

2.27.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{t y(y-4)}{3} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 169: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{3}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{3}{t}} d t
\end{aligned}
$$

Which results in

$$
S=-\frac{t^{2}}{6}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{t y(y-4)}{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-\frac{t}{3} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(y-4)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R-4)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-4)}{4}-\frac{\ln (R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{t^{2}}{6}=\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4}+c_{1}
$$

Which simplifies to

$$
-\frac{t^{2}}{6}=\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4}+c_{1}
$$

Which gives

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{t y(y-4)}{3}$		$\frac{d S}{d R}=\frac{1}{R(R-4)}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\underset{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0}{ }$
		$\rightarrow \rightarrow \rightarrow+$
1: ${ }^{\text {a }}$ -	$R=y$	$\rightarrow \rightarrow \rightarrow$
	$S=-\frac{l}{6}$	
		$\rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm 4]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}
$$

Verified OK.

2.27.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-\frac{t y(y-4)}{3}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{4 t}{3} y-\frac{t}{3} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =\frac{4 t}{3} \\
f_{1}(t) & =-\frac{t}{3} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{4 t}{3 y}-\frac{t}{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =\frac{4 w(t) t}{3}-\frac{t}{3} \\
w^{\prime} & =-\frac{4}{3} t w+\frac{1}{3} t \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{4 t}{3} \\
q(t) & =\frac{t}{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)+\frac{4 w(t) t}{3}=\frac{t}{3}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{4 t}{3} d t} \\
=\mathrm{e}^{\frac{2 t^{2}}{3}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)\left(\frac{t}{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{2 t^{2}}{3}} w\right) & =\left(\mathrm{e}^{\frac{2 t^{2}}{3}}\right)\left(\frac{t}{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{2 t^{2}}{3}} w\right) & =\left(\frac{t \mathrm{e}^{\frac{2 t^{2}}{3}}}{3}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{2 t^{2}}{3}} w=\int \frac{t \mathrm{e}^{\frac{2 t^{2}}{3}}}{3} \mathrm{~d} t \\
& \mathrm{e}^{\frac{2 t^{2}}{3}} w=\frac{\mathrm{e}^{\frac{2 t^{2}}{3}}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{2 t^{2}}{3}}$ results in

$$
w(t)=\frac{\mathrm{e}^{-\frac{2 t^{2}}{3}} \mathrm{e}^{\frac{2 t^{2}}{3}}}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}
$$

which simplifies to

$$
w(t)=\frac{1}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{1}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}
$$

Or

$$
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}} \tag{1}
\end{equation*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-\frac{2 t^{2}}{3}}}
$$

Verified OK.

2.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{3}{y(y-4)}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(-\frac{3}{y(y-4)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =-\frac{3}{y(y-4)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{3}{y(y-4)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{3}{y(y-4)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{3}{y(y-4)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{3}{y(y-4)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{3}{y(y-4)}\right) \mathrm{d} y \\
f(y) & =-\frac{3 \ln (y-4)}{4}+\frac{3 \ln (y)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\frac{3 \ln (y-4)}{4}+\frac{3 \ln (y)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\frac{3 \ln (y-4)}{4}+\frac{3 \ln (y)}{4}
$$

The solution becomes

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+\frac{4 c_{1}}{3}}}
$$

Verified OK.

2.27.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-\frac{t y(y-4)}{3}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\frac{1}{3} t y^{2}+\frac{4}{3} t y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=\frac{4 t}{3}$ and $f_{2}(t)=-\frac{t}{3}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{t u}{3}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{3} \\
f_{1} f_{2} & =-\frac{4 t^{2}}{9} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{t u^{\prime \prime}(t)}{3}-\left(-\frac{1}{3}-\frac{4 t^{2}}{9}\right) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+\mathrm{e}^{\frac{2 t^{2}}{3}} c_{2}
$$

The above shows that

$$
u^{\prime}(t)=\frac{4 t \mathrm{e}^{\frac{2 t^{2}}{3}} c_{2}}{3}
$$

Using the above in (1) gives the solution

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}} c_{2}}{c_{1}+\mathrm{e}^{\frac{2 t^{2}}{3}} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}}}{c_{3}+\mathrm{e}^{\frac{2 t^{2}}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}}}{c_{3}+\mathrm{e}^{\frac{2 t^{2}}{3}}} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}}}{c_{3}+\mathrm{e}^{\frac{2 t^{2}}{3}}}
$$

Verified OK.

2.27.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{t(4-y) y}{3}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables
$\frac{y^{\prime}}{(4-y) y}=\frac{t}{3}$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{(4-y) y} d t=\int \frac{t}{3} d t+c_{1}$
- Evaluate integral

$$
-\frac{\ln (y-4)}{4}+\frac{\ln (y)}{4}=\frac{t^{2}}{6}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{4 \mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}{-1+\mathrm{e}^{\frac{2 t^{2}}{3}+4 c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(diff(y(t),t) = 1/3*t*(4-y(t))*y(t),y(t), singsol=all)
```

$$
y(t)=\frac{4}{1+4 \mathrm{e}^{-\frac{2 t^{2}}{3}} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.248 (sec). Leaf size: 44
DSolve[y'[t]== $1 / 3 * t *(4-y[t]) * y[t], y[t], t$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{4 e^{\frac{2 t^{2}}{3}}}{e^{\frac{2 t^{2}}{3}}+e^{4 c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 4
\end{aligned}
$$

2.28 problem 28

2.28.1 Solving as separable ode 788
2.28.2 Solving as first order ode lie symmetry lookup ode 790
2.28.3 Solving as bernoulli ode 794
2.28.4 Solving as exact ode 798
2.28.5 Solving as riccati ode 801
2.28.6 Maple step by step solution 804
Internal problem ID [506]Internal file name [OUTPUT/506_Sunday_June_05_2022_01_42_39_AM_99102865/index.tex]

Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t y(4-y)}{t+1}=0
$$

2.28.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{t y(y-4)}{t+1}
\end{aligned}
$$

Where $f(t)=-\frac{t}{t+1}$ and $g(y)=y(y-4)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y(y-4)} d y & =-\frac{t}{t+1} d t \\
\int \frac{1}{y(y-4)} d y & =\int-\frac{t}{t+1} d t \\
\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4} & =-t+\ln (t+1)+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{4}\right)(\ln (y-4)-\ln (y)) & =-t+\ln (t+1)+2 c_{1} \\
\ln (y-4)-\ln (y) & =(4)\left(-t+\ln (t+1)+2 c_{1}\right) \\
& =-4 t+4 \ln (t+1)+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-4)-\ln (y)}=\mathrm{e}^{-4 t+4 \ln (t+1)+4 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{y-4}{y} & =4 c_{1} \mathrm{e}^{-4 t+4 \ln (t+1)} \\
& =c_{2} \mathrm{e}^{-4 t+4 \ln (t+1)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{4}{-1+c_{2} \mathrm{e}^{-4 t+4 \ln (t+1)}} \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot

Verification of solutions

$$
y=-\frac{4}{-1+c_{2} \mathrm{e}^{-4 t+4 \ln (t+1)}}
$$

Verified OK.

2.28.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{t y(y-4)}{t+1} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 172: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{t+1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{t+1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=-t+\ln (t+1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{t y(y-4)}{t+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-\frac{t}{t+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(y-4)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R-4)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-4)}{4}-\frac{\ln (R)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-t+\ln (t+1)=\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4}+c_{1}
$$

Which simplifies to

$$
-t+\ln (t+1)=\frac{\ln (y-4)}{4}-\frac{\ln (y)}{4}+c_{1}
$$

Which gives

$$
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{t y(y-4)}{t+1}$		$\frac{d S}{d R}=\frac{1}{R(R-4)}$
$\xrightarrow{\text { a }}$		\rightarrow
		$S(R)$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$S=-t+\ln (t+1)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm 2]{ }$
4,		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t}
$$

Verified OK.

2.28.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-\frac{t y(y-4)}{t+1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{4 t}{t+1} y-\frac{t}{t+1} y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.
This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =\frac{4 t}{t+1} \\
f_{1}(t) & =-\frac{t}{t+1} \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{4 t}{(t+1) y}-\frac{t}{t+1} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =\frac{4 t w(t)}{t+1}-\frac{t}{t+1} \\
w^{\prime} & =-\frac{4 t w}{t+1}+\frac{t}{t+1} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{4 t}{t+1} \\
q(t) & =\frac{t}{t+1}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)+\frac{4 t w(t)}{t+1}=\frac{t}{t+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{4 t}{t+1} d t} \\
& =\mathrm{e}^{4 t-4 \ln (t+1)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{\mathrm{e}^{4 t}}{(t+1)^{4}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)\left(\frac{t}{t+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\mathrm{e}^{4 t} w}{(t+1)^{4}}\right) & =\left(\frac{\mathrm{e}^{4 t}}{(t+1)^{4}}\right)\left(\frac{t}{t+1}\right) \\
\mathrm{d}\left(\frac{\mathrm{e}^{4 t} w}{(t+1)^{4}}\right) & =\left(\frac{t \mathrm{e}^{4 t}}{(t+1)^{5}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{4 t} w}{(t+1)^{4}}=\int \frac{t \mathrm{e}^{4 t}}{(t+1)^{5}} \mathrm{~d} t \\
& \frac{\mathrm{e}^{4 t} w}{(t+1)^{4}}=\frac{\mathrm{e}^{4 t}}{4(t+1)^{4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{\mathrm{e}^{4 t}}{(t+1)^{4}}$ results in

$$
w(t)=\frac{\mathrm{e}^{-4 t} \mathrm{e}^{4 t}}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}
$$

which simplifies to

$$
w(t)=\frac{1}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{1}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}
$$

Or

$$
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot
Verification of solutions

$$
y=\frac{1}{\frac{1}{4}+c_{1} \mathrm{e}^{-4 t}(t+1)^{4}}
$$

Verified OK.

2.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y(y-4)}\right) \mathrm{d} y & =\left(\frac{t}{t+1}\right) \mathrm{d} t \\
\left(-\frac{t}{t+1}\right) \mathrm{d} t+\left(-\frac{1}{y(y-4)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t}{t+1} \\
& N(t, y)=-\frac{1}{y(y-4)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t}{t+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{1}{y(y-4)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t}{t+1} \mathrm{~d} t \\
\phi & =-t+\ln (t+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y(y-4)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y(y-4)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y(y-4)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y(y-4)}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y-4)}{4}+\frac{\ln (y)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t+\ln (t+1)-\frac{\ln (y-4)}{4}+\frac{\ln (y)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t+\ln (t+1)-\frac{\ln (y-4)}{4}+\frac{\ln (y)}{4}
$$

The solution becomes

$$
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t} \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}}-4 t}
$$

Verified OK.

2.28.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-\frac{t y(y-4)}{t+1}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{4 t y}{t+1}-\frac{t y^{2}}{t+1}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=\frac{4 t}{t+1}$ and $f_{2}(t)=-\frac{t}{t+1}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-\frac{t u}{t+1}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{t+1}+\frac{t}{(t+1)^{2}} \\
f_{1} f_{2} & =-\frac{4 t^{2}}{(t+1)^{2}} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-\frac{t u^{\prime \prime}(t)}{t+1}-\left(-\frac{1}{t+1}+\frac{t}{(t+1)^{2}}-\frac{4 t^{2}}{(t+1)^{2}}\right) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=\frac{c_{2} \mathrm{e}^{4 t}+(t+1)^{4} c_{1}}{(t+1)^{4}}
$$

The above shows that

$$
u^{\prime}(t)=\frac{4 \mathrm{e}^{4 t} c_{2} t}{(t+1)^{5}}
$$

Using the above in (1) gives the solution

$$
y=\frac{4 \mathrm{e}^{4 t} c_{2}}{c_{2} \mathrm{e}^{4 t}+(t+1)^{4} c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{4 \mathrm{e}^{4 t}}{\mathrm{e}^{4 t}+c_{3}\left(t^{4}+4 t^{3}+6 t^{2}+4 t+1\right)}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{4 t}}{\mathrm{e}^{4 t}+c_{3}\left(t^{4}+4 t^{3}+6 t^{2}+4 t+1\right)} \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{4 t}}{\mathrm{e}^{4 t}+c_{3}\left(t^{4}+4 t^{3}+6 t^{2}+4 t+1\right)}
$$

Verified OK.

2.28.6 Maple step by step solution

Let's solve
$y^{\prime}-\frac{t y(4-y)}{t+1}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{(4-y) y}=\frac{t}{t+1}
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{(4-y) y} d t=\int \frac{t}{t+1} d t+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln (y-4)}{4}+\frac{\ln (y)}{4}=t-\ln (t+1)+c_{1}
$$

- \quad Solve for y
$y=\frac{4 \mathrm{e}^{4 t+4 c_{1}}}{-1-t^{4}-4 t^{3}-6 t^{2}+\mathrm{e}^{4 t+4 c_{1}-4 t}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(t),t) = t*y(t)*(4-y(t))/(1+t),y(t), singsol=all)
```

$$
y(t)=\frac{4}{1+4 \mathrm{e}^{-4 t}(t+1)^{4} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 1.337 (sec). Leaf size: 42
DSolve[y'[t] == $\mathrm{t} * \mathrm{y}[\mathrm{t}] *(4-\mathrm{y}[\mathrm{t}]) /(1+\mathrm{t}), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{4 e^{4 t}}{e^{4 t}+e^{4 c_{1}}(t+1)^{4}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 4
\end{aligned}
$$

2.29 problem 29

2.29.1 Solving as quadrature ode . 806
2.29.2 Maple step by step solution . 807

Internal problem ID [507]
Internal file name [OUTPUT/507_Sunday_June_05_2022_01_42_40_AM_35330923/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}-\frac{b+a y}{d+c y}=0
$$

2.29.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{c y+d}{a y+b} d y & =x+c_{1} \\
\frac{c y}{a}+\frac{(a d-b c) \ln (a y+b)}{a^{2}} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

Summary

The solution(s) found are the following
y
$=\frac{c_{1} a^{2}+x a^{2}-\left(-\operatorname{LambertW}\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)+\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}\right) a d+\left(-\operatorname{LambertW}\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)\right.}{a c}$

Verification of solutions

y
$=\frac{c_{1} a^{2}+x a^{2}-\left(-\operatorname{LambertW}\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)+\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}\right) a d+\left(-\operatorname{LambertW}\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)\right.}{a c}$
Verified OK.

2.29.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{b+a y}{d+c y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}(d+c y)}{b+a y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}(d+c y)}{b+a y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\frac{c y}{a}+\frac{(a d-b c) \ln (b+a y)}{a^{2}}=x+c_{1}
$$

- \quad Solve for y
$y=\frac{c_{1} a^{2}+x a^{2}-\left(-\operatorname{Lambert} W\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)+\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}\right) a d+\left(-L a m b e r t W\left(-\frac{c \mathrm{e}^{\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}}}{-a d+b c}\right)+\frac{c_{1} a^{2}+x a^{2}+b c}{a d-b c}\right) b c}{a c}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 61
dsolve(diff $(y(x), x)=(b+a * y(x)) /(d+c * y(x)), y(x)$, singsol=all)

$$
y(x)=\frac{(a d-b c) \text { LambertW }\left(\frac{c \mathrm{e}^{\frac{\left(c_{1}+x\right) a^{2}+b c}{a d-b c}}}{a d-b c}\right)-b c}{a c}
$$

\checkmark Solution by Mathematica
Time used: 16.166 (sec). Leaf size: 83
DSolve[y'[x] == (b+a*y[x])/(d+c*y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-b c+(a d-b c) W\left(-\frac{c\left(e^{-1-\frac{a^{2}\left(x+c_{1}\right)}{b c}}\right) \frac{b c}{b c-a d}}{b c-a d}\right)}{a c} \\
& y(x) \rightarrow-\frac{b}{a}
\end{aligned}
$$

2.30 problem 31

2.30.1 Solving as homogeneousTypeD2 ode 809
2.30.2 Solving as first order ode lie symmetry calculated ode 811
2.30.3 Solving as riccati ode . 816

Internal problem ID [508]
Internal file name [DUTPUT/508_Sunday_June_05_2022_01_42_41_AM_3383851/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y^{\prime}-\frac{x^{2}+y x+y^{2}}{x^{2}}=0
$$

2.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2}+u(x) x^{2}+u(x)^{2} x^{2}}{x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}+1} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}+1} d u & =\int \frac{1}{x} d x \\
\arctan (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\arctan (u(x))-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \\
& \arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.

2.30.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+y x+y^{2}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2}+y x+y^{2}\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(x^{2}+y x+y^{2}\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{2 x+y}{x^{2}}-\frac{2\left(x^{2}+y x+y^{2}\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{(x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} a_{2}+x^{4} a_{3}-x^{4} b_{3}+2 x^{3} y a_{3}+2 x^{3} y b_{2}-x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+x^{2} y^{2} b_{3}+y^{4} a_{3}+x^{3} b_{1}-x^{2} y a_{1}+2 x^{2} y b_{1}-}{x^{4}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{2}-x^{4} a_{3}+x^{4} b_{3}-2 x^{3} y a_{3}-2 x^{3} y b_{2}+x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3} \tag{6E}\\
& \quad-x^{2} y^{2} b_{3}-y^{4} a_{3}-x^{3} b_{1}+x^{2} y a_{1}-2 x^{2} y b_{1}+2 x y^{2} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -a_{2} v_{1}^{4}+a_{2} v_{1}^{2} v_{2}^{2}-a_{3} v_{1}^{4}-2 a_{3} v_{1}^{3} v_{2}-2 a_{3} v_{1}^{2} v_{2}^{2}-a_{3} v_{2}^{4}-2 b_{2} v_{1}^{3} v_{2} \\
& +b_{3} v_{1}^{4}-b_{3} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{1} v_{2}^{2}-b_{1} v_{1}^{3}-2 b_{1} v_{1}^{2} v_{2}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}+b_{3}\right) v_{1}^{4}+\left(-2 a_{3}-2 b_{2}\right) v_{1}^{3} v_{2}-b_{1} v_{1}^{3} \tag{8E}\\
& \quad+\left(a_{2}-2 a_{3}-b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(a_{1}-2 b_{1}\right) v_{1}^{2} v_{2}+2 a_{1} v_{1} v_{2}^{2}-a_{3} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
a_{1}-2 b_{1} & =0 \\
-2 a_{3}-2 b_{2} & =0 \\
-a_{2}-a_{3}+b_{3} & =0 \\
a_{2}-2 a_{3}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{2}+y x+y^{2}}{x^{2}}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=-\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+y x+y^{2}}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{x^{2}+y^{2}} \\
S_{y} & =-\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\arctan \left(\frac{y}{x}\right)=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\arctan \left(\frac{y}{x}\right)=-\ln (x)+c_{1}
$$

Which gives

$$
y=-\tan \left(-\ln (x)+c_{1}\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+y x+y^{2}}{x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$－
		$\rightarrow \rightarrow \rightarrow \infty$－
		$\rightarrow \rightarrow \rightarrow \rightarrow$ 为 \uparrow
	$R=x$	$\rightarrow \rightarrow \rightarrow-\infty$ 为 ${ }^{\text {a }}$
	$S=-\arctan \left(\frac{y}{x}\right)$	
		－－－刀口
		¢ 4
		$\bigcirc 0^{\text {OAd }}$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\tan \left(-\ln (x)+c_{1}\right) x \tag{1}
\end{equation*}
$$

Figure 153: Slope field plot

Verification of solutions

$$
y=-\tan \left(-\ln (x)+c_{1}\right) x
$$

Verified OK.

2.30.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y x+y^{2}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=1+\frac{y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=1, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{1}{x^{3}} \\
f_{2}^{2} f_{0} & =\frac{1}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}+\frac{u^{\prime}(x)}{x^{3}}+\frac{u(x)}{x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin (\ln (x))+c_{2} \cos (\ln (x))
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{1} \cos (\ln (x))-c_{2} \sin (\ln (x))}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{x\left(c_{1} \cos (\ln (x))-c_{2} \sin (\ln (x))\right)}{c_{1} \sin (\ln (x))+c_{2} \cos (\ln (x))}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-c_{3} \cos (\ln (x))+\sin (\ln (x))\right) x}{c_{3} \sin (\ln (x))+\cos (\ln (x))}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{3} \cos (\ln (x))+\sin (\ln (x))\right) x}{c_{3} \sin (\ln (x))+\cos (\ln (x))} \tag{1}
\end{equation*}
$$

Figure 154: Slope field plot

Verification of solutions

$$
y=\frac{\left(-c_{3} \cos (\ln (x))+\sin (\ln (x))\right) x}{c_{3} \sin (\ln (x))+\cos (\ln (x))}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(x),x) = (x^2+x*y(x)+y(x)^2)/x^2,y(x), singsol=all)
```

$$
y(x)=\tan \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 13
DSolve $\left[y^{\prime}[x]==\left(x^{\wedge} 2+x * y[x]+y[x] \sim 2\right) / x^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \tan \left(\log (x)+c_{1}\right)
$$

2.31 problem 32

2.31.1 Solving as homogeneousTypeD2 ode 820
2.31.2 Solving as first order ode lie symmetry lookup ode 822
2.31.3 Solving as bernoulli ode . 826
2.31.4 Solving as exact ode . 829

Internal problem ID [509]
Internal file name [OUTPUT/509_Sunday_June_05_2022_01_42_42_AM_58248688/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
y^{\prime}-\frac{x^{2}+3 y^{2}}{2 x y}=0
$$

2.31.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2}+3 u(x)^{2} x^{2}}{2 x^{2} u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+1}{2 x u}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=\frac{u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u}} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u}} d u & =\int \frac{1}{2 x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2} & =\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+1}=\mathrm{e}^{\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+1}=c_{3} \sqrt{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+1}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

The solution is

$$
\sqrt{u(x)^{2}+1}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+1} & =c_{3} \sqrt{x} \mathrm{e}^{c_{2}} \\
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}} & =c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot
Verification of solutions

$$
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}=c_{3} \sqrt{x} \mathrm{e}^{c_{2}}
$$

Verified OK.

2.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+3 y^{2}}{2 x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 176: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{3}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{3}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+3 y^{2}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{2}}{2 x^{4}} \\
S_{y} & =\frac{y}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+3 y^{2}}{2 x y}$		$\frac{d S}{d R}=\frac{1}{2 R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }+\uparrow \xrightarrow{+}$
		\rightarrow,
	$R=x$	-
	$S=\frac{y^{2}}{2 x^{3}}$	
		\rightarrow 号新
		$\rightarrow \rightarrow \uparrow$
		\rightarrow - $4+$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x^{3}}=-\frac{1}{2 x}+c_{1}
$$

Verified OK.

2.31.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+3 y^{2}}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{3 y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{3 w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{3 w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)(x) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\frac{1}{x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{3}} & =\int \frac{1}{x^{2}} \mathrm{~d} x \\
\frac{w}{x^{3}} & =-\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=c_{1} x^{3}-x^{2}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=c_{1} x^{3}-x^{2}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{c_{1} x-1} x \\
& y(x)=-\sqrt{c_{1} x-1} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{c_{1} x-1} x \tag{1}\\
& y=-\sqrt{c_{1} x-1} x \tag{2}
\end{align*}
$$

Figure 157: Slope field plot
Verification of solutions

$$
y=\sqrt{c_{1} x-1} x
$$

Verified OK.

$$
y=-\sqrt{c_{1} x-1} x
$$

Verified OK.

2.31.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y x) \mathrm{d} y & =\left(x^{2}+3 y^{2}\right) \mathrm{d} x \\
\left(-x^{2}-3 y^{2}\right) \mathrm{d} x+(2 y x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}-3 y^{2} \\
N(x, y) & =2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-3 y^{2}\right) \\
& =-6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y x) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y x}((-6 y)-(2 y)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(-x^{2}-3 y^{2}\right) \\
& =\frac{-x^{2}-3 y^{2}}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(2 y x) \\
& =\frac{2 y}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{2}-3 y^{2}}{x^{4}}\right)+\left(\frac{2 y}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-3 y^{2}}{x^{4}} \mathrm{~d} x \\
\phi & =\frac{x^{2}+y^{2}}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y}{x^{3}}=\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2}+y^{2}}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2}+y^{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{x^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot
Verification of solutions

$$
\frac{x^{2}+y^{2}}{x^{3}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x) = (x^2+3*y(x)^2)/(2*x*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{c_{1} x-1} x \\
& y(x)=-\sqrt{c_{1} x-1} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.251 (sec). Leaf size: 34
DSolve[y'[x] == $\left(x^{\wedge} 2+3 * y[x] \wedge 2\right) /(2 * x * y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{-1+c_{1} x} \\
& y(x) \rightarrow x \sqrt{-1+c_{1} x}
\end{aligned}
$$

2.32 problem 33

2.32.1 Solving as homogeneousTypeD2 ode 835
2.32.2 Solving as first order ode lie symmetry calculated ode 837]

Internal problem ID [510]
Internal file name [OUTPUT/510_Sunday_June_05_2022_01_42_44_AM_10559292/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_ccalculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y^{\prime}-\frac{4 y-3 x}{2 x-y}=0
$$

2.32.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{4 u(x) x-3 x}{2 x-u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+2 u-3}{x(u-2)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+2 u-3}{u-2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2 u-3}{u-2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+2 u-3}{u-2}} d u & =\int-\frac{1}{x} d x \\
-\frac{\ln (u-1)}{4}+\frac{5 \ln (u+3)}{4} & =-\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\frac{-\ln (u-1)+5 \ln (u+3)}{4} & =-\ln (x)+c_{2} \\
-\ln (u-1)+5 \ln (u+3) & =(4)\left(-\ln (x)+c_{2}\right) \\
& =-4 \ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u-1)+5 \ln (u+3)}=\mathrm{e}^{-4 \ln (x)+4 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{(u+3)^{5}}{u-1} & =\frac{4 c_{2}}{x^{4}} \\
& =\frac{c_{3}}{x^{4}}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\operatorname{RootOf}\left(-Z^{5}+15 _Z^{4}+90 _Z^{3}+270 _Z^{2}+\left(-\frac{c_{3} \mathrm{e}^{4 c_{2}}}{x^{4}}+405\right)-Z+\frac{c_{3} \mathrm{e}^{4 c_{2}}}{x^{4}}+243\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x \operatorname{RootOf}\left(_Z^{5} x^{4}+15 x^{4} _Z^{4}+90 _Z^{3} x^{4}+270 x^{4} _Z^{2}+\left(-c_{3} \mathrm{e}^{4 c_{2}}+405 x^{4}\right) _Z+c_{3} \mathrm{e}^{4 c_{2}}+243 x^{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{array}{r}
y=x \operatorname{RootOf}\left(_Z^{5} x^{4}+15 x^{4} _Z^{4}+90 _Z^{3} x^{4}+270 x^{4} _Z^{2}+\left(-c_{3} \mathrm{e}^{4 c_{2}}+405 x^{4}\right) _Z_{(1)}\right) \\
\left.+c_{3} \mathrm{e}^{4 c_{2}}+243 x^{4}\right)
\end{array}
$$

Figure 159: Slope field plot
Verification of solutions

$$
\begin{array}{r}
y=x \operatorname{RootOf}\left(_Z^{5} x^{4}+15 x^{4} _Z^{4}+90 _Z^{3} x^{4}+270 x^{4} _Z^{2}+\left(-c_{3} \mathrm{e}^{4 c_{2}}+405 x^{4}\right) _Z\right. \\
\left.+c_{3} \mathrm{e}^{4 c_{2}}+243 x^{4}\right)
\end{array}
$$

Verified OK.

2.32.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{4 y-3 x}{-2 x+y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(4 y-3 x)\left(b_{3}-a_{2}\right)}{-2 x+y}-\frac{(4 y-3 x)^{2} a_{3}}{(-2 x+y)^{2}} \\
& -\left(\frac{3}{-2 x+y}-\frac{2(4 y-3 x)}{(-2 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4}{-2 x+y}+\frac{4 y-3 x}{(-2 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{6 x^{2} a_{2}-9 x^{2} a_{3}-x^{2} b_{2}-6 x^{2} b_{3}-6 x y a_{2}+24 x y a_{3}-4 x y b_{2}+6 x y b_{3}+4 y^{2} a_{2}-11 y^{2} a_{3}+y^{2} b_{2}-4 y^{2} b_{3}-5 x b}{(2 x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 6 x^{2} a_{2}-9 x^{2} a_{3}-x^{2} b_{2}-6 x^{2} b_{3}-6 x y a_{2}+24 x y a_{3}-4 x y b_{2} \tag{6E}\\
& \quad+6 x y b_{3}+4 y^{2} a_{2}-11 y^{2} a_{3}+y^{2} b_{2}-4 y^{2} b_{3}-5 x b_{1}+5 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 6 a_{2} v_{1}^{2}-6 a_{2} v_{1} v_{2}+4 a_{2} v_{2}^{2}-9 a_{3} v_{1}^{2}+24 a_{3} v_{1} v_{2}-11 a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-6 b_{3} v_{1}^{2}+6 b_{3} v_{1} v_{2}-4 b_{3} v_{2}^{2}+5 a_{1} v_{2}-5 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(6 a_{2}-9 a_{3}-b_{2}-6 b_{3}\right) v_{1}^{2}+\left(-6 a_{2}+24 a_{3}-4 b_{2}+6 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-5 b_{1} v_{1}+\left(4 a_{2}-11 a_{3}+b_{2}-4 b_{3}\right) v_{2}^{2}+5 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
5 a_{1} & =0 \\
-5 b_{1} & =0 \\
-6 a_{2}+24 a_{3}-4 b_{2}+6 b_{3} & =0 \\
4 a_{2}-11 a_{3}+b_{2}-4 b_{3} & =0 \\
6 a_{2}-9 a_{3}-b_{2}-6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=2 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=0 \\
& b_{2}=3 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{4 y-3 x}{-2 x+y}\right)(x) \\
& =\frac{3 x^{2}-2 y x-y^{2}}{2 x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2}-2 y x-y^{2}}{2 x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{5 \ln (3 x+y)}{4}-\frac{\ln (-x+y)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 y-3 x}{-2 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-4 y+3 x}{(3 x+y)(x-y)} \\
S_{y} & =\frac{2 x-y}{(3 x+y)(x-y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{5 \ln (3 x+y)}{4}-\frac{\ln (-x+y)}{4}=c_{1}
$$

Which simplifies to

$$
\frac{5 \ln (3 x+y)}{4}-\frac{\ln (-x+y)}{4}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{5 \ln (3 x+y)}{4}-\frac{\ln (-x+y)}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot

Verification of solutions

$$
\frac{5 \ln (3 x+y)}{4}-\frac{\ln (-x+y)}{4}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.375 (sec). Leaf size: 26

```
dsolve(diff (y(x),x) = (4*y(x)-3*x)/(2*x-y(x)),y(x), singsol=all)
```

$$
y(x)=x\left(-3+\operatorname{RootOf}\left(_Z^{20} c_{1} x^{4}-_Z^{4}+4\right)^{4}\right)
$$

Solution by Mathematica
Time used: 3.328 (sec). Leaf size: 336

```
DSolve[y'[x] == (4*y[x]-3*x)/(2*x-y[x]),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{array}{r}
y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+15 \# 1^{4} x+90 \# 1^{3} x^{2}+270 \# 1^{2} x^{3}+\# 1\left(405 x^{4}-e^{4 c_{1}}\right)+243 x^{5}\right. \\
\left.+e^{4 c_{1}} x \&, 1\right] \\
y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+15 \# 1^{4} x+90 \# 1^{3} x^{2}+270 \# 1^{2} x^{3}+\# 1\left(405 x^{4}-e^{4 c_{1}}\right)+243 x^{5}\right. \\
\left.+e^{4 c_{1}} x \&, 2\right] \\
y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+15 \# 1^{4} x+90 \# 1^{3} x^{2}+270 \# 1^{2} x^{3}+\# 1\left(405 x^{4}-e^{4 c_{1}}\right)+243 x^{5}\right. \\
\left.+e^{4 c_{1}} x \&, 3\right] \\
y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+15 \# 1^{4} x+90 \# 1^{3} x^{2}+270 \# 1^{2} x^{3}+\# 1\left(405 x^{4}-e^{4 c_{1}}\right)+243 x^{5}\right. \\
\left.+e^{4 c_{1}} x \&, 4\right] \\
y(x) \rightarrow \operatorname{Root}\left[\# 1^{5}+15 \# 1^{4} x+90 \# 1^{3} x^{2}+270 \# 1^{2} x^{3}+\# 1\left(405 x^{4}-e^{4 c_{1}}\right)+243 x^{5}\right. \\
\left.+e^{4 c_{1}} x \&, 5\right]
\end{array}
$$

2.33 problem 34

2.33.1 Solving as homogeneousTypeD2 ode 844
2.33.2 Solving as first order ode lie symmetry calculated ode 847

Internal problem ID [511]
Internal file name [OUTPUT/511_Sunday_June_05_2022_01_42_45_AM_86261302/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}+\frac{4 x+3 y}{2 x+y}=0
$$

2.33.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+\frac{4 x+3 u(x) x}{2 x+u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+5 u+4}{x(u+2)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+5 u+4}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+5 u+4}{u+2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+5 u+4}{u+2}} d u & =\int-\frac{1}{x} d x \\
\frac{2 \ln (u+4)}{3}+\frac{\ln (u+1)}{3} & =-\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\frac{2 \ln (u+4)+\ln (u+1)}{3} & =-\ln (x)+c_{2} \\
2 \ln (u+4)+\ln (u+1) & =(3)\left(-\ln (x)+c_{2}\right) \\
& =-3 \ln (x)+3 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{2 \ln (u+4)+\ln (u+1)}=\mathrm{e}^{-3 \ln (x)+3 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
(u+4)^{2}(u+1) & =\frac{3 c_{2}}{x^{3}} \\
& =\frac{c_{3}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
(u(x)+4)^{2}(u(x)+1)=\frac{c_{3} \mathrm{e}^{3 c_{2}}}{x^{3}}
$$

The solution is

$$
(u(x)+4)^{2}(u(x)+1)=\frac{c_{3} \mathrm{e}^{3 c_{2}}}{x^{3}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{y}{x}+4\right)^{2}\left(1+\frac{y}{x}\right) & =\frac{c_{3} \mathrm{e}^{3 c_{2}}}{x^{3}} \\
\frac{(4 x+y)^{2}(x+y)}{x^{3}} & =\frac{c_{3} \mathrm{e}^{3 c_{2}}}{x^{3}}
\end{aligned}
$$

Which simplifies to

$$
(4 x+y)^{2}(x+y)=c_{3} \mathrm{e}^{3 c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
(4 x+y)^{2}(x+y)=c_{3} \mathrm{e}^{3 c_{2}} \tag{1}
\end{equation*}
$$

Figure 161: Slope field plot

Verification of solutions

$$
(4 x+y)^{2}(x+y)=c_{3} \mathrm{e}^{3 c_{2}}
$$

Verified OK.

2.33.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{4 x+3 y}{2 x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(4 x+3 y)\left(b_{3}-a_{2}\right)}{2 x+y}-\frac{(4 x+3 y)^{2} a_{3}}{(2 x+y)^{2}} \\
& -\left(-\frac{4}{2 x+y}+\frac{8 x+6 y}{(2 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{2 x+y}+\frac{4 x+3 y}{(2 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{8 x^{2} a_{2}-16 x^{2} a_{3}+6 x^{2} b_{2}-8 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+4 x y b_{2}-8 x y b_{3}+3 y^{2} a_{2}-11 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+2}{(2 x+y)^{2}}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 8 x^{2} a_{2}-16 x^{2} a_{3}+6 x^{2} b_{2}-8 x^{2} b_{3}+8 x y a_{2}-24 x y a_{3}+4 x y b_{2} \tag{6E}\\
& \quad-8 x y b_{3}+3 y^{2} a_{2}-11 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}+2 x b_{1}-2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-16 a_{3} v_{1}^{2}-24 a_{3} v_{1} v_{2}-11 a_{3} v_{2}^{2}+6 b_{2} v_{1}^{2} \tag{7E}\\
& \quad+4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-8 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}-2 a_{1} v_{2}+2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(8 a_{2}-16 a_{3}+6 b_{2}-8 b_{3}\right) v_{1}^{2}+\left(8 a_{2}-24 a_{3}+4 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+2 b_{1} v_{1}+\left(3 a_{2}-11 a_{3}+b_{2}-3 b_{3}\right) v_{2}^{2}-2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 b_{1} & =0 \\
3 a_{2}-11 a_{3}+b_{2}-3 b_{3} & =0 \\
8 a_{2}-24 a_{3}+4 b_{2}-8 b_{3} & =0 \\
8 a_{2}-16 a_{3}+6 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=5 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=0 \\
& b_{2}=-4 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{4 x+3 y}{2 x+y}\right)(x) \\
& =\frac{4 x^{2}+5 y x+y^{2}}{2 x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x^{2}+5 y x+y^{2}}{2 x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 \ln (4 x+y)}{3}+\frac{\ln (x+y)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{4 x+3 y}{2 x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{4 x+3 y}{(x+y)(4 x+y)} \\
S_{y} & =\frac{2 x+y}{(x+y)(4 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 \ln (4 x+y)}{3}+\frac{\ln (x+y)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{2 \ln (4 x+y)}{3}+\frac{\ln (x+y)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{4 x+3 y}{2 x+y}$		$\left.\begin{array}{c}d S \\ d R\end{array}\right]$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{2 \ln (4 x+y)}{3}+\frac{\ln (x+y)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot
Verification of solutions

$$
\frac{2 \ln (4 x+y)}{3}+\frac{\ln (x+y)}{3}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`

Solution by Maple

Time used: 0.125 (sec). Leaf size: 1228

```
dsolve(diff(y(x),x) = - (4*x+3*y(x))/(2*x+y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& =\frac{\left(-4 c_{1} x^{3}+\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}}\right)^{2}}{4\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}} c_{1}}-x^{3} \\
& x^{2} \\
& y(x)=\frac{-3 x^{3}\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1}+\left(c_{1} x^{3}+\sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{1}{3}}+4 x^{6} c_{1}^{2}}{\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1} x^{2}}
\end{aligned}
$$

$$
y(x)
$$

$$
=\frac{-3 x^{3}\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1}+\left(c_{1} x^{3}+\sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{1}{3}}+4 x^{6} c_{1}^{2}}{\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1} x^{2}}
$$

$$
y(x)=-\frac{\frac{\left(4 \sqrt{3} c_{1} x^{3}+\sqrt{3}\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}}+4 i c_{1} x^{3}-i\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}}\right)^{2}}{16\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}} c_{1}}+x^{3}}{x^{2}}
$$

$$
\frac{\left(4 \sqrt{3} c_{1} x^{3}+\sqrt{3}\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}}-4 i c_{1} x^{3}+i\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}}\right)^{2}}{16\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}} c_{1}}+x^{3}
$$

$$
y(x)=-\frac{16\left(4 c_{1} x^{3}+4 \sqrt{x^{6} c_{1}^{2}\left(4 c_{1} x^{3}+1\right)}\right)^{\frac{2}{3}} c_{1}}{x^{2}}
$$

$$
y(x)=
$$

$$
-\frac{2\left(\frac{3 x^{3}\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1}}{2}-\frac{\left(c_{1} x^{3}+\sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)(i \sqrt{3}-1)\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{1}{3}}}{4}+x^{6}(1+i \sqrt{3}) c_{1}^{2}\right)}{\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1} x^{2}}
$$

$y(x)$

$$
=\frac{-3 x^{3}\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1}-\frac{\left(c_{1} x^{3}+\sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)(1+i \sqrt{3})\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{1}{3}}}{2}+2 x^{6}(i \sqrt{3}-1)}{\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1} x^{2}}
$$

$$
y(x)=
$$

$$
-\frac{2\left(\frac{3 x^{3}\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1}}{2}-\frac{\left(c_{1} x^{3}+\sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)(i \sqrt{3}-1)\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{1}{3}}}{4}+x^{6}(1+i \sqrt{3}) c_{1}^{2}\right)}{853}
$$

$$
\left(4 c_{1} x^{3}+4 \sqrt{4 c_{1}^{3} x^{9}+x^{6} c_{1}^{2}}\right)^{\frac{2}{3}} c_{1} x^{2}
$$

Solution by Mathematica

Time used: 20.375 (sec). Leaf size: 484
DSolve[y'[x] == - $(4 * x+3 * y[x]) /(2 * x+y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{\sqrt[3]{2}}+\frac{\sqrt[3]{2} x^{2}}{\sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}-3 x \\
y(x) \rightarrow & \frac{i(\sqrt{3}+i) \sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{2 \sqrt[3]{2}} \\
& -\frac{(1+i \sqrt{3}) x^{2}}{2^{2 / 3} \sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}-3 x \\
y(x) \rightarrow & -\frac{(1+i \sqrt{3}) \sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}{2 \sqrt[3]{2}} \\
& +\frac{i(\sqrt{3}+i) x^{2}}{2^{2 / 3} \sqrt[3]{2 x^{3}+\sqrt{4 e^{3 c_{1}} x^{3}+e^{6 c_{1}}}+e^{3 c_{1}}}}-3 x \\
y(x) \rightarrow & \sqrt[3]{x^{3}}+\frac{\left(x^{3}\right)^{2 / 3}}{x}-3 x \\
y(x) \rightarrow & \frac{1}{2}\left(i(\sqrt{3}+i) \sqrt[3]{x^{3}}+\frac{(-1-i \sqrt{3})\left(x^{3}\right)^{2 / 3}}{x}-6 x\right) \\
y(x) \rightarrow & \frac{1}{2}\left((-1-i \sqrt{3}) \sqrt[3]{x^{3}}+\frac{i(\sqrt{3}+i)\left(x^{3}\right)^{2 / 3}}{x}-6 x\right)
\end{aligned}
$$

2.34 problem 35

2.34.1 Solving as homogeneousTypeD2 ode 855
2.34.2 Solving as first order ode lie symmetry calculated ode 857

Internal problem ID [512]
Internal file name [OUTPUT/512_Sunday_June_05_2022_01_42_48_AM_92797294/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{x+3 y}{x-y}=0
$$

2.34.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x+3 u(x) x}{x-u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{(u+1)^{2}}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{(u+1)^{2}}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u+1)^{2}}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u+1)^{2}}{u-1}} d u & =\int-\frac{1}{x} d x \\
\ln (u+1)+\frac{2}{u+1} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln (u(x)+1)+\frac{2}{u(x)+1}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \ln \left(1+\frac{y}{x}\right)+\frac{2}{1+\frac{y}{x}}+\ln (x)-c_{2}=0 \\
& \ln \left(\frac{x+y}{x}\right)+\frac{2 x}{x+y}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln \left(\frac{x+y}{x}\right)+\frac{2 x}{x+y}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 163: Slope field plot
Verification of solutions

$$
\ln \left(\frac{x+y}{x}\right)+\frac{2 x}{x+y}+\ln (x)-c_{2}=0
$$

Verified OK.

2.34.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{3 y+x}{-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(3 y+x)\left(b_{3}-a_{2}\right)}{-x+y}-\frac{(3 y+x)^{2} a_{3}}{(-x+y)^{2}} \\
& -\left(-\frac{1}{-x+y}-\frac{3 y+x}{(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3}{-x+y}+\frac{3 y+x}{(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+3 x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+6 x y a_{3}+2 x y b_{2}+2 x y b_{3}-3 y^{2} a_{2}+5 y^{2} a_{3}-y^{2} b_{2}+3 y^{2} b_{3}+4 x b_{1}-}{(x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-3 x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-6 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+3 y^{2} a_{2}-5 y^{2} a_{3}+y^{2} b_{2}-3 y^{2} b_{3}-4 x b_{1}+4 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+3 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-6 a_{3} v_{1} v_{2}-5 a_{3} v_{2}^{2}-3 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-3 b_{3} v_{2}^{2}+4 a_{1} v_{2}-4 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-3 b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-6 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-4 b_{1} v_{1}+\left(3 a_{2}-5 a_{3}+b_{2}-3 b_{3}\right) v_{2}^{2}+4 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
4 a_{1} & =0 \\
-4 b_{1} & =0 \\
-a_{2}-a_{3}-3 b_{2}+b_{3} & =0 \\
2 a_{2}-6 a_{3}-2 b_{2}-2 b_{3} & =0 \\
3 a_{2}-5 a_{3}+b_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-2 b_{2}+b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{3 y+x}{-x+y}\right)(x) \\
& =\frac{-x^{2}-2 y x-y^{2}}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-2 y x-y^{2}}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{2 x}{x+y}+\ln (x+y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{3 y+x}{-x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 y+x}{(x+y)^{2}} \\
S_{y} & =\frac{-x+y}{(x+y)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(x+y) \ln (x+y)+2 x}{x+y}=c_{1}
$$

Which simplifies to

$$
\frac{(x+y) \ln (x+y)+2 x}{x+y}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-2 x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{3 y+x}{-x+y}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
120.tam		
		$\rightarrow \rightarrow 2^{2}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$R=x$	$?$
	$S=\frac{(x+y) \ln (x+y)}{x}$	
	$S=\frac{}{x+y}$	$\rightarrow \rightarrow \rightarrow R^{n} \rightarrow \rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(-2 x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x \tag{1}
\end{equation*}
$$

Figure 164: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-2 x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x) = (x+3*y(x))/(x-y(x)),y(x), singsol=all)
```

$$
y(x)=-\frac{x\left(\operatorname{LambertW}\left(-2 c_{1} x\right)+2\right)}{\text { LambertW }\left(-2 c_{1} x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 33
DSolve $[y$ ' $[x]==(x+3 * y[x]) /(x-y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

Solve $\left[\frac{2}{\frac{y(x)}{x}+1}+\log \left(\frac{y(x)}{x}+1\right)=-\log (x)+c_{1}, y(x)\right]$

2.35 problem 36

2.35.1 Solving as homogeneousTypeD2 ode 865
2.35.2 Solving as first order ode lie symmetry calculated ode 867
2.35.3 Solving as riccati ode . 873

Internal problem ID [513]
Internal file name [OUTPUT/513_Sunday_June_05_2022_01_42_49_AM_6394563/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 36 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
3 y x+y^{2}-y^{\prime} x^{2}=-x^{2}
$$

2.35.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
3 u(x) x^{2}+u(x)^{2} x^{2}-\left(u^{\prime}(x) x+u(x)\right) x^{2}=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+2 u+1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}+2 u+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}+2 u+1} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}+2 u+1} d u & =\int \frac{1}{x} d x \\
-\frac{1}{u+1} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\frac{1}{u(x)+1}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
-\frac{1}{1+\frac{y}{x}}-\ln (x)-c_{2} & =0 \\
\frac{\left(-c_{2}-\ln (x)\right) y-x\left(c_{2}+\ln (x)+1\right)}{x+y} & =0
\end{aligned}
$$

Which simplifies to

$$
-\frac{\ln (x) y+c_{2} y+x \ln (x)+c_{2} x+x}{x+y}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x) y+c_{2} y+x \ln (x)+c_{2} x+x}{x+y}=0 \tag{1}
\end{equation*}
$$

Figure 165: Slope field plot
Verification of solutions

$$
-\frac{\ln (x) y+c_{2} y+x \ln (x)+c_{2} x+x}{x+y}=0
$$

Verified OK.

2.35.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}+3 y x+y^{2}}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2}+3 y x+y^{2}\right)\left(b_{3}-a_{2}\right)}{x^{2}}-\frac{\left(x^{2}+3 y x+y^{2}\right)^{2} a_{3}}{x^{4}} \\
& -\left(\frac{2 x+3 y}{x^{2}}-\frac{2\left(x^{2}+3 y x+y^{2}\right)}{x^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{(3 x+2 y)\left(x b_{2}+y b_{3}+b_{1}\right)}{x^{2}}=0
\end{align*}
$$

Putting the above in normal form gives
$-\frac{x^{4} a_{2}+x^{4} a_{3}+2 b_{2} x^{4}-x^{4} b_{3}+6 x^{3} y a_{3}+2 x^{3} y b_{2}-x^{2} y^{2} a_{2}+8 x^{2} y^{2} a_{3}+x^{2} y^{2} b_{3}+4 x y^{3} a_{3}+y^{4} a_{3}+3 x^{3} b_{1}-}{x^{4}}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{2}-x^{4} a_{3}-2 b_{2} x^{4}+x^{4} b_{3}-6 x^{3} y a_{3}-2 x^{3} y b_{2}+x^{2} y^{2} a_{2}-8 x^{2} y^{2} a_{3} \tag{6E}\\
& \quad-x^{2} y^{2} b_{3}-4 x y^{3} a_{3}-y^{4} a_{3}-3 x^{3} b_{1}+3 x^{2} y a_{1}-2 x^{2} y b_{1}+2 x y^{2} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{4}+a_{2} v_{1}^{2} v_{2}^{2}-a_{3} v_{1}^{4}-6 a_{3} v_{1}^{3} v_{2}-8 a_{3} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}-2 b_{2} v_{1}^{4} \tag{7E}\\
& \quad-2 b_{2} v_{1}^{3} v_{2}+b_{3} v_{1}^{4}-b_{3} v_{1}^{2} v_{2}^{2}+3 a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{1} v_{2}^{2}-3 b_{1} v_{1}^{3}-2 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-2 b_{2}+b_{3}\right) v_{1}^{4}+\left(-6 a_{3}-2 b_{2}\right) v_{1}^{3} v_{2}-3 b_{1} v_{1}^{3}+\left(a_{2}-8 a_{3}-b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(3 a_{1}-2 b_{1}\right) v_{1}^{2} v_{2}-4 a_{3} v_{1} v_{2}^{3}+2 a_{1} v_{1} v_{2}^{2}-a_{3} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-4 a_{3} & =0 \\
-a_{3} & =0 \\
-3 b_{1} & =0 \\
3 a_{1}-2 b_{1} & =0 \\
-6 a_{3}-2 b_{2} & =0 \\
a_{2}-8 a_{3}-b_{3} & =0 \\
-a_{2}-a_{3}-2 b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{2}+3 y x+y^{2}}{x^{2}}\right)(x) \\
& =\frac{-x^{2}-2 y x-y^{2}}{x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-2 y x-y^{2}}{x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x}{x+y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+3 y x+y^{2}}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{(x+y)^{2}} \\
S_{y} & =-\frac{x}{(x+y)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x}{x+y}=-\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{x}{x+y}=-\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{x\left(\ln (x)-c_{1}+1\right)}{\ln (x)-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+3 y x+y^{2}}{x^{2}}$		$\frac{d S}{d R}=-\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow \infty$－
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow \rightarrow \rightarrow-\infty$
	$R=x$	
	x	
	$S=\frac{x}{x+y}$	$\rightarrow \rightarrow \rightarrow \rightarrow-\infty \times 14+\cdots$
	$x+y$	－3刀口加
		\％

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\frac{x\left(\ln (x)-c_{1}+1\right)}{\ln (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 166: Slope field plot

Verification of solutions

$$
y=-\frac{x\left(\ln (x)-c_{1}+1\right)}{\ln (x)-c_{1}}
$$

Verified OK.

2.35.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+3 y x+y^{2}}{x^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=1+\frac{3 y}{x}+\frac{y^{2}}{x^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=1, f_{1}(x)=\frac{3}{x}$ and $f_{2}(x)=\frac{1}{x^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{2}{x^{3}} \\
f_{1} f_{2} & =\frac{3}{x^{3}} \\
f_{2}^{2} f_{0} & =\frac{1}{x^{4}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x^{2}}-\frac{u^{\prime}(x)}{x^{3}}+\frac{u(x)}{x^{4}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=x\left(c_{2} \ln (x)+c_{1}\right)
$$

The above shows that

$$
u^{\prime}(x)=c_{2} \ln (x)+c_{1}+c_{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{2} \ln (x)+c_{1}+c_{2}\right) x}{c_{2} \ln (x)+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\left(\ln (x)+c_{3}+1\right) x}{\ln (x)+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\ln (x)+c_{3}+1\right) x}{\ln (x)+c_{3}} \tag{1}
\end{equation*}
$$

Figure 167: Slope field plot

Verification of solutions

$$
y=-\frac{\left(\ln (x)+c_{3}+1\right) x}{\ln (x)+c_{3}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve((x^2+3*x*y(x)+y(x)^2)-x^2* diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{x\left(\ln (x)+c_{1}+1\right)}{\ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 28
DSolve[($\left.x^{\wedge} 2+3 * x * y[x]+y[x] \sim 2\right)-x^{\wedge} 2 * y^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x\left(\log (x)+1+c_{1}\right)}{\log (x)+c_{1}} \\
& y(x) \rightarrow-x
\end{aligned}
$$

2.36 problem 37

2.36.1 Solving as homogeneousTypeD2 ode 877
2.36.2 Solving as first order ode lie symmetry lookup ode 879
2.36.3 Solving as bernoulli ode . 883
2.36.4 Solving as exact ode . 886

Internal problem ID [514]
Internal file name [OUTPUT/514_Sunday_June_05_2022_01_42_50_AM_58581911/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
y^{\prime}-\frac{x^{2}-3 y^{2}}{2 y x}=0
$$

2.36.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2}-3 u(x)^{2} x^{2}}{2 u(x) x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u^{2}-1}{2 x u}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{5 u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{5 x^{2}-1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{5 u^{2}-1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln \left(5 u^{2}-1\right)}{10} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(5 u^{2}-1\right)^{\frac{1}{10}}=\mathrm{e}^{-\frac{\ln (x)}{2}+c_{2}}
$$

Which simplifies to

$$
\left(5 u^{2}-1\right)^{\frac{1}{10}}=\frac{c_{3}}{\sqrt{x}}
$$

Which simplifies to

$$
\left(5 u(x)^{2}-1\right)^{\frac{1}{10}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

The solution is

$$
\left(5 u(x)^{2}-1\right)^{\frac{1}{10}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{5 y^{2}}{x^{2}}-1\right)^{\frac{1}{10}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}} \\
\left(\frac{5 y^{2}-x^{2}}{x^{2}}\right)^{\frac{1}{10}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
\end{aligned}
$$

Which simplifies to

$$
\left(-\frac{-5 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{10}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(-\frac{-5 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{10}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot
Verification of solutions

$$
\left(-\frac{-5 y^{2}+x^{2}}{x^{2}}\right)^{\frac{1}{10}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{\sqrt{x}}
$$

Verified OK.

2.36.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{2}+3 y^{2}}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 178: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{3} y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{3} y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3} y^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{2}+3 y^{2}}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3 x^{2} y^{2}}{2} \\
S_{y} & =y x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{x^{4}}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{4}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{5}}{10}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{3} y^{2}}{2}=\frac{x^{5}}{10}+c_{1}
$$

Which simplifies to

$$
\frac{x^{3} y^{2}}{2}=\frac{x^{5}}{10}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x^{2}+3 y^{2}}{2 y x}$		$\frac{d S}{d R}=\frac{R^{4}}{2}$
	$R=x$	
	$S=\underline{x^{3} y^{2}}$	
$\operatorname{log~}_{\substack{ \\\rightarrow 0 \rightarrow 1}}$	$S=\frac{}{2}$	
$\rightarrow \rightarrow \rightarrow-\infty$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{3} y^{2}}{2}=\frac{x^{5}}{10}+c_{1} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot
Verification of solutions

$$
\frac{x^{3} y^{2}}{2}=\frac{x^{5}}{10}+c_{1}
$$

Verified OK.

2.36.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{-x^{2}+3 y^{2}}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{3}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{3}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{3 y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{3 w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =-\frac{3 w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{x} \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} w\right) & =\left(x^{3}\right)(x) \\
\mathrm{d}\left(x^{3} w\right) & =x^{4} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
x^{3} w & =\int x^{4} \mathrm{~d} x \\
x^{3} w & =\frac{x^{5}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
w(x)=\frac{x^{2}}{5}+\frac{c_{1}}{x^{3}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\frac{x^{2}}{5}+\frac{c_{1}}{x^{3}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}} \\
& y(x)=-\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}} \tag{1}\\
& y=-\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}} \tag{2}
\end{align*}
$$

Figure 170: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}}
$$

Verified OK.

$$
y=-\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}}
$$

Verified OK.

2.36.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y x) \mathrm{d} y & =\left(x^{2}-3 y^{2}\right) \mathrm{d} x \\
\left(-x^{2}+3 y^{2}\right) \mathrm{d} x+(2 y x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}+3 y^{2} \\
N(x, y) & =2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+3 y^{2}\right) \\
& =6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y x) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y x}((6 y)-(2 y)) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(-x^{2}+3 y^{2}\right) \\
& =-x^{2}\left(x^{2}-3 y^{2}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(2 y x) \\
& =2 y x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-x^{2}\left(x^{2}-3 y^{2}\right)\right)+\left(2 y x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}\left(x^{2}-3 y^{2}\right) \mathrm{d} x \\
\phi & =-\frac{1}{5} x^{5}+x^{3} y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y x^{3}=2 y x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{5} x^{5}+x^{3} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{5} x^{5}+x^{3} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{5}}{5}+x^{3} y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 171: Slope field plot

Verification of solutions

$$
-\frac{x^{5}}{5}+x^{3} y^{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 45
dsolve(diff $(y(x), x)=\left(x^{\wedge} 2-3 * y(x)^{\wedge} 2\right) /(2 * x * y(x)), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}} \\
& y(x)=\frac{\sqrt{5} \sqrt{x\left(x^{5}+5 c_{1}\right)}}{5 x^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 50
DSolve[y'[x] == (x^2-3*y[x]^2)/(2*x*y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{\frac{x^{5}}{5}+c_{1}}}{x^{3 / 2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{x^{5}}{5}+c_{1}}}{x^{3 / 2}}
\end{aligned}
$$

2.37 problem 38

2.37.1 Solving as homogeneousTypeD2 ode 892
2.37.2 Solving as first order ode lie symmetry lookup ode 894
2.37.3 Solving as bernoulli ode . 898
2.37.4 Solving as exact ode . 901

Internal problem ID [515]
Internal file name [OUTPUT/515_Sunday_June_05_2022_01_42_52_AM_69066053/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.2. Page 48
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
y^{\prime}-\frac{3 y^{2}-x^{2}}{2 y x}=0
$$

2.37.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{3 u(x)^{2} x^{2}-x^{2}}{2 u(x) x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}-1}{2 x u}
\end{aligned}
$$

Where $f(x)=\frac{1}{2 x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int \frac{1}{2 x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =\frac{\ln (x)}{2}+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(\frac{\ln (x)}{2}+2 c_{2}\right) \\
& =\ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{\ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =2 c_{2} x \\
& =c_{3} x
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=c_{3} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=c_{3} x \\
& \frac{y^{2}}{x^{2}}-1=c_{3} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}-1=c_{3} x \tag{1}
\end{equation*}
$$

Figure 172: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{x^{2}}-1=c_{3} x
$$

Verified OK.

2.37.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-x^{2}+3 y^{2}}{2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 180: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x^{3}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{3}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-x^{2}+3 y^{2}}{2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{2}}{2 x^{4}} \\
S_{y} & =\frac{y}{x^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x^{3}}=\frac{1}{2 x}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x^{3}}=\frac{1}{2 x}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-x^{2}+3 y^{2}}{2 y x}$		$\frac{d S}{d R}=-\frac{1}{2 R^{2}}$
		-
		\rightarrow STR ${ }_{\text {d }}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=x$	
x^{4}		
$\dot{L}_{\text {L }}$	$S=\frac{y^{2}}{2 x^{3}}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		\rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x^{3}}=\frac{1}{2 x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 173: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x^{3}}=\frac{1}{2 x}+c_{1}
$$

Verified OK.

2.37.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-x^{2}+3 y^{2}}{2 y x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{3}{2 x} y-\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{3}{2 x} \\
f_{1}(x) & =-\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{3 y^{2}}{2 x}-\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{3 w(x)}{2 x}-\frac{x}{2} \\
w^{\prime} & =\frac{3 w}{x}-x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=-x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{3 w(x)}{x}=-x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)(-x) \\
\mathrm{d}\left(\frac{w}{x^{3}}\right) & =\left(-\frac{1}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{w}{x^{3}} & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\frac{w}{x^{3}} & =\frac{1}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
w(x)=c_{1} x^{3}+x^{2}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=c_{1} x^{3}+x^{2}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{c_{1} x+1} x \\
& y(x)=-\sqrt{c_{1} x+1} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{c_{1} x+1} x \tag{1}\\
& y=-\sqrt{c_{1} x+1} x \tag{2}
\end{align*}
$$

Figure 174: Slope field plot
Verification of solutions

$$
y=\sqrt{c_{1} x+1} x
$$

Verified OK.

$$
y=-\sqrt{c_{1} x+1} x
$$

Verified OK.

2.37.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y x) \mathrm{d} y & =\left(-x^{2}+3 y^{2}\right) \mathrm{d} x \\
\left(x^{2}-3 y^{2}\right) \mathrm{d} x+(2 y x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}-3 y^{2} \\
N(x, y) & =2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}-3 y^{2}\right) \\
& =-6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y x) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y x}((-6 y)-(2 y)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(x^{2}-3 y^{2}\right) \\
& =\frac{x^{2}-3 y^{2}}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}(2 y x) \\
& =\frac{2 y}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}-3 y^{2}}{x^{4}}\right)+\left(\frac{2 y}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}-3 y^{2}}{x^{4}} \mathrm{~d} x \\
\phi & =-\frac{1}{x}+\frac{y^{2}}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y}{x^{3}}=\frac{2 y}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{x}+\frac{y^{2}}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{x}+\frac{y^{2}}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{x}+\frac{y^{2}}{x^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 175: Slope field plot
Verification of solutions

$$
-\frac{1}{x}+\frac{y^{2}}{x^{3}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff (y (x),x) = (3*y(x)^2-x^2)/(2*x*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{c_{1} x+1} x \\
& y(x)=-\sqrt{c_{1} x+1} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 34
DSolve[y'[x] == $\left(3 * y[x] \sim 2-x^{\wedge} 2\right) /(2 * x * y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x \sqrt{1+c_{1} x} \\
& y(x) \rightarrow x \sqrt{1+c_{1} x}
\end{aligned}
$$

3 Section 2.4. Page 76
3.1 problem 1 908
3.2 problem 2 922
3.3 problem 3 937
3.4 problem 4 950
3.5 problem 5 964
3.6 problem 6 978
3.7 problem 11 991
3.8 problem 12 1011
3.9 problem 13 1023
3.10 problem 14 1038
3.11 problem 15 1052
3.12 problem 16 1055
3.13 problem 17 1067
3.14 problem 18 1085
3.15 problem 19 1096
3.16 problem 20 1107

3.1 problem 1

3.1.1 Solving as linear ode . 908
3.1.2 Solving as first order ode lie symmetry lookup ode 910
3.1.3 Solving as exact ode . 914
3.1.4 Maple step by step solution . 919

Internal problem ID [516]
Internal file name [OUTPUT/516_Sunday_June_05_2022_01_42_53_AM_57257413/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\ln (t) y+(t-3) y^{\prime}=2 t
$$

3.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{\ln (t)}{t-3} \\
& q(t)=\frac{2 t}{t-3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{\ln (t) y}{t-3}=\frac{2 t}{t-3}
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{2 t}{t-3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\int \frac{\ln (t)}{t-3} d t} y\right) & =\left(\mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}\right)\left(\frac{2 t}{t-3}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int \frac{\ln (t)}{t-3} d t} y\right) & =\left(\frac{2 t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t} y=\int \frac{2 t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} \mathrm{~d} t \\
& \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t} y=\int \frac{2 t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}$ results in

$$
y=\mathrm{e}^{-\left(\int \frac{\ln (t)}{t-3} d t\right)}\left(\int \frac{2 t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t\right)+c_{1} \mathrm{e}^{-\left(\int \frac{\ln (t)}{t-3} d t\right)}
$$

which simplifies to

$$
y=\mathrm{e}^{-\left(\int \frac{\ln (t)}{t-3} d t\right)}\left(2\left(\int \frac{t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t\right)+c_{1}\right)
$$

Which can be simplified to become

$$
y=\mathrm{e}^{\int-\frac{\ln (t)}{t-3} d t}\left(2\left(\int \frac{t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\int-\frac{\ln (t)}{t-3} d t}\left(2\left(\int \frac{t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\int-\frac{\ln (t)}{t-3} d t}\left(2\left(\int \frac{t \mathrm{e}^{\int \frac{\ln (t)}{t-3} d t}}{t-3} d t\right)+c_{1}\right)
$$

Verified OK.

3.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\ln (t) y-2 t}{t-3} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 182: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\left(\ln (t)-\ln \left(\frac{t}{3}\right)\right) \ln \left(-\frac{t}{3}+1\right)+\operatorname{dilog}\left(\frac{t}{3}\right)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\left(\ln (t)-\ln \left(\frac{t}{3}\right)\right) \ln \left(-\frac{t}{3}+1\right)+\operatorname{dilog}\left(\frac{t}{3}\right)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\ln \left(\frac{1}{3}\right) \ln \left(-\frac{t}{3}+1\right)-\operatorname{dilog}\left(\frac{t}{3}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{\ln (t) y-2 t}{t-3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-(-t+3)^{-1+\ln (3)} y \ln (t) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)} \\
S_{y} & =(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{R}{3}\right)}(-R+3)^{-1+\ln (3)} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{R}{3}\right)}(-R+3)^{-1+\ln (3)} R d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}=\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t+c_{1}
$$

Which simplifies to

$$
y(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}=\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t+c_{1}
$$

Which gives

$$
y=\left(\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t+c_{1}\right)(-t+3)^{-\ln (3)} \mathrm{e}^{\ln (3)^{2}+\operatorname{dilog}\left(\frac{t}{3}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t+c_{1}\right)(-t+3)^{-\ln (3)} \mathrm{e}^{\ln (3)^{2}+\operatorname{dilog}\left(\frac{t}{3}\right)} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot

Verification of solutions

$$
y=\left(\int-2 \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t+c_{1}\right)(-t+3)^{-\ln (3)} \mathrm{e}^{\ln (3)^{2}+\operatorname{dilog}\left(\frac{t}{3}\right)}
$$

Verified OK.

3.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t-3) \mathrm{d} y & =(-\ln (t) y+2 t) \mathrm{d} t \\
(\ln (t) y-2 t) \mathrm{d} t+(t-3) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =\ln (t) y-2 t \\
N(t, y) & =t-3
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\ln (t) y-2 t) \\
& =\ln (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t-3) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t-3}((\ln (t))-(1)) \\
& =\frac{\ln (t)-1}{t-3}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{\ln (t)-1}{t-3} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\left(\ln (t)-\ln \left(\frac{t}{3}\right)\right) \ln \left(-\frac{t}{3}+1\right)-\operatorname{dilog}\left(\frac{t}{3}\right)-\ln (t-3)} \\
& =-(-t+3)^{-1+\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =-(-t+3)^{-1+\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(\ln (t) y-2 t) \\
& =(-t+3)^{-1+\ln (3)}(-\ln (t) y+2 t) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =-(-t+3)^{-1+\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(t-3) \\
& =(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left((-t+3)^{-1+\ln (3)}(-\ln (t) y+2 t) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right)+\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(-t+3)^{-1+\ln (3)}(-\ln (t) y+2 t) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)} \mathrm{d} t \\
\phi & =\int^{t}\left(-_a+3\right)^{-1+\ln (3)}\left(-\ln \left(_a\right) y+2 _a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a+f(y)(3) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\left(\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-}{3}\right)} d _a\right)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}$. Therefore equation (4) becomes

$$
\begin{align*}
(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}= & -\left(\int ^ { t } \left(-_a\right.\right. \tag{5}\\
& \left.+3)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a\right)+f^{\prime}(y)
\end{align*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives
$f^{\prime}(y)=(-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-}{3}\right)} d _a$

Integrating the above w.r.t y gives

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y=\int\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \\
&\left.\quad+\int^{t}(-\quad-a+3)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a\right) \mathrm{d} y \\
& f(y)=\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \\
&\left.+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a\right) y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int^{t}\left(-_a+3\right)^{-1+\ln (3)}\left(-\ln \left(_a\right) y+2 _a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a \\
& +\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \\
& \left.+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a\right) y+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{t}\left(-_a+3\right)^{-1+\ln (3)}\left(-\ln \left(_a\right) y+2 _a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{\left.-\frac{-}{3}^{a}\right)}{} d _a\right.} \\
& +\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \\
& \left.+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{\overline{-}_{3}^{3}}{}\right.} d _a\right) y
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& \int^{t}\left(-_a+3\right)^{-1+\ln (3)}\left(-\ln \left(_a\right) y+2 _a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a \\
& +\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \tag{1}\\
& \left.+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-a}{3}\right)} d _a\right) y=c_{1}
\end{align*}
$$

Figure 178: Slope field plot

Verification of solutions

$$
\begin{aligned}
& \int^{t}\left(-_a+3\right)^{-1+\ln (3)}\left(-\ln \left(_a\right) y+2 _a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{-}{3}\right)} d _a \\
& +\left((-t+3)^{\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}\right. \\
& \left.+\int^{t}\left(-_a+3\right)^{-1+\ln (3)} \ln \left(_a\right) \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{a}{3}\right)} d _a\right) y=c_{1}
\end{aligned}
$$

Verified OK.

3.1.4 Maple step by step solution

Let's solve

$$
\ln (t) y+(t-3) y^{\prime}=2 t
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Isolate the derivative
$y^{\prime}=-\frac{\ln (t) y}{t-3}+\frac{2 t}{t-3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{\ln (t) y}{t-3}=\frac{2 t}{t-3}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{\ln (t) y}{t-3}\right)=\frac{2 \mu(t) t}{t-3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{\ln (t) y}{t-3}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t) \ln (t)}{t-3}$
- Solve to find the integrating factor
$\mu(t)=3^{\ln (-t+3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{2 \mu(t) t}{t-3} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{2 \mu(t) t}{t-3} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(t) t}{t-3} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=3^{\ln (-t+3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}$

- Simplify
$y=\left(-2\left(\int \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-1+\ln (3)} t d t\right)+c_{1}\right)(-t+3)^{-\ln (3)} \mathrm{e}^{\ln (3)^{2}+\operatorname{dilog}\left(\frac{t}{3}\right)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 57

```
dsolve(ln}(t)*y(t)+(-3+t)*\operatorname{diff}(\textrm{y}(\textrm{t}),\textrm{t})=2*t,y(t), singsol=all
```

$$
y(t)=\mathrm{e}^{\ln (3)^{2}+\operatorname{dilog}\left(\frac{t}{3}\right)}(-t+3)^{-\ln (3)}\left(-2\left(\int t(-t+3)^{-1+\ln (3)} \mathrm{e}^{-\ln (3)^{2}-\operatorname{dilog}\left(\frac{t}{3}\right)} d t\right)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 69
DSolve[Log[t]*y[t]+(-3+t)*y'[t] ==2*t,y[t],t,IncludeSingularSolutions \rightarrow True]
$y(t) \rightarrow e^{\operatorname{PolyLog}\left(2,1-\frac{t}{3}\right)-\log (3) \log (t-3)}\left(\int_{1}^{t} \frac{2 e^{\log (3) \log (K[1]-3)-\operatorname{PolyLog}\left(2,1-\frac{K[1]}{3}\right)} K[1]}{K[1]-3} d K[1]+c_{1}\right)$

3.2 problem 2

3.2.1 Existence and uniqueness analysis 923
3.2.2 Solving as separable ode . 923
3.2.3 Solving as linear ode . 924
3.2.4 Solving as homogeneousTypeD2 ode 926
3.2.5 Solving as first order ode lie symmetry lookup ode 927
3.2.6 Solving as exact ode . 931
3.2.7 Maple step by step solution . 935

Internal problem ID [517]
Internal file name [OUTPUT/517_Sunday_June_05_2022_01_42_55_AM_26177264/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y+(t-4) t y^{\prime}=0
$$

With initial conditions

$$
[y(2)=1]
$$

3.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{(t-4) t} \\
& q(t)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{(t-4) t}=0
$$

The domain of $p(t)=\frac{1}{(t-4) t}$ is

$$
\{-\infty \leq t<0,0<t<4,4<t \leq \infty\}
$$

And the point $t_{0}=2$ is inside this domain. Hence solution exists and is unique.

3.2.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{y}{(t-4) t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{(t-4) t}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{1}{(t-4) t} d t \\
\int \frac{1}{y} d y & =\int-\frac{1}{(t-4) t} d t \\
\ln (y) & =-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+c_{1} \\
y & =\mathrm{e}^{-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+c_{1}} \\
& =c_{1} \mathrm{e}^{-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}}
\end{aligned}
$$

Which can be simplified to become

$$
y=\frac{c_{1} t^{\frac{1}{4}}}{(t-4)^{\frac{1}{4}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{\sqrt{2} c_{1}}{2}-\frac{i \sqrt{2} c_{1}}{2} \\
& c_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Verified OK.

3.2.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{(t-4) t} d t} \\
& =\mathrm{e}^{\frac{\ln (t-4)}{4}-\frac{\ln (t)}{4}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\frac{(t-4)^{\frac{1}{4}}}{t^{\frac{1}{4}}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{(t-4)^{\frac{1}{4}} y}{t^{\frac{1}{4}}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{(t-4)^{\frac{1}{4}} y}{t^{\frac{1}{4}}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{(t-4)^{\frac{1}{4}}}{t^{\frac{1}{4}}}$ results in

$$
y=\frac{c_{1} t^{\frac{1}{4}}}{(t-4)^{\frac{1}{4}}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{\sqrt{2} c_{1}}{2}-\frac{i \sqrt{2} c_{1}}{2} \\
& c_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Verified OK.

3.2.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u(t) t+(t-4) t\left(u^{\prime}(t) t+u(t)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u(t-3)}{t(t-4)}
\end{aligned}
$$

Where $f(t)=-\frac{t-3}{(t-4) t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{t-3}{(t-4) t} d t \\
\int \frac{1}{u} d u & =\int-\frac{t-3}{(t-4) t} d t \\
\ln (u) & =-\frac{\ln (t-4)}{4}-\frac{3 \ln (t)}{4}+c_{2} \\
u & =\mathrm{e}^{-\frac{\ln (t-4)}{4}-\frac{3 \ln (t)}{4}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\frac{\ln (t-4)}{4}-\frac{3 \ln (t)}{4}}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2}}{(t-4)^{\frac{1}{4}} t^{\frac{3}{4}}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u t \\
& =\frac{t^{\frac{1}{4}} c_{2}}{(t-4)^{\frac{1}{4}}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{\sqrt{2} c_{2}}{2}-\frac{i \sqrt{2} c_{2}}{2} \\
c_{2}=\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Verified OK.

3.2.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{(t-4) t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 185: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\ln \left((t-4)^{\frac{1}{4}}\right)+\ln \left(\frac{1}{t^{\frac{1}{4}}}\right)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y}{(t-4) t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{y}{(t-4)^{\frac{3}{4}} t^{\frac{5}{4}}} \\
S_{y} & =\frac{(t-4)^{\frac{1}{4}}}{t^{\frac{1}{4}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{(t-4)^{\frac{1}{4}} y}{t^{\frac{1}{4}}}=c_{1}
$$

Which simplifies to

$$
\frac{(t-4)^{\frac{1}{4}} y}{t^{\frac{1}{4}}}=c_{1}
$$

Which gives

$$
y=\frac{c_{1} t^{\frac{1}{4}}}{(t-4)^{\frac{1}{4}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y}{(t-4) t}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\text { a }}$,
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow 0}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$S=\underline{(t-4)^{\frac{1}{4}} y}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm 1]{ }$		
$\rightarrow \rightarrow \rightarrow \infty$ -		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $t=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{\sqrt{2} c_{1}}{2}-\frac{i \sqrt{2} c_{1}}{2} \\
& c_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Verified OK.

3.2.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{(t-4) t}\right) \mathrm{d} t \\
\left(-\frac{1}{(t-4) t}\right) \mathrm{d} t+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{1}{(t-4) t} \\
& N(t, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{(t-4) t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{(t-4) t} \mathrm{~d} t \\
\phi & =-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}-c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{\sqrt{2} \mathrm{e}^{-c_{1}}}{2}-\frac{i \sqrt{2} \mathrm{e}^{-c_{1}}}{2} \\
c_{1}=-\frac{i \pi}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t^{\frac{1}{4}}+i \sqrt{2} t^{\frac{1}{4}}}{2(t-4)^{\frac{1}{4}}}
$$

Verified OK.

3.2.7 Maple step by step solution

Let's solve

$$
\left[y+(t-4) t y^{\prime}=0, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=-\frac{1}{(t-4) t}$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y} d t=\int-\frac{1}{(t-4) t} d t+c_{1}
$$

- Evaluate integral
$\ln (y)=-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+c_{1}$
- Use initial condition $y(2)=1$
$0=-\frac{\mathrm{I} \pi}{4}+c_{1}$
- \quad Solve for c_{1}

$$
c_{1}=\frac{\mathrm{I}}{4} \pi
$$

- \quad Substitute $c_{1}=\frac{1}{4} \pi$ into general solution and simplify
$\ln (y)=-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+\frac{\mathrm{I} \pi}{4}$
- Solution to the IVP
$\ln (y)=-\frac{\ln (t-4)}{4}+\frac{\ln (t)}{4}+\frac{\mathrm{I} \pi}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19
dsolve([y(t)+(-4+t)*t*diff(y(t),t)=0,y(2)=1],y(t), singsol=all)

$$
y(t)=\frac{\left(\frac{1}{2}+\frac{i}{2}\right) \sqrt{2} t^{\frac{1}{4}}}{(-4+t)^{\frac{1}{4}}}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 20
DSolve[\{y[t]+(-4+t)*t*y'[t] == $0, \mathrm{y}[2]==1\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\sqrt[4]{t}}{\sqrt[4]{4-t}}
$$

3.3 problem 3

3.3.1 Existence and uniqueness analysis 937
3.3.2 Solving as linear ode . 938
3.3.3 Solving as first order ode lie symmetry lookup ode 939
3.3.4 Solving as exact ode . 943
3.3.5 Maple step by step solution . 947

Internal problem ID [518]
Internal file name [OUTPUT/518_Sunday_June_05_2022_01_42_55_AM_79033667/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
\tan (t) y+y^{\prime}=\sin (t)
$$

With initial conditions

$$
[y(\pi)=0]
$$

3.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\tan (t) \\
q(t) & =\sin (t)
\end{aligned}
$$

Hence the ode is

$$
\tan (t) y+y^{\prime}=\sin (t)
$$

The domain of $p(t)=\tan (t)$ is

$$
\left\{t<\frac{1}{2} \pi+\pi _Z 8 \vee \frac{1}{2} \pi+\pi _Z 8<t\right\}
$$

And the point $t_{0}=\pi$ is inside this domain. The domain of $q(t)=\sin (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

3.3.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (t) d t} \\
& =\frac{1}{\cos (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (t)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\sin (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(\sec (t) y) & =(\sec (t))(\sin (t)) \\
\mathrm{d}(\sec (t) y) & =\tan (t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (t) y=\int \tan (t) \mathrm{d} t \\
& \sec (t) y=-\ln (\cos (t))+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (t)$ results in

$$
y=-\cos (t) \ln (\cos (t))+c_{1} \cos (t)
$$

which simplifies to

$$
y=\cos (t)\left(-\ln (\cos (t))+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=i \pi-c_{1} \\
c_{1}=i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=i \cos (t) \pi-\cos (t) \ln (\cos (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \cos (t) \pi-\cos (t) \ln (\cos (t)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \cos (t) \pi-\cos (t) \ln (\cos (t))
$$

Verified OK.

3.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\tan (t) y+\sin (t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 188: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\cos (t) \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\cos (t)} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\cos (t)}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\tan (t) y+\sin (t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\sec (t) \tan (t) y \\
S_{y} & =\sec (t)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\tan (t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\sec (t) y=-\ln (\cos (t))+c_{1}
$$

Which simplifies to

$$
\sec (t) y=-\ln (\cos (t))+c_{1}
$$

Which gives

$$
y=-\frac{\ln (\cos (t))-c_{1}}{\sec (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\tan (t) y+\sin (t)$		$\frac{d S}{d R}=\tan (R)$
何为		
	$R=t$	
	$S=\sec (t) y$	

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=i \pi-c_{1}
$$

$$
c_{1}=i \pi
$$

Substituting c_{1} found above in the general solution gives

$$
y=i \cos (t) \pi-\cos (t) \ln (\cos (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \cos (t) \pi-\cos (t) \ln (\cos (t)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \cos (t) \pi-\cos (t) \ln (\cos (t))
$$

Verified OK.

3.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-\tan (t) y+\sin (t)) \mathrm{d} t \\
(\tan (t) y-\sin (t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=\tan (t) y-\sin (t) \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\tan (t) y-\sin (t)) \\
& =\tan (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((\tan (t))-(0)) \\
& =\tan (t)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \tan (t) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (\cos (t))} \\
& =\sec (t)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sec (t)(\tan (t) y-\sin (t)) \\
& =\tan (t)(\sec (t) y-1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sec (t)(1) \\
& =\sec (t)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
(\tan (t)(\sec (t) y-1))+(\sec (t)) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
\frac{\partial \phi}{\partial t} & =\bar{M} \tag{1}\\
\frac{\partial \phi}{\partial y} & =\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \tan (t)(\sec (t) y-1) \mathrm{d} t \\
\phi & =\sec (t) y-\ln (\sec (t))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sec (t)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sec (t)$. Therefore equation (4) becomes

$$
\begin{equation*}
\sec (t)=\sec (t)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\sec (t) y-\ln (\sec (t))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\sec (t) y-\ln (\sec (t))
$$

The solution becomes

$$
y=\frac{\ln (\sec (t))+c_{1}}{\sec (t)}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=\pi$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-i \pi-c_{1} \\
c_{1}=-i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-i \cos (t) \pi+\ln (\sec (t)) \cos (t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-i \cos (t) \pi+\ln (\sec (t)) \cos (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-i \cos (t) \pi+\ln (\sec (t)) \cos (t)
$$

Verified OK.

3.3.5 Maple step by step solution

Let's solve

$$
\left[\tan (t) y+y^{\prime}=\sin (t), y(\pi)=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative
$y^{\prime}=-\tan (t) y+\sin (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $\tan (t) y+y^{\prime}=\sin (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(\tan (t) y+y^{\prime}\right)=\mu(t) \sin (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(\tan (t) y+y^{\prime}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t) \tan (t)$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{\cos (t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \sin (t) d t+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(t) y=\int \mu(t) \sin (t) d t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int \mu(t) \sin (t) d t+c_{1}}{\mu(t)}
$$

- \quad Substitute $\mu(t)=\frac{1}{\cos (t)}$

$$
y=\cos (t)\left(\int \frac{\sin (t)}{\cos (t)} d t+c_{1}\right)
$$

- Evaluate the integrals on the rhs

$$
y=\cos (t)\left(-\ln (\cos (t))+c_{1}\right)
$$

- Use initial condition $y(\pi)=0$
$0=\mathrm{I} \pi-c_{1}$
- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- \quad Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify
$y=(-\ln (\cos (t))+\mathrm{I} \pi) \cos (t)$
- Solution to the IVP
$y=(-\ln (\cos (t))+\mathrm{I} \pi) \cos (t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([tan(t)*y(t)+diff(y(t),t) = sin(t),y(Pi) = 0],y(t), singsol=all)
```

$$
y(t)=(-\ln (\cos (t))+i \pi) \cos (t)
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 20
DSolve[\{Tan $[\mathrm{t}] * \mathrm{y}[\mathrm{t}]+\mathrm{y}$ ' $[\mathrm{t}]=\operatorname{Sin}[\mathrm{t}], \mathrm{y}[\mathrm{Pi}]==0\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow i \cos (t)(\pi+i \log (\cos (t)))
$$

3.4 problem 4

3.4.1 Existence and uniqueness analysis 950
3.4.2 Solving as linear ode . 951
3.4.3 Solving as first order ode lie symmetry lookup ode 952
3.4.4 Solving as exact ode . 956
3.4.5 Maple step by step solution . 961

Internal problem ID [519]
Internal file name [OUTPUT/519_Sunday_June_05_2022_01_42_56_AM_17528492/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y t+\left(-t^{2}+4\right) y^{\prime}=3 t^{2}
$$

With initial conditions

$$
[y(-3)=1]
$$

3.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2 t}{t^{2}-4} \\
& q(t)=-\frac{3 t^{2}}{t^{2}-4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 t y}{t^{2}-4}=-\frac{3 t^{2}}{t^{2}-4}
$$

The domain of $p(t)=-\frac{2 t}{t^{2}-4}$ is

$$
\{-\infty \leq t<-2,-2<t<2,2<t \leq \infty\}
$$

And the point $t_{0}=-3$ is inside this domain. The domain of $q(t)=-\frac{3 t^{2}}{t^{2}-4}$ is

$$
\{-\infty \leq t<-2,-2<t<2,2<t \leq \infty\}
$$

And the point $t_{0}=-3$ is also inside this domain. Hence solution exists and is unique.

3.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 t}{t^{2}-4} d t} \\
& =\frac{1}{t^{2}-4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(-\frac{3 t^{2}}{t^{2}-4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}-4}\right) & =\left(\frac{1}{t^{2}-4}\right)\left(-\frac{3 t^{2}}{t^{2}-4}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}-4}\right) & =\left(-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}-4} & =\int-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}} \mathrm{~d} t \\
\frac{y}{t^{2}-4} & =\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}-4}$ results in

$$
y=\left(t^{2}-4\right)\left(\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}\right)+c_{1}\left(t^{2}-4\right)
$$

which simplifies to

$$
y=\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+c_{1} t^{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-4 c_{1}+\frac{3 \ln (t-2)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-3$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{9}{2}+5 c_{1}-\frac{15 \ln (5)}{8} \\
c_{1}=\frac{11}{10}+\frac{3 \ln (5)}{8}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t(-3 t+2 y)}{t^{2}-4} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 191: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2}-4 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}-4} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}-4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t(-3 t+2 y)}{t^{2}-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y t}{\left(t^{2}-4\right)^{2}} \\
S_{y} & =\frac{1}{t^{2}-4}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3 R^{2}}{\left(R^{2}-4\right)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3}{4(R-2)}-\frac{3 \ln (R-2)}{8}+\frac{3}{4(R+2)}+\frac{3 \ln (R+2)}{8}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}-4}=\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}-4}=\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
$$

Which gives

$$
y=-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 \ln (2+t) t^{2}}{8}+c_{1} t^{2}+\frac{3 \ln (t-2)}{2}-\frac{3 \ln (2+t)}{2}-4 c_{1}+\frac{3 t}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t(-3 t+2 y)}{t^{2}-4}$		$\frac{d S}{d R}=-\frac{3 R^{2}}{\left(R^{2}-4\right)^{2}}$
		$\cdots 1$
		$\rightarrow \rightarrow 1$.
		$\cdots{ }^{1}$
${ }_{\text {d }}$	$R=t$	\therefore ¢
	y	
	$S=\frac{}{t^{2}-4}$	
		-
-		
$!$		

Initial conditions are used to solve for c_{1}. Substituting $t=-3$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{9}{2}+5 c_{1}-\frac{15 \ln (5)}{8} \\
c_{1}=\frac{11}{10}+\frac{3 \ln (5)}{8}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-t^{2}+4\right) \mathrm{d} y & =\left(3 t^{2}-2 t y\right) \mathrm{d} t \\
\left(-3 t^{2}+2 t y\right) \mathrm{d} t+\left(-t^{2}+4\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 t^{2}+2 t y \\
N(t, y) & =-t^{2}+4
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}+2 t y\right) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-t^{2}+4\right) \\
& =-2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =-\frac{1}{t^{2}-4}((2 t)-(-2 t)) \\
& =-\frac{4 t}{t^{2}-4}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{4 t}{t^{2}-4} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln \left(t^{2}-4\right)} \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}\left(-3 t^{2}+2 t y\right) \\
& =\frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}\left(-t^{2}+4\right) \\
& =-\frac{1}{t^{2}-4}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}}\right)+\left(-\frac{1}{t^{2}-4}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}} \mathrm{~d} t \\
\phi & =-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{1}{4 t-8}+\frac{1}{8+4 t}+f^{\prime}(y) \tag{4}\\
& =-\frac{1}{t^{2}-4}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{t^{2}-4}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{t^{2}-4}=-\frac{1}{t^{2}-4}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}
$$

The solution becomes

$$
y=-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 \ln (2+t) t^{2}}{8}-c_{1} t^{2}+\frac{3 \ln (t-2)}{2}-\frac{3 \ln (2+t)}{2}+4 c_{1}+\frac{3 t}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-3$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{15 \ln (5)}{8}-\frac{9}{2}-5 c_{1} \\
c_{1}=-\frac{11}{10}-\frac{3 \ln (5)}{8}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}+\frac{11 t^{2}}{10}+\frac{3 t^{2} \ln (5)}{8} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{22}{5}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.4.5 Maple step by step solution

Let's solve

$$
\left[2 y t+\left(-t^{2}+4\right) y^{\prime}=3 t^{2}, y(-3)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 t y}{t^{2}-4}-\frac{3 t^{2}}{t^{2}-4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 t y}{t^{2}-4}=-\frac{3 t^{2}}{t^{2}-4}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}-4}\right)=-\frac{3 \mu(t) t^{2}}{t^{2}-4}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}-4}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t) t}{t^{2}-4}$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{(t-2)(2+t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{(t-2)(2+t)}$
$y=(t-2)(2+t)\left(\int-\frac{3 t^{2}}{(t-2)(2+t)\left(t^{2}-4\right)} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=(t-2)(2+t)\left(\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}\right)$
- Simplify

$$
y=\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+c_{1} t^{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-4 c_{1}+\frac{3 \ln (t-2)}{2}
$$

- Use initial condition $y(-3)=1$
$1=-\frac{9}{2}+5 c_{1}-\frac{15 \ln (5)}{8}$
- \quad Solve for c_{1}
$c_{1}=\frac{11}{10}+\frac{3 \ln (5)}{8}$
- Substitute $c_{1}=\frac{11}{10}+\frac{3 \ln (5)}{8}$ into general solution and simplify
$y=-\frac{22}{5}+\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+\frac{(44+15 \ln (5)) t^{2}}{40}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}$
- \quad Solution to the IVP
$y=-\frac{22}{5}+\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+\frac{(44+15 \ln (5)) t^{2}}{40}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-\frac{3 \ln (5)}{2}+\frac{3 \ln (t-2)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 42

```
dsolve([2*t*y(t)+(-t^2+4)*diff (y(t),t) = 3*t^2,y(-3) = 1],y(t), singsol=all)
```

$$
\begin{aligned}
y(t)= & \frac{3 t}{2}+\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 \ln (t-2) t^{2}}{8} \\
& +\frac{3 \ln (t-2)}{2}+\frac{11 t^{2}}{10}-\frac{22}{5}+\frac{3 \ln (5) t^{2}}{8}-\frac{3 \ln (5)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 67
DSolve $\left[\left\{2 * \mathrm{t} * \mathrm{y}[\mathrm{t}]+(-\mathrm{t} \wedge 2+4) * \mathrm{y}^{\prime}[\mathrm{t}]==3 * \mathrm{t} \wedge 2, \mathrm{y}[-3]==1\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]
$y(t) \rightarrow \frac{1}{40}\left(-15 i \pi t^{2}+44 t^{2}+15 t^{2} \log (5)-15\left(t^{2}-4\right) \log (2-t)+15\left(t^{2}-4\right) \log (t+2)\right.$
$+60 t+60 i \pi-176-60 \log (5))$ $+60 t+60 i \pi-176-60 \log (5))$

3.5 problem 5

3.5.1 Existence and uniqueness analysis 964
3.5.2 Solving as linear ode . 965
3.5.3 Solving as first order ode lie symmetry lookup ode 966
3.5.4 Solving as exact ode . 970
3.5.5 Maple step by step solution . 975

Internal problem ID [520]
Internal file name [OUTPUT/520_Sunday_June_05_2022_01_42_58_AM_84257707/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y t+\left(-t^{2}+4\right) y^{\prime}=3 t^{2}
$$

With initial conditions

$$
[y(1)=-3]
$$

3.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2 t}{t^{2}-4} \\
& q(t)=-\frac{3 t^{2}}{t^{2}-4}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 t y}{t^{2}-4}=-\frac{3 t^{2}}{t^{2}-4}
$$

The domain of $p(t)=-\frac{2 t}{t^{2}-4}$ is

$$
\{-\infty \leq t<-2,-2<t<2,2<t \leq \infty\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=-\frac{3 t^{2}}{t^{2}-4}$ is

$$
\{-\infty \leq t<-2,-2<t<2,2<t \leq \infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.5.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 t}{t^{2}-4} d t} \\
& =\frac{1}{t^{2}-4}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(-\frac{3 t^{2}}{t^{2}-4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}-4}\right) & =\left(\frac{1}{t^{2}-4}\right)\left(-\frac{3 t^{2}}{t^{2}-4}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}-4}\right) & =\left(-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}-4} & =\int-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}} \mathrm{~d} t \\
\frac{y}{t^{2}-4} & =\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}-4}$ results in

$$
y=\left(t^{2}-4\right)\left(\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}\right)+c_{1}\left(t^{2}-4\right)
$$

which simplifies to

$$
y=\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+c_{1} t^{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-4 c_{1}+\frac{3 \ln (t-2)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=-\frac{9 \ln (3)}{8}-3 c_{1}+\frac{9 i \pi}{8}+\frac{3}{2} \\
c_{1}=-\frac{3 \ln (3)}{8}+\frac{3 i \pi}{8}+\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t(-3 t+2 y)}{t^{2}-4} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 194: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2}-4 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}-4} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}-4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t(-3 t+2 y)}{t^{2}-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y t}{\left(t^{2}-4\right)^{2}} \\
S_{y} & =\frac{1}{t^{2}-4}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3 t^{2}}{\left(t^{2}-4\right)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3 R^{2}}{\left(R^{2}-4\right)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3}{4(R-2)}-\frac{3 \ln (R-2)}{8}+\frac{3}{4(R+2)}+\frac{3 \ln (R+2)}{8}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}-4}=\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}-4}=\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}
$$

Which gives

$$
y=-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 \ln (2+t) t^{2}}{8}+c_{1} t^{2}+\frac{3 \ln (t-2)}{2}-\frac{3 \ln (2+t)}{2}-4 c_{1}+\frac{3 t}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t(-3 t+2 y)}{t^{2}-4}$		$\frac{d S}{d R}=-\frac{3 R^{2}}{\left(R^{2}-4\right)^{2}}$
		$\cdots 1$
		$\rightarrow \rightarrow 1$.
		$\cdots{ }^{1}$
${ }_{\text {d }}$	$R=t$	\therefore ¢
	y	
	$S=\frac{}{t^{2}-4}$	
		-
-		
$!$		

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=-\frac{9 \ln (3)}{8}-3 c_{1}+\frac{9 i \pi}{8}+\frac{3}{2} \\
c_{1}=-\frac{3 \ln (3)}{8}+\frac{3 i \pi}{8}+\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-t^{2}+4\right) \mathrm{d} y & =\left(3 t^{2}-2 t y\right) \mathrm{d} t \\
\left(-3 t^{2}+2 t y\right) \mathrm{d} t+\left(-t^{2}+4\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 t^{2}+2 t y \\
N(t, y) & =-t^{2}+4
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}+2 t y\right) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-t^{2}+4\right) \\
& =-2 t
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =-\frac{1}{t^{2}-4}((2 t)-(-2 t)) \\
& =-\frac{4 t}{t^{2}-4}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{4 t}{t^{2}-4} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln \left(t^{2}-4\right)} \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}\left(-3 t^{2}+2 t y\right) \\
& =\frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\left(t^{2}-4\right)^{2}}\left(-t^{2}+4\right) \\
& =-\frac{1}{t^{2}-4}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}}\right)+\left(-\frac{1}{t^{2}-4}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-3 t^{2}+2 t y}{\left(t^{2}-4\right)^{2}} \mathrm{~d} t \\
\phi & =-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{1}{4 t-8}+\frac{1}{8+4 t}+f^{\prime}(y) \tag{4}\\
& =-\frac{1}{t^{2}-4}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{t^{2}-4}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{t^{2}-4}=-\frac{1}{t^{2}-4}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3 \ln (t-2)}{8}+\frac{3-y}{4 t-8}+\frac{3 \ln (2+t)}{8}+\frac{3+y}{8+4 t}
$$

The solution becomes

$$
y=-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 \ln (2+t) t^{2}}{8}-c_{1} t^{2}+\frac{3 \ln (t-2)}{2}-\frac{3 \ln (2+t)}{2}+4 c_{1}+\frac{3 t}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-3=\frac{9 i \pi}{8}-\frac{9 \ln (3)}{8}+3 c_{1}+\frac{3}{2} \\
c_{1}=\frac{3 \ln (3)}{8}-\frac{3 i \pi}{8}-\frac{3}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \tag{1}\\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{3 \ln (2+t) t^{2}}{8}-\frac{3 \ln (2+t)}{2}-\frac{3 t^{2} \ln (3)}{8}+\frac{3 i t^{2} \pi}{8}+\frac{3 t^{2}}{2} \\
& -\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}-\frac{3 i \pi}{2}-6+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

Verified OK.

3.5.5 Maple step by step solution

Let's solve

$$
\left[2 y t+\left(-t^{2}+4\right) y^{\prime}=3 t^{2}, y(1)=-3\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 t y}{t^{2}-4}-\frac{3 t^{2}}{t^{2}-4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 t y}{t^{2}-4}=-\frac{3 t^{2}}{t^{2}-4}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}-4}\right)=-\frac{3 \mu(t) t^{2}}{t^{2}-4}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}-4}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t) t}{t^{2}-4}$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{(t-2)(2+t)}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int-\frac{3 \mu(t) t^{2}}{t^{2}-4} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{(t-2)(2+t)}$
$y=(t-2)(2+t)\left(\int-\frac{3 t^{2}}{(t-2)(2+t)\left(t^{2}-4\right)} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=(t-2)(2+t)\left(\frac{3}{4(t-2)}-\frac{3 \ln (t-2)}{8}+\frac{3}{4(2+t)}+\frac{3 \ln (2+t)}{8}+c_{1}\right)$
- Simplify

$$
y=\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+c_{1} t^{2}-\frac{3 \ln (t-2) t^{2}}{8}+\frac{3 t}{2}-4 c_{1}+\frac{3 \ln (t-2)}{2}
$$

- Use initial condition $y(1)=-3$

$$
-3=-\frac{9 \ln (3)}{8}-3 c_{1}+\frac{9 \mathrm{II} \pi}{8}+\frac{3}{2}
$$

- \quad Solve for c_{1}
$c_{1}=-\frac{3 \ln (3)}{8}+\frac{3 \mathrm{I} \pi}{8}+\frac{3}{2}$
- Substitute $c_{1}=-\frac{3 \ln (3)}{8}+\frac{3 \mathrm{I} \pi}{8}+\frac{3}{2}$ into general solution and simplify
$y=-6+\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+\frac{3 I t^{2} \pi}{8}-\frac{3 t^{2} \ln (3)}{8}-\frac{3 \ln (t-2) t^{2}}{8}-\frac{3 \mathrm{I} \pi}{2}+\frac{3 t^{2}}{2}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}+\frac{3 \ln (t-2)}{2}$
- \quad Solution to the IVP
$y=-6+\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+\frac{3 I t^{2} \pi}{8}-\frac{3 t^{2} \ln (3)}{8}-\frac{3 \ln (t-2) t^{2}}{8}-\frac{3 \mathrm{I} \pi}{2}+\frac{3 t^{2}}{2}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}+\frac{3 \ln (t-2)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 46

```
dsolve([2*t*y(t)+(-t^2+4)*diff (y(t),t) = 3*t^2,y(1) = -3],y(t), singsol=all)
```

$$
\begin{aligned}
y(t)= & -6+\frac{3\left(t^{2}-4\right) \ln (2+t)}{8}+\frac{3 i \pi t^{2}}{8}-\frac{3 \ln (3) t^{2}}{8} \\
& -\frac{3 \ln (t-2) t^{2}}{8}-\frac{3 i \pi}{2}+\frac{3 t^{2}}{2}+\frac{3 t}{2}+\frac{3 \ln (3)}{2}+\frac{3 \ln (t-2)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 52
DSolve $\left[\left\{2 * \mathrm{t} * \mathrm{y}[\mathrm{t}]+(-\mathrm{t} \wedge 2+4) * \mathrm{y}^{\prime}[\mathrm{t}]==3 * \mathrm{t} \wedge 2, \mathrm{y}[1]==-3\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions $->$ True $]$
$y(t) \rightarrow-\frac{3}{8}\left(-4 t^{2}+t^{2} \log (3)+\left(t^{2}-4\right) \log (2-t)-\left(t^{2}-4\right) \log (t+2)-4 t+16-4 \log (3)\right)$

3.6 problem 6

$$
\text { 3.6.1 Solving as linear ode . } 978
$$

3.6.2 Solving as first order ode lie symmetry lookup ode 980
3.6.3 Solving as exact ode . 984
3.6.4 Maple step by step solution . 989

Internal problem ID [521]
Internal file name [OUTPUT/521_Sunday_June_05_2022_01_42_59_AM_5852861/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y+\ln (t) y^{\prime}=\cot (t)
$$

3.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{\ln (t)} \\
& q(t)=\frac{\cot (t)}{\ln (t)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{\ln (t)}=\frac{\cot (t)}{\ln (t)}
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int \frac{1}{\ln (t)} d t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\cot (t)}{\ln (t)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\int \frac{1}{\ln (t)} d t} y\right) & =\left(\mathrm{e}^{\int \frac{1}{\ln (t)} d t}\right)\left(\frac{\cot (t)}{\ln (t)}\right) \\
\mathrm{d}\left(\mathrm{e}^{\int \frac{1}{\ln (t)} d t} y\right) & =\left(\frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int \frac{1}{\ln (t)} d t} y=\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} \mathrm{d} t \\
& \mathrm{e}^{\int \frac{1}{\ln (t)} d t} y=\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int \frac{1}{\ln (t)} d t}$ results in

$$
y=\mathrm{e}^{-\left(\int \frac{1}{\ln (t)} d t\right)}\left(\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t\right)+c_{1} \mathrm{e}^{-\left(\int_{\ln (t)}^{\ln (} d t\right)}
$$

which simplifies to

$$
y=\mathrm{e}^{-\left(\int \frac{1}{\ln (t)} d t\right)}\left(\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t+c_{1}\right)
$$

Which can be simplified to become

$$
y=\mathrm{e}^{\int-\frac{1}{\ln (t)} d t}\left(\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\int-\frac{1}{\ln (t)} d t}\left(\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\int-\frac{1}{\ln (t)} d t}\left(\int \frac{\cot (t) \mathrm{e}^{\int \frac{1}{\ln (t)} d t}}{\ln (t)} d t+c_{1}\right)
$$

Verified OK.

3.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y+\cot (t)}{\ln (t)} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 197: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\exp \operatorname{Integral}_{1}(-\ln (t))} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
& S=\int \frac{1}{\eta} d y \\
&=\int \frac{1}{\mathrm{e}^{\operatorname{expIntegral}}(-\ln (t))} \\
& d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\exp \operatorname{Integral}_{1}(-\ln (t))} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-y+\cot (t)}{\ln (t)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{t}=1 \\
& R_{y}=0 \\
& S_{t}=\frac{\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))}{} \\
& \ln (t) \\
& S_{y}=\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))}{\cot (t)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (R))}{\cot (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (R))}{\ln } \cot (R), c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (t)) ~ y=\int \frac{\mathrm{e}^{-\operatorname{expIntegral}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (t)) ~ y=\int \frac{\mathrm{e}^{-\operatorname{expIntegral}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}
$$

Which gives

$$
y=\left(\int \frac{\mathrm{e}^{-\operatorname{expIntegral}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}\right) \mathrm{e}^{\operatorname{expIntegral}}{ }_{1}(-\ln (t))
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int \frac{\mathrm{e}^{-\operatorname{expIntegral}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}\right) \mathrm{e}^{\operatorname{expIntegral}}{ }_{1}(-\ln (t)) \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot
Verification of solutions

$$
y=\left(\int \frac{\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (t))}{\ln (t)} \cot (t) \quad d t+c_{1}\right) \mathrm{e}^{\operatorname{expIntegral}(-\ln (t))}
$$

Verified OK.

3.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\ln (t)) \mathrm{d} y & =(-y+\cot (t)) \mathrm{d} t \\
(y-\cot (t)) \mathrm{d} t+(\ln (t)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y-\cot (t) \\
N(t, y) & =\ln (t)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\cot (t)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(\ln (t)) \\
& =\frac{1}{t}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{\ln (t)}\left((1)-\left(\frac{1}{t}\right)\right) \\
& =\frac{-1+t}{t \ln (t)}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{-1+t}{t \ln (t)} \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\operatorname{expIntegral}(-\ln (t))-\ln (\ln (t))} \\
& =\frac{\mathrm{e}^{-\operatorname{expIntegral}(-\ln (t))}}{\ln (t)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\operatorname{expIntegral}(-\ln (t))}}{\ln (t)}(y-\cot (t)) \\
& =\frac{(y-\cot (t)) \mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))}{\ln (t)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (t))}{\ln (t)}(\ln (t)) \\
& =\mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(\frac{(y-\cot (t)) \mathrm{e}^{-\operatorname{expIntegral} 1_{1}(-\ln (t))}}{\ln (t)}\right)+\left(\mathrm{e}^{-\operatorname{expIntegral}_{1}(-\ln (t))}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{(y-\cot (t)) \mathrm{e}^{-\operatorname{expIntegral}(-\ln (t))}}{\ln (t)} \mathrm{d} t \\
\phi & =\int^{t} \frac{\left(y-\cot \left(_a\right)\right) \mathrm{e}^{-\operatorname{expIntegral}_{1}\left(-\ln \left(_a\right)\right)}}{\ln \left(_a\right)} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\operatorname{expIntegral}}{ }_{1}(-\ln (t)) \quad+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\exp \text { Integral }_{1}(-\ln (t))}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\operatorname{expIntegral}} \mathrm{I}_{1}(-\ln (t))=\mathrm{e}^{-\exp \operatorname{Integral}_{1}(-\ln (t))}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{t} \frac{\left(y-\cot \left(_a\right)\right) \mathrm{e}^{-\operatorname{expIntegral}}\left(-\ln \left(_a\right)\right)}{\ln \left(_a\right)} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{t} \frac{\left(y-\cot \left(_a\right)\right) \mathrm{e}^{-\exp \operatorname{Integral}_{1}\left(-\ln \left(_a\right)\right)}}{\ln \left(_a\right)} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{t} \frac{\left(y-\cot \left(_a\right)\right) \mathrm{e}^{-\exp \operatorname{Integral}_{1}\left(-\ln \left(_a\right)\right)}}{\ln \left(_a\right)} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
\int^{t} \frac{\left(y-\cot \left(_a\right)\right) \mathrm{e}^{-\operatorname{expIntegral}}\left(-\ln \left(_a\right)\right)}{\ln \left(_a\right)} d _a=c_{1}
$$

Verified OK.

3.6.4 Maple step by step solution

Let's solve
$y+\ln (t) y^{\prime}=\cot (t)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{\ln (t)}+\frac{\cot (t)}{\ln (t)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{\ln (t)}=\frac{\cot (t)}{\ln (t)}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{\ln (t)}\right)=\frac{\mu(t) \cot (t)}{\ln (t)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{\ln (t)}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{\ln (t)}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\mathrm{Ei}_{1}(-\ln (t))}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \cot (t)}{\ln (t)} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \cot (t)}{\ln (t)} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \cot (t)}{\ln (t)} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\mathrm{Ei}_{1}(-\ln (t))}$

$$
y=\frac{\int \frac{\mathrm{e}^{-\mathrm{Ei}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}}{\mathrm{e}^{-\operatorname{Ei}_{1}(-\ln (t))}}
$$

- Simplify

$$
y=\left(\int \frac{\mathrm{e}^{-\mathrm{Ei}_{1}(-\ln (t))} \cot (t)}{\ln (t)} d t+c_{1}\right) \mathrm{e}^{\mathrm{Ei}_{1}(-\ln (t))}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

```
dsolve(y(t)+ln(t)*diff(y(t),t) = cot(t),y(t), singsol=all)
```

$$
y(t)=\left(\int \frac{\cot (t) \mathrm{e}^{-\operatorname{expIntegral}}(-\ln (t))}{\ln (t)} d t+c_{1}\right) \mathrm{e}^{\operatorname{expIntegral}(-\ln (t))}
$$

\checkmark Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 36
DSolve[y[t]+Log[t]*y'[t] == $\operatorname{Cot}[t], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-\operatorname{LogIntegral}(t)}\left(\int_{1}^{t} \frac{e^{\operatorname{LogIntegral}(K[1])} \cot (K[1])}{\log (K[1])} d K[1]+c_{1}\right)
$$

3.7 problem 11

3.7.1 Solving as separable ode . 991
3.7.2 Solving as differentialType ode 996
3.7.3 Solving as first order ode lie symmetry lookup ode 1000
3.7.4 Solving as exact ode . 1004
3.7.5 Maple step by step solution . 1008

Internal problem ID [522]
Internal file name [OUTPUT/522_Sunday_June_05_2022_01_43_00_AM_26088981/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t^{2}+1}{3 y-y^{2}}=0
$$

3.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{-t^{2}-1}{y(-3+y)}
\end{aligned}
$$

Where $f(t)=-t^{2}-1$ and $g(y)=\frac{1}{y(-3+y)}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y(-3+y)}} d y=-t^{2}-1 d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y(-3+y)}} d y & =\int-t^{2}-1 d t \\
\frac{1}{3} y^{3}-\frac{3}{2} y^{2} & =-\frac{1}{3} t^{3}-t+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
y & =\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
& +\frac{9}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
y= & -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
& +\frac{3}{2} \\
& +\frac{i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{2}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}\right.}{2} \\
y= & 2 \\
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{4 t^{4}}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& -\frac{i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}{2}\right.}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
&= \frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \tag{1}\\
&+\frac{9}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
&+\frac{3}{2} \tag{2}\\
& y=
\end{align*}
$$

$$
\begin{aligned}
&-\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
&-\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
&+ \frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{\sqrt{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}}{2}\right. \\
& y= 2
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}\right. \\
& -\frac{4}{2}
\end{aligned}
$$

Figure 182: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & =\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
& +\frac{9}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2}
\end{aligned}
$$

Verified OK.

$$
\left.\begin{array}{rl}
y= & \\
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}\right.
\end{array}\right) 2 \quad 2 \quad .
$$

Verified OK.

$y=$

$$
\begin{aligned}
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& -\frac{\left(\sqrt { 3 } \left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{\sqrt{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}}{2}\right.\right.}{2}
\end{aligned}
$$

Verified OK.

3.7.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{t^{2}+1}{3 y-y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}-3 y\right) d y=\left(-t^{2}-1\right) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-t^{2}-1\right) d t=d\left(-\frac{1}{3} t^{3}-t\right)
$$

Hence (2) becomes

$$
\left(y^{2}-3 y\right) d y=d\left(-\frac{1}{3} t^{3}-t\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}+ \\
& y=-\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4}- \\
& y=-\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4}-
\end{aligned}
$$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
&= \frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \tag{1}\\
&+\frac{9}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
&+\frac{3}{2}+c_{1} \tag{2}\\
& y=
\end{align*}
$$

$$
\begin{aligned}
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{4}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& +\frac{i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}\right.}{2}-\frac{c_{1}}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.} \\
y= & 2 \\
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
& +\frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{(3)}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}\right. \\
& -\frac{c_{1}}{2}
\end{aligned}
$$

Figure 183: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & \\
& +\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
& +\frac{9}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \\
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}\right. \\
& +\frac{2}{2} \\
& +c_{1}
\end{aligned}
$$

Verified OK.
$y=$

$$
\begin{aligned}
& -\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{4} \\
& -\frac{9}{4\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
& +\frac{3}{2} \\
& i \sqrt{3}\left(\frac{\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}-72 c_{1} t+36 t^{2}+162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}-\frac{\sqrt{2\left(27-4 t^{3}+12 c_{1}-12 t+2 \sqrt{4 t^{6}-24 c_{1} t^{3}}\right.}}{2}\right. \\
& +\frac{c_{1}}{}
\end{aligned}
$$

Verified OK.

3.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{t^{2}+1}{y(-3+y)} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 200: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{-t^{2}-1} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{-t^{2}-1}} d t
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{3} t^{3}-t
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{t^{2}+1}{y(-3+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-t^{2}-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y(-3+y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R(-3+R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}-\frac{3}{2} R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{1}{3} t^{3}-t=\frac{y^{3}}{3}-\frac{3 y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{3} t^{3}-t=\frac{y^{3}}{3}-\frac{3 y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{t^{2}+1}{y(-3+y)}$		$\frac{d S}{d R}=R(-3+R)$
		+ 4 +
	$R=y$	
(taty		
	$S=-\frac{1}{2} t^{3}-t$	-4 4
$\rightarrow \rightarrow \rightarrow$ 为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{3} t^{3}-t=\frac{y^{3}}{3}-\frac{3 y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 184: Slope field plot

Verification of solutions

$$
-\frac{1}{3} t^{3}-t=\frac{y^{3}}{3}-\frac{3 y^{2}}{2}+c_{1}
$$

Verified OK.

3.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y(-3+y)) \mathrm{d} y & =\left(t^{2}+1\right) \mathrm{d} t \\
\left(-t^{2}-1\right) \mathrm{d} t+(-y(-3+y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t^{2}-1 \\
N(t, y) & =-y(-3+y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(-y(-3+y)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2}-1 \mathrm{~d} t \\
\phi & =-\frac{1}{3} t^{3}-t+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y(-3+y)$. Therefore equation (4) becomes

$$
\begin{equation*}
-y(-3+y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y(-3+y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y(-3+y)) \mathrm{d} y \\
f(y) & =-\frac{1}{3} y^{3}+\frac{3}{2} y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{3} t^{3}-t-\frac{1}{3} y^{3}+\frac{3}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{3} t^{3}-t-\frac{1}{3} y^{3}+\frac{3}{2} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{3}}{3}-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}-t=c_{1} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot

Verification of solutions

$$
-\frac{t^{3}}{3}-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}-t=c_{1}
$$

Verified OK.

3.7.5 Maple step by step solution

Let's solve
$y^{\prime}-\frac{t^{2}+1}{3 y-y^{2}}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\left(3 y-y^{2}\right) y^{\prime}=t^{2}+1
$$

- Integrate both sides with respect to t
$\int\left(3 y-y^{2}\right) y^{\prime} d t=\int\left(t^{2}+1\right) d t+c_{1}$
- Evaluate integral

$$
-\frac{y^{3}}{3}+\frac{3 y^{2}}{2}=\frac{1}{3} t^{3}+c_{1}+t
$$

- \quad Solve for y

$$
y=\frac{\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4 t^{6}+24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}+72 c_{1} t+36 t^{2}-162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2}+\frac{}{2\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4 t^{6}+24 c_{1} t^{3}}\right.}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 444

```
dsolve(diff(y(t),t) = (t^2+1)/(3*y(t)-y(t)^2),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t) \\
&= \frac{\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4 t^{6}+24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}+72 c_{1} t+36 t^{2}-162 c_{1}-162 t}\right)^{\frac{1}{3}}}{2} \\
&+\frac{9}{2\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4 t^{6}+24 c_{1} t^{3}+24 t^{4}-54 t^{3}+36 c_{1}^{2}+72 c_{1} t+36 t^{2}-162 c_{1}-162 t}\right)^{\frac{1}{3}}} \\
&+\frac{3}{2} \\
& y(t)= \\
&-\frac{(1+i \sqrt{3})\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4} \sqrt{\left(t^{3}+3 t+3 c_{1}-\frac{27}{2}\right)\left(t^{3}+3 c_{1}+3 t\right)}\right)^{\frac{2}{3}}-9 i \sqrt{3}-6(27-}{4\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4} \sqrt{\left(t^{3}+3 t+3 c_{1}-\frac{2}{2}\right.}\right.}
\end{aligned}
$$

$$
y(t)
$$

$$
=\frac{(i \sqrt{3}-1)\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4} \sqrt{\left.\left(t^{3}+3 t+3 c_{1}-\frac{27}{2}\right)\left(t^{3}+3 c_{1}+3 t\right)\right)^{\frac{2}{3}}-9 i \sqrt{3}+6\left(27-4 t^{3}\right.}\right.}{4\left(27-4 t^{3}-12 c_{1}-12 t+2 \sqrt{4} \sqrt{\left(t^{3}+3 t+3 c_{1}-\frac{27}{2}\right)}\right.}
$$

\checkmark Solution by Mathematica
Time used: 3.185 (sec). Leaf size: 343

```
DSolve[y'[t] == (t^2+1)/(3*y[t]-y[t]^2),y[t],t,IncludeSingularSolutions -> True]
```

$y(t) \rightarrow \frac{1}{2}\left(\sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}\right.$

$$
\begin{array}{r}
\left.+\frac{9}{\sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}}+3\right) \\
y(t) \rightarrow \frac{1}{4}\left(i(\sqrt{3}+i) \sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}\right. \\
\left.-\frac{9(1+i \sqrt{3})}{\sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}}+6\right)
\end{array}
$$

$y(t)$
$\rightarrow \frac{1}{4}\left(-\left((1+i \sqrt{3}) \sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}\right)\right.$

$$
\left.+\frac{9 i(\sqrt{3}+i)}{\sqrt[3]{-4 t^{3}+\sqrt{-729+\left(4 t^{3}+12 t-3\left(9+4 c_{1}\right)\right)^{2}}-12 t+27+12 c_{1}}}+6\right)
$$

3.8 problem 12

3.8.1 Solving as separable ode . 1011
3.8.2 Solving as first order ode lie symmetry lookup ode 1013
3.8.3 Solving as exact ode . 1017
3.8.4 Maple step by step solution . 1021

Internal problem ID [523]
Internal file name [OUTPUT/523_Sunday_June_05_2022_01_43_01_AM_79042422/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\cot (t) y}{1+y}=0
$$

3.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{\cot (t) y}{y+1}
\end{aligned}
$$

Where $f(t)=\cot (t)$ and $g(y)=\frac{y}{y+1}$. Integrating both sides gives

$$
\frac{1}{\frac{y}{y+1}} d y=\cot (t) d t
$$

$$
\begin{aligned}
& \int \frac{1}{\frac{y}{y+1}} d y=\int \cot (t) d t \\
& y+\ln (y)=\ln (\sin (t))+c_{1}
\end{aligned}
$$

Which results in

$$
y=\text { LambertW }\left(\mathrm{e}^{c_{1}} \sin (t)\right)
$$

Since c_{1} is constant, then exponential powers of this constant are constants also, and these can be simplified to just c_{1} in the above solution. Which simplifies to

$$
y=\operatorname{LambertW}\left(\mathrm{e}^{c_{1}} \sin (t)\right)
$$

gives

$$
y=\operatorname{LambertW}\left(c_{1} \sin (t)\right)
$$

Summary
The solution(s) found are the following

Figure 186: Slope field plot

Verification of solutions

$$
y=\text { LambertW }\left(c_{1} \sin (t)\right)
$$

Verified OK.

3.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\cot (t) y}{y+1} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 203: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(t, y) & =\frac{1}{\cot (t)} \\
\eta(t, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{\cot (t)}} d t
\end{aligned}
$$

Which results in

$$
S=\ln (\sin (t))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{\cot (t) y}{y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\cot (t) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y+1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R+1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\ln (\sin (t))=y+\ln (y)+c_{1}
$$

Which simplifies to

$$
\ln (\sin (t))=y+\ln (y)+c_{1}
$$

Which gives

$$
y=\operatorname{LambertW}\left(\mathrm{e}^{-c_{1}} \sin (t)\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{\cot (t) y}{y+1}$		$\frac{d S}{d R}=\frac{R+1}{R}$
\rightarrow - ${ }_{\text {at }}$		\bigcirc
$\rightarrow+x_{\rightarrow \rightarrow \rightarrow}$	$R=y$	
	$S=\ln (\sin (t))$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{LambertW}\left(\mathrm{e}^{-c_{1}} \sin (t)\right) \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot

Verification of solutions

$$
y=\operatorname{LambertW}\left(\mathrm{e}^{-c_{1}} \sin (t)\right)
$$

Verified OK.

3.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y+1}{y}\right) \mathrm{d} y & =(\cot (t)) \mathrm{d} t \\
(-\cot (t)) \mathrm{d} t+\left(\frac{y+1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\cot (t) \\
N(t, y) & =\frac{y+1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cot (t)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{y+1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\cot (t) \mathrm{d} t \\
\phi & =-\ln (\sin (t))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y+1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y+1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y+1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y+1}{y}\right) \mathrm{d} y \\
f(y) & =y+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (t))+y+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (t))+y+\ln (y)
$$

The solution becomes

$$
y=\text { LambertW }\left(\mathrm{e}^{c_{1}} \sin (t)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{LambertW}\left(\mathrm{e}^{c_{1}} \sin (t)\right) \tag{1}
\end{equation*}
$$

Figure 188: Slope field plot
Verification of solutions

$$
y=\text { LambertW }\left(\mathrm{e}^{c_{1}} \sin (t)\right)
$$

Verified OK.

3.8.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\cot (t) y}{1+y}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}(1+y)}{y}=\cot (t)$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}(1+y)}{y} d t=\int \cot (t) d t+c_{1}$
- Evaluate integral

$$
y+\ln (y)=\ln (\sin (t))+c_{1}
$$

- \quad Solve for y
$y=\operatorname{Lambert} W\left(\mathrm{e}^{c_{1}} \sin (t)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 9

```
dsolve(diff(y(t),t) = cot(t)*y(t)/(1+y(t)),y(t), singsol=all)
```

$$
y(t)=\operatorname{LambertW}\left(c_{1} \sin (t)\right)
$$

\checkmark Solution by Mathematica
Time used: 1.602 (sec). Leaf size: 18
DSolve[y'[t] = $\operatorname{Cot}[t] * y[t] /(1+y[t]), y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow W\left(e^{c_{1}} \sin (t)\right) \\
& y(t) \rightarrow 0
\end{aligned}
$$

3.9 problem 13

3.9.1 Solving as separable ode . 1023
3.9.2 Solving as homogeneousTypeD2 ode 1025
3.9.3 Solving as differentialType ode 1027
3.9.4 Solving as first order ode lie symmetry lookup ode 1028
3.9.5 Solving as exact ode . 1032
3.9.6 Maple step by step solution . 1036

Internal problem ID [524]
Internal file name [OUTPUT/524_Sunday_June_05_2022_01_43_02_AM_61510835/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\frac{4 t}{y}=0
$$

3.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{4 t}{y}
\end{aligned}
$$

Where $f(t)=-4 t$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-4 t d t \\
\int \frac{1}{\frac{1}{y}} d y & =\int-4 t d t \\
\frac{y^{2}}{2} & =-2 t^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-4 t^{2}+2 c_{1}} \\
& y=-\sqrt{-4 t^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-4 t^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{-4 t^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 189: Slope field plot

Verification of solutions

$$
y=\sqrt{-4 t^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{-4 t^{2}+2 c_{1}}
$$

Verified OK.

3.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)+\frac{4}{u(t)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u^{2}+4}{t u}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=\frac{u^{2}+4}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+4}{u}} d u & =-\frac{1}{t} d t \\
\int \frac{1}{\frac{u^{2}+4}{u}} d u & =\int-\frac{1}{t} d t \\
\frac{\ln \left(u^{2}+4\right)}{2} & =-\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+4}=\mathrm{e}^{-\ln (t)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+4}=\frac{c_{3}}{t}
$$

Which simplifies to

$$
\sqrt{u(t)^{2}+4}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

The solution is

$$
\sqrt{u(t)^{2}+4}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

Replacing $u(t)$ in the above solution by $\frac{y}{t}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{t^{2}}+4} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{t} \\
\sqrt{\frac{y^{2}+4 t^{2}}{t^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y^{2}+4 t^{2}}{t^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t} \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
\sqrt{\frac{y^{2}+4 t^{2}}{t^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{t}
$$

Verified OK.

3.9.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{4 t}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(-4 t) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-4 t) d t=d\left(-2 t^{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(-2 t^{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-4 t^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{-4 t^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-4 t^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{-4 t^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 191: Slope field plot
Verification of solutions

$$
y=\sqrt{-4 t^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{-4 t^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

3.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{4 t}{y} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 206: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{1}{4 t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{1}{4 t}} d t
\end{aligned}
$$

Which results in

$$
S=-2 t^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{4 t}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-4 t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-2 t^{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-2 t^{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{4 t}{y}$		$\frac{d S}{d R}=R$
		- 1.1
		-
	$S=-2 t^{2}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 t^{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot

Verification of solutions

$$
-2 t^{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

3.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y}{4}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(-\frac{y}{4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =-\frac{y}{4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{y}{4}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y}{4}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y}{4}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{4}\right) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\frac{y^{2}}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\frac{y^{2}}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{2}}{2}-\frac{y^{2}}{8}=c_{1} \tag{1}
\end{equation*}
$$

Figure 193: Slope field plot
Verification of solutions

$$
-\frac{t^{2}}{2}-\frac{y^{2}}{8}=c_{1}
$$

Verified OK.

3.9.6 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{4 t}{y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y^{\prime} y=-4 t
$$

- Integrate both sides with respect to t

$$
\int y^{\prime} y d t=\int-4 t d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=-2 t^{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{-4 t^{2}+2 c_{1}}, y=-\sqrt{-4 t^{2}+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(t),t) = -4*t/y(t),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\sqrt{-4 t^{2}+c_{1}} \\
& y(t)=-\sqrt{-4 t^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 46
DSolve[y'[t]== -4*t/y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\sqrt{2} \sqrt{-2 t^{2}+c_{1}} \\
& y(t) \rightarrow \sqrt{2} \sqrt{-2 t^{2}+c_{1}}
\end{aligned}
$$

3.10 problem 14

3.10.1 Solving as separable ode . 1038
3.10.2 Solving as first order ode lie symmetry lookup ode 1040
3.10.3 Solving as exact ode . 1044
3.10.4 Solving as riccati ode . 1048
3.10.5 Maple step by step solution . 1050

Internal problem ID [525]
Internal file name [OUTPUT/525_Sunday_June_05_2022_01_43_03_AM_244180/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 t y^{2}=0
$$

3.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =2 t y^{2}
\end{aligned}
$$

Where $f(t)=2 t$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =2 t d t \\
\int \frac{1}{y^{2}} d y & =\int 2 t d t
\end{aligned}
$$

$$
-\frac{1}{y}=t^{2}+c_{1}
$$

Which results in

$$
y=-\frac{1}{t^{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 194: Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{2}+c_{1}}
$$

Verified OK.

3.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 t y^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 209: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{2 t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{2 t}} d t
\end{aligned}
$$

Which results in

$$
S=t^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 t y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =2 t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t^{2}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
t^{2}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{-t^{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 t y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow 0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-5(R)]{ }+\uparrow+\downarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=y$	
	$S=t^{2}$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-t^{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 195: Slope field plot

Verification of solutions

$$
y=\frac{1}{-t^{2}+c_{1}}
$$

Verified OK.

3.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t \\
& N(t, y)=\frac{1}{2 y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{2 y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{2 y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\frac{1}{2 y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\frac{1}{2 y}
$$

The solution becomes

$$
y=-\frac{1}{t^{2}+2 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{2}+2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 196: Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{2}+2 c_{1}}
$$

Verified OK.

3.10.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =2 t y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 t y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=2 t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{2 t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
2 t u^{\prime \prime}(t)-2 u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{2} t^{2}+c_{1}
$$

The above shows that

$$
u^{\prime}(t)=2 c_{2} t
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{2} t^{2}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{t^{2}+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{2}+c_{3}} \tag{1}
\end{equation*}
$$

Figure 197: Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{2}+c_{3}}
$$

Verified OK.

3.10.5 Maple step by step solution

Let's solve

$$
y^{\prime}-2 t y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=2 t
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}} d t=\int 2 t d t+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=t^{2}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{t^{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(t),t) = 2*t*y(t)^2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{-t^{2}+c_{1}}
$$

Solution by Mathematica
Time used: 0.111 (sec). Leaf size: 20

```
DSolve[y'[t] == 2*t*y[t]^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{t^{2}+c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

3.11 problem 15

3.11.1 Solving as quadrature ode . 1052
3.11.2 Maple step by step solution . 1053

Internal problem ID [526]
Internal file name [OUTPUT/526_Sunday_June_05_2022_01_43_04_AM_90328302/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{3}+y^{\prime}=0
$$

3.11.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{3}} d y & =t+c_{1} \\
\frac{1}{2 y^{2}} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
y_{1} & =\frac{1}{\sqrt{2 c_{1}+2 t}} \\
y_{2} & =-\frac{1}{\sqrt{2 c_{1}+2 t}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{2 c_{1}+2 t}} \tag{1}\\
& y=-\frac{1}{\sqrt{2 c_{1}+2 t}} \tag{2}
\end{align*}
$$

Figure 198: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{2 c_{1}+2 t}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{2 c_{1}+2 t}}
$$

Verified OK.

3.11.2 Maple step by step solution

Let's solve
$y^{3}+y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{3}}=-1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{3}} d t=\int(-1) d t+c_{1}
$$

- Evaluate integral
$-\frac{1}{2 y^{2}}=-t+c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{1}{\sqrt{-2 c_{1}+2 t}}, y=-\frac{1}{\sqrt{-2 c_{1}+2 t}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(y(t)^3+diff(y(t),t) = 0,y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\frac{1}{\sqrt{2 t+c_{1}}} \\
& y(t)=-\frac{1}{\sqrt{2 t+c_{1}}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.124 (sec). Leaf size: 40

```
DSolve[y[t]^3+y'[t] == 0,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{\sqrt{2 t-2 c_{1}}} \\
& y(t) \rightarrow \frac{1}{\sqrt{2 t-2 c_{1}}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

3.12 problem 16

3.12.1 Solving as separable ode . 1055
3.12.2 Solving as first order ode lie symmetry lookup ode 1057
3.12.3 Solving as exact ode . 1061
3.12.4 Maple step by step solution . 1065

Internal problem ID [527]
Internal file name [OUTPUT/527_Sunday_June_05_2022_01_43_05_AM_3895157/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t^{2}}{\left(t^{3}+1\right) y}=0
$$

3.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t^{2}}{\left(t^{3}+1\right) y}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}}{t^{3}+1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=\frac{t^{2}}{t^{3}+1} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{t^{2}}{t^{3}+1} d t \\
\frac{y^{2}}{2} & =\frac{\ln \left(t^{3}+1\right)}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3} \\
& y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3} \tag{1}\\
& y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Figure 199: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}
$$

Verified OK.

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}
$$

Verified OK.

3.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{t^{2}}{\left(t^{3}+1\right) y} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 213: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{t^{3}+1}{t^{2}} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{t^{3}+1}{t^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(t^{3}+1\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t^{2}}{\left(t^{3}+1\right) y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\frac{t^{2}}{\left(t^{2}-t+1\right)(t+1)} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{\ln (t+1)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (t+1)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (t+1)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 200: Slope field plot

Verification of solutions

$$
\frac{\ln (t+1)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

3.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t \\
\left(-\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t^{2}}{t^{3}+1} \\
& N(t, y)=y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t^{2}}{t^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t^{2}}{t^{3}+1} \mathrm{~d} t \\
\phi & =-\frac{\ln \left(t^{3}+1\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 201: Slope field plot
Verification of solutions

$$
-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

3.12.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{t^{2}}{\left(t^{3}+1\right) y}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} y=\frac{t^{2}}{t^{3}+1}
$$

- Integrate both sides with respect to t
$\int y^{\prime} y d t=\int \frac{t^{2}}{t^{3}+1} d t+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=\frac{\ln \left(t^{3}+1\right)}{3}+c_{1}$
- \quad Solve for y

$$
\left\{y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}, y=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff(y(t),t) = t^2/(t^3+1)/y(t),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+9 c_{1}}}{3} \\
& y(t)=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+9 c_{1}}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 56
DSolve[y'[t] == $\mathrm{t}^{\wedge} 2 /(\mathrm{t} \wedge 3+1) / \mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow-\sqrt{\frac{2}{3}} \sqrt{\log \left(t^{3}+1\right)+3 c_{1}} \\
& y(t) \rightarrow \sqrt{\frac{2}{3}} \sqrt{\log \left(t^{3}+1\right)+3 c_{1}}
\end{aligned}
$$

3.13 problem 17

3.13.1 Solving as separable ode . 1067
3.13.2 Solving as first order ode lie symmetry lookup ode 1069
3.13.3 Solving as bernoulli ode . 1073
3.13.4 Solving as exact ode . 1077
3.13.5 Solving as riccati ode . 1080
3.13.6 Maple step by step solution . 1082

Internal problem ID [528]
Internal file name [OUTPUT/528_Sunday_June_05_2022_01_43_06_AM_89383031/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t(3-y) y=0
$$

3.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-t y(-3+y)
\end{aligned}
$$

Where $f(t)=-t$ and $g(y)=y(-3+y)$. Integrating both sides gives

$$
\frac{1}{y(-3+y)} d y=-t d t
$$

$$
\begin{aligned}
\int \frac{1}{y(-3+y)} d y & =\int-t d t \\
-\frac{\ln (y)}{3}+\frac{\ln (-3+y)}{3} & =-\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{3}\right)(\ln (y)-\ln (-3+y)) & =-\frac{t^{2}}{2}+2 c_{1} \\
\ln (y)-\ln (-3+y) & =(-3)\left(-\frac{t^{2}}{2}+2 c_{1}\right) \\
& =\frac{3 t^{2}}{2}-6 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y)-\ln (-3+y)}=\mathrm{e}^{\frac{3 t^{2}}{2}-3 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{y}{-3+y} & =-3 c_{1} \mathrm{e}^{\frac{3 t^{2}}{2}} \\
& =c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}}{-1+c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}} \tag{1}
\end{equation*}
$$

Figure 202: Slope field plot

Verification of solutions

$$
y=\frac{3 c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}}{-1+c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}}
$$

Verified OK.

3.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-t y(-3+y) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 216: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=-\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-t y(-3+y)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(-3+y)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(-3+R)}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+\frac{\ln (-3+R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
-\frac{t^{2}}{2}=-\frac{\ln (y)}{3}+\frac{\ln (-3+y)}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{t^{2}}{2}=-\frac{\ln (y)}{3}+\frac{\ln (-3+y)}{3}+c_{1}
$$

Which gives

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-t y(-3+y)$		$\frac{d S}{d R}=\frac{1}{R(-3+R)}$
		$\rightarrow \rightarrow \rightarrow \rightarrow x^{x}+\triangle$－
为		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+3]{ }$
	$R=y$	
	$S=-\frac{1}{2}$	
全事		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \pm 2]{ }$
＋1．		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 203: Slope field plot
Verification of solutions

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}
$$

Verified OK.

3.13.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-t y(-3+y)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=3 t y-t y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =3 t \\
f_{1}(t) & =-t \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{3 t}{y}-t \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =3 w(t) t-t \\
w^{\prime} & =-3 t w+t \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 t \\
q(t) & =t
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)+3 w(t) t=t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 t d t} \\
& =\mathrm{e}^{\frac{3 t^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{3 t^{2}}{2}} w\right) & =\left(\mathrm{e}^{\frac{3 t^{2}}{2}}\right)(t) \\
\mathrm{d}\left(\mathrm{e}^{\frac{3 t^{2}}{2}} w\right) & =\left(t \mathrm{e}^{\frac{3 t^{2}}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{3 t^{2}}{2}} w=\int t \mathrm{e}^{\frac{3 t^{2}}{2}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{3 t^{2}}{2}} w=\frac{\mathrm{e}^{\frac{3 t^{2}}{2}}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{3 t^{2}}{2}}$ results in

$$
w(t)=\frac{\mathrm{e}^{-\frac{3 t^{2}}{2}} \mathrm{e}^{\frac{3 t^{2}}{2}}}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}
$$

which simplifies to

$$
w(t)=\frac{1}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{1}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}
$$

Or

$$
y=\frac{1}{\frac{1}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\frac{1}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}} \tag{1}
\end{equation*}
$$

Figure 204: Slope field plot

Verification of solutions

$$
y=\frac{1}{\frac{1}{3}+c_{1} \mathrm{e}^{-\frac{3 t^{2}}{2}}}
$$

Verified OK.

3.13.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y(-3+y)}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(-\frac{1}{y(-3+y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t \\
& N(t, y)=-\frac{1}{y(-3+y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{1}{y(-3+y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y(-3+y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y(-3+y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y(-3+y)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y(-3+y)}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{3}-\frac{\ln (-3+y)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\frac{\ln (y)}{3}-\frac{\ln (-3+y)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\frac{\ln (y)}{3}-\frac{\ln (-3+y)}{3}
$$

The solution becomes

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 205: Slope field plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}
$$

Verified OK.

3.13.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-t y(-3+y)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-t y^{2}+3 t y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=3 t$ and $f_{2}(t)=-t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-1 \\
f_{1} f_{2} & =-3 t^{2} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-t u^{\prime \prime}(t)-\left(-3 t^{2}-1\right) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}
$$

The above shows that

$$
u^{\prime}(t)=3 c_{2} t \mathrm{e}^{\frac{3 t^{2}}{2}}
$$

Using the above in (1) gives the solution

$$
y=\frac{3 c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}}{c_{1}+c_{2} \mathrm{e}^{\frac{3 t^{2}}{2}}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{3 t^{2}}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{3 t^{2}}{2}}} \tag{1}
\end{equation*}
$$

Figure 206: Slope field plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{3 t^{2}}{2}}}
$$

Verified OK.

3.13.6 Maple step by step solution

Let's solve

$$
y^{\prime}-t(3-y) y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{(3-y) y}=t
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{(3-y) y} d t=\int t d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y)}{3}-\frac{\ln (-3+y)}{3}=\frac{t^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{3 \mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}{-1+\mathrm{e}^{\frac{3 t^{2}}{2}+3 c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(t),t) = t*(3-y(t))*y(t),y(t), singsol=all)
```

$$
y(t)=\frac{3}{1+3 \mathrm{e}^{-\frac{3 t^{2}}{2}} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.266 (sec). Leaf size: 44
DSolve[y'[t] == $\mathrm{t} *(3-\mathrm{y}[\mathrm{t}]) * \mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{3 e^{\frac{3 t^{2}}{2}}}{e^{\frac{3 t^{2}}{2}}+e^{3 c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 3
\end{aligned}
$$

3.14 problem 18

3.14.1 Solving as first order ode lie symmetry lookup ode 1085
3.14.2 Solving as bernoulli ode . 1089
3.14.3 Solving as riccati ode . 1093

Internal problem ID [529]
Internal file name [OUTPUT/529_Sunday_June_05_2022_01_43_07_AM_62544468/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}-y(3-y t)=0
$$

3.14.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y(t y-3) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 219: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=y^{2} \mathrm{e}^{-3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{2} \mathrm{e}^{-3 t}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\mathrm{e}^{3 t}}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-y(t y-3)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{3 \mathrm{e}^{3 t}}{y} \\
S_{y} & =\frac{\mathrm{e}^{3 t}}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\mathrm{e}^{3 t} t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\mathrm{e}^{3 R} R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{(3 R-1) \mathrm{e}^{3 R}}{9}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{\mathrm{e}^{3 t}}{y}=-\frac{(-1+3 t) \mathrm{e}^{3 t}}{9}+c_{1}
$$

Which simplifies to

$$
-\frac{\mathrm{e}^{3 t}}{y}=-\frac{(-1+3 t) \mathrm{e}^{3 t}}{9}+c_{1}
$$

Which gives

$$
y=\frac{9 \mathrm{e}^{3 t}}{3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}-9 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-y(t y-3)$		$\frac{d S}{d R}=-\mathrm{e}^{3 R} R$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
		$\xrightarrow{\rightarrow}$ 他 $\mathrm{S}(\mathrm{R})$
	$R=t$	$\rightarrow \rightarrow$
	$\mathrm{e}^{3 t}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{3 t}}{3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}-9 c_{1}} \tag{1}
\end{equation*}
$$

Figure 207: Slope field plot

Verification of solutions

$$
y=\frac{9 \mathrm{e}^{3 t}}{3 \mathrm{e}^{3 t} t-\mathrm{e}^{3 t}-9 c_{1}}
$$

Verified OK.

3.14.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-y(t y-3)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=3 y-t y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =3 \\
f_{1}(t) & =-t \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{3}{y}-t \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =3 w(t)-t \\
w^{\prime} & =-3 w+t \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =t
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)+3 w(t)=t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} w\right) & =\left(\mathrm{e}^{3 t}\right)(t) \\
\mathrm{d}\left(\mathrm{e}^{3 t} w\right) & =\left(\mathrm{e}^{3 t} t\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} w=\int \mathrm{e}^{3 t} t \mathrm{~d} t \\
& \mathrm{e}^{3 t} w=\frac{(-1+3 t) \mathrm{e}^{3 t}}{9}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
w(t)=\frac{\mathrm{e}^{-3 t}(-1+3 t) \mathrm{e}^{3 t}}{9}+c_{1} \mathrm{e}^{-3 t}
$$

which simplifies to

$$
w(t)=\frac{t}{3}-\frac{1}{9}+c_{1} \mathrm{e}^{-3 t}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{t}{3}-\frac{1}{9}+c_{1} \mathrm{e}^{-3 t}
$$

Or

$$
y=\frac{1}{\frac{t}{3}-\frac{1}{9}+c_{1} \mathrm{e}^{-3 t}}
$$

Which is simplified to

$$
y=\frac{9}{9 c_{1} \mathrm{e}^{-3 t}+3 t-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9}{9 c_{1} \mathrm{e}^{-3 t}+3 t-1} \tag{1}
\end{equation*}
$$

Figure 208: Slope field plot
Verification of solutions

$$
y=\frac{9}{9 c_{1} \mathrm{e}^{-3 t}+3 t-1}
$$

Verified OK.

3.14.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-y(t y-3)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-t y^{2}+3 y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=3$ and $f_{2}(t)=-t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-1 \\
f_{1} f_{2} & =-3 t \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-t u^{\prime \prime}(t)-(-3 t-1) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+(-1+3 t) \mathrm{e}^{3 t} c_{2}
$$

The above shows that

$$
u^{\prime}(t)=9 c_{2} \mathrm{e}^{3 t} t
$$

Using the above in (1) gives the solution

$$
y=\frac{9 c_{2} \mathrm{e}^{3 t}}{c_{1}+(-1+3 t) \mathrm{e}^{3 t} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{9 \mathrm{e}^{3 t}}{c_{3}+(-1+3 t) \mathrm{e}^{3 t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{3 t}}{c_{3}+(-1+3 t) \mathrm{e}^{3 t}} \tag{1}
\end{equation*}
$$

Figure 209: Slope field plot
Verification of solutions

$$
y=\frac{9 \mathrm{e}^{3 t}}{c_{3}+(-1+3 t) \mathrm{e}^{3 t}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(t),t) = y(t)*(3-t*y(t)),y(t), singsol=all)
```

$$
y(t)=\frac{9}{-1+9 c_{1} \mathrm{e}^{-3 t}+3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 35

```
DSolve[y'[t] == y[t]*(3-t*y[t]),y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \frac{9 e^{3 t}}{e^{3 t}(3 t-1)+9 c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

3.15 problem 19

3.15.1 Solving as first order ode lie symmetry lookup ode 1096
3.15.2 Solving as bernoulli ode . 1100
3.15.3 Solving as riccati ode . 1104

Internal problem ID [530]
Internal file name [OUTPUT/530_Sunday_June_05_2022_01_43_08_AM_17571426/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
y^{\prime}+y(3-y t)=0
$$

3.15.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y(t y-3) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 221: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=y^{2} \mathrm{e}^{3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{2} \mathrm{e}^{3 t}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\mathrm{e}^{-3 t}}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y(t y-3)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\frac{3 \mathrm{e}^{-3 t}}{y} \\
S_{y} & =\frac{\mathrm{e}^{-3 t}}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \mathrm{e}^{-3 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{(3 R+1) \mathrm{e}^{-3 R}}{9}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{\mathrm{e}^{-3 t}}{y}=-\frac{(1+3 t) \mathrm{e}^{-3 t}}{9}+c_{1}
$$

Which simplifies to

$$
-\frac{\mathrm{e}^{-3 t}}{y}=-\frac{(1+3 t) \mathrm{e}^{-3 t}}{9}+c_{1}
$$

Which gives

$$
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}-9 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}-9 c_{1}} \tag{1}
\end{equation*}
$$

Figure 210: Slope field plot

Verification of solutions

$$
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}-9 c_{1}}
$$

Verified OK.

3.15.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =y(t y-3)
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-3 y+t y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =-3 \\
f_{1}(t) & =t \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{3}{y}+t \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =-3 w(t)+t \\
w^{\prime} & =3 w-t \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-3 \\
& q(t)=-t
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)-3 w(t)=-t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)(-t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-3 t} w\right) & =\left(\mathrm{e}^{-3 t}\right)(-t) \\
\mathrm{d}\left(\mathrm{e}^{-3 t} w\right) & =\left(-t \mathrm{e}^{-3 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 t} w=\int-t \mathrm{e}^{-3 t} \mathrm{~d} t \\
& \mathrm{e}^{-3 t} w=\frac{(1+3 t) \mathrm{e}^{-3 t}}{9}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 t}$ results in

$$
w(t)=\frac{\mathrm{e}^{3 t}(1+3 t) \mathrm{e}^{-3 t}}{9}+c_{1} \mathrm{e}^{3 t}
$$

which simplifies to

$$
w(t)=\frac{1}{9}+\frac{t}{3}+c_{1} \mathrm{e}^{3 t}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{1}{9}+\frac{t}{3}+c_{1} \mathrm{e}^{3 t}
$$

Or

$$
y=\frac{1}{\frac{1}{9}+\frac{t}{3}+c_{1} \mathrm{e}^{3 t}}
$$

Which is simplified to

$$
y=\frac{9}{9 c_{1} \mathrm{e}^{3 t}+3 t+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9}{9 c_{1} \mathrm{e}^{3 t}+3 t+1} \tag{1}
\end{equation*}
$$

Figure 211: Slope field plot

Verification of solutions

$$
y=\frac{9}{9 c_{1} \mathrm{e}^{3 t}+3 t+1}
$$

Verified OK.

3.15.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =y(t y-3)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=t y^{2}-3 y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=-3$ and $f_{2}(t)=t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =-3 t \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
t u^{\prime \prime}(t)-(1-3 t) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+(1+3 t) \mathrm{e}^{-3 t} c_{2}
$$

The above shows that

$$
u^{\prime}(t)=-9 c_{2} \mathrm{e}^{-3 t} t
$$

Using the above in (1) gives the solution

$$
y=\frac{9 c_{2} \mathrm{e}^{-3 t}}{c_{1}+(1+3 t) \mathrm{e}^{-3 t} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}+c_{3}} \tag{1}
\end{equation*}
$$

Figure 212: Slope field plot
Verification of solutions

$$
y=\frac{9 \mathrm{e}^{-3 t}}{3 t \mathrm{e}^{-3 t}+\mathrm{e}^{-3 t}+c_{3}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(t),t) = - y (t)*(3-t*y(t)),y(t), singsol=all)
```

$$
y(t)=\frac{9}{1+9 c_{1} \mathrm{e}^{3 t}+3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.126 (sec). Leaf size: 28

```
DSolve[y'[t] == -y[t]*(3-t*y[t]),y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \frac{9}{3 t+9 c_{1} e^{3 t}+1} \\
& y(t) \rightarrow 0
\end{aligned}
$$

3.16 problem 20

3.16.1 Solving as riccati ode . 1107

Internal problem ID [531]
Internal file name [OUTPUT/531_Sunday_June_05_2022_01_43_09_AM_59273030/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.4. Page 76
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+y^{2}=-1+t
$$

3.16.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-y^{2}+t-1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-y^{2}+t-1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=-1+t, f_{1}(t)=0$ and $f_{2}(t)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-1+t
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(t)+(-1+t) u(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1} \operatorname{Airy} \operatorname{Ai}(-1+t)+c_{2} \operatorname{AiryBi}(-1+t)
$$

The above shows that

$$
u^{\prime}(t)=c_{1} \operatorname{Airy} \operatorname{Ai}(1,-1+t)+c_{2} \operatorname{AiryBi}(1,-1+t)
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} \operatorname{AiryAi}(1,-1+t)+c_{2} \operatorname{AiryBi}(1,-1+t)}{c_{1} \operatorname{AiryAi}(-1+t)+c_{2} \operatorname{AiryBi}(-1+t)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3} \operatorname{AiryAi}(1,-1+t)+\operatorname{AiryBi}(1,-1+t)}{c_{3} \operatorname{Airy} \operatorname{Ai}(-1+t)+\operatorname{AiryBi}(-1+t)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{3} \operatorname{AiryAi}(1,-1+t)+\operatorname{AiryBi}(1,-1+t)}{c_{3} \operatorname{AiryAi}(-1+t)+\operatorname{AiryBi}(-1+t)} \tag{1}
\end{equation*}
$$

Figure 213: Slope field plot

Verification of solutions

$$
y=\frac{c_{3} \operatorname{AiryAi}(1,-1+t)+\operatorname{AiryBi}(1,-1+t)}{c_{3} \operatorname{Airy} \operatorname{Ai}(-1+t)+\operatorname{AiryBi}(-1+t)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    <- Abel AIR successful: ODE belongs to the OF1 0-parameter (Airy type) class
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(t),t) = t-1-y(t)~2,y(t), singsol=all)
```

$$
y(t)=\frac{\operatorname{AiryAi}(1, t-1) c_{1}+\operatorname{AiryBi}(1, t-1)}{\operatorname{Airy} \operatorname{Ai}(t-1) c_{1}+\operatorname{AiryBi}(t-1)}
$$

\checkmark Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 47
DSolve[y'[t] == t-1-y[t] $2, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(t) & \rightarrow \frac{\operatorname{AiryBiPrime}(t-1)+c_{1} \operatorname{Airy} \operatorname{AiPrime}(t-1)}{\operatorname{AiryBi}(t-1)+c_{1} \operatorname{Airy} \operatorname{Ai}(t-1)} \\
y(t) & \rightarrow \frac{\operatorname{AiryAiPrime}(t-1)}{\operatorname{AiryAi}(t-1)}
\end{aligned}
$$

4 Section 2.5. Page 88
4.1 problem 1 1112
4.2 problem 3 1115
4.3 problem 4 1119
4.4 problem 5 1122
4.5 problem 6 1125
4.6 problem 7 1128
4.7 problem 9 1131
4.8 problem 10 1134
4.9 problem 11 1138
4.10 problem 12 1141
4.11 problem 13 1144

4.1 problem 1

```
4.1.1 Solving as quadrature ode 1112
4.1.2 Maple step by step solution 1113
Internal problem ID [532]
Internal file name [OUTPUT/532_Sunday_June_05_2022_01_43_10_AM_54801064/index.tex]
```

Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-a y-b y^{2}=0
$$

4.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{b y^{2}+a y} d y & =\int d x \\
\frac{\ln (y)}{a}-\frac{\ln (b y+a)}{a} & =x+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{a}\right)(\ln (y)-\ln (b y+a)) & =x+c_{1} \\
\ln (y)-\ln (b y+a) & =(a)\left(x+c_{1}\right) \\
& =a\left(x+c_{1}\right)
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y)-\ln (b y+a)}=a c_{1} \mathrm{e}^{a x}
$$

Which simplifies to

$$
\frac{y}{b y+a}=c_{2} \mathrm{e}^{a x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{a x} c_{2} a}{-1+\mathrm{e}^{a x} c_{2} b} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\mathrm{e}^{a x} c_{2} a}{-1+\mathrm{e}^{a x} c_{2} b}
$$

Verified OK.

4.1.2 Maple step by step solution

Let's solve
$y^{\prime}-a y-b y^{2}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{a y+b y^{2}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{a y+b y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$\frac{\ln (y)}{a}-\frac{\ln (b y+a)}{a}=x+c_{1}$
- \quad Solve for y
$y=-\frac{\mathrm{e}^{c_{1} a+a x a}}{-1+b e^{c_{1} a+a x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x) = a*y(x)+b*y(x)^2,y(x), singsol=all)
```

$$
y(x)=\frac{a}{\mathrm{e}^{-a x} c_{1} a-b}
$$

\checkmark Solution by Mathematica
Time used: 0.888 (sec). Leaf size: 45

```
DSolve[y'[x]== a*y[x]+b*y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\frac{a e^{a\left(x+c_{1}\right)}}{-1+b e^{a\left(x+c_{1}\right)}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{a}{b}
\end{aligned}
$$

4.2 problem 3

4.2.1 Solving as quadrature ode . 1115
4.2.2 Maple step by step solution . 1116

Internal problem ID [533]
Internal file name [OUTPUT/533_Sunday_June_05_2022_01_43_11_AM_86686196/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 3 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y(-2+y)(-1+y)=0
$$

4.2.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y(y-2)(y-1)} d y & =\int d t \\
\frac{\ln (y)}{2}-\ln (y-1)+\frac{\ln (y-2)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y)}{2}-\ln (y-1)+\frac{\ln (y-2)}{2}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{\sqrt{y} \sqrt{y-2}}{y-1}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{-c_{2}^{2} \mathrm{e}^{2 t}+1}-1}{\sqrt{-c_{2}^{2} \mathrm{e}^{2 t}+1}} \tag{1}
\end{equation*}
$$

Figure 214: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-c_{2}^{2} \mathrm{e}^{2 t}+1}-1}{\sqrt{-c_{2}^{2} \mathrm{e}^{2 t}+1}}
$$

Verified OK.

4.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y(-2+y)(-1+y)=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(-2+y)(-1+y)}=1$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y(-2+y)(-1+y)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y)}{2}-\ln (-1+y)+\frac{\ln (-2+y)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}}{\left(\mathrm{e}^{c_{1}}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}-\sqrt{-\left(\mathrm{e}_{1}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}+1-1}}, y=\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}}{\left(\mathrm{e}_{1}^{c_{1}}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}+\sqrt{-\left(\mathrm{e}_{1}\right)^{2}\left(\mathrm{e}^{t}\right)^{2}+1}-1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 75
dsolve(diff $(y(t), t)=y(t) *(-2+y(t)) *(-1+y(t)), y(t)$, singsol $=a l l)$

$$
\begin{aligned}
& y(t)=\frac{\mathrm{e}^{2 t} c_{1}}{\left(-1-\sqrt{-c_{1} \mathrm{e}^{2 t}+1}\right) \sqrt{-c_{1} \mathrm{e}^{2 t}+1}} \\
& y(t)=\frac{\mathrm{e}^{2 t} c_{1}}{\left(1-\sqrt{-c_{1} \mathrm{e}^{2 t}+1}\right) \sqrt{-c_{1} \mathrm{e}^{2 t}+1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 11.055 (sec). Leaf size: 100
DSolve[y'[t] $==\mathrm{y}[\mathrm{t}] *(-2+\mathrm{y}[\mathrm{t}]) *(-1+\mathrm{y}[\mathrm{t}]), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{-\sqrt{1+e^{2\left(t+c_{1}\right)}}+e^{2\left(t+c_{1}\right)}+1}{1+e^{2\left(t+c_{1}\right)}} \\
& y(t) \rightarrow \frac{\sqrt{1+e^{2\left(t+c_{1}\right)}}+e^{2\left(t+c_{1}\right)}+1}{1+e^{2\left(t+c_{1}\right)}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1 \\
& y(t) \rightarrow 2
\end{aligned}
$$

4.3 problem 4

4.3.1 Solving as quadrature ode . 1119
4.3.2 Maple step by step solution . 1120

Internal problem ID [534]
Internal file name [OUTPUT/534_Sunday_June_05_2022_01_43_47_AM_54468129/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\mathrm{e}^{y}=-1
$$

4.3.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-1+\mathrm{e}^{y}} d y & =\int d t \\
-\ln \left(\mathrm{e}^{y}\right)+\ln \left(-1+\mathrm{e}^{y}\right) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln \left(\mathrm{e}^{y}\right)+\ln \left(-1+\mathrm{e}^{y}\right)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
-\mathrm{e}^{-y}+1=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-c_{2} \mathrm{e}^{t}+1\right) \tag{1}
\end{equation*}
$$

Figure 215: Slope field plot
Verification of solutions

$$
y=-\ln \left(-c_{2} \mathrm{e}^{t}+1\right)
$$

Verified OK.

4.3.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\mathrm{e}^{y}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{-1+\mathrm{e}^{y}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{-1+\mathrm{e}^{y}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln \left(\mathrm{e}^{y}\right)+\ln \left(-1+\mathrm{e}^{y}\right)=t+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(-\frac{1}{e^{t+c_{1}}-1}\right)
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(t),t) = -1+exp(y(t)),y(t), singsol=all)
```

$$
y(t)=\ln \left(-\frac{1}{\mathrm{e}^{t} c_{1}-1}\right)
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.817 (sec). Leaf size: 28

```
DSolve[y'[t]== -1+Exp[y[t]],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \log \left(\frac{1}{2}\left(1-\tanh \left(\frac{t+c_{1}}{2}\right)\right)\right) \\
& y(t) \rightarrow 0
\end{aligned}
$$

4.4 problem 5

> 4.4.1 Solving as quadrature ode
4.4.2 Maple step by step solution 1123

Internal problem ID [535]
Internal file name [OUTPUT/535_Sunday_June_05_2022_01_43_49_AM_20194512/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\mathrm{e}^{-y}=-1
$$

4.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-1+\mathrm{e}^{-y}} d y & =\int d t \\
\ln \left(\mathrm{e}^{-y}\right)-\ln \left(-1+\mathrm{e}^{-y}\right) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln \left(\mathrm{e}^{-y}\right)-\ln \left(-1+\mathrm{e}^{-y}\right)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{-y}}{-1+\mathrm{e}^{-y}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(\frac{c_{2}}{c_{2} \mathrm{e}^{t}-1}\right)-t \tag{1}
\end{equation*}
$$

Figure 216: Slope field plot

Verification of solutions

$$
y=-\ln \left(\frac{c_{2}}{c_{2} \mathrm{e}^{t}-1}\right)-t
$$

Verified OK.

4.4.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\mathrm{e}^{-y}=-1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{-1+\mathrm{e}^{-y}}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{-1+\mathrm{e}^{-y}} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\ln \left(\mathrm{e}^{-y}\right)-\ln \left(-1+\mathrm{e}^{-y}\right)=t+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(\mathrm{e}^{t+c_{1}}-1\right)-t-c_{1}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve(diff(y(t),t) = -1+exp(-y(t)),y(t), singsol=all)
```

$$
y(t)=-t+\ln \left(\mathrm{e}^{t+c_{1}}-1\right)-c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.853 (sec). Leaf size: 21

```
DSolve[y'[t] == -1+Exp[-y[t]],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \log \left(1+e^{-t+c_{1}}\right) \\
& y(t) \rightarrow 0
\end{aligned}
$$

4.5 problem 6

4.5.1 Solving as quadrature ode
4.5.2 Maple step by step solution 1126

Internal problem ID [536]
Internal file name [OUTPUT/536_Sunday_June_05_2022_01_43_50_AM_22554720/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima

Section: Section 2.5. Page 88
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+\frac{2 \arctan (y)}{1+y^{2}}=0
$$

4.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y^{2}+1}{2 \arctan (y)} d y & =\int d t \\
\int^{y}-\frac{a^{2}+1}{2 \arctan \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y}-\frac{-a^{2}+1}{2 \arctan \left(_a\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 217: Slope field plot

Verification of solutions

$$
\int^{y}-\frac{-^{2}+1}{2 \arctan \left(_a\right)} d _a=t+c_{1}
$$

Verified OK.

4.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{2 \arctan (y)}{1+y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{\left(1+y^{2}\right) y^{\prime}}{\arctan (y)}=-2
$$

- Integrate both sides with respect to t

$$
\int \frac{\left(1+y^{2}\right) y^{\prime}}{\arctan (y)} d t=\int(-2) d t+c_{1}
$$

- Cannot compute integral

$$
\int \frac{\left(1+y^{2}\right) y^{\prime}}{\arctan (y)} d t=-2 t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t) = -2*arctan(y(t))/(1+y(t)^2),y(t), singsol=all)
```

$$
t+\frac{\left(\int^{y(t)} \frac{a^{2}+1}{\arctan \left(_a\right)} d _a\right)}{2}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 1.013 (sec). Leaf size: 38
DSolve[y'[t] == $-2 * \operatorname{ArcTan}[y[t]] /(1+y[t] \sim 2), y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{K[1]^{2}+1}{\arctan (K[1])} d K[1] \&\right]\left[-2 t+c_{1}\right] \\
& y(t) \rightarrow 0
\end{aligned}
$$

4.6 problem 7

4.6.1 Solving as quadrature ode . 1128
4.6.2 Maple step by step solution . 1129

Internal problem ID [537]
Internal file name [OUTPUT/537_Sunday_June_05_2022_01_43_52_AM_26451284/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+k(-1+y)^{2}=0
$$

4.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{k(y-1)^{2}} d y & =t+c_{1} \\
\frac{1}{k(y-1)} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{c_{1} k+t k+1}{k\left(t+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} k+t k+1}{k\left(t+c_{1}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} k+t k+1}{k\left(t+c_{1}\right)}
$$

Verified OK.

4.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}+k(-1+y)^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{(-1+y)^{2}}=-k
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{(-1+y)^{2}} d t=\int-k d t+c_{1}
$$

- Evaluate integral
$-\frac{1}{-1+y}=-t k+c_{1}$
- \quad Solve for y

$$
y=\frac{-t k+c_{1}-1}{-t k+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve(diff $(y(t), t)=-k *(-1+y(t))^{\sim} 2, y(t)$, singsol=all)

$$
y(t)=\frac{1+k\left(t+c_{1}\right)}{k\left(t+c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.139 (sec). Leaf size: 30
DSolve[y'[t]== -k*(-1+y[t])^2,y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{k t+1-c_{1}}{k t-c_{1}} \\
& y(t) \rightarrow 1
\end{aligned}
$$

4.7 problem 9

4.7.1 Solving as quadrature ode
1131
4.7.2 Maple step by step solution 1132

Internal problem ID [538]
Internal file name [OUTPUT/538_Sunday_June_05_2022_01_43_53_AM_86819030/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}\left(y^{2}-1\right)=0
$$

4.7.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}\left(y^{2}-1\right)} d y & =\int d t \\
\int^{y} \frac{1}{-a^{2}\left(_a^{2}-1\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{_^{2}\left(_a^{2}-1\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 218: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-^{2}\left(_a^{2}-1\right)} d _a=t+c_{1}
$$

Verified OK.

4.7.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}\left(y^{2}-1\right)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}\left(y^{2}-1\right)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}\left(y^{2}-1\right)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln (1+y)}{2}+\frac{1}{y}+\frac{\ln (-1+y)}{2}=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.282 (sec). Leaf size: 47

```
dsolve(diff(y(t),t) = y(t)^ 2*(y(t)^2-1),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{\operatorname{RootOf}\left(-\ln \left(\mathrm{e}^{Z}-2\right) \mathrm{e}^{Z}+2 c_{1} \mathrm{e}^{Z}+Z \mathrm{e}^{Z}+2 t \mathrm{e}^{Z}+\ln \left(\mathrm{e}^{Z}-2\right)-2 c_{1}--Z-2 t-2\right)}-1
$$

\checkmark Solution by Mathematica
Time used: 0.246 (sec). Leaf size: 51

```
DSolve[y'[t] == y[t]^2*(y[t]^2-1),y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\frac{1}{\# 1}+\frac{1}{2} \log (1-\# 1)-\frac{1}{2} \log (\# 1+1) \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

4.8 problem 10

4.8.1 Solving as quadrature ode . 1134
4.8.2 Maple step by step solution . 1135

Internal problem ID [539]
Internal file name [OUTPUT/539_Sunday_June_05_2022_01_43_54_AM_75461840/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y\left(1-y^{2}\right)=0
$$

4.8.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y\left(y^{2}-1\right)} d y & =\int d t \\
\ln (y)-\frac{\ln (y+1)}{2}-\frac{\ln (y-1)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y)-\frac{\ln (y+1)}{2}-\frac{\ln (y-1)}{2}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y}{\sqrt{y+1} \sqrt{y-1}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{2}^{2} \mathrm{e}^{2 t}+\sqrt{\mathrm{e}^{4 t} c_{2}^{4}-c_{2}^{2} \mathrm{e}^{2 t}}+1}{c_{2}^{2} \mathrm{e}^{2 t}-1}+1 \tag{1}
\end{equation*}
$$

Figure 219: Slope field plot

Verification of solutions

$$
y=\frac{-c_{2}^{2} \mathrm{e}^{2 t}+\sqrt{\mathrm{e}^{4 t} c_{2}^{4}-c_{2}^{2} \mathrm{e}^{2 t}}+1}{c_{2}^{2} \mathrm{e}^{2 t}-1}+1
$$

Verified OK.

4.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y\left(1-y^{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y\left(1-y^{2}\right)}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y\left(1-y^{2}\right)} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\ln (y)-\frac{\ln (1+y)}{2}-\frac{\ln (-1+y)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\left(\mathrm{e}^{2 c_{1}+2 t}-1\right) \mathrm{e}^{2 c_{1}+2 t}}}{\mathrm{e}^{2 c_{1}+2 t}-1}, y=-\frac{\sqrt{\left(\mathrm{e}^{2 c_{1}+2 t}-1\right) \mathrm{e}^{2 c_{1}+2 t}}}{\mathrm{e}^{2 c_{1}+2 t}-1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(t),t) = y(t)*(1-y(t)~2),y(t), singsol=all)
```

$$
\begin{aligned}
y(t) & =\frac{1}{\sqrt{c_{1} \mathrm{e}^{-2 t}+1}} \\
y(t) & =-\frac{1}{\sqrt{c_{1} \mathrm{e}^{-2 t}+1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.676 (sec). Leaf size: 100
DSolve[y'[t]== $y[t] *(1-y[t] \sim 2), y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{e^{t}}{\sqrt{e^{2 t}+e^{2 c_{1}}}} \\
& y(t) \rightarrow \frac{e^{t}}{\sqrt{e^{2 t}+e^{2 c_{1}}}} \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1 \\
& y(t) \rightarrow-\frac{e^{t}}{\sqrt{e^{2 t}}} \\
& y(t) \rightarrow \frac{e^{t}}{\sqrt{e^{2 t}}}
\end{aligned}
$$

4.9 problem 11

4.9.1 Solving as quadrature ode . 1138
4.9.2 Maple step by step solution . 1139

Internal problem ID [540]
Internal file name [OUTPUT/540_Sunday_June_05_2022_01_43_57_AM_7870853/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima

Section: Section 2.5. Page 88
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+b \sqrt{y}-a y=0
$$

4.9.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-b \sqrt{y}+a y} d y & =\int d t \\
\frac{\ln \left(a^{2} y-b^{2}\right)}{a}-\frac{\ln (a \sqrt{y}+b)}{a}+\frac{\ln (a \sqrt{y}-b)}{a} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{a}\right)\left(\ln \left(a^{2} y-b^{2}\right)-\ln (a \sqrt{y}+b)+\ln (a \sqrt{y}-b)\right) & =t+c_{1} \\
\ln \left(a^{2} y-b^{2}\right)-\ln (a \sqrt{y}+b)+\ln (a \sqrt{y}-b) & =(a)\left(t+c_{1}\right) \\
& =a\left(t+c_{1}\right)
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln \left(a^{2} y-b^{2}\right)-\ln (a \sqrt{y}+b)+\ln (a \sqrt{y}-b)}=a c_{1} \mathrm{e}^{a t}
$$

Which simplifies to

$$
\frac{\left(a^{2} y-b^{2}\right)(a \sqrt{y}-b)}{a \sqrt{y}+b}=c_{2} \mathrm{e}^{a t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 b\left(b-\sqrt{c_{2} \mathrm{e}^{a t}}\right)+c_{2} \mathrm{e}^{a t}-b^{2}}{a^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 b\left(b-\sqrt{c_{2} \mathrm{e}^{a t}}\right)+c_{2} \mathrm{e}^{a t}-b^{2}}{a^{2}}
$$

Verified OK.

4.9.2 Maple step by step solution

Let's solve
$y^{\prime}+b \sqrt{y}-a y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{-b \sqrt{y}+a y}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{-b \sqrt{y}+a y} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\frac{\ln \left(y a^{2}-b^{2}\right)}{a}-\frac{\ln (b+a \sqrt{y})}{a}+\frac{\ln (a \sqrt{y}-b)}{a}=t+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{2 b\left(b-\mathrm{e}^{\frac{1}{2} c_{1} a+\frac{1}{2} a t}\right)-b^{2}+\mathrm{e}^{c_{1} a+a t}}{a^{2}}, y=\frac{2 b\left(b+\mathrm{e}^{\frac{1}{2} c_{1} a+\frac{1}{2} a t}\right)-b^{2}+\mathrm{e}^{c_{1} a+a t}}{a^{2}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

```
dsolve(diff(y(t),t) = -b*y(t)~(1/2)+a*y(t),y(t), singsol=all)
```

$$
\frac{-\mathrm{e}^{\frac{a t}{2}} c_{1} a+\sqrt{y(t)} a-b}{a}=0
$$

\checkmark Solution by Mathematica
Time used: 0.844 (sec). Leaf size: 55
DSolve[y'[t] == -b*y[t]~(1/2)+a*y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{e^{-a c_{1}}\left(e^{\frac{a t}{2}}-b e^{\frac{a c_{1}}{2}}\right)^{2}}{a^{2}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow \frac{b^{2}}{a^{2}}
\end{aligned}
$$

4.10 problem 12

4.10.1 Solving as quadrature ode . 1141
4.10.2 Maple step by step solution . 1142

Internal problem ID [541]
Internal file name [OUTPUT/541_Sunday_June_05_2022_01_43_58_AM_15077121/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}\left(4-y^{2}\right)=0
$$

4.10.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{2}\left(y^{2}-4\right)} d y & =\int d t \\
\int^{y}-\frac{1}{-a^{2}\left(_a^{2}-4\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y}-\frac{1}{-a^{2}\left(_a^{2}-4\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 220: Slope field plot

Verification of solutions

$$
\int^{y}-\frac{1}{-a^{2}\left(_a^{2}-4\right)} d _a=t+c_{1}
$$

Verified OK.

4.10.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}\left(4-y^{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}\left(4-y^{2}\right)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}\left(4-y^{2}\right)} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{1}{4 y}-\frac{\ln (-2+y)}{16}+\frac{\ln (2+y)}{16}=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 49

```
dsolve(diff(y(t),t) = y(t)^ 2*(4-y(t)^2),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{\operatorname{RootOf}\left(\ln \left(\mathrm{e}^{Z}-4\right) \mathrm{e}^{Z}+16 c_{1} \mathrm{e}^{Z}-_Z \mathrm{e}^{Z}+16 t \mathrm{e}^{Z}-2 \ln \left(\mathrm{e}^{Z}-4\right)-32 c_{1}+2 _Z-32 t+4\right)}-2
$$

\checkmark Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 57

```
DSolve[y'[t] == y[t]^2*(4-y[t]^2),y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\frac{1}{4 \# 1}+\frac{1}{16} \log (2-\# 1)-\frac{1}{16} \log (\# 1+2) \&\right]\left[-t+c_{1}\right] \\
& y(t) \rightarrow-2 \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 2
\end{aligned}
$$

4.11 problem 13

4.11.1 Solving as quadrature ode . 1144
4.11.2 Maple step by step solution 1145

Internal problem ID [542]
Internal file name [OUTPUT/542_Sunday_June_05_2022_01_43_59_AM_906908/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.5. Page 88
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-(1-y)^{2} y^{2}=0
$$

4.11.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}(y-1)^{2}} d y & =\int d t \\
\int^{y} \frac{1}{-a^{2}\left(_a-1\right)^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a^{2}\left(_a-1\right)^{2}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 221: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-^{2}\left(_a-1\right)^{2}} d _a=t+c_{1}
$$

Verified OK.

4.11.2 Maple step by step solution

Let's solve

$$
y^{\prime}-(1-y)^{2} y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{(1-y)^{2} y^{2}}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{(1-y)^{2} y^{2}} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{1}{y}+2 \ln (y)-\frac{1}{-1+y}-2 \ln (-1+y)=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 66

```
dsolve(diff(y(t),t) = (1-y(t)) ^ 2*y(t)~ 2,y(t), singsol=all)
```

$y(t)=\mathrm{e}^{\operatorname{RootOf}\left(-2 \ln \left(\mathrm{e}^{Z}+1\right) \mathrm{e}^{2} Z^{Z}+c_{1} \mathrm{e}^{2}-^{Z}+2 _Z \mathrm{e}^{2}-{ }^{Z}+t \mathrm{e}^{2} Z^{Z}-2 \ln \left(\mathrm{e}-{ }^{Z}+1\right) \mathrm{e}^{Z}+c_{1} \mathrm{e}^{Z}+2 _Z \mathrm{e}^{Z}+t \mathrm{e}^{Z}+2 \mathrm{e}^{Z}+1\right)}$
$+1$
\checkmark Solution by Mathematica
Time used: 0.365 (sec). Leaf size: 50

```
DSolve[y'[t] == (1-y[t])^2*y[t]^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[-\frac{1}{\# 1-1}-\frac{1}{\# 1}-2 \log (1-\# 1)+2 \log (\# 1) \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

5 Section 2.6. Page 100
5.1 problem 1 1148
5.2 problem 2 1165
5.3 problem 3 1175
5.4 problem 4 1187
5.5 problem 5 1203
5.6 problem 6 1213
5.7 problem 7 1221
5.8 problem 8 1227
5.9 problem 9 1230
5.10 problem 10 1237
5.11 problem 11 1249
5.12 problem 12 1252
5.13 problem 13 1267
5.14 problem 14 1282
5.15 problem 19 1291
5.16 problem 21 1303
5.17 problem 22 1309
5.18 problem 25 1321
5.19 problem 26 1330
5.20 problem 27 1343
5.21 problem 28 1350
5.22 problem 29 1363
5.23 problem 30 1369
5.24 problem 30 1377
5.25 problem 32 1388

5.1 problem 1

5.1.1 Solving as separable ode . 1148
5.1.2 Solving as differentialType ode 1150
5.1.3 Solving as homogeneousTypeMapleC ode 1151
5.1.4 Solving as first order ode lie symmetry lookup ode 1155
5.1.5 Solving as exact ode . 1159
5.1.6 Maple step by step solution . 1163

Internal problem ID [543]
Internal file name [OUTPUT/543_Sunday_June_05_2022_01_44_01_AM_47710901/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(-2+2 y) y^{\prime}=-3-2 x
$$

5.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\frac{3}{2}-x}{y-1}
\end{aligned}
$$

Where $f(x)=-\frac{3}{2}-x$ and $g(y)=\frac{1}{y-1}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y-1}} d y=-\frac{3}{2}-x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y-1}} d y & =\int-\frac{3}{2}-x d x \\
\frac{1}{2} y^{2}-y & =-\frac{3}{2} x-\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=1+\sqrt{-x^{2}+2 c_{1}-3 x+1} \\
& y=1-\sqrt{-x^{2}+2 c_{1}-3 x+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1+\sqrt{-x^{2}+2 c_{1}-3 x+1} \tag{1}\\
& y=1-\sqrt{-x^{2}+2 c_{1}-3 x+1} \tag{2}
\end{align*}
$$

Figure 222: Slope field plot

Verification of solutions

$$
y=1+\sqrt{-x^{2}+2 c_{1}-3 x+1}
$$

Verified OK.

$$
y=1-\sqrt{-x^{2}+2 c_{1}-3 x+1}
$$

Verified OK.

5.1.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-3-2 x}{-2+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y-2) d y=(-3-2 x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-3-2 x) d x=d\left(-x^{2}-3 x\right)
$$

Hence (2) becomes

$$
(2 y-2) d y=d\left(-x^{2}-3 x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=1+\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1} \\
& y=1-\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1+\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1} \tag{1}\\
& y=1-\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1} \tag{2}
\end{align*}
$$

Figure 223: Slope field plot
Verification of solutions

$$
y=1+\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1}
$$

Verified OK.

$$
y=1-\sqrt{-x^{2}+c_{1}-3 x+1}+c_{1}
$$

Verified OK.

5.1.3 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{2 X+2 x_{0}+3}{2\left(Y(X)+y_{0}-1\right)}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-\frac{3}{2} \\
& y_{0}=1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=-X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =-\frac{1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{-\frac{1}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{-\frac{1}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}+1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+1}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+1}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+1\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+1}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+1}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\sqrt{u(X)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\sqrt{u(X)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\sqrt{\frac{Y(X)^{2}}{X^{2}}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\sqrt{\frac{Y(X)^{2}+X^{2}}{X^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+1 \\
& X=x-\frac{3}{2}
\end{aligned}
$$

Then the solution in y becomes

$$
\sqrt{\frac{(y-1)^{2}+\left(x+\frac{3}{2}\right)^{2}}{\left(x+\frac{3}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x+\frac{3}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{(y-1)^{2}+\left(x+\frac{3}{2}\right)^{2}}{\left(x+\frac{3}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x+\frac{3}{2}} \tag{1}
\end{equation*}
$$

Figure 224: Slope field plot

Verification of solutions

$$
\sqrt{\frac{(y-1)^{2}+\left(x+\frac{3}{2}\right)^{2}}{\left(x+\frac{3}{2}\right)^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x+\frac{3}{2}}
$$

Verified OK.

5.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x+3}{2(y-1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\mathrm{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 234: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{-\frac{3}{2}-x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{-\frac{3}{2}-x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{3}{2} x-\frac{1}{2} x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+3}{2(y-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{3}{2}-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R-1
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2} R^{2}-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{3}{2} x-\frac{1}{2} x^{2}=\frac{y^{2}}{2}-y+c_{1}
$$

Which simplifies to

$$
-\frac{3}{2} x-\frac{1}{2} x^{2}=\frac{y^{2}}{2}-y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x+3}{2(y-1)}$		$\frac{d S}{d R}=R-1$
		！$: 1$.
	$S=-\frac{3}{2} x-\frac{1}{2} x^{2}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty \text {－}]{\substack{\text {－}}}$		
－－－－加分分		

Summary

The solution（s）found are the following

$$
\begin{equation*}
-\frac{3}{2} x-\frac{1}{2} x^{2}=\frac{y^{2}}{2}-y+c_{1} \tag{1}
\end{equation*}
$$

Figure 225: Slope field plot

Verification of solutions

$$
-\frac{3}{2} x-\frac{1}{2} x^{2}=\frac{y^{2}}{2}-y+c_{1}
$$

Verified OK.

5.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 y+2) \mathrm{d} y & =(2 x+3) \mathrm{d} x \\
(-3-2 x) \mathrm{d} x+(-2 y+2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-3-2 x \\
& N(x, y)=-2 y+2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-3-2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 y+2) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-3-2 x \mathrm{~d} x \\
\phi & =-x^{2}-3 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-2 y+2$. Therefore equation (4) becomes

$$
\begin{equation*}
-2 y+2=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-2 y+2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2 y+2) \mathrm{d} y \\
f(y) & =-y^{2}+2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}-y^{2}-3 x+2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}-y^{2}-3 x+2 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-y^{2}-x^{2}+2 y-3 x=c_{1} \tag{1}
\end{equation*}
$$

Figure 226: Slope field plot

Verification of solutions

$$
-y^{2}-x^{2}+2 y-3 x=c_{1}
$$

Verified OK.

5.1.6 Maple step by step solution

Let's solve

$$
(-2+2 y) y^{\prime}=-3-2 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int(-2+2 y) y^{\prime} d x=\int(-3-2 x) d x+c_{1}$
- Evaluate integral
$y^{2}-2 y=-x^{2}+c_{1}-3 x$
- \quad Solve for y

$$
\left\{y=1-\sqrt{-x^{2}+c_{1}-3 x+1}, y=1+\sqrt{-x^{2}+c_{1}-3 x+1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 43

```
dsolve(3+2*x+(-2+2*y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=1-\sqrt{-x^{2}-c_{1}-3 x+1} \\
& y(x)=1+\sqrt{-x^{2}-c_{1}-3 x+1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 51
DSolve $\left[3+2 * x+(-2+2 * y[x]) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 1-\sqrt{-x^{2}-3 x+1+2 c_{1}} \\
& y(x) \rightarrow 1+\sqrt{-x^{2}-3 x+1+2 c_{1}}
\end{aligned}
$$

5.2 problem 2

5.2.1 Solving as homogeneousTypeD2 ode 1165
5.2.2 Solving as first order ode lie symmetry calculated ode 1167

Internal problem ID [544]
Internal file name [OUTPUT/544_Sunday_June_05_2022_01_44_02_AM_13505422/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
4 y+(2 x-2 y) y^{\prime}=-2 x
$$

5.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
4 u(x) x+(2 x-2 u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-2 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-3 u-1}{(u-1) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-3 u-1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-3 u-1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-3 u-1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}-3 u-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 u-3) \sqrt{13}}{13}\right)}{13} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}-3 u(x)-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 u(x)-3) \sqrt{13}}{13}\right)}{13}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{3 y}{x}-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{\left(\frac{2 y}{x}-3\right) \sqrt{13}}{13}\right)}{13}+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{3 y}{x}-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 y-3 x) \sqrt{13}}{13 x}\right)}{13}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{3 y}{x}-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 y-3 x) \sqrt{13}}{13 x}\right)}{13}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 227: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}-\frac{3 y}{x}-1\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 y-3 x) \sqrt{13}}{13 x}\right)}{13}+\ln (x)-c_{2}=0
$$

Verified OK.

5.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+2 y}{-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(x+2 y)\left(b_{3}-a_{2}\right)}{-x+y}-\frac{(x+2 y)^{2} a_{3}}{(-x+y)^{2}} \\
& -\left(\frac{1}{-x+y}+\frac{x+2 y}{(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2}{-x+y}-\frac{x+2 y}{(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{x^{2} a_{2}-x^{2} a_{3}+4 x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}-4 x y a_{3}-2 x y b_{2}+2 x y b_{3}-2 y^{2} a_{2}-7 y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}+3 x b_{1}-}{(x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& x^{2} a_{2}-x^{2} a_{3}+4 x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}-4 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad+2 x y b_{3}-2 y^{2} a_{2}-7 y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3}+3 x b_{1}-3 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}-7 a_{3} v_{2}^{2}+4 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}-b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}-3 a_{1} v_{2}+3 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(a_{2}-a_{3}+4 b_{2}-b_{3}\right) v_{1}^{2}+\left(-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+3 b_{1} v_{1}+\left(-2 a_{2}-7 a_{3}+b_{2}+2 b_{3}\right) v_{2}^{2}-3 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-3 a_{1} & =0 \\
3 b_{1} & =0 \\
-2 a_{2}-7 a_{3}+b_{2}+2 b_{3} & =0 \\
-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3} & =0 \\
a_{2}-a_{3}+4 b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-3 a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x+2 y}{-x+y}\right)(x) \\
& =\frac{x^{2}+3 y x-y^{2}}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+3 y x-y^{2}}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-x^{2}-3 y x+y^{2}\right)}{2}-\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(-3 x+2 y) \sqrt{13}}{13 x}\right)}{13}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+2 y}{-x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+2 y}{x^{2}+3 y x-y^{2}} \\
S_{y} & =\frac{x-y}{x^{2}+3 y x-y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}-3 y x-x^{2}\right)}{2}+\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(-2 y+3 x) \sqrt{13}}{13 x}\right)}{13}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}-3 y x-x^{2}\right)}{2}+\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(-2 y+3 x) \sqrt{13}}{13 x}\right)}{13}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}-3 y x-x^{2}\right)}{2}+\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(-2 y+3 x) \sqrt{13}}{13 x}\right)}{13}=c_{1} \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}-3 y x-x^{2}\right)}{2}+\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(-2 y+3 x) \sqrt{13}}{13 x}\right)}{13}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 55
dsolve $(2 * x+4 * y(x)+(2 * x-2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
-\frac{\ln \left(\frac{-x^{2}-3 x y(x)+y(x)^{2}}{x^{2}}\right)}{2}+\frac{\sqrt{13} \operatorname{arctanh}\left(\frac{(2 y(x)-3 x) \sqrt{13}}{13 x}\right)}{13}-\ln (x)-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 63
DSolve $[2 * \mathrm{x}+4 * \mathrm{y}[\mathrm{x}]+(2 * \mathrm{x}-2 * \mathrm{y}[\mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& \text { Solve }\left[\frac { 1 } { 2 6 } \left((13+\sqrt{13}) \log \left(-\frac{2 y(x)}{x}+\sqrt{13}+3\right)\right.\right. \\
& \left.\left.-(\sqrt{13}-13) \log \left(\frac{2 y(x)}{x}+\sqrt{13}-3\right)\right)=-\log (x)+c_{1}, y(x)\right]
\end{aligned}
$$

5.3 problem 3

5.3.1 Solving as differentialType ode 1175
5.3.2 Solving as exact ode . 1180
5.3.3 Maple step by step solution . 1183

Internal problem ID [545]
Internal file name [OUTPUT/545_Sunday_June_05_2022_01_44_04_AM_28395296/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact, _rational]

$$
-2 y x+\left(3-x^{2}+6 y^{2}\right) y^{\prime}=-3 x^{2}-2
$$

5.3.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2-3 x^{2}+2 y x}{3-x^{2}+6 y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(-6 y^{2}-3\right) d y=\left(-x^{2}\right) d y+\left(3 x^{2}-2 y x+2\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}\right) d y+\left(3 x^{2}-2 y x+2\right) d x=d\left(x^{3}-y x^{2}+2 x\right)
$$

Hence (2) becomes

$$
\left(-6 y^{2}-3\right) d y=d\left(x^{3}-y x^{2}+2 x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}-\frac{}{\left(-54 x^{3}\right.} \\
& y=-\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12}+\frac{}{\left(-54 x^{3}\right.} \\
& y=-\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12}+\frac{}{\left(-54 x^{3}\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
= & \frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6} \tag{1}\\
& -\frac{6\left(-\frac{x^{2}}{6}+\frac{1}{2}\right)}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& +c_{1}
\end{align*}
$$

$$
\begin{equation*}
y= \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& -\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12} \\
+ & \frac{-\frac{x^{2}}{2}+\frac{3}{2}}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}+\frac{(3)}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+3}\right.}\right.}{2} \\
& +c_{1} \\
& -\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12} \\
+ & \frac{-\frac{x^{2}}{2}+\frac{3}{2}}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}+\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+3}\right.}{2}\right. \\
& -\frac{c_{1}}{}
\end{aligned}
$$

Figure 229: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & \frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6} \\
& -\frac{6\left(-\frac{x^{2}}{6}+\frac{1}{2}\right)}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& +c_{1}
\end{aligned}
$$

Verified OK.
$y=$

$$
\begin{aligned}
& -\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12} \\
& +\frac{-\frac{x^{2}}{2}+\frac{3}{2}}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}+\frac{}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+3}\right.}\right. \\
& +\frac{-x^{2}+3}{2} \\
& +c_{1}
\end{aligned}
$$

Verified OK.

$y=$

$$
\begin{aligned}
& -\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12} \\
& +\frac{-\frac{x^{2}}{2}+\frac{3}{2}}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}+\frac{}{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+3}\right.}\right. \\
& -\frac{2}{2} \\
& +c_{1}
\end{aligned}
$$

Verified OK.

5.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}+6 y^{2}+3\right) \mathrm{d} y & =\left(-3 x^{2}+2 y x-2\right) \mathrm{d} x \\
\left(3 x^{2}-2 y x+2\right) \mathrm{d} x+\left(-x^{2}+6 y^{2}+3\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=3 x^{2}-2 y x+2 \\
& N(x, y)=-x^{2}+6 y^{2}+3
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}-2 y x+2\right) \\
& =-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}+6 y^{2}+3\right) \\
& =-2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}-2 y x+2 \mathrm{~d} x \\
\phi & =x^{3}-y x^{2}+2 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x^{2}+6 y^{2}+3$. Therefore equation (4) becomes

$$
\begin{equation*}
-x^{2}+6 y^{2}+3=-x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=6 y^{2}+3
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(6 y^{2}+3\right) \mathrm{d} y \\
f(y) & =2 y^{3}+3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}-y x^{2}+2 y^{3}+2 x+3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}-y x^{2}+2 y^{3}+2 x+3 y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{3}-x^{2} y+2 y^{3}+2 x+3 y=c_{1} \tag{1}
\end{equation*}
$$

Figure 230: Slope field plot

Verification of solutions

$$
x^{3}-x^{2} y+2 y^{3}+2 x+3 y=c_{1}
$$

Verified OK.

5.3.3 Maple step by step solution

Let's solve

$$
-2 y x+\left(3-x^{2}+6 y^{2}\right) y^{\prime}=-3 x^{2}-2
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$-2 x=-2 x$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(3 x^{2}-2 y x+2\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x^{3}-y x^{2}+2 x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$-x^{2}+6 y^{2}+3=-x^{2}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=6 y^{2}+3
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=2 y^{3}+3 y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x^{3}-y x^{2}+2 y^{3}+2 x+3 y$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{3}-y x^{2}+2 y^{3}+2 x+3 y=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(-54 x^{3}+54 c_{1}-108 x+6 \sqrt{75 x^{6}-162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}-324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{6}-\frac{6\left(-\frac{1}{\left(-54 x^{3}+54 c_{1}-108 x+6 \sqrt{75 x^{6}-162 c}\right.}\right)}{}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 372

```
dsolve(2+3*x^2-2*x*y(x)+(3-x^2+6*y(x)^2)*diff(y(x),x) = 0,y(x), singsol=all)
```

$y(x)$
$=\frac{\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{2}{3}}+6 x^{2}-18}{6\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}$
$y(x)$

$$
\begin{aligned}
&= \frac{(-1-i \sqrt{3})\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}}{12} \\
&+\frac{\left(x^{2}-3\right)(i \sqrt{3}-1)}{2\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}} \\
& y(x) \\
&= \frac{(i \sqrt{3}-1)\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{2}{3}}}{6}+(-1-i \sqrt{3})\left(x^{2}-3\right) \\
& 2\left(-54 x^{3}-54 c_{1}-108 x+6 \sqrt{75 x^{6}+162 c_{1} x^{3}+378 x^{4}+81 c_{1}^{2}+324 c_{1} x+162 x^{2}+162}\right)^{\frac{1}{3}}
\end{aligned}
$$

Solution by Mathematica

Time used: 8.724 (sec). Leaf size: 421
DSolve $\left[2+3 * x^{\wedge} 2-2 * x * y[x]+\left(3-x^{\wedge} 2+6 * y[x] \sim 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & -\frac{x^{2}-3}{\sqrt[3]{6} \sqrt[3]{9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}}} \\
& -\frac{\sqrt[3]{9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}}}{6^{2 / 3}}
\end{aligned}
$$

$y(x)$

$$
\rightarrow \frac{\sqrt[3]{6}(1+i \sqrt{3})\left(x^{2}-3\right)+(1-i \sqrt{3})\left(9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}\right)^{2 / 3}}{26^{2 / 3} \sqrt[3]{9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}}}
$$

$y(x)$

$$
\rightarrow \frac{\sqrt[3]{6}(1-i \sqrt{3})\left(x^{2}-3\right)+(1+i \sqrt{3})\left(9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}\right)^{2 / 3}}{26^{2 / 3} \sqrt[3]{9 x^{3}+\sqrt{3} \sqrt{-2\left(x^{2}-3\right)^{3}+27\left(x^{3}+2 x+c_{1}\right)^{2}}+18 x+9 c_{1}}}
$$

5.4 problem 4

5.4.1 Solving as separable ode . 1187
5.4.2 Solving as linear ode . 1189
5.4.3 Solving as homogeneousTypeD2 ode 1190
5.4.4 Solving as differentialType ode 1192
5.4.5 Solving as first order ode lie symmetry lookup ode 1193
5.4.6 Solving as exact ode . 1197
5.4.7 Maple step by step solution . 1201

Internal problem ID [546]
Internal file name [OUTPUT/546_Sunday_June_05_2022_01_44_05_AM_3993535/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
2 y+2 x y^{2}+\left(2 x+2 x^{2} y\right) y^{\prime}=0
$$

5.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int-\frac{1}{x} d x \\
\ln (y) & =-\ln (x)+c_{1} \\
y & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 231: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

5.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(y x) & =0
\end{aligned}
$$

Integrating gives

$$
y x=c_{1}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 232: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

5.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x+2 x^{3} u(x)^{2}+\left(2 x+2 x^{3} u(x)\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{2} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{2}} \\
& =\frac{c_{2}}{x^{2}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Figure 233: Slope field plot

Verification of solutions

$$
y=\frac{c_{2}}{x}
$$

Verified OK.

5.4.4 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 y-2 x y^{2}}{2 x+2 x^{2} y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-y x)
$$

Hence (2) becomes

$$
0=d(-y x)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{c_{1}}{x}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 234: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{1}
$$

Verified OK.

5.4.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 238: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=y x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x=c_{1}
$$

Which simplifies to

$$
y x=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+S(R)}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$	$R=x$	
$\rightarrow \rightarrow \rightarrow$	$S=y x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{+}}$
- aravitw		$\xrightarrow[-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 235: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

5.4.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\ln (y)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-c_{1}}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-c_{1}}}{x} \tag{1}
\end{equation*}
$$

Figure 236: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-c_{1}}}{x}
$$

Verified OK.

5.4.7 Maple step by step solution

Let's solve
$2 y+2 x y^{2}+\left(2 x+2 x^{2} y\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(2 y+2 x y^{2}+\left(2 x+2 x^{2} y\right) y^{\prime}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
2 x\left(\frac{x y^{2}}{2}+y\right)=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{-1-\sqrt{1+c_{1}}}{x}, y=\frac{-1+\sqrt{1+c_{1}}}{x}\right\}
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31
dsolve $(2 * y(x)+2 * x * y(x) \wedge 2+(2 * x+2 * x \wedge 2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{1}{x} \\
& y(x)=\frac{-1-c_{1}}{x} \\
& y(x)=\frac{c_{1}-1}{x}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 29
DSolve $\left[2 * y[x]+2 * x * y[x] \wedge 2+\left(2 * x+2 * x^{\wedge} 2 * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{x} \\
& y(x) \rightarrow \frac{c_{1}}{x} \\
& y(x) \rightarrow-\frac{1}{x}
\end{aligned}
$$

5.5 problem 5

5.5.1 Solving as homogeneousTypeD2 ode 1203
5.5.2 Solving as first order ode lie symmetry calculated ode 1205
5.5.3 Solving as exact ode . 1209

Internal problem ID [547]
Internal file name [OUTPUT/547_Sunday_June_05_2022_01_44_06_AM_24958851/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class A`]]

$$
y^{\prime}-\frac{-a x-b y}{b x+c y}=0
$$

5.5.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{-a x-b u(x) x}{b x+c u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{c u^{2}+2 b u+a}{x(c u+b)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{c u^{2}+2 b u+a}{c u+b}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{c u^{2}+2 b u+a}{c u+b}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{c u^{2}+2 b u+a}{c u+b}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(c u^{2}+2 b u+a\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{c u^{2}+2 b u+a}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{c u^{2}+2 b u+a}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2} c+2 u(x) b+a}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2} c+2 u(x) b+a}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2} c}{x^{2}}+\frac{2 y b}{x}+a} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{c y^{2}+2 b y x+a x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{c y^{2}+2 b y x+a x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{\frac{c y^{2}+2 b y x+a x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

5.5.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{a x+b y}{b x+c y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(a x+b y)\left(b_{3}-a_{2}\right)}{b x+c y}-\frac{(a x+b y)^{2} a_{3}}{(b x+c y)^{2}} \\
& -\left(-\frac{a}{b x+c y}+\frac{(a x+b y) b}{(b x+c y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{b}{b x+c y}+\frac{(a x+b y) c}{(b x+c y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{a^{2} x^{2} a_{3}-a b x^{2} a_{2}+a b x^{2} b_{3}+2 a b x y a_{3}+a c x^{2} b_{2}-2 a c x y a_{2}+2 a c x y b_{3}-a c y^{2} a_{3}-2 b^{2} x^{2} b_{2}+2 b^{2} y^{2} a_{3}-2}{(b x+c y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -a^{2} x^{2} a_{3}+a b x^{2} a_{2}-a b x^{2} b_{3}-2 a b x y a_{3}-a c x^{2} b_{2}+2 a c x y a_{2} \tag{6E}\\
& \quad-2 a c x y b_{3}+a c y^{2} a_{3}+2 b^{2} x^{2} b_{2}-2 b^{2} y^{2} a_{3}+2 b c x y b_{2}+b c y^{2} a_{2} \\
& \quad-b c y^{2} b_{3}+c^{2} y^{2} b_{2}-a c x b_{1}+a c y a_{1}+b^{2} x b_{1}-b^{2} y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{2} a_{3} v_{1}^{2}+a b a_{2} v_{1}^{2}-2 a b a_{3} v_{1} v_{2}-a b b_{3} v_{1}^{2}+2 a c a_{2} v_{1} v_{2}+a c a_{3} v_{2}^{2} \tag{7E}\\
& \quad-a c b_{2} v_{1}^{2}-2 a c b_{3} v_{1} v_{2}-2 b^{2} a_{3} v_{2}^{2}+2 b^{2} b_{2} v_{1}^{2}+b c a_{2} v_{2}^{2}+2 b c b_{2} v_{1} v_{2} \\
& \quad-b c b_{3} v_{2}^{2}+c^{2} b_{2} v_{2}^{2}+a c a_{1} v_{2}-a c b_{1} v_{1}-b^{2} a_{1} v_{2}+b^{2} b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a^{2} a_{3}+a b a_{2}-a b b_{3}-a c b_{2}+2 b^{2} b_{2}\right) v_{1}^{2}+\left(-2 a b a_{3}+2 a c a_{2}-2 a c b_{3}+2 b c b_{2}\right) v_{1} v_{2} \tag{8E}\\
& +\left(-a c b_{1}+b^{2} b_{1}\right) v_{1}+\left(a c a_{3}-2 b^{2} a_{3}+b c a_{2}-b c b_{3}+c^{2} b_{2}\right) v_{2}^{2}+\left(a c a_{1}-b^{2} a_{1}\right) v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a c a_{1}-b^{2} a_{1} & =0 \\
-a c b_{1}+b^{2} b_{1} & =0 \\
-2 a b a_{3}+2 a c a_{2}-2 a c b_{3}+2 b c b_{2} & =0 \\
a c a_{3}-2 b^{2} a_{3}+b c a_{2}-b c b_{3}+c^{2} b_{2} & =0 \\
-a^{2} a_{3}+a b a_{2}-a b b_{3}-a c b_{2}+2 b^{2} b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{a b_{3}-2 b b_{2}}{a} \\
a_{3} & =-\frac{c b_{2}}{a} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{a x+b y}{b x+c y}\right)(x) \\
& =\frac{a x^{2}+2 b x y+c y^{2}}{b x+c y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a x^{2}+2 b x y+c y^{2}}{b x+c y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(a x^{2}+2 b x y+c y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{a x+b y}{b x+c y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{a x+b y}{a x^{2}+2 b x y+c y^{2}} \\
S_{y} & =\frac{b x+c y}{a x^{2}+2 b x y+c y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(c y^{2}+2 b y x+a x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(c y^{2}+2 b y x+a x^{2}\right)}{2}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(c y^{2}+2 b y x+a x^{2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(c y^{2}+2 b y x+a x^{2}\right)}{2}=c_{1}
$$

Verified OK.

5.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(b x+c y) \mathrm{d} y & =(-a x-b y) \mathrm{d} x \\
(a x+b y) \mathrm{d} x+(b x+c y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =a x+b y \\
N(x, y) & =b x+c y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(a x+b y) \\
& =b
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(b x+c y) \\
& =b
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int a x+b y \mathrm{~d} x \\
\phi & =\frac{1}{2} a x^{2}+b x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=b x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=b x+c y$. Therefore equation (4) becomes

$$
\begin{equation*}
b x+c y=b x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=c y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(c y) \mathrm{d} y \\
f(y) & =\frac{c y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{2} a x^{2}+b x y+\frac{1}{2} c y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{2} a x^{2}+b x y+\frac{1}{2} c y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{a x^{2}}{2}+b y x+\frac{c y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{a x^{2}}{2}+b y x+\frac{c y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 77

```
dsolve(diff(y(x),x) = (-a*x-b*y(x))/(b*x+c*y(x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-b x c_{1}+\sqrt{-x^{2}\left(a c-b^{2}\right) c_{1}^{2}+c}}{c c_{1}} \\
& y(x)=\frac{-b x c_{1}-\sqrt{-x^{2}\left(a c-b^{2}\right) c_{1}^{2}+c}}{c c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 17.783 (sec). Leaf size: 139
DSolve[y'[x]== (-a*x-b*y[x])/(b*x+c*y[x]),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{b x+\sqrt{-a c x^{2}+b^{2} x^{2}+c e^{2 c_{1}}}}{c} \\
& y(x) \rightarrow \frac{-b x+\sqrt{b^{2} x^{2}+c\left(-a x^{2}+e^{2 c_{1}}\right)}}{c} \\
& y(x) \rightarrow-\frac{\sqrt{x^{2}\left(b^{2}-a c\right)}+b x}{c} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}\left(b^{2}-a c\right)}-b x}{c}
\end{aligned}
$$

5.6 problem 6

5.6.1 Solving as homogeneousTypeD2 ode 1213
5.6.2 Solving as first order ode lie symmetry calculated ode 1215

Internal problem ID [548]
Internal file name [OUTPUT/548_Sunday_June_05_2022_01_44_07_AM_46494958/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 6 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{-a x+b y}{b x-c y}=0
$$

5.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{-a x+b u(x) x}{b x-c u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{-c u^{2}+a}{x(-c u+b)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{-c u^{2}+a}{-c u+b}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{-c u^{2}+a}{-c u+b}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{-c u^{2}+a}{-c u+b}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(c u^{2}-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{u c}{\sqrt{a c}}\right)}{\sqrt{a c}} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2} c-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{u(x) c}{\sqrt{a c}}\right)}{\sqrt{a c}}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2} c}{x^{2}}-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{y c}{x \sqrt{a c}}\right)}{\sqrt{a c}}+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2} c}{x^{2}}-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{y c}{x \sqrt{a c}}\right)}{\sqrt{a c}}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2} c}{x^{2}}-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{y c}{x \sqrt{a c}}\right)}{\sqrt{a c}}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2} c}{x^{2}}-a\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{y c}{x \sqrt{a c}}\right)}{\sqrt{a c}}+\ln (x)-c_{2}=0
$$

Verified OK.

5.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-a x+b y}{-b x+c y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-a x+b y)\left(b_{3}-a_{2}\right)}{-b x+c y}-\frac{(-a x+b y)^{2} a_{3}}{(-b x+c y)^{2}} \\
& -\left(\frac{a}{-b x+c y}-\frac{(-a x+b y) b}{(-b x+c y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{b}{-b x+c y}+\frac{(-a x+b y) c}{(-b x+c y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{a^{2} x^{2} a_{3}-a b x^{2} a_{2}+a b x^{2} b_{3}-2 a b x y a_{3}-a c x^{2} b_{2}+2 a c x y a_{2}-2 a c x y b_{3}+a c y^{2} a_{3}+2 b c x y b_{2}-b c y^{2} a_{2}+b}{(b x-c y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -a^{2} x^{2} a_{3}+a b x^{2} a_{2}-a b x^{2} b_{3}+2 a b x y a_{3}+a c x^{2} b_{2}-2 a c x y a_{2}+2 a c x y b_{3}-a c y^{2} a_{3} \tag{6E}\\
& \quad-2 b c x y b_{2}+b c y^{2} a_{2}-b c y^{2} b_{3}+c^{2} y^{2} b_{2}+a c x b_{1}-a c y a_{1}-b^{2} x b_{1}+b^{2} y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a^{2} a_{3} v_{1}^{2}+a b a_{2} v_{1}^{2}+2 a b a_{3} v_{1} v_{2}-a b b_{3} v_{1}^{2}-2 a c a_{2} v_{1} v_{2} \tag{7E}\\
& \quad-a c a_{3} v_{2}^{2}+a c b_{2} v_{1}^{2}+2 a c b_{3} v_{1} v_{2}+b c a_{2} v_{2}^{2}-2 b c b_{2} v_{1} v_{2} \\
& \quad-b c b_{3} v_{2}^{2}+c^{2} b_{2} v_{2}^{2}-a c a_{1} v_{2}+a c b_{1} v_{1}+b^{2} a_{1} v_{2}-b^{2} b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a^{2} a_{3}+a b a_{2}-a b b_{3}+a c b_{2}\right) v_{1}^{2}+\left(2 a b a_{3}-2 a c a_{2}+2 a c b_{3}-2 b c b_{2}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(a c b_{1}-b^{2} b_{1}\right) v_{1}+\left(-a c a_{3}+b c a_{2}-b c b_{3}+c^{2} b_{2}\right) v_{2}^{2}+\left(-a c a_{1}+b^{2} a_{1}\right) v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a c a_{1}+b^{2} a_{1} & =0 \\
a c b_{1}-b^{2} b_{1} & =0 \\
-a c a_{3}+b c a_{2}-b c b_{3}+c^{2} b_{2} & =0 \\
2 a b a_{3}-2 a c a_{2}+2 a c b_{3}-2 b c b_{2} & =0 \\
-a^{2} a_{3}+a b a_{2}-a b b_{3}+a c b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =\frac{a_{3} a}{c} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-a x+b y}{-b x+c y}\right)(x) \\
& =\frac{a x^{2}-c y^{2}}{b x-c y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{a x^{2}-c y^{2}}{b x-c y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(-a x^{2}+c y^{2}\right)}{2}+\frac{b \operatorname{arctanh}\left(\frac{y c}{x \sqrt{a c}}\right)}{\sqrt{a c}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-a x+b y}{-b x+c y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{a x-b y}{a x^{2}-c y^{2}} \\
S_{y} & =\frac{b x-c y}{a x^{2}-c y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(c y^{2}-a x^{2}\right) \sqrt{a} \sqrt{c}+2 b \operatorname{arctanh}\left(\frac{y \sqrt{c}}{x \sqrt{a}}\right)}{2 \sqrt{a} \sqrt{c}}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(c y^{2}-a x^{2}\right) \sqrt{a} \sqrt{c}+2 b \operatorname{arctanh}\left(\frac{y \sqrt{c}}{x \sqrt{a}}\right)}{2 \sqrt{a} \sqrt{c}}=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(c y^{2}-a x^{2}\right) \sqrt{a} \sqrt{c}+2 b \operatorname{arctanh}\left(\frac{y \sqrt{c}}{x \sqrt{a}}\right)}{2 \sqrt{a} \sqrt{c}}=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(c y^{2}-a x^{2}\right) \sqrt{a} \sqrt{c}+2 b \operatorname{arctanh}\left(\frac{y \sqrt{c}}{x \sqrt{a}}\right)}{2 \sqrt{a} \sqrt{c}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.422 (sec). Leaf size: 47

```
dsolve(diff(y(x),x) = (-a*x+b*y(x))/(b*x-c*y(x)),y(x), singsol=all)
```

$$
y(x)=\operatorname{RootOf}\left(c _Z^{2}-a-\mathrm{e}^{\operatorname{RootOf}\left(\mathrm{e}^{Z \cosh \left(\frac{\sqrt{a c}\left(2 c_{1}+_Z+2 \ln (x)\right)}{2 b}\right)^{2}+a}\right)}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 58
DSolve $[y$ ' $[x]=(-a * x+b * y[x]) /(b * x-c * y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[-\frac{b \operatorname{arctanh}\left(\frac{\sqrt{c} c(x)}{\sqrt{a} x}\right)}{\sqrt{a} \sqrt{c}}-\frac{1}{2} \log \left(\frac{c y(x)^{2}}{x^{2}}-a\right)=\log (x)+c_{1}, y(x)\right]
$$

5.7 problem 7

5.7.1 Solving as exact ode
5.7.2 Maple step by step solution . 1224

Internal problem ID [549]
Internal file name [OUTPUT/549_Sunday_June_05_2022_01_44_09_AM_4332274/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\mathrm{e}^{x} \sin (y)-2 \sin (x) y+\left(2 \cos (x)+\mathrm{e}^{x} \cos (y)\right) y^{\prime}=0
$$

5.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 \cos (x)+\mathrm{e}^{x} \cos (y)\right) \mathrm{d} y & =\left(-\mathrm{e}^{x} \sin (y)+2 \sin (x) y\right) \mathrm{d} x \\
\left(\mathrm{e}^{x} \sin (y)-2 \sin (x) y\right) \mathrm{d} x+\left(2 \cos (x)+\mathrm{e}^{x} \cos (y)\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{x} \sin (y)-2 \sin (x) y \\
N(x, y) & =2 \cos (x)+\mathrm{e}^{x} \cos (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x} \sin (y)-2 \sin (x) y\right) \\
& =-2 \sin (x)+\mathrm{e}^{x} \cos (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 \cos (x)+\mathrm{e}^{x} \cos (y)\right) \\
& =-2 \sin (x)+\mathrm{e}^{x} \cos (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} \sin (y)-2 \sin (x) y \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} \sin (y)+2 \cos (x) y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \cos (x)+\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \cos (x)+\mathrm{e}^{x} \cos (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \cos (x)+\mathrm{e}^{x} \cos (y)=2 \cos (x)+\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} \sin (y)+2 \cos (x) y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} \sin (y)+2 \cos (x) y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{x} \sin (y)+2 \cos (x) y=c_{1} \tag{1}
\end{equation*}
$$

Figure 237: Slope field plot
Verification of solutions

$$
\mathrm{e}^{x} \sin (y)+2 \cos (x) y=c_{1}
$$

Verified OK.

5.7.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{x} \sin (y)-2 \sin (x) y+\left(2 \cos (x)+\mathrm{e}^{x} \cos (y)\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
$\square \quad$ Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-2 \sin (x)+\mathrm{e}^{x} \cos (y)=-2 \sin (x)+\mathrm{e}^{x} \cos (y)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\mathrm{e}^{x} \sin (y)-2 \sin (x) y\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\mathrm{e}^{x} \sin (y)+2 \cos (x) y+f_{1}(y)
$$

- Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
2 \cos (x)+\mathrm{e}^{x} \cos (y)=\mathrm{e}^{x} \cos (y)+2 \cos (x)+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\mathrm{e}^{x} \sin (y)+2 \cos (x) y$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\mathrm{e}^{x} \sin (y)+2 \cos (x) y=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{RootOf}\left(-\mathrm{e}^{x} \sin \left(_Z\right)-2 _Z \cos (x)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve $(\exp (x) * \sin (y(x))-2 * \sin (x) * y(x)+(2 * \cos (x)+\exp (x) * \cos (y(x))) * \operatorname{diff}(y(x), x)=0, y(x), \sin$

$$
\mathrm{e}^{x} \sin (y(x))+2 \cos (x) y(x)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.282 (sec). Leaf size: 20
DSolve $\left[\operatorname{Exp}[x] * \operatorname{Sin}[y[x]]-2 * \operatorname{Sin}[x] * y[x]+(2 * \operatorname{Cos}[x]+\operatorname{Exp}[x] * \operatorname{Cos}[y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeS

$$
\text { Solve }\left[e^{x} \sin (y(x))+2 y(x) \cos (x)=c_{1}, y(x)\right]
$$

5.8 problem 8

Internal problem ID [550]
Internal file name [OUTPUT/550_Sunday_June_05_2022_01_44_16_AM_39437276/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[\begin{array}{l}x \\ = \\ = \\ G\left(y, y^{\prime}\right)\end{array}\right]$
Unable to solve or complete the solution.

$$
\mathrm{e}^{x} \sin (y)+3 y-\left(3 x-\mathrm{e}^{x} \sin (y)\right) y^{\prime}=0
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4
`, -> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x) = 0, y(x)` *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x) = y(x)/x, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)/x, y(x)
Methods for first order ODEs:
    --- Trying classification methqds{88--
    trying a quadrature
    trying 1st order linear
```

X Solution by Maple
dsolve $(\exp (x) * \sin (y(x))+3 * y(x)-(3 * x-\exp (x) * \sin (y(x))) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\operatorname{Exp}[x] * \operatorname{Sin}[y[x]]+3 * y[x]-(3 * x-\operatorname{Exp}[x] * \operatorname{Sin}[y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolut

Not solved

5.9 problem 9

> 5.9.1 Solving as exact ode
5.9.2 Maple step by step solution 1234

Internal problem ID [551]
Internal file name [OUTPUT/551_Sunday_June_05_2022_01_44_22_AM_93677906/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 9 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y+\left(-3+\mathrm{e}^{y x} x \cos (2 x)\right) y^{\prime}=-2 x
$$

5.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-3+\mathrm{e}^{y x} x \cos (2 x)\right) \mathrm{d} y & =\left(-2 x+2 \mathrm{e}^{y x} \sin (2 x)-\mathrm{e}^{y x} \cos (2 x) y\right) \\
\left(2 x-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y\right) \mathrm{d} x+\left(-3+\mathrm{e}^{y x} x \cos (2 x)\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y \\
N(x, y) & =-3+\mathrm{e}^{y x} x \cos (2 x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y\right) \\
& =\mathrm{e}^{y x}(y x \cos (2 x)+\cos (2 x)-2 x \sin (2 x))
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-3+\mathrm{e}^{y x} x \cos (2 x)\right) \\
& =\mathrm{e}^{y x}(y x \cos (2 x)+\cos (2 x)-2 x \sin (2 x))
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y \mathrm{~d} x \\
\phi & =\mathrm{e}^{y x} \cos (2 x)+x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{y x} x \cos (2 x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-3+\mathrm{e}^{y x} x \cos (2 x)$. Therefore equation (4) becomes

$$
\begin{equation*}
-3+\mathrm{e}^{y x} x \cos (2 x)=\mathrm{e}^{y x} x \cos (2 x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-3
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-3) \mathrm{d} y \\
f(y) & =-3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{y x} \cos (2 x)+x^{2}-3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{y x} \cos (2 x)+x^{2}-3 y
$$

The solution becomes

$$
y=-\frac{-x^{3}+c_{1} x+3 \text { LambertW }\left(-\frac{x \cos (2 x) \mathrm{e}^{\frac{1}{x^{3}}-\frac{1}{3} c_{1} x}}{3}\right)}{3 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{-x^{3}+c_{1} x+3 \text { LambertW }\left(-\frac{x \cos (2 x) e^{\frac{1}{3} x^{3}-\frac{1}{3} c_{1} x}}{3}\right)}{3 x} \tag{1}
\end{equation*}
$$

Figure 238: Slope field plot

Verification of solutions

$$
y=-\frac{-x^{3}+c_{1} x+3 \text { LambertW }\left(-\frac{x \cos (2 x) e^{\frac{1}{3} x^{3}-\frac{1}{3} c_{1} x}}{3}\right)}{3 x}
$$

Verified OK.

5.9.2 Maple step by step solution

Let's solve

$$
-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y+\left(-3+\mathrm{e}^{y x} x \cos (2 x)\right) y^{\prime}=-2 x
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\mathrm{e}^{y x} y x \cos (2 x)+\mathrm{e}^{y x} \cos (2 x)-2 \mathrm{e}^{y x} x \sin (2 x)=\mathrm{e}^{y x} y x \cos (2 x)+\mathrm{e}^{y x} \cos (2 x)-2 \mathrm{e}^{y x} x \sin (2 x)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x-2 \mathrm{e}^{y x} \sin (2 x)+\mathrm{e}^{y x} \cos (2 x) y\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y\left(\frac{y \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}+\frac{2 \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}\right)+x^{2}+\frac{4 \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-\frac{2 y \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-3+\mathrm{e}^{y x} x \cos (2 x)=\frac{y \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}+y\left(\frac{\mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-\frac{2 y^{2} \mathrm{e}^{y x} \cos (2 x)}{\left(y^{2}+4\right)^{2}}+\frac{y \mathrm{e}^{y x} x \cos (2 x)}{y^{2}+4}-\frac{4 \mathrm{e}^{y x} \sin (2 x) y}{\left(y^{2}+4\right)^{2}}+\frac{2 \mathrm{e}^{y x} x \operatorname{si}}{y^{2}+}\right.
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-3+\mathrm{e}^{y x} x \cos (2 x)-\frac{y \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-y\left(\frac{\mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-\frac{2 y^{2} \mathrm{e}^{y x} \cos (2 x)}{\left(y^{2}+4\right)^{2}}+\frac{y \mathrm{e}^{y x} x \cos (2 x)}{y^{2}+4}-\frac{4 \mathrm{e}^{y x} \sin (2 x)}{\left(y^{2}+4\right)^{2}}\right.
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-3 y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=y\left(\frac{y \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}+\frac{2 \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}\right)+x^{2}+\frac{4 \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-\frac{2 y \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}-3 y
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y\left(\frac{y \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}+\frac{2 \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}\right)+x^{2}+\frac{4 \mathrm{e}^{y x} \cos (2 x)}{y^{2}+4}-\frac{2 y \mathrm{e}^{y x} \sin (2 x)}{y^{2}+4}-3 y=c_{1}
$$

- \quad Solve for y

$$
y=-\frac{-x^{3}+c_{1} x+3 \operatorname{LambertW}\left(-\frac{x \cos (2 x) e^{\frac{1}{3} x^{3}-\frac{1}{3}} c_{1} x}{3}\right)}{3 x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35
dsolve $(2 * x-2 * \exp (x * y(x)) * \sin (2 * x)+\exp (x * y(x)) * \cos (2 * x) * y(x)+(-3+\exp (x * y(x)) * x * \cos (2 * x)) * \operatorname{diff}$

$$
y(x)=\frac{x^{3}+c_{1} x-3 \text { LambertW }\left(-\frac{x \cos (2 x) e^{\frac{x\left(x^{2}+c_{1}\right)}{3}}}{3}\right)}{3 x}
$$

\checkmark Solution by Mathematica
Time used: 5.197 (sec). Leaf size: 48
DSolve $[2 * x-2 * \operatorname{Exp}[x * y[x]] * \operatorname{Sin}[2 * x]+\operatorname{Exp}[x * y[x]] * \operatorname{Cos}[2 * x] * y[x]+(-3+\operatorname{Exp}[x * y[x]] * x * \operatorname{Cos}[2 * x]) * y '[x$

$$
y(x) \rightarrow \frac{-3 W\left(-\frac{1}{3} x e^{\frac{1}{3} x\left(x^{2}-c_{1}\right)} \cos (2 x)\right)+x^{3}-c_{1} x}{3 x}
$$

5.10 problem 10

5.10.1 Solving as linear ode . 1237
5.10.2 Solving as first order ode lie symmetry lookup ode 1239
5.10.3 Solving as exact ode . 1243
5.10.4 Maple step by step solution . 1247

Internal problem ID [552]
Internal file name [OUTPUT/552_Sunday_June_05_2022_01_44_25_AM_13151512/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
\frac{y}{x}+(\ln (x)-2) y^{\prime}=-6 x
$$

5.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{(\ln (x)-2) x} \\
q(x) & =-\frac{6 x}{\ln (x)-2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{(\ln (x)-2) x}=-\frac{6 x}{\ln (x)-2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{(\ln (x)-2) x} d x} \\
& =\ln (x)-2
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-\frac{6 x}{\ln (x)-2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}((\ln (x)-2) y) & =(\ln (x)-2)\left(-\frac{6 x}{\ln (x)-2}\right) \\
\mathrm{d}((\ln (x)-2) y) & =(-6 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (\ln (x)-2) y=\int-6 x \mathrm{~d} x \\
& (\ln (x)-2) y=-3 x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\ln (x)-2$ results in

$$
y=-\frac{3 x^{2}}{\ln (x)-2}+\frac{c_{1}}{\ln (x)-2}
$$

which simplifies to

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2} \tag{1}
\end{equation*}
$$

Figure 239: Slope field plot

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Verified OK.

5.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{6 x^{2}+y}{(\ln (x)-2) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 243: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{\ln (x)-2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\ln (x)-2}} d y
\end{aligned}
$$

Which results in

$$
S=(\ln (x)-2) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{6 x^{2}+y}{(\ln (x)-2) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{x} \\
S_{y} & =\ln (x)-2
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-6 x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-6 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(\ln (x)-2) y=-3 x^{2}+c_{1}
$$

Which simplifies to

$$
(\ln (x)-2) y=-3 x^{2}+c_{1}
$$

Which gives

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{6 x^{2}+y}{(\ln (x)-2) x}$		$\frac{d S}{d R}=-6 R$
¢ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		
	$R=x$	1 $+1+4+4$
	$S=(\ln (x)-2) y$	
- 49	$S=(\ln (x)-2) y$	1493
$-2+1$ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2} \tag{1}
\end{equation*}
$$

Figure 240: Slope field plot
Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Verified OK.

5.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\ln (x)-2) \mathrm{d} y & =\left(-\frac{y}{x}-6 x\right) \mathrm{d} x \\
\left(\frac{y}{x}+6 x\right) \mathrm{d} x+(\ln (x)-2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{x}+6 x \\
& N(x, y)=\ln (x)-2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{x}+6 x\right) \\
& =\frac{1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\ln (x)-2) \\
& =\frac{1}{x}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{x}+6 x \mathrm{~d} x \\
\phi & =\ln (x) y+3 x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\ln (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\ln (x)-2$. Therefore equation (4) becomes

$$
\begin{equation*}
\ln (x)-2=\ln (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2) \mathrm{d} y \\
f(y) & =-2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x) y+3 x^{2}-2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x) y+3 x^{2}-2 y
$$

The solution becomes

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2} \tag{1}
\end{equation*}
$$

Figure 241: Slope field plot

Verification of solutions

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Verified OK.

5.10.4 Maple step by step solution

Let's solve
$\frac{y}{x}+(\ln (x)-2) y^{\prime}=-6 x$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{(\ln (x)-2) x}-\frac{6 x}{\ln (x)-2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{(\ln (x)-2) x}=-\frac{6 x}{\ln (x)-2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{(\ln (x)-2) x}\right)=-\frac{6 \mu(x) x}{\ln (x)-2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{(\ln (x)-2) x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{(\ln (x)-2) x}$
- Solve to find the integrating factor
$\mu(x)=\ln (x)-2$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\frac{6 \mu(x) x}{\ln (x)-2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\frac{6 \mu(x) x}{\ln (x)-2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\frac{6 \mu(x) x}{\ln (x)-2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\ln (x)-2$

$$
y=\frac{\int-6 x d x+c_{1}}{\ln (x)-2}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.219 (sec). Leaf size: 18

```
dsolve((y(x)/x+6*x)+(ln}(x)-2)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all
```

$$
y(x)=\frac{-3 x^{2}+c_{1}}{\ln (x)-2}
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 20
DSolve[(y[x]/x+6*x)+(Log[x]-2)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{-3 x^{2}+c_{1}}{\log (x)-2}
$$

5.11 problem 11

Internal problem ID [553]
Internal file name [OUTPUT/553_Sunday_June_05_2022_01_44_26_AM_51220061/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_Abel, `2nd type`, `class B`]]
Unable to solve or complete the solution.

$$
y x+(\ln (x) y+y x) y^{\prime}=-x \ln (x)
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(ln(x)-1)/(x*(ln(x)+x)), y(x)`
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*(ln(x)^2+x)/(x*(ln(x)+x)*\operatorname{ln}(x)), y(x
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful }125
`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
```

X Solution by Maple
dsolve $((x * \ln (x)+x * y(x))+(y(x) * \ln (x)+x * y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[(x * \log [x]+x * y[x])+(y[x] * \log [x]+x * y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$

Not solved

5.12 problem 12

5.12.1 Solving as separable ode . 1252
5.12.2 Solving as homogeneousTypeD2 ode 1254
5.12.3 Solving as differentialType ode 1256
5.12.4 Solving as first order ode lie symmetry lookup ode 1257
5.12.5 Solving as exact ode . 1261
5.12.6 Maple step by step solution . 1265

Internal problem ID [554]
Internal file name [OUTPUT/554_Sunday_June_05_2022_01_44_30_AM_73717968/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=0
$$

5.12.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x}{y}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-x d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-x d x \\
\frac{y^{2}}{2} & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-x^{2}+2 c_{1}} \\
& y=-\sqrt{-x^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{-x^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 242: Slope field plot

Verification of solutions

$$
y=\sqrt{-x^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{-x^{2}+2 c_{1}}
$$

Verified OK.

5.12.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\frac{x}{\left(x^{2}+u(x)^{2} x^{2}\right)^{\frac{3}{2}}}+\frac{u(x) x\left(u^{\prime}(x) x+u(x)\right)}{\left(x^{2}+u(x)^{2} x^{2}\right)^{\frac{3}{2}}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{y^{2}}{x^{2}}+1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 243: Slope field plot

Verification of solutions

$$
\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

5.12.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(-x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d x=d\left(-\frac{x^{2}}{2}\right)
$$

Hence (2) becomes

$$
\text { (y) } d y=d\left(-\frac{x^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{-x^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{-x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{-x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 244: Slope field plot
Verification of solutions

$$
y=\sqrt{-x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{-x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

5.12.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 246: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x}{y}$		$\frac{d S}{d R}=R$
		1:
	$R=y$	
	$-\frac{x^{2}}{2}$	
		- 1.

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 245: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

5.12.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+(-y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y$. Therefore equation (4) becomes

$$
\begin{equation*}
-y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 246: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

5.12.6 Maple step by step solution

Let's solve

$$
\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{\sqrt{x^{2}+y^{2}}}=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-c_{1}^{2} x^{2}+1}}{c_{1}}, y=-\frac{\sqrt{-c_{1}^{2} x^{2}+1}}{c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve $\left(x /\left(x^{\wedge} 2+y(x)^{\wedge}\right)^{\wedge}(3 / 2)+y(x) * \operatorname{diff}(y(x), x) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(3 / 2)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x^{2}+c_{1}} \\
& y(x)=-\sqrt{-x^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 39
DSolve $\left[x /\left(x^{\wedge} 2+y[x] \sim 2\right)^{\wedge}(3 / 2)+y[x] * y '[x] /\left(x^{\wedge} 2+y[x]^{\wedge} 2\right)^{\wedge}(3 / 2)==0, y[x], x\right.$, IncludeSingularSolutio

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{-x^{2}+2 c_{1}}
\end{aligned}
$$

5.13 problem 13

5.13.1 Existence and uniqueness analysis 1267
5.13.2 Solving as homogeneousTypeD2 ode 1268
5.13.3 Solving as differentialType ode 1270
5.13.4 Solving as first order ode lie symmetry calculated ode 1271
5.13.5 Solving as exact ode . 1276
5.13.6 Maple step by step solution . 1279

Internal problem ID [555]
Internal file name [OUTPUT/555_Sunday_June_05_2022_01_44_31_AM_94833341/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_oorder_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
-y+(-x+2 y) y^{\prime}=-2 x
$$

With initial conditions

$$
[y(1)=3]
$$

5.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{-2 x+y}{-x+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\{x<6 \vee 6<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{y<\frac{1}{2} \vee \frac{1}{2}<y\right\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-2 x+y}{-x+2 y}\right) \\
& =\frac{1}{-x+2 y}-\frac{2(-2 x+y)}{(-x+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=3$ is

$$
\{x<6 \vee 6<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{y<\frac{1}{2} \vee \frac{1}{2}<y\right\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

5.13.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x+(-x+2 u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-2 x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2\left(u^{2}-u+1\right)}{x(2 u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u^{2}-u+1}{2 u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-u+1}{2 u-1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u^{2}-u+1}{2 u-1}} d u & =\int-\frac{2}{x} d x \\
\ln \left(u^{2}-u+1\right) & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u^{2}-u+1=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
u^{2}-u+1=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
u(x)^{2}-u(x)+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
u(x)^{2}-u(x)+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-\frac{y}{x}+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \\
& \frac{y^{2}}{x^{2}}-\frac{y}{x}+1=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
y^{2}-y x+x^{2}=c_{3} \mathrm{e}^{c_{2}}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\ln \left(\frac{7}{c_{3}}\right)$. Hence the solution Summary
becomes The solution(s) found are the following

$$
\begin{equation*}
y^{2}-y x+x^{2}=7 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2}-y x+x^{2}=7
$$

Verified OK.

5.13.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 x+y}{-x+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-2 y) d y=(-x) d y+(2 x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(2 x-y) d x=d\left(x^{2}-y x\right)
$$

Hence (2) becomes

$$
(-2 y) d y=d\left(x^{2}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}-4 c_{1}}}{2}+c_{1} \\
& y=\frac{x}{2}-\frac{\sqrt{-3 x^{2}-4 c_{1}}}{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=\frac{1}{2}-\frac{\sqrt{-3-4 c_{1}}}{2}+c_{1}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\frac{1}{2}+\frac{\sqrt{-3-4 c_{1}}}{2}+c_{1} \\
c_{1}=2-i \sqrt{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}-8+4 i \sqrt{3}}}{2}+2-i \sqrt{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}-8+4 i \sqrt{3}}}{2}+2-i \sqrt{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}-8+4 i \sqrt{3}}}{2}+2-i \sqrt{3}
$$

Verified OK.

5.13.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-2 x+y}{-x+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-2 x+y)\left(b_{3}-a_{2}\right)}{-x+2 y}-\frac{(-2 x+y)^{2} a_{3}}{(-x+2 y)^{2}} \\
& -\left(-\frac{2}{-x+2 y}+\frac{-2 x+y}{(-x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{-x+2 y}-\frac{2(-2 x+y)}{(-x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{2} a_{2}+4 x^{2} a_{3}+2 x^{2} b_{2}-2 x^{2} b_{3}-8 x y a_{2}-4 x y a_{3}+4 x y b_{2}+8 x y b_{3}+2 y^{2} a_{2}-2 y^{2} a_{3}-4 y^{2} b_{2}-2 y^{2} b_{3}+3}{(x-2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} a_{2}-4 x^{2} a_{3}-2 x^{2} b_{2}+2 x^{2} b_{3}+8 x y a_{2}+4 x y a_{3}-4 x y b_{2} \tag{6E}\\
& \quad-8 x y b_{3}-2 y^{2} a_{2}+2 y^{2} a_{3}+4 y^{2} b_{2}+2 y^{2} b_{3}-3 x b_{1}+3 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2}+8 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}+4 a_{3} v_{1} v_{2}+2 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2} \tag{7E}\\
& \quad-4 b_{2} v_{1} v_{2}+4 b_{2} v_{2}^{2}+2 b_{3} v_{1}^{2}-8 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2}+3 a_{1} v_{2}-3 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3}\right) v_{1}^{2}+\left(8 a_{2}+4 a_{3}-4 b_{2}-8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-3 b_{1} v_{1}+\left(-2 a_{2}+2 a_{3}+4 b_{2}+2 b_{3}\right) v_{2}^{2}+3 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
3 a_{1} & =0 \\
-3 b_{1} & =0 \\
-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3} & =0 \\
-2 a_{2}+2 a_{3}+4 b_{2}+2 b_{3} & =0 \\
8 a_{2}+4 a_{3}-4 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{2}+b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{-2 x+y}{-x+2 y}\right)(x) \\
& =\frac{-2 x^{2}+2 y x-2 y^{2}}{x-2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{2}+2 y x-2 y^{2}}{x-2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}-y x+y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-2 x+y}{-x+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x-y}{2 x^{2}-2 y x+2 y^{2}} \\
S_{y} & =\frac{-x+2 y}{2 x^{2}-2 y x+2 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}-y x+x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}-y x+x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-2 x+y}{-x+2 y}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\text { a }} \rightarrow \rightarrow$ 遇
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29]{ }$
	$R=x$	
	$S=\underline{\ln \left(x^{2}-y x+y^{2}\right)}$	
	$S=\frac{\ln \left(x^{2}-2 x+y^{2}\right)}{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{R \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow- \pm \text { - }]{\rightarrow \rightarrow \text { - }}$		
		$\xrightarrow{\rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\ln (7)}{2}=c_{1} \\
& c_{1}=\frac{\ln (7)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln \left(x^{2}-y x+y^{2}\right)}{2}=\frac{\ln (7)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}-y x+x^{2}\right)}{2}=\frac{\ln (7)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(y^{2}-y x+x^{2}\right)}{2}=\frac{\ln (7)}{2}
$$

Verified OK.

5.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x+2 y) \mathrm{d} y & =(-2 x+y) \mathrm{d} x \\
(2 x-y) \mathrm{d} x+(-x+2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x-y \\
N(x, y) & =-x+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x+2 y) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x-y \mathrm{~d} x \\
\phi & =x(x-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
-x+2 y=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x(x-y)+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x(x-y)+y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 7=c_{1} \\
& c_{1}=7
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x(x-y)+y^{2}=7
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2}-y x+x^{2}=7 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2}-y x+x^{2}=7
$$

Verified OK.
The solution

$$
\frac{\ln \left(y^{2}-y x+x^{2}\right)}{2}=\frac{\ln (7)}{2}
$$

can be simplified to

$$
\ln \left(y^{2}-y x+x^{2}\right)=\ln (7)
$$

5.13.6 Maple step by step solution

Let's solve

$$
\left[-y+(-x+2 y) y^{\prime}=-2 x, y(1)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-1=-1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(2 x-y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x^{2}-y x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-x+2 y=-x+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=2 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=x^{2}-y x+y^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2}-y x+y^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{x}{2}-\frac{\sqrt{-3 x^{2}+4 c_{1}}}{2}, y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}+4 c_{1}}}{2}\right\}
$$

- Use initial condition $y(1)=3$
$3=\frac{1}{2}-\frac{\sqrt{4 c_{1}-3}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(1)=3$
$3=\frac{1}{2}+\frac{\sqrt{4 c_{1}-3}}{2}$
- \quad Solve for c_{1}
$c_{1}=7$
- \quad Substitute $c_{1}=7$ into general solution and simplify
$y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}+28}}{2}$
- \quad Solution to the IVP
$y=\frac{x}{2}+\frac{\sqrt{-3 x^{2}+28}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 19

```
dsolve([2*x-y(x)+(-x+2*y(x))*diff(y(x),x)=0,y(1) = 3],y(x), singsol=all)
```

$$
y(x)=\frac{x}{2}+\frac{\sqrt{-3 x^{2}+28}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.456 (sec). Leaf size: 22
DSolve $[\{2 * x-y[x]+(-x+2 * y[x]) * y$ ' $[x]==0, y[1]==3\}, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{28-3 x^{2}}+x\right)
$$

5.14 problem 14

5.14.1 Existence and uniqueness analysis 1282
5.14.2 Solving as differentialType ode 1283
5.14.3 Solving as exact ode . 1285
5.14.4 Maple step by step solution . 1288

Internal problem ID [556]
Internal file name [OUTPUT/556_Sunday_June_05_2022_01_44_32_AM_62551946/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact, _rational, [_1st_order, ` with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, ‘class A`]]

$$
y+(x-4 y) y^{\prime}=-9 x^{2}+1
$$

With initial conditions

$$
[y(1)=0]
$$

5.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{9 x^{2}+y-1}{-x+4 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\left\{y<\frac{1}{4} \vee \frac{1}{4}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{9 x^{2}+y-1}{-x+4 y}\right) \\
& =\frac{1}{-x+4 y}-\frac{4\left(9 x^{2}+y-1\right)}{(-x+4 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\left\{y<\frac{1}{4} \vee \frac{1}{4}<y\right\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

5.14.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{1-9 x^{2}-y}{x-4 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(-4 y) d y=(-x) d y+\left(-9 x^{2}-y+1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+\left(-9 x^{2}-y+1\right) d x=d\left(-3 x^{3}-y x+x\right)
$$

Hence (2) becomes

$$
(-4 y) d y=d\left(-3 x^{3}-y x+x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{x}{4}+\frac{\sqrt{24 x^{3}+x^{2}-8 c_{1}-8 x}}{4}+c_{1} \\
& y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-8 c_{1}-8 x}}{4}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{4}-\frac{\sqrt{17-8 c_{1}}}{4}+c_{1} \\
c_{1}=\frac{\sqrt{5}}{2}-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-4 \sqrt{5}+4-8 x}}{4}+\frac{\sqrt{5}}{2}-\frac{1}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{4}+\frac{\sqrt{17-8 c_{1}}}{4}+c_{1} \\
c_{1}=-\frac{1}{2}-\frac{\sqrt{5}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{x}{4}+\frac{\sqrt{24 x^{3}+x^{2}+4+4 \sqrt{5}-8 x}}{4}-\frac{1}{2}-\frac{\sqrt{5}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{x}{4}+\frac{\sqrt{24 x^{3}+x^{2}+4+4 \sqrt{5}-8 x}}{4}-\frac{1}{2}-\frac{\sqrt{5}}{2} \tag{1}\\
& y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-4 \sqrt{5}+4-8 x}}{4}+\frac{\sqrt{5}}{2}-\frac{1}{2} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\frac{x}{4}+\frac{\sqrt{24 x^{3}+x^{2}+4+4 \sqrt{5}-8 x}}{4}-\frac{1}{2}-\frac{\sqrt{5}}{2}
$$

Verified OK.

$$
y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-4 \sqrt{5}+4-8 x}}{4}+\frac{\sqrt{5}}{2}-\frac{1}{2}
$$

Verified OK.

5.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x-4 y) \mathrm{d} y & =\left(-9 x^{2}-y+1\right) \mathrm{d} x \\
\left(9 x^{2}+y-1\right) \mathrm{d} x+(x-4 y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =9 x^{2}+y-1 \\
N(x, y) & =x-4 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(9 x^{2}+y-1\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x-4 y) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 9 x^{2}+y-1 \mathrm{~d} x \\
\phi & =x\left(3 x^{2}+y-1\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x-4 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x-4 y=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-4 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-4 y) \mathrm{d} y \\
f(y) & =-2 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(3 x^{2}+y-1\right)-2 y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(3 x^{2}+y-1\right)-2 y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x\left(3 x^{2}+y-1\right)-2 y^{2}=2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
3 x^{3}+(y-1) x-2 y^{2}=2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
3 x^{3}+(y-1) x-2 y^{2}=2
$$

Verified OK.

5.14.4 Maple step by step solution

Let's solve
$\left[y+(x-4 y) y^{\prime}=-9 x^{2}+1, y(1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
1=1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(9 x^{2}+y-1\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=3 x^{3}+y x-x+f_{1}(y)$
- Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$x-4 y=x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-4 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-2 y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=3 x^{3}+y x-2 y^{2}-x$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
3 x^{3}+y x-2 y^{2}-x=c_{1}
$$

- \quad Solve for y
$\left\{y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-8 c_{1}-8 x}}{4}, y=\frac{x}{4}+\frac{\sqrt{24 x^{3}+x^{2}-8 c_{1}-8 x}}{4}\right\}$
- Use initial condition $y(1)=0$
$0=\frac{1}{4}-\frac{\sqrt{17-8 c_{1}}}{4}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-8 x-16}}{4}
$$

- Use initial condition $y(1)=0$

$$
0=\frac{1}{4}+\frac{\sqrt{17-8 c_{1}}}{4}
$$

- Solution does not satisfy initial condition
- \quad Solution to the IVP

$$
y=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-8 x-16}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 25

```
dsolve([-1+9*x^2+y(x)+(x-4*y(x))*diff (y(x),x) = 0,y(1) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{x}{4}-\frac{\sqrt{24 x^{3}+x^{2}-8 x-16}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.148 (sec). Leaf size: 34
DSolve $\left[\left\{-1+9 * x^{\wedge} 2+y[x]+(x-4 * y[x]) * y{ }^{\prime}[x]==0, y[1]==0\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{1}{4}\left(x+i \sqrt{-24 x^{3}-x^{2}+8 x+16}\right)
$$

5.15 problem 19

5.15.1 Solving as separable ode . 1291
5.15.2 Solving as first order ode lie symmetry lookup ode 1293
5.15.3 Solving as exact ode . 1297
5.15.4 Maple step by step solution . 1301

Internal problem ID [557]
Internal file name [OUTPUT/557_Sunday_June_05_2022_01_44_33_AM_13501171/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{3} x^{2}+x\left(1+y^{2}\right) y^{\prime}=0
$$

5.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{3} x}{y^{2}+1}
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\frac{y^{3}}{y^{2}+1}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{\frac{y^{3}}{y^{2}+1}} d y=-x d x \\
\int \frac{1}{\frac{y^{3}}{y^{2}+1}} d y=\int-x d x
\end{gathered}
$$

$$
\ln (y)-\frac{1}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

Which results in

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(\mathrm{e}^{x^{2}-2 c_{1}}\right)}{2}-\frac{x^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{x^{2}-2 c_{1}}\right)}{2}-\frac{x^{2}}{2}+c_{1}}
$$

Figure 248: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(\mathrm{e}^{x^{2}-2 c_{1}}\right)}{2}-\frac{x^{2}}{2}+c_{1}}
$$

Verified OK.

5.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{3} x}{y^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 251: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{3} x}{y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}+1}{y^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}+1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}}{2}=\ln (y)-\frac{1}{2 y^{2}}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}}{2}=\ln (y)-\frac{1}{2 y^{2}}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{3} x}{y^{2}+1}$		$\frac{d S}{d R}=\frac{R^{2}+1}{R^{3}}$
		$\rightarrow \rightarrow \rightarrow$ 边
		人） 1
	$R=y$	$\rightarrow \rightarrow$ 边
	x^{2}	$\xrightarrow{\rightarrow-4} \rightarrow$
1f ${ }^{\text {a }}$	$S=-\frac{x}{2}$	
		$\rightarrow \rightarrow 0 \rightarrow 0$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}} \tag{1}
\end{equation*}
$$

Figure 249: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}}
$$

Verified OK.

5.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y^{2}+1}{y^{3}}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(-\frac{y^{2}+1}{y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=-\frac{y^{2}+1}{y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y^{2}+1}{y^{3}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y^{2}+1}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y^{2}+1}{y^{3}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y^{2}+1}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{-y^{2}-1}{y^{3}}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+\frac{1}{2 y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\ln (y)+\frac{1}{2 y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\ln (y)+\frac{1}{2 y^{2}}
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\text { LambertW }\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}} \tag{1}
\end{equation*}
$$

Figure 250: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}{2}-\frac{x^{2}}{2}-c_{1}}
$$

Verified OK.

5.15.4 Maple step by step solution

Let's solve

$$
y^{3} x^{2}+x\left(1+y^{2}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}\left(1+y^{2}\right)}{y^{3}}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}\left(1+y^{2}\right)}{y^{3}} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)-\frac{1}{2 y^{2}}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\text { Lambert } W\left(\mathrm{e}^{x^{2}-2 c_{1}}\right)}{2}-\frac{x^{2}}{2}+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 37
dsolve $\left(x^{\wedge} 2 * y(x) \wedge 3+x *(1+y(x) \wedge 2) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\mathrm{e}^{-\frac{x^{2}}{2}-c_{1}} \sqrt{\frac{\mathrm{e}^{x^{2}+2 c_{1}}}{\operatorname{LambertW}\left(\mathrm{e}^{x^{2}+2 c_{1}}\right)}}
$$

\checkmark Solution by Mathematica
Time used: 4.095 (sec). Leaf size: 46
DSolve $\left[x^{\wedge} 2 * y[x] \sim 3+x *\left(1+y[x]^{\wedge} 2\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{W\left(e^{x^{2}-2 c_{1}}\right)}} \\
& y(x) \rightarrow \frac{1}{\sqrt{W\left(e^{x^{2}-2 c_{1}}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.16 problem 21

5.16.1 Solving as exact ode

1303
Internal problem ID [558]
Internal file name [OUTPUT/558_Sunday_June_05_2022_01_44_35_AM_40301990/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]

$$
y+\left(2 x-\mathrm{e}^{y} y\right) y^{\prime}=0
$$

5.16.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 x-\mathrm{e}^{y} y\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(2 x-\mathrm{e}^{y} y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =2 x-\mathrm{e}^{y} y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x-\mathrm{e}^{y} y\right) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x-\mathrm{e}^{y} y}((1)-(2)) \\
& =\frac{1}{\mathrm{e}^{y} y-2 x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((2)-(1)) \\
& =\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (y)} \\
& =y
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =y(y) \\
& =y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =y\left(2 x-\mathrm{e}^{y} y\right) \\
& =-y^{2} \mathrm{e}^{y}+2 y x
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2}\right)+\left(-y^{2} \mathrm{e}^{y}+2 y x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \mathrm{~d} x \\
\phi & =x y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y^{2} \mathrm{e}^{y}+2 y x$. Therefore equation (4) becomes

$$
\begin{equation*}
-y^{2} \mathrm{e}^{y}+2 y x=2 y x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y^{2} \mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-y^{2} \mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 251: Slope field plot

Verification of solutions

$$
x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 34

```
dsolve(y(x)+(2*x-exp(y(x))*y(x))*diff (y(x),x) = 0,y(x), singsol=all)
```

$$
\frac{\left(-y(x)^{2}+2 y(x)-2\right) \mathrm{e}^{y(x)}+x y(x)^{2}-c_{1}}{y(x)^{2}}=0
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.225 (sec). Leaf size: 32
DSolve $[\mathrm{y}[\mathrm{x}]+(2 * \mathrm{x}-\operatorname{Exp}[\mathrm{y}[\mathrm{x}]] * \mathrm{y}[\mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=\frac{e^{y(x)}\left(y(x)^{2}-2 y(x)+2\right)}{y(x)^{2}}+\frac{c_{1}}{y(x)^{2}}, y(x)\right]
$$

5.17 problem 22

5.17.1 Solving as separable ode . 1309
5.17.2 Solving as first order ode lie symmetry lookup ode 1311
5.17.3 Solving as exact ode . 1315
5.17.4 Maple step by step solution . 1319

Internal problem ID [559]
Internal file name [OUTPUT/559_Sunday_June_05_2022_01_44_36_AM_63277223/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
(2+x) \sin (y)+x \cos (y) y^{\prime}=0
$$

5.17.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{(2+x) \tan (y)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2+x}{x}$ and $g(y)=\tan (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (y)} d y & =-\frac{2+x}{x} d x \\
\int \frac{1}{\tan (y)} d y & =\int-\frac{2+x}{x} d x \\
\ln (\sin (y)) & =-x-2 \ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (y)=\mathrm{e}^{-x-2 \ln (x)+c_{1}}
$$

Which simplifies to

$$
\sin (y)=c_{2} \mathrm{e}^{-x-2 \ln (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{-x+c_{1}}}{x^{2}}\right) \tag{1}
\end{equation*}
$$

Figure 252: Slope field plot
Verification of solutions

$$
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{-x+c_{1}}}{x^{2}}\right)
$$

Verified OK.

5.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{(2+x) \sin (y)}{x \cos (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 254: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x}{2+x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x}{2+x}} d x
\end{aligned}
$$

Which results in

$$
S=-x-2 \ln (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{(2+x) \sin (y)}{x \cos (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{-x-2}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cot (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cot (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (\sin (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x-2 \ln (x)=\ln (\sin (y))+c_{1}
$$

Which simplifies to

$$
-x-2 \ln (x)=\ln (\sin (y))+c_{1}
$$

Which gives

$$
y=\arcsin \left(\frac{\mathrm{e}^{-x-c_{1}}}{x^{2}}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{(2+x) \sin (y)}{x \cos (y)}$		$\frac{d S}{d R}=\cot (R)$
		$\rightarrow-1+5(R)$
	$S=-x-2 \ln (x)$	
$\underbrace{}_{\text {d }}$		$\rightarrow \infty$
$x_{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$		
		$\rightarrow \pm 14$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(\frac{\mathrm{e}^{-x-c_{1}}}{x^{2}}\right) \tag{1}
\end{equation*}
$$

Figure 253: Slope field plot

Verification of solutions

$$
y=\arcsin \left(\frac{\mathrm{e}^{-x-c_{1}}}{x^{2}}\right)
$$

Verified OK.

5.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =\left(\frac{2+x}{x}\right) \mathrm{d} x \\
\left(-\frac{2+x}{x}\right) \mathrm{d} x+\left(-\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2+x}{x} \\
& N(x, y)=-\frac{\cos (y)}{\sin (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2+x}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\cos (y)}{\sin (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2+x}{x} \mathrm{~d} x \\
\phi & =-x-2 \ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\cos (y)}{\sin (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\cos (y)}{\sin (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{\cos (y)}{\sin (y)} \\
& =-\cot (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-\cot (y)) \mathrm{d} y \\
f(y) & =-\ln (\sin (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-2 \ln (x)-\ln (\sin (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-2 \ln (x)-\ln (\sin (y))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-x-2 \ln (x)-\ln (\sin (y))=c_{1} \tag{1}
\end{equation*}
$$

Figure 254: Slope field plot

Verification of solutions

$$
-x-2 \ln (x)-\ln (\sin (y))=c_{1}
$$

Verified OK.

5.17.4 Maple step by step solution

Let's solve

$$
(2+x) \sin (y)+x \cos (y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime} \cos (y)}{\sin (y)}=-\frac{2+x}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} \cos (y)}{\sin (y)} d x=\int-\frac{2+x}{x} d x+c_{1}$
- Evaluate integral

$$
\ln (\sin (y))=-x-2 \ln (x)+c_{1}
$$

- \quad Solve for y
$y=\arcsin \left(\frac{\mathrm{e}^{-x+c_{1}}}{x^{2}}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve $((2+x) * \sin (y(x))+x * \cos (y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol $=a l l)$

$$
y(x)=\arcsin \left(\frac{\mathrm{e}^{-x}}{c_{1} x^{2}}\right)
$$

\checkmark Solution by Mathematica
Time used: 51.022 (sec). Leaf size: 23
DSolve $\left[(2+x) * \operatorname{Sin}[y[x]]+x * \operatorname{Cos}[y[x]] * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \arcsin \left(\frac{e^{-x+c_{1}}}{x^{2}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.18 problem 25

5.18.1 Solving as homogeneousTypeD2 ode 1321
5.18.2 Solving as exact ode . 1323

Internal problem ID [560]
Internal file name [OUTPUT/560_Sunday_June_05_2022_01_44_37_AM_81876546/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_homogeneous, `class D`], _rational]

$$
2 y x+3 x^{2} y+y^{3}+\left(x^{2}+y^{2}\right) y^{\prime}=0
$$

5.18.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+3 x^{3} u(x)+u(x)^{3} x^{3}+\left(x^{2}+u(x)^{2} x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(u^{2}+3\right)(x+1)}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{x+1}{x}$ and $g(u)=\frac{\left(u^{2}+3\right) u}{u^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{\left(u^{2}+3\right) u}{u^{2}+1}} d u=-\frac{x+1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{\left(u^{2}+3\right) u}{u^{2}+1}} d u & =\int-\frac{x+1}{x} d x \\
\frac{\ln \left(\left(u^{2}+3\right) u\right)}{3} & =-x-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(\left(u^{2}+3\right) u\right)^{\frac{1}{3}}=\mathrm{e}^{-x-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(\left(u^{2}+3\right) u\right)^{\frac{1}{3}}=c_{3} \mathrm{e}^{-x-\ln (x)}
$$

Which simplifies to

$$
\left(\left(u(x)^{2}+3\right) u(x)\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\left(\left(u(x)^{2}+3\right) u(x)\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \left(\frac{\left(\frac{y^{2}}{x^{2}}+3\right) y}{x}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x} \\
& \left(\frac{\left(y^{2}+3 x^{2}\right) y}{x^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x+c_{2}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{\left(y^{2}+3 x^{2}\right) y}{x^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x+c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 255: Slope field plot

Verification of solutions

$$
\left(\frac{\left(y^{2}+3 x^{2}\right) y}{x^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{-x+c_{2}}}{x}
$$

Verified OK.

5.18.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =\left(-3 y x^{2}-y^{3}-2 y x\right) \mathrm{d} x \\
\left(3 y x^{2}+y^{3}+2 y x\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y x^{2}+y^{3}+2 y x \\
N(x, y) & =x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y x^{2}+y^{3}+2 y x\right) \\
& =3 x^{2}+3 y^{2}+2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}\left(\left(3 x^{2}+3 y^{2}+2 x\right)-(2 x)\right) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 3 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 x}\left(3 y x^{2}+y^{3}+2 y x\right) \\
& =y\left(3 x^{2}+y^{2}+2 x\right) \mathrm{e}^{3 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 x}\left(x^{2}+y^{2}\right) \\
& =\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y\left(3 x^{2}+y^{2}+2 x\right) \mathrm{e}^{3 x}\right)+\left(\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y\left(3 x^{2}+y^{2}+2 x\right) \mathrm{e}^{3 x} \mathrm{~d} x \\
\phi & =\frac{\left(3 x^{2}+y^{2}\right) y \mathrm{e}^{3 x}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 y^{2} \mathrm{e}^{3 x}}{3}+\frac{\left(3 x^{2}+y^{2}\right) \mathrm{e}^{3 x}}{3}+f^{\prime}(y) \tag{4}\\
& =\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}=\left(x^{2}+y^{2}\right) \mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(3 x^{2}+y^{2}\right) y \mathrm{e}^{3 x}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(3 x^{2}+y^{2}\right) y \mathrm{e}^{3 x}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\left(y^{2}+3 x^{2}\right) y \mathrm{e}^{3 x}}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 256: Slope field plot

Verification of solutions

$$
\frac{\left(y^{2}+3 x^{2}\right) y \mathrm{e}^{3 x}}{3}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 297

```
dsolve(2*x*y(x)+3*x^2*y(x)+y(x)^3+(x^2+y(x)^2)*diff (y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& \left.y(x)=-\frac{\left(x^{2} \mathrm{e}^{6 x} c_{1}^{2}-\frac{2^{\frac{1}{3}}\left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right.}{}\right)^{\frac{2}{3}}}{2}\right) 2^{\frac{1}{3}} \mathrm{e}^{-3 x} \\
& \left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right)^{\frac{1}{3}} c_{1} \\
& y(x)=-\frac{\mathrm{e}^{-3 x} 2^{\frac{1}{3}}\left(2 x^{2}(i \sqrt{3}-1) \mathrm{e}^{6 x} c_{1}^{2}+2^{\frac{1}{3}}(1+i \sqrt{3})\left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right)^{\frac{2}{3}}\right)}{4\left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right)^{\frac{1}{3}} c_{1}} \\
& y(x)=\frac{\left(2 x^{2}(1+i \sqrt{3}) \mathrm{e}^{6 x} c_{1}^{2}+2^{\frac{1}{3}}(i \sqrt{3}-1)\left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right)^{\frac{2}{3}}\right) \mathrm{e}^{-3 x} 2^{\frac{1}{3}}}{4\left(\left(1+\sqrt{4 x^{6} \mathrm{e}^{6 x} c_{1}^{2}+1}\right) \mathrm{e}^{6 x} c_{1}^{2}\right)^{\frac{1}{3}} c_{1}}
\end{aligned}
$$

Solution by Mathematica

Time used: 60.305 (sec). Leaf size: 383

DSolve $\left[2 * x * y[x]+3 * x^{\wedge} 2 * y[x]+y[x] \sim 3+\left(x^{\wedge} 2+y[x]^{\wedge} 2\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
y(x) \rightarrow & \frac{e^{-3 x}\left(-2 e^{6 x} x^{2}+\sqrt[3]{2}\left(\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}\right)^{2 / 3}\right)}{2^{2 / 3} \sqrt[3]{\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}}} \\
y(x) \rightarrow & \frac{i(\sqrt{3}+i) e^{-3 x} \sqrt[3]{\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}}}{2 \sqrt[3]{2}} \\
& +\frac{(1+i \sqrt{3}) e^{3 x} x^{2}}{2^{2 / 3} \sqrt[3]{\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}}} \\
y(x) \rightarrow & \frac{(1-i \sqrt{3}) e^{3 x} x^{2}}{2^{2 / 3} \sqrt[3]{\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}}} \\
& -\frac{(1+i \sqrt{3}) e^{-3 x} \sqrt[3]{\sqrt{4 e^{18 x} x^{6}+e^{6\left(2 x+c_{1}\right)}}+e^{6 x+3 c_{1}}}}{2 \sqrt[3]{2}}
\end{aligned}
$$

5.19 problem 26

5.19.1 Solving as linear ode . 1330
5.19.2 Solving as first order ode lie symmetry lookup ode 1332
5.19.3 Solving as exact ode . 1336
5.19.4 Maple step by step solution . 1340

Internal problem ID [561]
Internal file name [OUTPUT/561_Sunday_June_05_2022_01_44_39_AM_71606817/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=-1+\mathrm{e}^{2 x}
$$

5.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-1+\mathrm{e}^{2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=-1+\mathrm{e}^{2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-1+\mathrm{e}^{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)\left(-1+\mathrm{e}^{2 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x} y=\int \mathrm{e}^{x}-\mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}$ results in

$$
y=\mathrm{e}^{x}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)+c_{1} \mathrm{e}^{x}
$$

which simplifies to

$$
y=\mathrm{e}^{2 x}+1+c_{1} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}+1+c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 257: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}+1+c_{1} \mathrm{e}^{x}
$$

Verified OK.

5.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-1+\mathrm{e}^{2 x}+y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 257: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-1+\mathrm{e}^{2 x}+y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x}-\mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}-\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{-x}=\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{-x}=\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}
$$

Which gives

$$
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-1+\mathrm{e}^{2 x}+y$		$\frac{d S}{d R}=\mathrm{e}^{R}-\mathrm{e}^{-R}$
		+ ${ }^{1}$
		- 91
	$R=x$	
	$S=\mathrm{e}^{-x} y$	
bbibub		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 258: Slope field plot

Verification of solutions

$$
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

5.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-1+\mathrm{e}^{2 x}+y\right) \mathrm{d} x \\
\left(1-\mathrm{e}^{2 x}-y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=1-\mathrm{e}^{2 x}-y \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(1-\mathrm{e}^{2 x}-y\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}\left(1-\mathrm{e}^{2 x}-y\right) \\
& =\mathrm{e}^{-x}-\mathrm{e}^{x}-\mathrm{e}^{-x} y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{-x}-\mathrm{e}^{x}-\mathrm{e}^{-x} y\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{-x}-\mathrm{e}^{x}-\mathrm{e}^{-x} y \mathrm{~d} x \\
\phi & =(y-1) \mathrm{e}^{-x}-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y-1) \mathrm{e}^{-x}-\mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y-1) \mathrm{e}^{-x}-\mathrm{e}^{x}
$$

The solution becomes

$$
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 259: Slope field plot

Verification of solutions

$$
y=\left(\mathrm{e}^{x}+\mathrm{e}^{-x}+c_{1}\right) \mathrm{e}^{x}
$$

Verified OK.

5.19.4 Maple step by step solution

Let's solve
$y^{\prime}-y=-1+\mathrm{e}^{2 x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-1+\mathrm{e}^{2 x}+y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=-1+\mathrm{e}^{2 x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}-y\right)=\mu(x)\left(-1+\mathrm{e}^{2 x}\right)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(-1+\mathrm{e}^{2 x}\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(-1+\mathrm{e}^{2 x}\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(-1+\mathrm{e}^{2 x}\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x}$
$y=\frac{\int \mathrm{e}^{-x}\left(-1+\mathrm{e}^{2 x}\right) d x+c_{1}}{\mathrm{e}^{-x}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{x}+\frac{1}{\mathrm{e}^{x}}+c_{1}}{\mathrm{e}^{-x}}$
- Simplify
$y=\mathrm{e}^{2 x}+1+c_{1} \mathrm{e}^{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(x), x)=-1+\exp (2 * x)+y(x), y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x}+1+\mathrm{e}^{x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 18
DSolve[y'[x] == $-1+\operatorname{Exp}[2 * x]+y[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{2 x}+c_{1} e^{x}+1
$$

5.20 problem 27

5.20.1 Solving as differentialType ode 1343
5.20.2 Solving as exact ode . 1345

Internal problem ID [562]
Internal file name [OUTPUT/562_Sunday_June_05_2022_01_44_40_AM_44632801/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]

$$
\left(-\sin (y)+\frac{x}{y}\right) y^{\prime}=-1
$$

5.20.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{1}{-\sin (y)+\frac{x}{y}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y \sin (y)) d y=(x) d y+(y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x) d y+(y) d x=d(y x)
$$

Hence (2) becomes

$$
(y \sin (y)) d y=d(y x)
$$

Integrating both sides gives gives the solution as

$$
\sin (y)-y \cos (y)=y x+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (y)-y \cos (y)=y x+c_{1} \tag{1}
\end{equation*}
$$

Figure 260: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
\sin (y)-y \cos (y)=y x+c_{1}
$$

Verified OK.

5.20.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y \sin (y)-x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y \sin (y)-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y \sin (y)-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y \sin (y)-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \mathrm{~d} x \\
\phi & =-y x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y \sin (y)-x$. Therefore equation (4) becomes

$$
\begin{equation*}
y \sin (y)-x=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y \sin (y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y \sin (y)) \mathrm{d} y \\
f(y) & =\sin (y)-y \cos (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-y x+\sin (y)-y \cos (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-y x+\sin (y)-y \cos (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sin (y)-y \cos (y)-y x=c_{1} \tag{1}
\end{equation*}
$$

Figure 261: Slope field plot

Verification of solutions

$$
\sin (y)-y \cos (y)-y x=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 25
dsolve $(1+(-\sin (y(x))+x / y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
x+\frac{y(x) \cos (y(x))-\sin (y(x))-c_{1}}{y(x)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 29
DSolve[1+(-Sin $[y[x]]+x / y[x]) * y{ }^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=\frac{\sin (y(x))-y(x) \cos (y(x))}{y(x)}+\frac{c_{1}}{y(x)}, y(x)\right]
$$

5.21 problem 28

5.21.1 Solving as first order ode lie symmetry calculated ode 1350
5.21.2 Solving as exact ode . 1357

Internal problem ID [563]
Internal file name [OUTPUT/563_Sunday_June_05_2022_01_44_42_AM_83508478/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_exponential_symmetries]]

$$
y+\left(-\mathrm{e}^{-2 y}+2 y x\right) y^{\prime}=0
$$

5.21.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{-\mathrm{e}^{-2 y}+2 y x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2}-\frac{y\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{-\mathrm{e}^{-2 y}+2 y x} \\
& \quad-\frac{y^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{\left(-\mathrm{e}^{-2 y}+2 y x\right)^{2}}-\frac{2 y^{2}\left(x^{2} a_{4}+y x a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)}{\left(-\mathrm{e}^{-2 y}+2 y x\right)^{2}} \tag{5E}\\
& -\left(-\frac{1}{-\mathrm{e}^{-2 y}+2 y x}+\frac{y\left(2 \mathrm{e}^{-2 y}+2 x\right)}{\left(-\mathrm{e}^{-2 y}+2 y x\right)^{2}}\right)\left(x^{2} b_{4}\right. \\
& \left.+y x b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\underline{-10 \mathrm{e}^{-2 y} x^{2} y b_{4}-6 \mathrm{e}^{-2 y} x y^{2} b_{5}-2 \mathrm{e}^{-2 y} x y a_{4}-6 \mathrm{e}^{-2 y} x y b_{2}+\mathrm{e}^{-4 y} y b_{5}+8 x^{3} y^{2} b_{4}+4 x^{2} y^{3} b_{5}-2 y^{4} a_{6}-2 y^{3} a_{6}-}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -10 \mathrm{e}^{-2 y} x^{2} y b_{4}-6 \mathrm{e}^{-2 y} x y^{2} b_{5}-2 \mathrm{e}^{-2 y} x y a_{4}-6 \mathrm{e}^{-2 y} x y b_{2}+\mathrm{e}^{-4 y} y b_{5} \\
& +8 x^{3} y^{2} b_{4}+4 x^{2} y^{3} b_{5}-2 y^{4} a_{6}-2 y^{3} a_{6}-4 x y^{3} b_{6}+2 x^{2} y^{2} a_{4}-2 x^{2} y^{2} b_{5} \tag{6E}\\
& -y^{2} a_{3}+4 x^{2} y^{2} b_{2}-2 x y^{2} b_{3}-2 \mathrm{e}^{-2 y} y^{2} b_{3}-\mathrm{e}^{-2 y} x b_{2}-\mathrm{e}^{-2 y} y a_{2} \\
& -2 \mathrm{e}^{-2 y} y b_{1}-2 y^{3} a_{3}-2 y^{2} a_{1}-\mathrm{e}^{-2 y} b_{1}+2 \mathrm{e}^{-4 y} x b_{4}-x y^{2} a_{5} \\
& -2 \mathrm{e}^{-2 y} y^{3} b_{6}-\mathrm{e}^{-2 y} x^{2} b_{4}-\mathrm{e}^{-2 y} y^{2} a_{5}+\mathrm{e}^{-2 y} y^{2} b_{6}+\mathrm{e}^{-4 y} b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -10 \mathrm{e}^{-2 y} x^{2} y b_{4}-6 \mathrm{e}^{-2 y} x y^{2} b_{5}-2 \mathrm{e}^{-2 y} x y a_{4}-6 \mathrm{e}^{-2 y} x y b_{2}+\mathrm{e}^{-4 y} y b_{5} \\
& +8 x^{3} y^{2} b_{4}+4 x^{2} y^{3} b_{5}-2 y^{4} a_{6}-2 y^{3} a_{6}-4 x y^{3} b_{6}+2 x^{2} y^{2} a_{4}-2 x^{2} y^{2} b_{5} \tag{6E}\\
& -y^{2} a_{3}+4 x^{2} y^{2} b_{2}-2 x y^{2} b_{3}-2 \mathrm{e}^{-2 y} y^{2} b_{3}-\mathrm{e}^{-2 y} x b_{2}-\mathrm{e}^{-2 y} y a_{2} \\
& -2 \mathrm{e}^{-2 y} y b_{1}-2 y^{3} a_{3}-2 y^{2} a_{1}-\mathrm{e}^{-2 y} b_{1}+2 \mathrm{e}^{-4 y} x b_{4}-x y^{2} a_{5} \\
& -2 \mathrm{e}^{-2 y} y^{3} b_{6}-\mathrm{e}^{-2 y} x^{2} b_{4}-\mathrm{e}^{-2 y} y^{2} a_{5}+\mathrm{e}^{-2 y} y^{2} b_{6}+\mathrm{e}^{-4 y} b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{-4 y}, \mathrm{e}^{-2 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{-4 y}=v_{3}, \mathrm{e}^{-2 y}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 8 v_{1}^{3} v_{2}^{2} b_{4}+4 v_{1}^{2} v_{2}^{3} b_{5}+2 v_{1}^{2} v_{2}^{2} a_{4}-2 v_{2}^{4} a_{6}+4 v_{1}^{2} v_{2}^{2} b_{2}-10 v_{4} v_{1}^{2} v_{2} b_{4}-2 v_{1}^{2} v_{2}^{2} b_{5} \\
& \quad-6 v_{4} v_{1} v_{2}^{2} b_{5}-4 v_{1} v_{2}^{3} b_{6}-2 v_{4} v_{2}^{3} b_{6}-2 v_{2}^{3} a_{3}-2 v_{4} v_{1} v_{2} a_{4}-v_{1} v_{2}^{2} a_{5}-v_{4} v_{2}^{2} a_{5} \tag{7E}\\
& \quad-2 v_{2}^{3} a_{6}-6 v_{4} v_{1} v_{2} b_{2}-2 v_{1} v_{2}^{2} b_{3}-2 v_{4} v_{2}^{2} b_{3}-v_{4} v_{1}^{2} b_{4}+v_{4} v_{2}^{2} b_{6}-2 v_{2}^{2} a_{1} \\
& \quad-v_{4} v_{2} a_{2}-v_{2}^{2} a_{3}-2 v_{4} v_{2} b_{1}-v_{4} v_{1} b_{2}+2 v_{3} v_{1} b_{4}+v_{3} v_{2} b_{5}-v_{4} b_{1}+v_{3} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 8 v_{1}^{3} v_{2}^{2} b_{4}+4 v_{1}^{2} v_{2}^{3} b_{5}+\left(2 a_{4}+4 b_{2}-2 b_{5}\right) v_{1}^{2} v_{2}^{2}-10 v_{4} v_{1}^{2} v_{2} b_{4}-v_{4} v_{1}^{2} b_{4} \\
& \quad-4 v_{1} v_{2}^{3} b_{6}-6 v_{4} v_{1} v_{2}^{2} b_{5}+\left(-a_{5}-2 b_{3}\right) v_{1} v_{2}^{2}+\left(-2 a_{4}-6 b_{2}\right) v_{1} v_{2} v_{4}+2 v_{3} v_{1} b_{4} \tag{8E}\\
& \quad-v_{4} v_{1} b_{2}-2 v_{2}^{4} a_{6}-2 v_{4} v_{2}^{3} b_{6}+\left(-2 a_{3}-2 a_{6}\right) v_{2}^{3}+\left(-a_{5}-2 b_{3}+b_{6}\right) v_{2}^{2} v_{4} \\
& \quad+\left(-2 a_{1}-a_{3}\right) v_{2}^{2}+v_{3} v_{2} b_{5}+\left(-a_{2}-2 b_{1}\right) v_{2} v_{4}+v_{3} b_{2}-v_{4} b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
b_{5} & =0 \\
-2 a_{6} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-10 b_{4} & =0 \\
-b_{4} & =0 \\
2 b_{4} & =0 \\
8 b_{4} & =0 \\
-6 b_{5} & =0 \\
4 b_{5} & =0 \\
-4 b_{6} & =0 \\
-2 b_{6} & =0 \\
-2 a_{1}-a_{3} & =0 \\
-a_{2}-2 b_{1} & =0 \\
-2 a_{3}-2 a_{6} & =0 \\
-2 a_{4}-6 b_{2} & =0 \\
-a_{5}-2 b_{3} & =0 \\
2 a_{4}+4 b_{2}-2 b_{5} & =0 \\
-a_{5}-2 b_{3}+b_{6} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=0 \\
& a_{4}=0 \\
& a_{5}=-2 b_{3} \\
& a_{6}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3} \\
& b_{4}=0 \\
& b_{5}=0 \\
& b_{6}=0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 y x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{-\mathrm{e}^{-2 y}+2 y x}\right)(-2 y x) \\
& =\frac{y \mathrm{e}^{-2 y}}{-2 y x+\mathrm{e}^{-2 y}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y \mathrm{e}^{-2 y}}{-2 y x+\mathrm{e}^{-2 y}}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\mathrm{e}^{2 y} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{-\mathrm{e}^{-2 y}+2 y x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{2 y} \\
S_{y} & =\frac{-2 \mathrm{e}^{2 y} x y+1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (y)-\mathrm{e}^{2 y} x=c_{1}
$$

Which simplifies to

$$
\ln (y)-\mathrm{e}^{2 y} x=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{-\mathrm{e}^{-2 y}+2 y x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ 边
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
	$R=x$	
	$S=\ln (y)-\mathrm{e}^{2 y} x$	
		\rightarrow
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\sim+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (y)-\mathrm{e}^{2 y} x=c_{1} \tag{1}
\end{equation*}
$$

Figure 262: Slope field plot

Verification of solutions

$$
\ln (y)-\mathrm{e}^{2 y} x=c_{1}
$$

Verified OK.

5.21.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\mathrm{e}^{-2 y}+2 y x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(-\mathrm{e}^{-2 y}+2 y x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =-\mathrm{e}^{-2 y}+2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\mathrm{e}^{-2 y}+2 y x\right) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-\mathrm{e}^{-2 y}+2 y x}((1)-(2 y)) \\
& =\frac{-1+2 y}{-2 y x+\mathrm{e}^{-2 y}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((2 y)-(1)) \\
& =\frac{-1+2 y}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{-1+2 y}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 y-\ln (y)} \\
& =\frac{\mathrm{e}^{2 y}}{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{2 y}}{y}(y) \\
& =\mathrm{e}^{2 y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{2 y}}{y}\left(-\mathrm{e}^{-2 y}+2 y x\right) \\
& =\frac{2 \mathrm{e}^{2 y} x y-1}{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{2 y}\right)+\left(\frac{2 \mathrm{e}^{2 y} x y-1}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{2 y} \mathrm{~d} x \\
\phi & =\mathrm{e}^{2 y} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{2 y} x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 \mathrm{e}^{2 y} x y-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 \mathrm{e}^{2 y} x y-1}{y}=2 \mathrm{e}^{2 y} x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{2 y} x-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{2 y} x-\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (y)+\mathrm{e}^{2 y} x=c_{1} \tag{1}
\end{equation*}
$$

Figure 263: Slope field plot

Verification of solutions

$$
-\ln (y)+\mathrm{e}^{2 y} x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 24

```
dsolve(y(x)+(-exp(-2*y(x))+2*x*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(c_{1} \mathrm{e}^{-2 e^{Z}}+_Z \mathrm{e}^{-2 e^{Z}}-x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 25
DSolve $[y[x]+(-\operatorname{Exp}[-2 * y[x]]+2 * x * y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=e^{-2 y(x)} \log (y(x))+c_{1} e^{-2 y(x)}, y(x)\right]
$$

5.22 problem 29

5.22.1 Solving as exact ode . 1363

Internal problem ID [564]
Internal file name [OUTPUT/564_Sunday_June_05_2022_01_44_43_AM_26805416/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_ \([F(x) * G(y), 0] `]\)

$$
\left(\mathrm{e}^{x} \cot (y)+2 \csc (y) y\right) y^{\prime}=-\mathrm{e}^{x}
$$

5.22.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{x} \cot (y)+2 \csc (y) y\right) \mathrm{d} y & =\left(-\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(\mathrm{e}^{x}\right) \mathrm{d} x+\left(\mathrm{e}^{x} \cot (y)+2 \csc (y) y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{x} \\
N(x, y) & =\mathrm{e}^{x} \cot (y)+2 \csc (y) y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x} \cot (y)+2 \csc (y) y\right) \\
& =\mathrm{e}^{x} \cot (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\sin (y)}{\mathrm{e}^{x} \cos (y)+2 y}\left((0)-\left(\mathrm{e}^{x} \cot (y)\right)\right) \\
& =-\frac{\cos (y) \mathrm{e}^{x}}{\mathrm{e}^{x} \cos (y)+2 y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\mathrm{e}^{-x}\left(\left(\mathrm{e}^{x} \cot (y)\right)-(0)\right) \\
& =\cot (y)
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \cot (y) \mathrm{d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\sin (y))} \\
& =\sin (y)
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (y)\left(\mathrm{e}^{x}\right) \\
& =\mathrm{e}^{x} \sin (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (y)\left(\mathrm{e}^{x} \cot (y)+2 \csc (y) y\right) \\
& =\mathrm{e}^{x} \cos (y)+2 y
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x} \sin (y)\right)+\left(\mathrm{e}^{x} \cos (y)+2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} \sin (y) \mathrm{d} x \\
\phi & =\mathrm{e}^{x} \sin (y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x} \cos (y)+2 y=\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} \sin (y)+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} \sin (y)+y^{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{x} \sin (y)+y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 264: Slope field plot

Verification of solutions

$$
\mathrm{e}^{x} \sin (y)+y^{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $(\exp (x)+(\exp (x) * \cot (y(x))+2 * \csc (y(x)) * y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol $=a l l)$

$$
\mathrm{e}^{x} \sin (y(x))+y(x)^{2}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.312 (sec). Leaf size: 18
DSolve $[\operatorname{Exp}[x]+(\operatorname{Exp}[x] * \operatorname{Cot}[y[x]]+2 * \operatorname{Csc}[y[x]] * y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions

$$
\text { Solve }\left[y(x)^{2}+e^{x} \sin (y(x))=c_{1}, y(x)\right]
$$

5.23 problem 30

5.23.1 Solving as differentialType ode 1369
5.23.2 Solving as exact ode . 1371

Internal problem ID [565]
Internal file name [OUTPUT/565_Sunday_June_05_2022_01_44_50_AM_82120052/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_rational]

$$
\frac{4 x^{3}}{y^{2}}+\frac{3}{y}+\left(\frac{3 x}{y^{2}}+4 y\right) y^{\prime}=0
$$

5.23.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-\frac{4 x^{3}}{y^{2}}-\frac{3}{y}}{\frac{3 x}{y^{2}}+4 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(4 y^{3}\right) d y=(-3 x) d y+\left(-4 x^{3}-3 y\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-3 x) d y+\left(-4 x^{3}-3 y\right) d x=d\left(-x^{4}-3 y x\right)
$$

Hence (2) becomes

$$
\left(4 y^{3}\right) d y=d\left(-x^{4}-3 y x\right)
$$

Integrating both sides gives gives the solution as

$$
y^{4}=-x^{4}-3 y x+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{4}=-x^{4}-3 y x+c_{1} \tag{1}
\end{equation*}
$$

Figure 265: Slope field plot
Verification of solutions

$$
y^{4}=-x^{4}-3 y x+c_{1}
$$

Verified OK.

5.23.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(4 y^{3}+3 x\right) \mathrm{d} y & =\left(-4 x^{3}-3 y\right) \mathrm{d} x \\
\left(4 x^{3}+3 y\right) \mathrm{d} x+\left(4 y^{3}+3 x\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =4 x^{3}+3 y \\
N(x, y) & =4 y^{3}+3 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 x^{3}+3 y\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 y^{3}+3 x\right) \\
& =3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 4 x^{3}+3 y \mathrm{~d} x \\
\phi & =x\left(x^{3}+3 y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 y^{3}+3 x$. Therefore equation (4) becomes

$$
\begin{equation*}
4 y^{3}+3 x=3 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(4 y^{3}\right) \mathrm{d} y \\
f(y) & =y^{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(x^{3}+3 y\right)+y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(x^{3}+3 y\right)+y^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x\left(3 y+x^{3}\right)+y^{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 266: Slope field plot
Verification of solutions

$$
x\left(3 y+x^{3}\right)+y^{4}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve($4 * x^{\wedge} 3 / y(x) \wedge 2+3 / y(x)+\left(3 * x / y(x)^{\wedge} 2+4 * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
x^{4}+y(x)^{4}+3 x y(x)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 60.148 (sec). Leaf size: 1181
DSolve $\left[4 * x^{\wedge} 3 / y[x] \sim 2+3 / y[x]+(3 * x / y[x] \sim 2+4 * y[x]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& \begin{array}{l}
y(x) \\
-\frac{1}{2} \sqrt{\frac{6 x}{\sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}}-\frac{\sqrt[3]{243}}{}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)}}}{3 \sqrt[3]{2}} \\
\\
-\frac{1}{2} \sqrt{\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{}} \\
y(x)
\end{array}
\end{aligned}
$$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{6 x}{\sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}}-\frac{\sqrt[3]{243 x^{2}}}{}}
$$

$$
-\frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}
$$

$$
y(x)
$$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}
$$

$$
-\frac{1}{2} \sqrt{-\frac{6 x}{\sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}}-\frac{\sqrt[3]{2}}{\sqrt{2}} \text { (x)}}
$$

$$
y(x)
$$

$$
\rightarrow \frac{1}{2} \sqrt{-\frac{6 x}{\sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right)}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}}-\frac{}{\sqrt[3]{243}}}
$$

$$
+\frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2}\left(x^{4}-c_{1}\right) \quad 1376}{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}+\frac{\sqrt[3]{243 x^{2}+\sqrt{59049 x^{4}-6912\left(x^{4}-c_{1}\right)^{3}}}}{3 \sqrt[3]{2}}}
$$

5.24 problem 30

5.24.1 Solving as differentialType ode 1377
5.24.2 Solving as exact ode . 1382

Internal problem ID [566]
Internal file name [OUTPUT/566_Sunday_June_05_2022_01_44_51_AM_23911975/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_rational]

$$
\frac{6}{y}+\left(\frac{x^{2}}{y}+\frac{3 y}{x}\right) y^{\prime}=-3 x
$$

5.24.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-3 x-\frac{6}{y}}{\frac{x^{2}}{y}+\frac{3 y}{x}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(3 y^{2}\right) d y=\left(-x^{3}\right) d y+(-3 x(y x+2)) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{3}\right) d y+(-3 x(y x+2)) d x=d\left(-y x^{3}-3 x^{2}\right)
$$

Hence (2) becomes

$$
\left(3 y^{2}\right) d y=d\left(-y x^{3}-3 x^{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}-\frac{2 x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}}\right.} \\
& y=-\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12}+\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729}\right.} \\
& y=-\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12}+\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729}\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2 x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}+c_{1} \\
y= & -\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12} \\
& +\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}+\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{2}\right)}{2} \\
& +c_{1} \\
y= & -\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12} \\
& +\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}+\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{(3)}\right. \\
& -\frac{2)}{2} \\
& +c_{1}
\end{aligned}
$$

Figure 267: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2 x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12} \\
& +\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& \left.+\frac{i \sqrt{3}\left(\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right.}{}\right)^{\frac{1}{3}}}{6}+\frac{2 x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}\right) \\
& +c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12} \\
& +\frac{x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}+\frac{2 x^{3}}{\left(-324 x^{2}+108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}-486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}\right) \\
& -\frac{c_{1}}{2}
\end{aligned}
$$

Verified OK.

5.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{3}+3 y^{2}\right) \mathrm{d} y & =(-3 x(y x+2)) \mathrm{d} x \\
(3 x(y x+2)) \mathrm{d} x+\left(x^{3}+3 y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x(y x+2) \\
N(x, y) & =x^{3}+3 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 x(y x+2)) \\
& =3 x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{3}+3 y^{2}\right) \\
& =3 x^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x(y x+2) \mathrm{d} x \\
\phi & =y x^{3}+3 x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}+3 y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}+3 y^{2}=x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}\right) \mathrm{d} y \\
f(y) & =y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{3}+y^{3}+3 x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{3}+y^{3}+3 x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y x^{3}+y^{3}+3 x^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot
Verification of solutions

$$
y x^{3}+y^{3}+3 x^{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 326

```
dsolve(3*x+6/y(x)+(x~2/y(x)+3*y(x)/x)*diff (y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-12 x^{3}+\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{2}{3}}}{6\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{(1+i \sqrt{3})\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12} \\
& -\frac{x^{3}(i \sqrt{3}-1)}{\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& y(x) \\
& =\frac{12 i \sqrt{3} x^{3}+i \sqrt{3}\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{2}{3}}+12 x^{3}-\left(-324 x^{2}-108 c_{1}\right.}{12\left(-324 x^{2}-108 c_{1}+12 \sqrt{12 x^{9}+729 x^{4}+486 c_{1} x^{2}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

> Solution by Mathematica

Time used: 4.558 (sec). Leaf size: 331
DSolve $\left[3 * x+6 / y[x]+\left(x^{\wedge} 2 / y[x]+3 * y[x] / x\right) * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}}{3 \sqrt[3]{2}} \\
& -\frac{\sqrt[3]{2} x^{3}}{\sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}} \\
y(x) \rightarrow & \frac{(-1+i \sqrt{3}) \sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}}{6 \sqrt[3]{2}} \\
y(x) \rightarrow & \frac{(1+i \sqrt{3}) x^{3}}{2^{2 / 3} \sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}} \\
& -\frac{(1-i \sqrt{3}) x^{3}}{2^{2 / 3} \sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}} \\
& (1+i \sqrt{3}) \sqrt[3]{-81 x^{2}+\sqrt{108 x^{9}+729\left(-3 x^{2}+c_{1}\right)^{2}}+27 c_{1}}
\end{aligned}
$$

5.25 problem 32

5.25.1 Solving as homogeneousTypeD2 ode 1388
5.25.2 Solving as first order ode lie symmetry calculated ode 1390
5.25.3 Solving as exact ode . 1396

Internal problem ID [567]
Internal file name [OUTPUT/567_Sunday_June_05_2022_01_44_53_AM_42477074/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Section 2.6. Page 100
Problem number: 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,
    class B`]]
```

$$
3 y x+y^{2}+\left(x^{2}+y x\right) y^{\prime}=0
$$

5.25.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
3 u(x) x^{2}+u(x)^{2} x^{2}+\left(x^{2}+u(x) x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u(u+2)}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=\frac{u(u+2)}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+2)}{u+1}} d u & =-\frac{2}{x} d x \\
\int \frac{1}{\frac{u(u+2)}{u+1}} d u & =\int-\frac{2}{x} d x \\
\frac{\ln (u(u+2))}{2} & =-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u(u+2)}=\mathrm{e}^{-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u(u+2)}=\frac{c_{3}}{x^{2}}
$$

Which simplifies to

$$
\sqrt{u(x)(u(x)+2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
\sqrt{u(x)(u(x)+2)}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \sqrt{\frac{y\left(\frac{y}{x}+2\right)}{x}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \\
& \sqrt{\frac{y(2 x+y)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y(2 x+y)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 269: Slope field plot
Verification of solutions

$$
\sqrt{\frac{y(2 x+y)}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Verified OK.

5.25.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y(3 x+y)}{x(x+y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(3 x+y)\left(b_{3}-a_{2}\right)}{x(x+y)}-\frac{y^{2}(3 x+y)^{2} a_{3}}{x^{2}(x+y)^{2}} \\
& -\left(-\frac{3 y}{x(x+y)}+\frac{y(3 x+y)}{x^{2}(x+y)}+\frac{y(3 x+y)}{x(x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x+y}{x(x+y)}-\frac{y}{x(x+y)}+\frac{y(3 x+y)}{x(x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{4} b_{2}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-12 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-2 x^{2} y^{2} b_{3}-8 x y^{3} a_{3}-2 y^{4} a_{3}+3 x^{3} b_{1}-3 x^{2} y a_{1}+2 x^{2} y b_{1}}{x^{2}(x+y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{4} b_{2}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-12 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-2 x^{2} y^{2} b_{3}-8 x y^{3} a_{3} \tag{6E}\\
& \quad-2 y^{4} a_{3}+3 x^{3} b_{1}-3 x^{2} y a_{1}+2 x^{2} y b_{1}-2 x y^{2} a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1}^{2} v_{2}^{2}-12 a_{3} v_{1}^{2} v_{2}^{2}-8 a_{3} v_{1} v_{2}^{3}-2 a_{3} v_{2}^{4}+4 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+2 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& \quad-2 b_{3} v_{1}^{2} v_{2}^{2}-3 a_{1} v_{1}^{2} v_{2}-2 a_{1} v_{1} v_{2}^{2}-a_{1} v_{2}^{3}+3 b_{1} v_{1}^{3}+2 b_{1} v_{1}^{2} v_{2}+b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+3 b_{1} v_{1}^{3}+\left(2 a_{2}-12 a_{3}+2 b_{2}-2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(-3 a_{1}+2 b_{1}\right) v_{1}^{2} v_{2}-8 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}+b_{1}\right) v_{1} v_{2}^{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
3 b_{1} & =0 \\
4 b_{2} & =0 \\
-3 a_{1}+2 b_{1} & =0 \\
-2 a_{1}+b_{1} & =0 \\
2 a_{2}-12 a_{3}+2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(3 x+y)}{x(x+y)}\right)(x) \\
& =\frac{4 y x+2 y^{2}}{x+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 y x+2 y^{2}}{x+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y(2 x+y))}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(3 x+y)}{x(x+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{4 x+2 y} \\
S_{y} & =\frac{x+y}{2 y(2 x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y(3 x+y)}{x(x+y)}$		$\frac{d S}{d R}=-\frac{1}{2 R}$
		$\cdots \rightarrow \infty$
		2
	$R=x$	\rightarrow
	$\ln (y), \quad \ln (2 x+y)$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-4} \rightarrow$
	$S=\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
$\bigcirc x^{4}$	4	$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow-1$ ¢
		为 ${ }_{\text {a }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{4}+\frac{\ln (2 x+y)}{4}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

5.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y x\right) \mathrm{d} y & =\left(-3 y x-y^{2}\right) \mathrm{d} x \\
\left(3 y x+y^{2}\right) \mathrm{d} x+\left(x^{2}+y x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{gathered}
M(x, y)=3 y x+y^{2} \\
N(x, y)=x^{2}+y x
\end{gathered}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y x+y^{2}\right) \\
& =3 x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y x\right) \\
& =2 x+y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(x+y)}((3 x+2 y)-(2 x+y)) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(3 y x+y^{2}\right) \\
& =y(3 x+y) x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x\left(x^{2}+y x\right) \\
& =x^{2}(x+y)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(y(3 x+y) x)+\left(x^{2}(x+y)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(3 x+y) x \mathrm{~d} x \\
\phi & =\frac{y x^{2}(2 x+y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}(2 x+y)}{2}+\frac{y x^{2}}{2}+f^{\prime}(y) \tag{4}\\
& =x^{2}(x+y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}(x+y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}(x+y)=x^{2}(x+y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y x^{2}(2 x+y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y x^{2}(2 x+y)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y x^{2}(2 x+y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot

Verification of solutions

$$
\frac{y x^{2}(2 x+y)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 59

```
dsolve(3*x*y(x)+y(x)^2+(x^2+x*y(x))*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}}{c_{1} x} \\
& y(x)=\frac{-c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}}{c_{1} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.661 (sec). Leaf size: 93
DSolve $\left[3 * x * y[x]+y[x] \wedge 2+\left(x^{\wedge} 2+x * y[x]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}+\sqrt{x^{4}+e^{2 c_{1}}}}{x} \\
& y(x) \rightarrow-x+\frac{\sqrt{x^{4}+e^{2 c_{1}}}}{x} \\
& y(x) \rightarrow-\frac{\sqrt{x^{4}}+x^{2}}{x} \\
& y(x) \rightarrow \frac{\sqrt{x^{4}}}{x}-x
\end{aligned}
$$

6 Miscellaneous problems, end of chapter 2. Page 133
6.1 problem 1 1403
6.2 problem 2 1416
6.3 problem 3 1427
6.4 problem 4 1438
6.5 problem 5 1451
6.6 problem 6 1456
6.7 problem 7 1470
6.8 problem 8 1490
6.9 problem 9 1503
6.10 problem 10 1510
6.11 problem 11 1522
6.12 problem 12 1530
6.13 problem 13 1543
6.14 problem 14 1557
6.15 problem 15 1573
6.16 problem 16 1588
6.17 problem 17 1594
6.18 problem 18 1607
6.19 problem 19 1620
6.20 problem 20 1626
6.21 problem 21 1639
6.22 problem 22 1646
6.23 problem 23 1661
6.24 problem 24 1674
6.25 problem 25 1686
6.26 problem 26 1693
6.27 problem 27 1704
6.28 problem 28 1710
6.29 problem 29 1725
6.30 problem 30 1739
6.31 problem 31 1753

6.1 problem 1

6.1.1 Solving as linear ode . 1403
6.1.2 Solving as first order ode lie symmetry lookup ode 1405
6.1.3 Solving as exact ode . 1409
6.1.4 Maple step by step solution . 1414

Internal problem ID [568]
Internal file name [OUTPUT/568_Sunday_June_05_2022_01_44_54_AM_67792014/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{x^{3}-2 y}{x}=0
$$

6.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{2}\right) & =\left(x^{2}\right)\left(x^{2}\right) \\
\mathrm{d}\left(y x^{2}\right) & =x^{4} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{2}=\int x^{4} \mathrm{~d} x \\
& y x^{2}=\frac{x^{5}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{x^{3}}{5}+\frac{c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{3}}{5}+\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
y=\frac{x^{3}}{5}+\frac{c_{1}}{x^{2}}
$$

Verified OK.

6.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-x^{3}+2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 260: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-x^{3}+2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 y x \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x^{4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{5}}{5}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=\frac{x^{5}}{5}+c_{1}
$$

Which simplifies to

$$
x^{2} y=\frac{x^{5}}{5}+c_{1}
$$

Which gives

$$
y=\frac{x^{5}+5 c_{1}}{5 x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-x^{3}+2 y}{x}$		$\frac{d S}{d R}=R^{4}$
¢ 4		$1+1$
		¢ $¢$
	$R=x$	
	$S=y x^{2}$	$\underbrace{\text { ¢ }}_{-4, ~ ¢ ~}$
+4	$S=y x^{2}$	
${ }_{t} \rightarrow{ }^{\text {a }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{5}+5 c_{1}}{5 x^{2}} \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot

Verification of solutions

$$
y=\frac{x^{5}+5 c_{1}}{5 x^{2}}
$$

Verified OK.

6.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{x^{3}-2 y}{x}\right) \mathrm{d} x \\
\left(-\frac{x^{3}-2 y}{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x^{3}-2 y}{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{3}-2 y}{x}\right) \\
& =\frac{2}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{2}{x}\right)-(0)\right) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(-\frac{x^{3}-2 y}{x}\right) \\
& =-x\left(x^{3}-2 y\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(1) \\
& =x^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-x\left(x^{3}-2 y\right)\right)+\left(x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x\left(x^{3}-2 y\right) \mathrm{d} x \\
\phi & =-\frac{1}{5} x^{5}+y x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{5} x^{5}+y x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{5} x^{5}+y x^{2}
$$

The solution becomes

$$
y=\frac{x^{5}+5 c_{1}}{5 x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{5}+5 c_{1}}{5 x^{2}} \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
y=\frac{x^{5}+5 c_{1}}{5 x^{2}}
$$

Verified OK.

6.1.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{x^{3}-2 y}{x}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) x^{2} d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$

$$
y=\frac{\int x^{4} d x+c_{1}}{x^{2}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\frac{x^{5}}{5}+c_{1}}{x^{2}}
$$

- Simplify
$y=\frac{x^{5}+5 c_{1}}{5 x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x) = (x^3-2*y(x))/x,y(x), singsol=all)
```

$$
y(x)=\frac{x^{5}+5 c_{1}}{5 x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 19
DSolve[y' $[\mathrm{x}]==\left(\mathrm{x}^{\wedge} 3-2 * y[\mathrm{x}]\right) / \mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x^{3}}{5}+\frac{c_{1}}{x^{2}}
$$

6.2 problem 2

6.2.1 Solving as separable ode . 1416
6.2.2 Solving as first order ode lie symmetry lookup ode 1418
6.2.3 Solving as exact ode . 1422
6.2.4 Maple step by step solution . 1426

Internal problem ID [569]
Internal file name [OUTPUT/569_Sunday_June_05_2022_01_44_55_AM_90905761/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\cos (x)+1}{2-\sin (y)}=0
$$

6.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-\cos (x)-1}{-2+\sin (y)}
\end{aligned}
$$

Where $f(x)=-\cos (x)-1$ and $g(y)=\frac{1}{-2+\sin (y)}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{-2+\sin (y)}} d y=-\cos (x)-1 d x
$$

$$
\begin{aligned}
& \int \frac{1}{-2+\sin (y)} d y=\int-\cos (x)-1 d x \\
& -2 y-\cos (y)=-x-\sin (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\operatorname{RootOf}\left(2 _Z+\cos \left(_Z\right)-x-\sin (x)+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(2 _Z+\cos \left(_Z\right)-x-\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot

Verification of solutions

$$
y=\operatorname{RootOf}\left(2 _Z+\cos \left(_Z\right)-x-\sin (x)+c_{1}\right)
$$

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\cos (x)+1}{-2+\sin (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 263: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{-\cos (x)-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\cos (x)-1}
\end{aligned} d x
$$

Which results in

$$
S=-x-\sin (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\cos (x)+1}{-2+\sin (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\cos (x)-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-2+\sin (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-2+\sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)-2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-x-\sin (x)=-\cos (y)-2 y+c_{1}
$$

Which simplifies to

$$
-x-\sin (x)=-\cos (y)-2 y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\cos (x)+1}{-2+\sin (y)}$		$\frac{d S}{d R}=-2+\sin (R)$
$\rightarrow \rightarrow \rightarrow \rightarrow 0 \times 0$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$		$12+2+1+4$
		$1+S(R)+1.2+1+1$
	$R=y$	
边	$S=-x-\sin (x)$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$S=-x-\sin (x)$	$15+1$
$\rightarrow \rightarrow \rightarrow+ \pm$ N゙,		bt bextidityty
$\xrightarrow[\rightarrow \rightarrow \rightarrow 0]{ }$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-x-\sin (x)=-\cos (y)-2 y+c_{1} \tag{1}
\end{equation*}
$$

Figure 276: Slope field plot

Verification of solutions

$$
-x-\sin (x)=-\cos (y)-2 y+c_{1}
$$

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2-\sin (y)) \mathrm{d} y & =(\cos (x)+1) \mathrm{d} x \\
(-\cos (x)-1) \mathrm{d} x+(2-\sin (y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x)-1 \\
N(x, y) & =2-\sin (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cos (x)-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2-\sin (y)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x)-1 \mathrm{~d} x \\
\phi & =-x-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2-\sin (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
2-\sin (y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2-\sin (y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2-\sin (y)) \mathrm{d} y \\
f(y) & =2 y+\cos (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\sin (x)+2 y+\cos (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\sin (x)+2 y+\cos (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 y+\cos (y)-x-\sin (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 277: Slope field plot

Verification of solutions

$$
2 y+\cos (y)-x-\sin (x)=c_{1}
$$

Verified OK.

6.2.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\cos (x)+1}{2-\sin (y)}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
(2-\sin (y)) y^{\prime}=\cos (x)+1
$$

- Integrate both sides with respect to x

$$
\int(2-\sin (y)) y^{\prime} d x=\int(\cos (x)+1) d x+c_{1}
$$

- Evaluate integral

$$
2 y+\cos (y)=x+\sin (x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x)=(1+\operatorname{cos}(x))/(2-\operatorname{sin}(y(x))),y(x), singsol=all)
```

$$
x+\sin (x)-2 y(x)-\cos (y(x))+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.372 (sec). Leaf size: 27

```
DSolve[y'[x] == (1+Cos[x])/(2-Sin[y[x]]),y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \text { InverseFunction }[-2 \# 1-\cos (\# 1) \&]\left[-x-\sin (x)+c_{1}\right]
$$

6.3 problem 3

6.3.1 Existence and uniqueness analysis 1427
6.3.2 Solving as differentialType ode 1428
6.3.3 Solving as exact ode . 1433

Internal problem ID [570]
Internal file name [OUTPUT/570_Sunday_June_05_2022_01_44_56_AM_17223756/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_rational]

$$
y^{\prime}-\frac{2 x+y}{3-x+3 y^{2}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

6.3.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 x+y}{3 y^{2}-x+3}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=0$ is

$$
\{x<3 \vee 3<x\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x+y}{3 y^{2}-x+3}\right) \\
& =\frac{1}{3 y^{2}-x+3}-\frac{6(2 x+y) y}{\left(3 y^{2}-x+3\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{x<3 \vee 3<x\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

6.3.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{2 x+y}{3-x+3 y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(-3 y^{2}-3\right) d y=(-x) d y+(-2 x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-2 x-y) d x=d\left(-x^{2}-y x\right)
$$

Hence (2) becomes

$$
\left(-3 y^{2}-3\right) d y=d\left(-x^{2}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}{6}- \\
& \left(108 x^{2}-108 c_{1}+\right. \\
& y=-\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}{12}+\frac{}{\left(108 x^{2}-108 c_{1}\right.} \\
& y=-\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}{12}+\frac{}{\left(108 x^{2}-108 c_{1}\right.}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-i \sqrt{3}\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{2}{3}}-4 i \sqrt{3}-\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{2}{3}}+4 c_{1}\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}+4}{4\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
c_{1}=\frac{i(2 \sqrt{3}-2 i) \sqrt{3}+4 i \sqrt{3}+2 \sqrt{3}-4-2 i}{4 \sqrt{2 \sqrt{3}-2 i}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives
$y=\lim _{c_{1} \rightarrow \frac{i(2 \sqrt{3}-2 i)}{\sqrt{3}+4 i \sqrt{3}+2 \sqrt{3}-4-2 i}}^{4 \sqrt{2 \sqrt{3}-2 i}}\left(-\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x-}\right.}{12}\right.$
Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.
$0=\frac{i \sqrt{3}\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{2}{3}}+4 i \sqrt{3}-\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{2}{3}}+4 c_{1}\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}+4}{4\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}}$

$$
c_{1}=-\frac{i(2 i+2 \sqrt{3}) \sqrt{3}+4 i \sqrt{3}+4-2 i-2 \sqrt{3}}{4 \sqrt{2 i+2 \sqrt{3}}}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\text { Expression too large to display }
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{2}{3}}+2 c_{1}\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}-4}{2\left(-4 c_{1}+4 \sqrt{c_{1}^{2}+4}\right)^{\frac{1}{3}}} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{2}{3}}+12 x-36}{6\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{2}{3}}+12 x-36}{6\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

Expression too large to display
y

$$
\left.\begin{array}{rl}
= & \lim _{c_{1} \rightarrow \frac{i(2 \sqrt{3}-2 i) \sqrt{3}+4 i \sqrt{3}+2 \sqrt{3}-4-2 i}{4 \sqrt{2 \sqrt{3}-2 i}}}\left(-\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+3}\right.}{12}\right. \tag{2}\\
& +\frac{3-x}{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}{6}+\frac{}{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+}\right.}\right.
\end{array}\right)
$$

$$
+c_{1}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{2}{3}}+12 x-36}{6\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}
$$

Verified OK.
Expression too large to display
Warning, solution could not be verified
y
$\begin{aligned}= & \lim _{c_{1} \rightarrow \frac{i(2 \sqrt{3}-2 i) \sqrt{3}+4 i \sqrt{3}+2 \sqrt{3}-4-2 i}{4 \sqrt{2 \sqrt{3}-2 i}}}\left(-\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+}\right.}{12}\right. \\ & +\frac{3-x}{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}} \\ & \left.i \sqrt{3\left(\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}{6}+\frac{\left(108 x^{2}-108 c_{1}+12 \sqrt{81 x^{4}-162 c_{1} x^{2}-12 x^{3}+81 c_{1}^{2}+}\right.}{2}\right.}\right) \\ & \left.-c_{1}\right)\end{aligned}$
Warning, solution could not be verified

6.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 y^{2}-x+3\right) \mathrm{d} y & =(2 x+y) \mathrm{d} x \\
(-2 x-y) \mathrm{d} x+\left(3 y^{2}-x+3\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 x-y \\
N(x, y) & =3 y^{2}-x+3
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 x-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{2}-x+3\right) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-2 x-y \mathrm{~d} x \\
\phi & =-x(x+y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y^{2}-x+3$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y^{2}-x+3=-x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}+3
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}+3\right) \mathrm{d} y \\
f(y) & =y^{3}+3 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x(x+y)+y^{3}+3 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x(x+y)+y^{3}+3 y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-x(x+y)+y^{3}+3 y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{3}+(3-x) y-x^{2}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{3}+(3-x) y-x^{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 75

```
dsolve([diff(y(x),x) = (2*x+y(x))/(3-x+3*y(x)^2),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{2}{3}}+12 x-36}{6\left(108 x^{2}+12 \sqrt{81 x^{4}-12 x^{3}+108 x^{2}-324 x+324}\right)^{\frac{1}{3}}}
$$

Solution by Mathematica
Time used: 5.408 (sec). Leaf size: 114
DSolve $\left[\left\{y^{\prime}[x]==(2 * x+y[x]) /(3-x+3 * y[x] \sim 2), y[0]==0\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{\sqrt[3]{2}\left(\sqrt{3} \sqrt{27 x^{4}-4 x^{3}+36 x^{2}-108 x+108}-9 x^{2}\right)^{2 / 3}+2 \sqrt[3]{3} x-6 \sqrt[3]{3}}{6^{2 / 3} \sqrt[3]{\sqrt{3} \sqrt{27 x^{4}-4 x^{3}+36 x^{2}-108 x+108}-9 x^{2}}}
$$

6.4 problem 4

6.4.1 Solving as separable ode . 1438
6.4.2 Solving as linear ode . 1440
6.4.3 Solving as first order ode lie symmetry lookup ode 1441
6.4.4 Solving as exact ode . 1445
6.4.5 Maple step by step solution . 1449

Internal problem ID [571]
Internal file name [OUTPUT/571_Sunday_June_05_2022_01_44_58_AM_16995004/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-y+2 y x=-6 x+3
$$

6.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =(2 x-1)(-y-3)
\end{aligned}
$$

Where $f(x)=2 x-1$ and $g(y)=-y-3$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y-3} d y & =2 x-1 d x \\
\int \frac{1}{-y-3} d y & =\int 2 x-1 d x \\
-\ln (3+y) & =x^{2}+c_{1}-x
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{3+y}=\mathrm{e}^{x^{2}+c_{1}-x}
$$

Which simplifies to

$$
\frac{1}{3+y}=c_{2} \mathrm{e}^{x^{2}-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(3 c_{2} \mathrm{e}^{x^{2}+c_{1}-x}-1\right) \mathrm{e}^{-x^{2}-c_{1}+x}}{c_{2}} \tag{1}
\end{equation*}
$$

Figure 279: Slope field plot

Verification of solutions

$$
y=-\frac{\left(3 c_{2} \mathrm{e}^{x^{2}+c_{1}-x}-1\right) \mathrm{e}^{-x^{2}-c_{1}+x}}{c_{2}}
$$

Verified OK.

6.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x-1 \\
q(x) & =-6 x+3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y(2 x-1)=-6 x+3
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(2 x-1) d x} \\
& =\mathrm{e}^{x^{2}-x}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{x(x-1)}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(-6 x+3) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x(x-1)} y\right) & =\left(\mathrm{e}^{x(x-1)}\right)(-6 x+3) \\
\mathrm{d}\left(\mathrm{e}^{x(x-1)} y\right) & =\left((-6 x+3) \mathrm{e}^{x(x-1)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x(x-1)} y=\int(-6 x+3) \mathrm{e}^{x(x-1)} \mathrm{d} x \\
& \mathrm{e}^{x(x-1)} y=-3 \mathrm{e}^{x(x-1)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x(x-1)}$ results in

$$
y=-3 \mathrm{e}^{-x(x-1)} \mathrm{e}^{x(x-1)}+c_{1} \mathrm{e}^{-x(x-1)}
$$

which simplifies to

$$
y=-3+c_{1} \mathrm{e}^{-x(x-1)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-3+c_{1} \mathrm{e}^{-x(x-1)} \tag{1}
\end{equation*}
$$

Figure 280: Slope field plot

Verification of solutions

$$
y=-3+c_{1} \mathrm{e}^{-x(x-1)}
$$

Verified OK.

6.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y x-6 x+y+3 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 266: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x^{2}+x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}+x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{2}-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y x-6 x+y+3
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=(2 x-1) \mathrm{e}^{x(x-1)} y \\
& S_{y}=\mathrm{e}^{x(x-1)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(-6 x+3) \mathrm{e}^{x(x-1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(-6 R+3) \mathrm{e}^{R(R-1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \mathrm{e}^{R(R-1)}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x(x-1)} y=-3 \mathrm{e}^{x(x-1)}+c_{1}
$$

Which simplifies to

$$
(3+y) \mathrm{e}^{x(x-1)}-c_{1}=0
$$

Which gives

$$
y=-\left(3 \mathrm{e}^{x(x-1)}-c_{1}\right) \mathrm{e}^{-x(x-1)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 y x-6 x+y+3$		$\frac{d S}{d R}=(-6 R+3) \mathrm{e}^{R(R-1)}$
1.1		$\begin{array}{r}1 \\ 4 \\ +8 \\ \hline 8 \\ \hline\end{array}$
+ 4.4	$R=x$	48
	$S=\mathrm{e}^{x(x-1)} y$	
		-
		4
		¢9 ¢ ¢ ¢ ¢ ¢ 刀 - ! ! ! ! ! !

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\left(3 \mathrm{e}^{x(x-1)}-c_{1}\right) \mathrm{e}^{-x(x-1)} \tag{1}
\end{equation*}
$$

Figure 281: Slope field plot

Verification of solutions

$$
y=-\left(3 \mathrm{e}^{x(x-1)}-c_{1}\right) \mathrm{e}^{-x(x-1)}
$$

Verified OK.

6.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-y-3}\right) \mathrm{d} y & =(2 x-1) \mathrm{d} x \\
(1-2 x) \mathrm{d} x+\left(\frac{1}{-y-3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=1-2 x \\
& N(x, y)=\frac{1}{-y-3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1-2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-y-3}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 1-2 x \mathrm{~d} x \\
\phi & =-x^{2}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-y-3}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-y-3}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{3+y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{3+y}\right) \mathrm{d} y \\
f(y) & =-\ln (3+y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}+x-\ln (3+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}+x-\ln (3+y)
$$

The solution becomes

$$
y=\mathrm{e}^{-x^{2}-c_{1}+x}-3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x^{2}-c_{1}+x}-3 \tag{1}
\end{equation*}
$$

Figure 282: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x^{2}-c_{1}+x}-3
$$

Verified OK.

6.4.5 Maple step by step solution

Let's solve

$$
y^{\prime}-y+2 y x=-6 x+3
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{3+y}=1-2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{3+y} d x=\int(1-2 x) d x+c_{1}
$$

- Evaluate integral
$\ln (3+y)=-x^{2}+c_{1}+x$
- \quad Solve for y

$$
y=\mathrm{e}^{-x^{2}+c_{1}+x}-3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x) = 3-6*x+y(x)-2*x*y(x),y(x), singsol=all)
```

$$
y(x)=-3+\mathrm{e}^{-x(x-1)} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 24
DSolve[y'[x] == $3-6 * x+y[x]-2 * x * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-3+c_{1} e^{x-x^{2}} \\
& y(x) \rightarrow-3
\end{aligned}
$$

6.5 problem 5

6.5.1 Solving as exact ode . 1451

Internal problem ID [572]
Internal file name [OUTPUT/572_Sunday_June_05_2022_01_44_59_AM_84609071/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]

$$
y^{\prime}-\frac{-1-2 y x-y^{2}}{x^{2}+2 y x}=0
$$

6.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(x+2 y)) \mathrm{d} y & =\left(-2 y x-y^{2}-1\right) \mathrm{d} x \\
\left(2 y x+y^{2}+1\right) \mathrm{d} x+(x(x+2 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y x+y^{2}+1 \\
N(x, y) & =x(x+2 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y x+y^{2}+1\right) \\
& =2 x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(x+2 y)) \\
& =2 x+2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y x+y^{2}+1 \mathrm{~d} x \\
\phi & =y x^{2}+x y^{2}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{2}+2 y x+f^{\prime}(y) \tag{4}\\
& =x(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x(x+2 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x(x+2 y)=x(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}+x y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}+x y^{2}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y+x y^{2}+x=c_{1} \tag{1}
\end{equation*}
$$

Figure 283: Slope field plot
Verification of solutions

$$
x^{2} y+x y^{2}+x=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
dsolve (diff $(y(x), x)=(-1-2 * x * y(x)-y(x) \wedge 2) /\left(x^{\wedge} 2+2 * x * y(x)\right), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-x^{2}+\sqrt{x\left(x^{3}-4 c_{1}-4 x\right)}}{2 x} \\
& y(x)=\frac{-x^{2}-\sqrt{x\left(x^{3}-4 c_{1}-4 x\right)}}{2 x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.502 (sec). Leaf size: 67
DSolve $\left[y\right.$ ' $[x]==(-1-2 * x * y[x]-y[x] \wedge 2) /\left(x^{\wedge} 2+2 * x * y[x]\right), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}+\sqrt{x\left(x^{3}-4 x+4 c_{1}\right)}}{2 x} \\
& y(x) \rightarrow \frac{-x^{2}+\sqrt{x\left(x^{3}-4 x+4 c_{1}\right)}}{2 x}
\end{aligned}
$$

6.6 problem 6

6.6.1 Existence and uniqueness analysis 1456
6.6.2 Solving as linear ode . 1457
6.6.3 Solving as first order ode lie symmetry lookup ode 1459
6.6.4 Solving as exact ode . 1463
6.6.5 Maple step by step solution . 1467

Internal problem ID [573]
Internal file name [OUTPUT/573_Sunday_June_05_2022_01_45_00_AM_94379850/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y x+y^{\prime} x+y=1
$$

With initial conditions

$$
[y(1)=0]
$$

6.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x-1}{x} \\
& q(x)=\frac{1}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-x-1) y}{x}=\frac{1}{x}
$$

The domain of $p(x)=-\frac{-x-1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

6.6.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x-1}{x} d x} \\
& =\mathrm{e}^{x+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x \mathrm{e}^{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \mathrm{e}^{x} y\right) & =\left(x \mathrm{e}^{x}\right)\left(\frac{1}{x}\right) \\
\mathrm{d}\left(x \mathrm{e}^{x} y\right) & =\mathrm{e}^{x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x \mathrm{e}^{x} y=\int \mathrm{e}^{x} \mathrm{~d} x \\
& x \mathrm{e}^{x} y=\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x \mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}}{x}+\frac{c_{1} \mathrm{e}^{-x}}{x}
$$

which simplifies to

$$
y=\frac{c_{1} \mathrm{e}^{-x}+1}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{-1} c_{1}+1 \\
c_{1}=-\mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-\mathrm{e}^{1-x}+1}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\mathrm{e}^{1-x}+1}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{-\mathrm{e}^{1-x}+1}{x}
$$

Verified OK.

6.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y x+y-1}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 269: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x-\ln (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x-\ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=x \mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y x+y-1}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y(x+1) \\
S_{y} & =x \mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x} x=\mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x} x=\mathrm{e}^{x}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y x+y-1}{x}$		$\frac{d S}{d R}=\mathrm{e}^{R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { STR }]{\rightarrow \rightarrow-}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$S=x \mathrm{e}^{x} y$	
		\% 14

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{-1} c_{1}+1 \\
c_{1}=-\mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x}
$$

Verified OK.

6.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(-y x-y+1) \mathrm{d} x \\
(y x+y-1) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y x+y-1 \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y x+y-1) \\
& =x+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((x+1)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y x+y-1) \\
& =\mathrm{e}^{x}(y x+y-1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(x) \\
& =x \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x}(y x+y-1)\right)+\left(x \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x}(y x+y-1) \mathrm{d} x \\
\phi & =(y x-1) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
x \mathrm{e}^{x}=x \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y x-1) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y x-1) \mathrm{e}^{x}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{-1} c_{1}+1 \\
c_{1}=-\mathrm{e}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{x}-\mathrm{e}^{-x}}{x}
$$

Verified OK.

6.6.5 Maple step by step solution

Let's solve
$\left[y x+y^{\prime} x+y=1, y(1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(x+1) y}{x}+\frac{1}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{(x+1) y}{x}=\frac{1}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(x+1) y}{x}\right)=\frac{\mu(x)}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(x+1) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(x+1)}{x}$
- Solve to find the integrating factor
$\mu(x)=x \mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x \mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x} d x+c_{1}}{x \mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x} x}$
- Simplify
$y=\frac{c_{1} \mathrm{e}^{-x}+1}{x}$
- Use initial condition $y(1)=0$
$0=\mathrm{e}^{-1} c_{1}+1$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{\mathrm{e}^{-1}}$
- Substitute $c_{1}=-\frac{1}{\mathrm{e}^{-1}}$ into general solution and simplify
$y=\frac{-\mathrm{e}^{1-x}+1}{x}$
- Solution to the IVP
$y=\frac{-\mathrm{e}^{1-x}+1}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([x*y(x)+x*diff (y(x),x) = 1-y(x),y(1) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{1-\mathrm{e}^{1-x}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 20
DSolve[\{x*y[x]+x*y'[x]==1-y[x],y[1]==0\},y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1-e^{1-x}}{x}
$$

6.7 problem 7

6.7.1 Solving as separable ode . 1470
6.7.2 Solving as differentialType ode 1475
6.7.3 Solving as first order ode lie symmetry lookup ode 1479
6.7.4 Solving as exact ode . 1483
6.7.5 Maple step by step solution . 1487

Internal problem ID [574]
Internal file name [OUTPUT/574_Sunday_June_05_2022_01_45_01_AM_69403732/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{4 x^{3}+1}{y(2+3 y)}=0
$$

6.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{4 x^{3}+1}{y(2+3 y)}
\end{aligned}
$$

Where $f(x)=4 x^{3}+1$ and $g(y)=\frac{1}{y(2+3 y)}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y(2+3 y)}} d y=4 x^{3}+1 d x
$$

$$
\begin{gathered}
\int \frac{1}{\frac{1}{y(2+3 y)}} d y=\int 4 x^{3}+1 d x \\
y^{3}+y^{2}=x^{4}+c_{1}+x
\end{gathered}
$$

Which results in

$$
\begin{aligned}
& y \\
& =\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-}\right.}{6} 2 \\
& -\frac{1}{3} \\
& y= \\
& -\underline{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.} \\
& \begin{array}{r}
12 \\
1
\end{array} \\
& 3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right. \\
& -\frac{1}{3} \\
& +\frac{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}-\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.}\right.}{2} \\
& y= \\
& \left.-\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12}\right) \\
& -\frac{1}{3} \\
& -{ }^{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}-\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following
y
$\begin{aligned}= & \frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-}\right.}{6} 2 \\ & +\frac{2}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.}\end{aligned}$
$-\frac{1}{3}$
$y=$
$-\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12}$
$-\frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.}$
$-\frac{1}{3}$

$+\frac{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}\right.}{}$| |
| :--- |
| $y=\frac{3}{3\left(-8+108 x^{4}+108 c_{1}+10\right.}$ |
| 2 |

$-\frac{1}{3}$
$-\frac{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}-\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.}\right.}{2}$

Figure 287: Slope field plot

Verification of solutions

$$
\begin{aligned}
= & \frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-}\right.}{6} 2 \\
& +\frac{2}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
& -\frac{1}{3}
\end{aligned}
$$

Verified OK.
$\begin{aligned} y= & \\ & -\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12} \\ & -\frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\ & -\frac{1}{3} \\ & +\frac{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}\right.}{}-\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.}\end{aligned}$

Verified OK.

$y=$

Verified OK.

6.7.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{4 x^{3}+1}{y(2+3 y)} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(3 y^{2}+2 y\right) d y=\left(4 x^{3}+1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(4 x^{3}+1\right) d x=d\left(x^{4}+x\right)
$$

Hence (2) becomes

$$
\left(3 y^{2}+2 y\right) d y=d\left(x^{4}+x\right)
$$

Integrating both sides gives gives these solutions
$y=\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{6}$
$y=-\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.}{12}$
$y=-\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.}{12}$

Summary

The solution(s) found are the following
y

$$
\begin{align*}
&= \frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-}\right.}{6} \tag{1}\\
&+\frac{2}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
&-\frac{1}{3}+c_{1} \tag{2}\\
& y=
\end{align*}
$$

$$
\begin{align*}
- & \frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12} \\
- & \frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
- & \frac{1}{3} \\
& i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}\right. \tag{3}\\
& +\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.} \\
& +c_{1} \\
y= & 2
\end{align*}
$$

$$
\begin{aligned}
& -\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12} \\
& -\frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.}
\end{aligned}
$$

$$
-\frac{1}{3}
$$

$$
-\frac{i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}-\frac{1}{3}\right.}{2}
$$

$$
+c_{1}
$$

Figure 288: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & =\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-}\right.}{6} 2 \\
& +\frac{2}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
& -\frac{1}{3}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \\
& -\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12} \\
& -\frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
& -\frac{1}{3} \\
& i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}\right. \\
& +\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.} \\
& +c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \\
& -\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}}\right.}{12} \\
& -\frac{1}{3\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c}\right.} \\
& -\frac{1}{3} \\
& i \sqrt{3}\left(\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}\right. \\
& -\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.} \\
& +c_{1}
\end{aligned}
$$

Verified OK.

6.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{4 x^{3}+1}{y(2+3 y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 272: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{4 x^{3}+1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{4 x^{3}+1}} d x
\end{aligned}
$$

Which results in

$$
S=x^{4}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{4 x^{3}+1}{y(2+3 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=0 \\
& R_{y}=1 \\
& S_{x}=4 x^{3}+1 \\
& S_{y}=0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 y^{2}+2 y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}+2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{4}+x=y^{3}+y^{2}+c_{1}
$$

Which simplifies to

$$
x^{4}+x=y^{3}+y^{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{4 x^{3}+1}{y(2+3 y)}$		$\frac{d S}{d R}=3 R^{2}+2 R$
	$R=y$	
	$S=x^{4}+x$	
		¢ 4
-tatata		
		¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ - - - ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{4}+x=y^{3}+y^{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 289: Slope field plot

Verification of solutions

$$
x^{4}+x=y^{3}+y^{2}+c_{1}
$$

Verified OK.

6.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y(2+3 y)) \mathrm{d} y & =\left(4 x^{3}+1\right) \mathrm{d} x \\
\left(-4 x^{3}-1\right) \mathrm{d} x+(y(2+3 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-4 x^{3}-1 \\
N(x, y) & =y(2+3 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-4 x^{3}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y(2+3 y)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-4 x^{3}-1 \mathrm{~d} x \\
\phi & =-x^{4}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y(2+3 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
y(2+3 y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y(2+3 y)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}+2 y\right) \mathrm{d} y \\
f(y) & =y^{3}+y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{4}+y^{3}+y^{2}-x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{4}+y^{3}+y^{2}-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{3}+y^{2}-x^{4}-x=c_{1} \tag{1}
\end{equation*}
$$

Figure 290: Slope field plot

Verification of solutions

$$
y^{3}+y^{2}-x^{4}-x=c_{1}
$$

Verified OK.

6.7.5 Maple step by step solution

Let's solve
$y^{\prime}-\frac{4 x^{3}+1}{y(2+3 y)}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} y(2+3 y)=4 x^{3}+1
$$

- Integrate both sides with respect to x
$\int y^{\prime} y(2+3 y) d x=\int\left(4 x^{3}+1\right) d x+c_{1}$
- Evaluate integral

$$
y^{3}+y^{2}=x^{4}+c_{1}+x
$$

- \quad Solve for y

$$
y=\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81 x^{8}+162 c_{1} x^{4}+162 x^{5}-12 x^{4}+81 c_{1}^{2}+162 c_{1} x+81 x^{2}-12 c_{1}-12 x}\right)^{\frac{1}{3}}}{6}+\frac{}{3\left(-8+108 x^{4}+108 c_{1}+10\right.}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 382

```
dsolve(diff(y(x),x)=(4*x^3+1)/(y(x)*(2+3*y(x))),y(x), singsol=all)
```

$y(x)$

$$
=\frac{\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left(x^{4}+c_{1}+x\right)\left(x^{4}+c_{1}+x-\frac{4}{27}\right)}\right)^{\frac{2}{3}}-2\left(-8+108 x^{4}+108 c_{1}\right.}{6\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left(x^{4}+c_{1}+x\right)\left(x^{4}\right.}\right.}
$$

$$
y(x)=
$$

$$
-\frac{(1+i \sqrt{3})\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left.\left(x^{4}+c_{1}+x\right)\left(x^{4}+c_{1}+x-\frac{4}{27}\right)\right)^{\frac{2}{3}}-4 i \sqrt{3}+4(}\right) 12\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left(x^{4}+\right.}\right.}{12}
$$

$y(x)$

$$
=\frac{(i \sqrt{3}-1)\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left(x^{4}+c_{1}+x\right)\left(x^{4}+c_{1}+x-\frac{4}{27}\right)}\right)^{\frac{2}{3}}-4 i \sqrt{3}-4(-}{12\left(-8+108 x^{4}+108 c_{1}+108 x+12 \sqrt{81} \sqrt{\left(x^{4}+c_{1}\right.}\right.}
$$

> Solution by Mathematica

Time used: 4.502 (sec). Leaf size: 356

$$
\begin{aligned}
& \text { DSolve[y'[x]==(4*x-3+1)/(y[x]*(2+3*y[x])),y[x],x,IncludeSingularSolutions } \rightarrow \text { True] } \\
& y(x) \rightarrow \frac{1}{6}\left(2^{2 / 3} \sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}\right. \\
& \left.+\frac{2 \sqrt[3]{2}}{\sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}}-2\right) \\
& y(x) \\
& \rightarrow \frac{1}{12}\left(i 2^{2 / 3}(\sqrt{3}+i) \sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}\right. \\
& \left.-\frac{2 \sqrt[3]{2}(1+i \sqrt{3})}{\sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}}-4\right) \\
& y(x) \\
& \rightarrow \frac{1}{12}\left(-2^{2 / 3}(1+i \sqrt{3}) \sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}\right. \\
& \left.+\frac{2 i \sqrt[3]{2}(\sqrt{3}+i)}{\sqrt[3]{27 x^{4}+\sqrt{-4+\left(27 x^{4}+27 x-2+27 c_{1}\right)^{2}}+27 x-2+27 c_{1}}}-4\right)
\end{aligned}
$$

6.8 problem 8

6.8.1 Existence and uniqueness analysis 1490
6.8.2 Solving as linear ode . 1491
6.8.3 Solving as first order ode lie symmetry lookup ode 1493
6.8.4 Solving as exact ode . 1497
6.8.5 Maple step by step solution . 1501

Internal problem ID [575]
Internal file name [OUTPUT/575_Sunday_June_05_2022_01_45_02_AM_24783477/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+y^{\prime} x=\frac{\sin (x)}{x}
$$

With initial conditions

$$
[y(2)=1]
$$

6.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =\frac{\sin (x)}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{\sin (x)}{x^{2}}
$$

The domain of $p(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{\sin (x)}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

6.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (x)}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{2}\right) & =\left(x^{2}\right)\left(\frac{\sin (x)}{x^{2}}\right) \\
\mathrm{d}\left(y x^{2}\right) & =\sin (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{2}=\int \sin (x) \mathrm{d} x \\
& y x^{2}=-\cos (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=-\frac{\cos (x)}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
y=\frac{-\cos (x)+c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{\cos (2)}{4}+\frac{c_{1}}{4} \\
c_{1}=\cos (2)+4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Verified OK.

6.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-2 y x+\sin (x)}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 275: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-2 y x+\sin (x)}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 y x \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\cos (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2} y=-\cos (x)+c_{1}
$$

Which simplifies to

$$
x^{2} y=-\cos (x)+c_{1}
$$

Which gives

$$
y=-\frac{\cos (x)-c_{1}}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-2 y x+\sin (x)}{x^{2}}$		$\frac{d S}{d R}=\sin (R)$
分		

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{\cos (2)}{4}+\frac{c_{1}}{4} \\
c_{1}=\cos (2)+4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Verified OK.

6.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =(-2 y x+\sin (x)) \mathrm{d} x \\
(2 y x-\sin (x)) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y x-\sin (x) \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y x-\sin (x)) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y x-\sin (x) \mathrm{d} x \\
\phi & =y x^{2}+\cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}+\cos (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}+\cos (x)
$$

The solution becomes

$$
y=-\frac{\cos (x)-c_{1}}{x^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{\cos (2)}{4}+\frac{c_{1}}{4} \\
c_{1}=\cos (2)+4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (x)-4-\cos (2)}{x^{2}}
$$

Verified OK.

6.8.5 Maple step by step solution

Let's solve

$$
\left[2 y+y^{\prime} x=\frac{\sin (x)}{x}, y(2)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+\frac{\sin (x)}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=\frac{\sin (x)}{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\frac{\mu(x) \sin (x)}{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \sin (x)}{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \sin (x)}{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \sin (x)}{x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int \sin (x) d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-\cos (x)+c_{1}}{x^{2}}$
- Use initial condition $y(2)=1$

$$
1=-\frac{\cos (2)}{4}+\frac{c_{1}}{4}
$$

- \quad Solve for c_{1}
$c_{1}=\cos (2)+4$
- \quad Substitute $c_{1}=\cos (2)+4$ into general solution and simplify
$y=\frac{-\cos (x)+4+\cos (2)}{x^{2}}$
- \quad Solution to the IVP
$y=\frac{-\cos (x)+4+\cos (2)}{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

```
dsolve([2*y(x)+x*diff(y(x),x) = \operatorname{sin}(x)/x,y(2)=1],y(x), singsol=all)
```

$$
y(x)=\frac{-\cos (x)+4+\cos (2)}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 17

$$
\begin{gathered}
\text { DSolve }\left[\left\{2 * \mathrm{y}[\mathrm{x}]+\mathrm{x} * \mathrm{y} '^{\prime}[\mathrm{x}]==\operatorname{Sin}[\mathrm{x}] / \mathrm{x}, \mathrm{y}[2]==1\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }\right] \\
\\
y(x) \rightarrow \frac{-\cos (x)+4+\cos (2)}{x^{2}}
\end{gathered}
$$

6.9 problem 9

6.9.1 Solving as differentialType ode 1503
6.9.2 Solving as exact ode . 1505

Internal problem ID [576]
Internal file name [OUTPUT/576_Sunday_June_05_2022_01_45_03_AM_51375781/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_rational, [_1st_order, ` _with_symmetry_[F(x), G(x)]`], [_Abel, -2nd type`, ‘class A`]]

$$
y^{\prime}-\frac{-1-2 y x}{x^{2}+2 y}=0
$$

6.9.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-1-2 y x}{x^{2}+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=\left(-x^{2}\right) d y+(-2 y x-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}\right) d y+(-2 y x-1) d x=d\left(-y x^{2}-x\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-y x^{2}-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1} \\
& y=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1} \tag{1}\\
& y=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1} \tag{2}
\end{align*}
$$

Figure 294: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1}
$$

Verified OK.

$$
y=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}-4 x}}{2}+c_{1}
$$

Verified OK.

6.9.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+2 y\right) \mathrm{d} y & =(-2 y x-1) \mathrm{d} x \\
(2 y x+1) \mathrm{d} x+\left(x^{2}+2 y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=2 y x+1 \\
& N(x, y)=x^{2}+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y x+1) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+2 y\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y x+1 \mathrm{~d} x \\
\phi & =y x^{2}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+2 y=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}+y^{2}+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}+y^{2}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y+y^{2}+x=c_{1} \tag{1}
\end{equation*}
$$

Figure 295: Slope field plot

Verification of solutions

$$
x^{2} y+y^{2}+x=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
dsolve(diff $(y(x), x)=(-1-2 * x * y(x)) /\left(x^{\wedge} 2+2 * y(x)\right), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}-4 c_{1}-4 x}}{2} \\
& y(x)=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}-4 c_{1}-4 x}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 61
DSolve[y'[x]==(-1-2*x*y[x])/(x^2+2*y[x]),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-x^{2}-\sqrt{x^{4}-4 x+4 c_{1}}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-x^{2}+\sqrt{x^{4}-4 x+4 c_{1}}\right)
\end{aligned}
$$

6.10 problem 10

6.10.1 Solving as separable ode . 1510
6.10.2 Solving as first order ode lie symmetry lookup ode 1512
6.10.3 Solving as exact ode . 1517
6.10.4 Maple step by step solution . 1520

Internal problem ID [577]
Internal file name [OUTPUT/577_Sunday_June_05_2022_01_45_05_AM_92187482/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\frac{y y^{\prime}}{y-2}=-\frac{-x^{2}+x+1}{x^{2}}
$$

6.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\left(x^{2}-x-1\right)(y-2)}{y x^{2}}
\end{aligned}
$$

Where $f(x)=\frac{x^{2}-x-1}{x^{2}}$ and $g(y)=\frac{y-2}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{y-2}{y}} d y=\frac{x^{2}-x-1}{x^{2}} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{y-2}{y}} d y & =\int \frac{x^{2}-x-1}{x^{2}} d x \\
y+2 \ln (y-2) & =x-\ln (x)+\frac{1}{x}+c_{1}
\end{aligned}
$$

Which results in

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x \ln (x)+2 \operatorname{LambertW}\left(\frac{\mathrm{e}^{-\frac{-1-c_{1} x-x^{2}+x \ln (x)+2 x}{2 x}}}{2^{2}}\right) x-c_{1} x-x^{2}+2 x-1}{2 x}}+2 \tag{1}
\end{equation*}
$$

Figure 296: Slope field plot

Verification of solutions

$$
\mathrm{e}^{-\frac{x \ln (x)+2 \text { LambertW }}{}\left(\frac{\left.\mathrm{e}^{-\frac{-1-c_{1} x-x^{2}+x \ln (x)+2 x}{2 x}}\right)}{2^{2}}\right){ }_{x-c_{1} x-x^{2}+2 x-1}^{2 x}}+2
$$

Verified OK.

6.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y x^{2}-2 x^{2}-y x+2 x-y+2}{y x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 278: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{x^{2}}{x^{2}-x-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x^{2}}{x^{2}-x-1}} d x
\end{aligned}
$$

Which results in

$$
S=x-\ln (x)+\frac{1}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y x^{2}-2 x^{2}-y x+2 x-y+2}{y x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{x^{2}-x-1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y}{y-2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{R-2}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=R+2 \ln (R-2)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{-x \ln (x)+x^{2}+1}{x}=y+2 \ln (y-2)+c_{1}
$$

Which simplifies to

$$
\frac{-x \ln (x)+x^{2}+1}{x}=y+2 \ln (y-2)+c_{1}
$$

Which gives

$$
y=2 \text { LambertW }\left(\frac{\mathrm{e}^{-\frac{x \ln (x)+c_{1} x-x^{2}+2 x-1}{2 x}}}{2}\right)+2
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y x^{2}-2 x^{2}-y x+2 x-y+2}{y x^{2}}$		$\frac{d S}{d R}=\frac{R}{R-2}$
$\rightarrow \rightarrow \rightarrow-\infty y x x^{+}$		
		$\rightarrow \rightarrow \rightarrow 2 \rightarrow 0$
	$R=y$	
－4	$S=-x \ln (x)+x^{2}+1$	
	$S=\frac{x \ln (x)+x^{2}+}{x}$	
	x	
		1早㫛品
		$\rightarrow{ }^{4} \rightarrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \text { LambertW }\left(\frac{\mathrm{e}^{-\frac{x \ln (x)+c_{1} x-x^{2}+2 x-1}{2 x}}}{2}\right)+2 \tag{1}
\end{equation*}
$$

Figure 297: Slope field plot

Verification of solutions

$$
y=2 \text { LambertW }\left(\frac{\mathrm{e}^{-\frac{x \ln (x)+c_{1} x-x^{2}+2 x-1}{2 x}}}{2}\right)+2
$$

Verified OK.

6.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y}{y-2}\right) \mathrm{d} y & =\left(\frac{x^{2}-x-1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{x^{2}-x-1}{x^{2}}\right) \mathrm{d} x+\left(\frac{y}{y-2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x^{2}-x-1}{x^{2}} \\
& N(x, y)=\frac{y}{y-2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}-x-1}{x^{2}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{y}{y-2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x^{2}-x-1}{x^{2}} \mathrm{~d} x \\
\phi & =-x+\ln (x)-\frac{1}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y}{y-2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y}{y-2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y}{y-2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y}{y-2}\right) \mathrm{d} y \\
f(y) & =y+2 \ln (y-2)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\ln (x)-\frac{1}{x}+y+2 \ln (y-2)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\ln (x)-\frac{1}{x}+y+2 \ln (y-2)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{x \ln (x)+2 \text { LambertW }}{}\left(\frac{\left.\mathrm{e}^{-\frac{-1-c_{1} x-x^{2}+x \ln (x)+2 x}{2 x}}\right)}{2 x}\right) x-c_{1} x-x^{2}+2 x-1}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x \ln (x)+2 \text { LambertW }\left(\frac{\mathrm{e}^{-\frac{-1-c_{1} x-x^{2}+x \ln (x)+2 x}{2 x}}}{2}\right) x^{x-c_{1} x-x^{2}+2 x-1}}{2 x}+2210} \tag{1}
\end{equation*}
$$

Figure 298: Slope field plot

Verification of solutions

Verified OK.

6.10.4 Maple step by step solution

Let's solve

$$
\frac{y y^{\prime}}{y-2}=-\frac{-x^{2}+x+1}{x^{2}}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int \frac{y y^{\prime}}{y-2} d x=\int-\frac{-x^{2}+x+1}{x^{2}} d x+c_{1}
$$

- Evaluate integral

$$
y+2 \ln (y-2)=x-\ln (x)+\frac{1}{x}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\frac{x \ln (x)+2 \operatorname{Lambert} W}{}\left(\frac{\mathrm{e}^{-\frac{-1-c_{1} x-x^{2}+x \ln (x)+2 x}{2 x}}}{2}\right) x-c_{1} x-x^{2}+2 x-1}{ }^{2 x}+2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

```
dsolve((-x^2+x+1)/\mp@subsup{x}{}{\wedge}2+y(x)*diff (y(x),x)/(-2+y(x)) = 0,y(x), singsol=all)
```

$$
y(x)=2 \text { LambertW }\left(\frac{c_{1} \mathrm{e}^{\frac{(x-1)^{2}}{2 x}}}{2 \sqrt{x}}\right)+2
$$

\checkmark Solution by Mathematica
Time used: 60.036 (sec). Leaf size: 63

```
DSolve[(-x^2+x+1)/\mp@subsup{x}{}{\wedge}2+y[x]*y'[x]/(-2+y[x]) == 0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow 2\left(1+W\left(-\frac{1}{2} \sqrt{\frac{e^{x+\frac{1}{x}-2+c_{1}}}{x}}\right)\right) \\
& y(x) \rightarrow 2\left(1+W\left(\frac{1}{2} \sqrt{\frac{e^{x+\frac{1}{x}-2+c_{1}}}{x}}\right)\right)
\end{aligned}
$$

6.11 problem 11

6.11.1 Solving as differentialType ode 1522
6.11.2 Solving as exact ode . 1524
6.11.3 Maple step by step solution . 1527

Internal problem ID [578]
Internal file name [OUTPUT/578_Sunday_June_05_2022_01_45_06_AM_15814802/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact]

$$
y+\left(\mathrm{e}^{y}+x\right) y^{\prime}=-x^{2}
$$

6.11.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-x^{2}-y}{\mathrm{e}^{y}+x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(\mathrm{e}^{y}\right) d y=(-x) d y+\left(-x^{2}-y\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+\left(-x^{2}-y\right) d x=d\left(-\frac{1}{3} x^{3}-y x\right)
$$

Hence (2) becomes

$$
\left(\mathrm{e}^{y}\right) d y=d\left(-\frac{1}{3} x^{3}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
y=- \text { LambertW }\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{LambertW}\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 299: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}+c_{1}
$$

Verified OK.

6.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}+x\right) \mathrm{d} y & =\left(-x^{2}-y\right) \mathrm{d} x \\
\left(x^{2}+y\right) \mathrm{d} x+\left(\mathrm{e}^{y}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+y \\
N(x, y) & =\mathrm{e}^{y}+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}+x\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{2}+y \mathrm{~d} x \\
\phi & =\frac{1}{3} x^{3}+y x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}+x$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}+x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{3}}{3}+y x+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{3}}{3}+y x+\mathrm{e}^{y}
$$

The solution becomes

$$
y=- \text { LambertW }\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=- \text { LambertW }\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x} \tag{1}
\end{equation*}
$$

Figure 300: Slope field plot

Verification of solutions

$$
y=- \text { LambertW }\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}
$$

Verified OK.

6.11.3 Maple step by step solution

Let's solve

$$
y+\left(\mathrm{e}^{y}+x\right) y^{\prime}=-x^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$1=1$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int\left(x^{2}+y\right) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{x^{3}}{3}+y x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$\mathrm{e}^{y}+x=x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\mathrm{e}^{y}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\mathrm{e}^{y}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{x^{3}}{3}+y x+\mathrm{e}^{y}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{x^{3}}{3}+y x+\mathrm{e}^{y}=c_{1}$
- \quad Solve for y
$y=-$ Lambert $W\left(\frac{\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}}{x}\right)+\frac{-x^{3}+3 c_{1}}{3 x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

```
dsolve(x^2+y(x)+(exp(y(x))+x)*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=\frac{-x^{3}-3 x \text { LambertW }\left(\frac{\mathrm{e}^{-\frac{x^{3}+3 c_{1}}{3 x}}}{x}\right)-3 c_{1}}{3 x}
$$

\checkmark Solution by Mathematica
Time used: 3.877 (sec). Leaf size: 42

```
DSolve[x^2+y[x]+(Exp[y[x]]+x)*y'[x] == 0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-W\left(\frac{e^{-\frac{x^{2}}{3}+\frac{c_{1}}{x}}}{x}\right)-\frac{x^{2}}{3}+\frac{c_{1}}{x}
$$

6.12 problem 12

6.12.1 Solving as linear ode . 1530
6.12.2 Solving as first order ode lie symmetry lookup ode 1532
6.12.3 Solving as exact ode . 1536
6.12.4 Maple step by step solution . 1541

Internal problem ID [579]
Internal file name [OUTPUT/579_Sunday_June_05_2022_01_45_07_AM_95196417/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y=\frac{1}{1+\mathrm{e}^{x}}
$$

6.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{1}{1+\mathrm{e}^{x}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\frac{1}{1+\mathrm{e}^{x}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{1+\mathrm{e}^{x}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} y\right) & =\left(\mathrm{e}^{x}\right)\left(\frac{1}{1+\mathrm{e}^{x}}\right) \\
\mathrm{d}\left(\mathrm{e}^{x} y\right) & =\left(\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} y=\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \mathrm{~d} x \\
& \mathrm{e}^{x} y=\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x} \ln \left(1+\mathrm{e}^{x}\right)+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 301: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

6.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\mathrm{e}^{x} y+y-1}{1+\mathrm{e}^{x}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 282: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\mathrm{e}^{x} y+y-1}{1+\mathrm{e}^{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{x} y \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{1+\mathrm{e}^{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\ln \left(1+\mathrm{e}^{R}\right)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{x} y=\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\mathrm{e}^{x} y+y-1}{1+\mathrm{e}^{x}}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{R}}{1+\mathrm{e}^{R}}$
ardydydydydydydydy		$\xrightarrow[\rightarrow \rightarrow \rightarrow-]{ }$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow{\rightarrow-4 \rightarrow \rightarrow-2 \rightarrow 08}$
	$S=\mathrm{e}^{x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{\rightarrow \rightarrow-\infty \text { OX }}$
		，
		，
Af A A A A A A A A A A A A		右
		刀口八刀口

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 302: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

6.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\frac{1}{1+\mathrm{e}^{x}}\right) \mathrm{d} x \\
\left(y-\frac{1}{1+\mathrm{e}^{x}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-\frac{1}{1+\mathrm{e}^{x}} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\frac{1}{1+\mathrm{e}^{x}}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-\frac{1}{1+\mathrm{e}^{x}}\right) \\
& =\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x} y+y-1\right)}{1+\mathrm{e}^{x}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x} y+y-1\right)}{1+\mathrm{e}^{x}}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\mathrm{e}^{x}\left(\mathrm{e}^{x} y+y-1\right)}{1+\mathrm{e}^{x}} \mathrm{~d} x \\
\phi & =\mathrm{e}^{x} y-\ln \left(1+\mathrm{e}^{x}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{x} y-\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{x} y-\ln \left(1+\mathrm{e}^{x}\right)
$$

The solution becomes

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 303: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

6.12.4 Maple step by step solution

Let's solve
$y^{\prime}+y=\frac{1}{1+\mathrm{e}^{x}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\frac{1}{1+\mathrm{e}^{x}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\frac{1}{1+\mathrm{e}^{x}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y\right)=\frac{\mu(x)}{1+\mathrm{e}^{x}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{1+\mathrm{e}^{x}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{1+\mathrm{e}^{x}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{1+e^{x}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\ln \left(1+\mathrm{e}^{x}\right)+c_{1}}{\mathrm{e}^{x}}$
- Simplify

$$
y=\mathrm{e}^{-x}\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(y(x)+diff(y(x),x) = 1/(1+exp(x)),y(x), singsol=all)
```

$$
y(x)=\left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 20

```
DSolve[y[x]+y'[x] == 1/(1+Exp[x]),y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(\log \left(e^{x}+1\right)+c_{1}\right)
$$

6.13 problem 13

6.13.1 Solving as separable ode . 1543
6.13.2 Solving as first order ode lie symmetry lookup ode 1545
6.13.3 Solving as exact ode . 1549
6.13.4 Solving as riccati ode . 1553
6.13.5 Maple step by step solution . 1555

Internal problem ID [580]
Internal file name [OUTPUT/580_Sunday_June_05_2022_01_45_08_AM_16506274/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y^{2}-2 x y^{2}=1+2 x
$$

6.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\left(y^{2}+1\right)(1+2 x)
\end{aligned}
$$

Where $f(x)=1+2 x$ and $g(y)=y^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}+1} d y & =1+2 x d x \\
\int \frac{1}{y^{2}+1} d y & =\int 1+2 x d x \\
\arctan (y) & =x^{2}+c_{1}+x
\end{aligned}
$$

Which results in

$$
y=\tan \left(x^{2}+c_{1}+x\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{2}+c_{1}+x\right) \tag{1}
\end{equation*}
$$

Figure 304: Slope field plot

Verification of solutions

$$
y=\tan \left(x^{2}+c_{1}+x\right)
$$

Verified OK.

6.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 x y^{2}+y^{2}+2 x+1 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 285: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{1+2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\bar{\xi}} d x \\
& =\int \frac{1}{\frac{1}{1+2 x}} d x
\end{aligned}
$$

Which results in

$$
S=x^{2}+x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x y^{2}+y^{2}+2 x+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =1+2 x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x^{2}+x=\arctan (y)+c_{1}
$$

Which simplifies to

$$
x^{2}+x=\arctan (y)+c_{1}
$$

Which gives

$$
y=-\tan \left(-x^{2}+c_{1}-x\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x y^{2}+y^{2}+2 x+1$		$\frac{d S}{d R}=\frac{1}{R^{2}+1}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 为
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$R=y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
	$S=x^{2}+x$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow+ \pm}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\rightarrow \rightarrow \rightarrow \pm$-14
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(-x^{2}+c_{1}-x\right) \tag{1}
\end{equation*}
$$

Figure 305: Slope field plot
Verification of solutions

$$
y=-\tan \left(-x^{2}+c_{1}-x\right)
$$

Verified OK.

6.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y & =(1+2 x) \mathrm{d} x \\
(-1-2 x) \mathrm{d} x+ & \left(\frac{1}{y^{2}+1}\right) \mathrm{d} y \tag{2~A}
\end{align*}=0
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-1-2 x \\
& N(x, y)=\frac{1}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1-2 x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-1-2 x \mathrm{~d} x \\
\phi & =-x^{2}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =\arctan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}-x+\arctan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}-x+\arctan (y)
$$

The solution becomes

$$
y=\tan \left(x^{2}+c_{1}+x\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(x^{2}+c_{1}+x\right) \tag{1}
\end{equation*}
$$

Figure 306: Slope field plot
Verification of solutions

$$
y=\tan \left(x^{2}+c_{1}+x\right)
$$

Verified OK.

6.13.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =2 x y^{2}+y^{2}+2 x+1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 x y^{2}+y^{2}+2 x+1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=1+2 x, f_{1}(x)=0$ and $f_{2}(x)=1+2 x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(1+2 x) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =(1+2 x)^{3}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(1+2 x) u^{\prime \prime}(x)-2 u^{\prime}(x)+(1+2 x)^{3} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin \left(x^{2}+x\right)+c_{2} \cos \left(x^{2}+x\right)
$$

The above shows that

$$
u^{\prime}(x)=(1+2 x)\left(c_{1} \cos \left(x^{2}+x\right)-c_{2} \sin \left(x^{2}+x\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} \cos \left(x^{2}+x\right)-c_{2} \sin \left(x^{2}+x\right)}{c_{1} \sin \left(x^{2}+x\right)+c_{2} \cos \left(x^{2}+x\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \cos \left(x^{2}+x\right)+\sin \left(x^{2}+x\right)}{c_{3} \sin \left(x^{2}+x\right)+\cos \left(x^{2}+x\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} \cos \left(x^{2}+x\right)+\sin \left(x^{2}+x\right)}{c_{3} \sin \left(x^{2}+x\right)+\cos \left(x^{2}+x\right)} \tag{1}
\end{equation*}
$$

Figure 307: Slope field plot
Verification of solutions

$$
y=\frac{-c_{3} \cos \left(x^{2}+x\right)+\sin \left(x^{2}+x\right)}{c_{3} \sin \left(x^{2}+x\right)+\cos \left(x^{2}+x\right)}
$$

Verified OK.

6.13.5 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}-2 x y^{2}=1+2 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1+2 x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{1+y^{2}} d x=\int(1+2 x) d x+c_{1}$
- Evaluate integral

$$
\arctan (y)=x^{2}+c_{1}+x
$$

- \quad Solve for y

$$
y=\tan \left(x^{2}+c_{1}+x\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(x),x) = 1+2*x+y(x)^2+2*x*y(x)^2,y(x), singsol=all)
\[
y(x)=\tan \left(x^{2}+c_{1}+x\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.178 (sec). Leaf size: 13
DSolve[y'[x] == $1+2 * x+y[x] \wedge 2+2 * x * y[x] \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \tan \left(x^{2}+x+c_{1}\right)
$$

6.14 problem 14

6.14.1 Existence and uniqueness analysis 1557
6.14.2 Solving as homogeneousTypeD2 ode 1558
6.14.3 Solving as differentialType ode 1560
6.14.4 Solving as first order ode lie symmetry calculated ode 1562
6.14.5 Solving as exact ode . 1567
6.14.6 Maple step by step solution . 1570

Internal problem ID [581]
Internal file name [OUTPUT/581_Sunday_June_05_2022_01_45_09_AM_47757679/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType", "homogeneousTypeD2", "first_oorder_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
y+(x+2 y) y^{\prime}=-x
$$

With initial conditions

$$
[y(2)=3]
$$

6.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x+y}{x+2 y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\{x<-6 \vee-6<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $f(x, y)$ when $x=2$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x+y}{x+2 y}\right) \\
& =-\frac{1}{x+2 y}+\frac{2 x+2 y}{(x+2 y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=3$ is

$$
\{x<-6 \vee-6<x\}
$$

And the point $x_{0}=2$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=2$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

6.14.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+(x+2 u(x) x)\left(u^{\prime}(x) x+u(x)\right)=-x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u^{2}+2 u+1}{x(2 u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{2 u^{2}+2 u+1}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{2 u^{2}+2 u+1}{2 u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{2 u^{2}+2 u+1}{2 u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(2 u^{2}+2 u+1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 u^{2}+2 u+1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{2 u^{2}+2 u+1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{2 u(x)^{2}+2 u(x)+1}=\frac{c_{3} \mathrm{c}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{2 u(x)^{2}+2 u(x)+1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\sqrt{\frac{2 y^{2}}{x^{2}}+\frac{2 y}{x}+1} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \\
\sqrt{\frac{2 y^{2}+2 y x+x^{2}}{x^{2}}} & =\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
\end{aligned}
$$

Substituting initial conditions and solving for c_{2} gives $c_{2}=\frac{\ln \left(\frac{34}{c_{3}^{2}}\right)}{2}$. Hence the solution becomes Initial conditions are used to solve for c_{3}. Substituting $x=2$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{\sqrt{34}}{2}=\frac{c_{3} \sqrt{34} \sqrt{\frac{1}{c_{3}^{2}}}}{2}
$$

This solution is valid for any c_{3}. Hence there are infinite number of solutions.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{2 y^{2}+2 y x+x^{2}}{x^{2}}}=\frac{c_{3} \sqrt{34} \sqrt{\frac{1}{c_{3}^{2}}}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sqrt{\frac{2 y^{2}+2 y x+x^{2}}{x^{2}}}=\frac{c_{3} \sqrt{34} \sqrt{\frac{1}{c_{3}^{2}}}}{x}
$$

Verified OK.

6.14.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-x-y}{x+2 y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(2 y) d y=(-x) d y+(-x-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-x-y) d x=d\left(-\frac{1}{2} x^{2}-y x\right)
$$

Hence (2) becomes

$$
(2 y) d y=d\left(-\frac{1}{2} x^{2}-y x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+4 c_{1}}}{2}+c_{1} \\
& y=-\frac{x}{2}-\frac{\sqrt{-x^{2}+4 c_{1}}}{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=-1-\sqrt{c_{1}-1}+c_{1}
$$

$$
c_{1}=\frac{9}{2}+\frac{\sqrt{13}}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{x}{2}-\frac{\sqrt{-x^{2}+18+2 \sqrt{13}}}{2}+\frac{9}{2}+\frac{\sqrt{13}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=-1+\sqrt{c_{1}-1}+c_{1} \\
c_{1}=\frac{9}{2}-\frac{\sqrt{13}}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+18-2 \sqrt{13}}}{2}+\frac{9}{2}-\frac{\sqrt{13}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+18-2 \sqrt{13}}}{2}+\frac{9}{2}-\frac{\sqrt{13}}{2} \tag{1}\\
& y=-\frac{x}{2}-\frac{\sqrt{-x^{2}+18+2 \sqrt{13}}}{2}+\frac{9}{2}+\frac{\sqrt{13}}{2} \tag{2}
\end{align*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+18-2 \sqrt{13}}}{2}+\frac{9}{2}-\frac{\sqrt{13}}{2}
$$

Verified OK. \{positive\}

$$
y=-\frac{x}{2}-\frac{\sqrt{-x^{2}+18+2 \sqrt{13}}}{2}+\frac{9}{2}+\frac{\sqrt{13}}{2}
$$

Verified OK. \{positive\}

6.14.4 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x+y}{x+2 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+y)\left(b_{3}-a_{2}\right)}{x+2 y}-\frac{(x+y)^{2} a_{3}}{(x+2 y)^{2}}-\left(-\frac{1}{x+2 y}+\frac{x+y}{(x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{x+2 y}+\frac{2 x+2 y}{(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{3}+4 x y a_{2}-2 x y a_{3}+4 x y b_{2}-4 x y b_{3}+2 y^{2} a_{2}+4 y^{2} b_{2}-2 y^{2} b_{3}-x b_{1}+y a_{1}}{(x+2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{3}+4 x y a_{2}-2 x y a_{3}+4 x y b_{2} \tag{6E}\\
& \quad-4 x y b_{3}+2 y^{2} a_{2}+4 y^{2} b_{2}-2 y^{2} b_{3}-x b_{1}+y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& a_{2} v_{1}^{2}+4 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+4 b_{2} v_{1} v_{2} \tag{7E}\\
& \quad+4 b_{2} v_{2}^{2}-b_{3} v_{1}^{2}-4 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+a_{1} v_{2}-b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
$\left(a_{2}-a_{3}-b_{3}\right) v_{1}^{2}+\left(4 a_{2}-2 a_{3}+4 b_{2}-4 b_{3}\right) v_{1} v_{2}-b_{1} v_{1}+\left(2 a_{2}+4 b_{2}-2 b_{3}\right) v_{2}^{2}+a_{1} v_{2}=0$
Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-b_{1} & =0 \\
a_{2}-a_{3}-b_{3} & =0 \\
2 a_{2}+4 b_{2}-2 b_{3} & =0 \\
4 a_{2}-2 a_{3}+4 b_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-2 b_{2}+b_{3} \\
& a_{3}=-2 b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x+y}{x+2 y}\right)(x) \\
& =\frac{x^{2}+2 y x+2 y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+2 y x+2 y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+2 y x+2 y^{2}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+y}{x+2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y}{x^{2}+2 y x+2 y^{2}} \\
S_{y} & =\frac{x+2 y}{x^{2}+2 y x+2 y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(2 y^{2}+2 y x+x^{2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(2 y^{2}+2 y x+x^{2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x+y}{x+2 y}$		$\frac{d S}{d R}=0$
$\rightarrow \rightarrow \rightarrow \rightarrow$ and		
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 促
1 dit $\rightarrow \rightarrow 01010$	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
	$\ln \left(x^{2}+2 y x+2 y^{2}\right)$	
	$S=\frac{\ln }{}$	
		$\xrightarrow{-2}+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\longrightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow ~}$

Initial conditions are used to solve for c_{1} ．Substituting $x=2$ and $y=3$ in the above solution gives an equation to solve for the constant of integration．

$$
\begin{aligned}
& \frac{\ln (2)}{2}+\frac{\ln (17)}{2}=c_{1} \\
& c_{1}=\frac{\ln (2)}{2}+\frac{\ln (17)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln \left(x^{2}+2 y x+2 y^{2}\right)}{2}=\frac{\ln (2)}{2}+\frac{\ln (17)}{2}
$$

Summary

The solution（s）found are the following

$$
\begin{equation*}
\frac{\ln \left(2 y^{2}+2 y x+x^{2}\right)}{2}=\frac{\ln (2)}{2}+\frac{\ln (17)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(2 y^{2}+2 y x+x^{2}\right)}{2}=\frac{\ln (2)}{2}+\frac{\ln (17)}{2}
$$

Verified OK.

6.14.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+2 y) \mathrm{d} y & =(-x-y) \mathrm{d} x \\
(x+y) \mathrm{d} x+(x+2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x+y \\
N(x, y) & =x+2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+2 y) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x+y \mathrm{~d} x \\
\phi & =\frac{x(x+2 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x+2 y=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x+2 y)}{2}+y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x+2 y)}{2}+y^{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 17=c_{1} \\
& c_{1}=17
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{x(x+2 y)}{2}+y^{2}=17
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}+y x+y^{2}=17 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{x^{2}}{2}+y x+y^{2}=17
$$

Verified OK.

6.14.6 Maple step by step solution

Let's solve

$$
\left[y+(x+2 y) y^{\prime}=-x, y(2)=3\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
1=1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int(x+y) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{x^{2}}{2}+y x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x+2 y=x+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=2 y$
- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=y^{2}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{1}{2} x^{2}+y x+y^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{1}{2} x^{2}+y x+y^{2}=c_{1}$
- \quad Solve for y
$\left\{y=-\frac{x}{2}-\frac{\sqrt{-x^{2}+4 c_{1}}}{2}, y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+4 c_{1}}}{2}\right\}$
- Use initial condition $y(2)=3$
$3=-1-\frac{\sqrt{-4+4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(2)=3$
$3=-1+\frac{\sqrt{-4+4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=17$
- \quad Substitute $c_{1}=17$ into general solution and simplify
$y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+68}}{2}$
- \quad Solution to the IVP
$y=-\frac{x}{2}+\frac{\sqrt{-x^{2}+68}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 19

```
dsolve([x+y(x)+(x+2*y(x))*diff(y(x),x) = 0,y(2) = 3],y(x), singsol=all)
```

$$
y(x)=-\frac{x}{2}+\frac{\sqrt{-x^{2}+68}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.458 (sec). Leaf size: 24
DSolve $\left[\left\{x+y[x]+(x+2 * y[x]) * y^{\prime}[x]==0, y[2]==3\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}\left(\sqrt{68-x^{2}}-x\right)
$$

6.15 problem 15

6.15.1 Solving as separable ode . 1573
6.15.2 Solving as linear ode . 1575
6.15.3 Solving as homogeneousTypeD2 ode 1576
6.15.4 Solving as first order ode lie symmetry lookup ode 1578
6.15.5 Solving as exact ode . 1582
6.15.6 Maple step by step solution . 1586

Internal problem ID [582]
Internal file name [OUTPUT/582_Sunday_June_05_2022_01_45_11_AM_3677461/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\left(1+\mathrm{e}^{x}\right) y^{\prime}-y+\mathrm{e}^{x} y=0
$$

6.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y\left(\mathrm{e}^{x}-1\right)}{1+\mathrm{e}^{x}}
\end{aligned}
$$

Where $f(x)=-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}} d x \\
\int \frac{1}{y} d y & =\int-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}} d x \\
\ln (y) & =\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)+c_{1} \\
y & =\mathrm{e}^{\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 309: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Verified OK.

6.15.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-\mathrm{e}^{x}+1}{1+\mathrm{e}^{x}} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{\left(-\mathrm{e}^{x}+1\right) y}{1+\mathrm{e}^{x}}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-\mathrm{e}^{x}+1}{1+\mathrm{e}^{x}} d x} \\
& =\mathrm{e}^{-\ln \left(\mathrm{e}^{x}\right)+2 \ln \left(1+\mathrm{e}^{x}\right)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2}$ results in

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 310: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Verified OK.

6.15.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(1+\mathrm{e}^{x}\right)\left(u^{\prime}(x) x+u(x)\right)-u(x) x+\mathrm{e}^{x} u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(x \mathrm{e}^{x}+\mathrm{e}^{x}-x+1\right)}{\left(1+\mathrm{e}^{x}\right) x}
\end{aligned}
$$

Where $f(x)=-\frac{x \mathrm{e}^{x}+\mathrm{e}^{x}-x+1}{x\left(1+\mathrm{e}^{x}\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{x \mathrm{e}^{x}+\mathrm{e}^{x}-x+1}{x\left(1+\mathrm{e}^{x}\right)} d x \\
\int \frac{1}{u} d u & =\int-\frac{x \mathrm{e}^{x}+\mathrm{e}^{x}-x+1}{x\left(1+\mathrm{e}^{x}\right)} d x \\
\ln (u) & =x-\ln (x)-2 \ln \left(1+\mathrm{e}^{x}\right)+c_{2} \\
u & =\mathrm{e}^{x-\ln (x)-2 \ln \left(1+\mathrm{e}^{x}\right)+c_{2}} \\
& =c_{2} \mathrm{e}^{x-\ln (x)-2 \ln \left(1+\mathrm{e}^{x}\right)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{x}}{x\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}} \tag{1}
\end{equation*}
$$

Figure 311: Slope field plot

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Verified OK.

6.15.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y\left(\mathrm{e}^{x}-1\right)}{1+\mathrm{e}^{x}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 289: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(\mathrm{e}^{x}-1\right)}{1+\mathrm{e}^{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right) \\
S_{y} & =\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y=c_{1}
$$

Which gives

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(\mathrm{e}^{x}-1\right)}{1+\mathrm{e}^{x}}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \longrightarrow \rightarrow]{ }$
		$\xrightarrow{S(R R) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		,
	$R=x$	$\rightarrow \rightarrow \rightarrow$ 辺
	$S=\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} u$	
	$S=\mathrm{e}^{-x}\left(1+\mathrm{e}^{x}\right)^{2} y$	
bi:		
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \mathrm{e}^{x}}{\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1} \tag{1}
\end{equation*}
$$

Figure 312: Slope field plot

Verification of solutions

$$
y=\frac{c_{1} \mathrm{e}^{x}}{\mathrm{e}^{2 x}+2 \mathrm{e}^{x}+1}
$$

Verified OK.

6.15.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}}\right) \mathrm{d} x \\
\left(-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}}\right) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}} \\
& N(x, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}} \mathrm{~d} x \\
\phi & =\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)-\ln (y)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{x-c_{1}}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Summary
The solution(s) found are the following

Figure 313: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x-c_{1}}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Verified OK.

6.15.6 Maple step by step solution

Let's solve

$$
\left(1+\mathrm{e}^{x}\right) y^{\prime}-y+\mathrm{e}^{x} y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int-\frac{\mathrm{e}^{x}-1}{1+\mathrm{e}^{x}} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=\ln \left(\mathrm{e}^{x}\right)-2 \ln \left(1+\mathrm{e}^{x}\right)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{x+c_{1}}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve ((1+exp $(x)) * \operatorname{diff}(y(x), x)=y(x)-\exp (x) * y(x), y(x)$, singsol=all)

$$
y(x)=\frac{c_{1} \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 23
DSolve $[(1+\operatorname{Exp}[x]) * y$ ' $[x]==y[x]-\operatorname{Exp}[x] * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1} e^{x}}{\left(e^{x}+1\right)^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.16 problem 16

6.16.1 Solving as exact ode

1588
Internal problem ID [583]
Internal file name [OUTPUT/583_Sunday_June_05_2022_01_45_12_AM_88473674/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[NONE]

$$
y^{\prime}-\frac{-\mathrm{e}^{2 y} \cos (x)+\cos (y) \mathrm{e}^{-x}}{2 \mathrm{e}^{2 y} \sin (x)-\sin (y) \mathrm{e}^{-x}}=0
$$

6.16.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}-\sin (y)\right) \mathrm{d} y & =\left(-\mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}+\cos (y)\right) \mathrm{d} x \\
\left(\mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}-\cos (y)\right) \mathrm{d} x+\left(2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}-\sin (y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}-\cos (y) \\
N(x, y) & =2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}-\sin (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}-\cos (y)\right) \\
& =2 \cos (x) \mathrm{e}^{x+2 y}+\sin (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}-\sin (y)\right) \\
& =2(\cos (x)+\sin (x)) \mathrm{e}^{x+2 y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 \sin (x) \mathrm{e}^{x+2 y}-\sin (y)}\left(\left(2 \mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}+\sin (y)\right)-\left(2 \mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}+2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}\right)\right) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}\left(\mathrm{e}^{2 y} \cos (x) \mathrm{e}^{x}-\cos (y)\right) \\
& =\left(\cos (x) \mathrm{e}^{x+2 y}-\cos (y)\right) \mathrm{e}^{-x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}\left(2 \mathrm{e}^{2 y} \sin (x) \mathrm{e}^{x}-\sin (y)\right) \\
& =\left(2 \sin (x) \mathrm{e}^{x+2 y}-\sin (y)\right) \mathrm{e}^{-x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(\cos (x) \mathrm{e}^{x+2 y}-\cos (y)\right) \mathrm{e}^{-x}\right)+\left(\left(2 \sin (x) \mathrm{e}^{x+2 y}-\sin (y)\right) \mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(\cos (x) \mathrm{e}^{x+2 y}-\cos (y)\right) \mathrm{e}^{-x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{2 y} \sin (x)+\cos (y) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{2 y} \sin (x)-\sin (y) \mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(2 \sin (x) \mathrm{e}^{x+2 y}-\sin (y)\right) \mathrm{e}^{-x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(2 \sin (x) \mathrm{e}^{x+2 y}-\sin (y)\right) \mathrm{e}^{-x}=2 \mathrm{e}^{2 y} \sin (x)-\sin (y) \mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{2 y} \sin (x)+\cos (y) \mathrm{e}^{-x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{2 y} \sin (x)+\cos (y) \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{2 y} \sin (x)+\cos (y) \mathrm{e}^{-x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 314: Slope field plot

Verification of solutions

$$
\mathrm{e}^{2 y} \sin (x)+\cos (y) \mathrm{e}^{-x}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 21
dsolve $(\operatorname{diff}(y(x), x)=(-\exp (2 * y(x)) * \cos (x)+\cos (y(x)) / \exp (x)) /(2 * \exp (2 * y(x)) * \sin (x)-\sin (y(x))$

$$
c_{1}+\cos (y(x)) \mathrm{e}^{-x}+\mathrm{e}^{2 y(x)} \sin (x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.473 (sec). Leaf size: 25
DSolve $[y$ ' $[x]==(-\operatorname{Exp}[2 * y[x]] * \operatorname{Cos}[x]+\operatorname{Cos}[y[x]] / \operatorname{Exp}[x]) /(2 * \operatorname{Exp}[2 * y[x]] * \operatorname{Sin}[x]-\operatorname{Sin}[y[x]] / \operatorname{Exp}[x$

$$
\text { Solve }\left[e^{2 y(x)} \sin (x)+e^{-x} \cos (y(x))=c_{1}, y(x)\right]
$$

6.17 problem 17

6.17.1 Solving as linear ode . 1594
6.17.2 Solving as first order ode lie symmetry lookup ode 1596
6.17.3 Solving as exact ode . 1600
6.17.4 Maple step by step solution . 1604

Internal problem ID [584]
Internal file name [OUTPUT/584_Sunday_June_05_2022_01_45_16_AM_73508669/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=\mathrm{e}^{2 x}
$$

6.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 \\
& q(x)=\mathrm{e}^{2 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=\mathrm{e}^{2 x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-3 x} y\right) & =\left(\mathrm{e}^{-3 x}\right)\left(\mathrm{e}^{2 x}\right) \\
\mathrm{d}\left(\mathrm{e}^{-3 x} y\right) & =\mathrm{e}^{-x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 x} y=\int \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-3 x} y=-\mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 x}$ results in

$$
y=-\mathrm{e}^{3 x} \mathrm{e}^{-x}+c_{1} \mathrm{e}^{3 x}
$$

which simplifies to

$$
y=-\mathrm{e}^{2 x}+c_{1} \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{2 x}+c_{1} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 315: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{2 x}+c_{1} \mathrm{e}^{3 x}
$$

Verified OK.

6.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\mathrm{e}^{2 x}+3 y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 292: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-3 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\mathrm{e}^{2 x}+3 y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-3 \mathrm{e}^{-3 x} y \\
S_{y} & =\mathrm{e}^{-3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{-3 x}=-\mathrm{e}^{-x}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{-3 x}=-\mathrm{e}^{-x}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\mathrm{e}^{2 x}+3 y$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
¢		
	$R=x$	
	$S=\mathrm{e}^{-3 x} y$	
	$S=\mathrm{e}^{-3 x} y$	

dx dizatitatatat		+19 ${ }^{\text {a }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 316: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x}
$$

Verified OK.

6.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\mathrm{e}^{2 x}+3 y\right) \mathrm{d} x \\
\left(-\mathrm{e}^{2 x}-3 y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{2 x}-3 y \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{2 x}-3 y\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-3)-(0)) \\
& =-3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-3 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-3 x}\left(-\mathrm{e}^{2 x}-3 y\right) \\
& =\left(-\mathrm{e}^{2 x}-3 y\right) \mathrm{e}^{-3 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-3 x}(1) \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(-\mathrm{e}^{2 x}-3 y\right) \mathrm{e}^{-3 x}\right)+\left(\mathrm{e}^{-3 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(-\mathrm{e}^{2 x}-3 y\right) \mathrm{e}^{-3 x} \mathrm{~d} x \\
\phi & =\mathrm{e}^{-x}+\mathrm{e}^{-3 x} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-3 x}=\mathrm{e}^{-3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{-x}+\mathrm{e}^{-3 x} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{-x}+\mathrm{e}^{-3 x} y
$$

The solution becomes

$$
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 317: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{3 x}
$$

Verified OK.

6.17.4 Maple step by step solution

Let's solve
$y^{\prime}-3 y=\mathrm{e}^{2 x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\mathrm{e}^{2 x}+3 y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-3 y=\mathrm{e}^{2 x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-3 y\right)=\mu(x) \mathrm{e}^{2 x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-3 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-3 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{2 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{2 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{2 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-3 x}$
$y=\frac{\int \mathrm{e}^{2 x} \mathrm{e}^{-3 x} d x+c_{1}}{\mathrm{e}^{-3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{-\mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-3 x}}$
- Simplify
$y=\mathrm{e}^{2 x}\left(c_{1} \mathrm{e}^{x}-1\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(x), x)=\exp (2 * x)+3 * y(x), y(x)$, singsol=all)

$$
y(x)=\left(\mathrm{e}^{x} c_{1}-1\right) \mathrm{e}^{2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 19
DSolve[y'[x]== $\operatorname{Exp}[2 * x]+3 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{2 x}\left(-1+c_{1} e^{x}\right)
$$

6.18 problem 18

6.18.1 Solving as linear ode . 1607
6.18.2 Solving as first order ode lie symmetry lookup ode 1609
6.18.3 Solving as exact ode . 1613
6.18.4 Maple step by step solution . 1617

Internal problem ID [585]
Internal file name [OUTPUT/585_Sunday_June_05_2022_01_45_17_AM_81100757/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
2 y+y^{\prime}=\mathrm{e}^{-x^{2}-2 x}
$$

6.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=2 \\
& q(x)=\mathrm{e}^{-x(2+x)}
\end{aligned}
$$

Hence the ode is

$$
2 y+y^{\prime}=\mathrm{e}^{-x(2+x)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{-x(2+x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x} y\right) & =\left(\mathrm{e}^{2 x}\right)\left(\mathrm{e}^{-x(2+x)}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 x} y\right) & =\mathrm{e}^{-x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x} y=\int \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{2 x} y=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x}$ results in

$$
y=\frac{\mathrm{e}^{-2 x} \sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 318: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right)
$$

Verified OK.

6.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y+\mathrm{e}^{-x^{2}-2 x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 295: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y+\mathrm{e}^{-x^{2}-2 x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 \mathrm{e}^{2 x} y \\
S_{y} & =\mathrm{e}^{2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\sqrt{\pi} \operatorname{erf}(R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
y \mathrm{e}^{2 x}=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{2 x}=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 y+\mathrm{e}^{-x^{2}-2 x}$		$\frac{d S}{d R}=\mathrm{e}^{-R^{2}}$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow 0}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0}$ ，
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+3]{ }$ 他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0, ~}$
	$S=\mathrm{e}^{2 x} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ } \xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 价 } \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
¢		
		成

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 319: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Verified OK.

6.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 y+\mathrm{e}^{-x^{2}-2 x}\right) \mathrm{d} x \\
\left(2 y-\mathrm{e}^{-x^{2}-2 x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y-\mathrm{e}^{-x^{2}-2 x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y-\mathrm{e}^{-x^{2}-2 x}\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 2 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 x}\left(2 y-\mathrm{e}^{-x^{2}-2 x}\right) \\
& =\left(2 y-\mathrm{e}^{-x(2+x)}\right) \mathrm{e}^{2 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 x}(1) \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(2 y-\mathrm{e}^{-x(2+x)}\right) \mathrm{e}^{2 x}\right)+\left(\mathrm{e}^{2 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(2 y-\mathrm{e}^{-x(2+x)}\right) \mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{2 x} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 x}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{2 x} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{2 x} y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 320: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Verified OK.

6.18.4 Maple step by step solution

Let's solve
$2 y+y^{\prime}=\mathrm{e}^{-x^{2}-2 x}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+\mathrm{e}^{-x^{2}-2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $2 y+y^{\prime}=\mathrm{e}^{-x^{2}-2 x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(2 y+y^{\prime}\right)=\mu(x) \mathrm{e}^{-x^{2}-2 x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(2 y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{-x^{2}-2 x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{-x^{2}-2 x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{-x^{2}-2 x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{2 x}$
$y=\frac{\int \mathrm{e}^{2 x} \mathrm{e}^{-x^{2}-2 x} d x+c_{1}}{\mathrm{e}^{2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}}{\mathrm{e}^{2 x}}$
- Simplify
$y=\frac{\mathrm{e}^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(2*y(x)+diff (y (x),x) = exp(-x^2-2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right) \mathrm{e}^{-2 x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 27
DSolve $\left[2 * y[x]+y '[x]==\operatorname{Exp}\left[-x^{\wedge} 2-2 * x\right], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{2} e^{-2 x}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)
$$

6.19 problem 19

6.19.1 Solving as exact ode

1620
Internal problem ID [586]
Internal file name [OUTPUT/586_Sunday_June_05_2022_01_45_18_AM_94339622/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_rational]

$$
y^{\prime}-\frac{3 x^{2}-2 y-y^{3}}{2 x+3 x y^{2}}=0
$$

6.19.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x\left(3 y^{2}+2\right)\right) \mathrm{d} y & =\left(-y^{3}+3 x^{2}-2 y\right) \mathrm{d} x \\
\left(y^{3}-3 x^{2}+2 y\right) \mathrm{d} x+\left(x\left(3 y^{2}+2\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{3}-3 x^{2}+2 y \\
N(x, y) & =x\left(3 y^{2}+2\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}-3 x^{2}+2 y\right) \\
& =3 y^{2}+2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x\left(3 y^{2}+2\right)\right) \\
& =3 y^{2}+2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{3}-3 x^{2}+2 y \mathrm{~d} x \\
\phi & =-x\left(-y^{3}+x^{2}-2 y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-x\left(-3 y^{2}-2\right)+f^{\prime}(y) \tag{4}\\
& =x\left(3 y^{2}+2\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x\left(3 y^{2}+2\right)$. Therefore equation (4) becomes

$$
\begin{equation*}
x\left(3 y^{2}+2\right)=x\left(3 y^{2}+2\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x\left(-y^{3}+x^{2}-2 y\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x\left(-y^{3}+x^{2}-2 y\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x\left(-y^{3}+x^{2}-2 y\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 321: Slope field plot

Verification of solutions

$$
-x\left(-y^{3}+x^{2}-2 y\right)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 409

```
dsolve(diff(y(x),x) = (3*x^2-2*y(x)-y(x)^3)/(2*x+3*x*y(x)^2),y(x), singsol=all)
```

$$
\begin{aligned}
& \left.y(x)=-\frac{\left.12^{\frac{1}{3}}\left(x^{2} 12^{\frac{1}{3}}-\frac{\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right.\right.}{2}\right) x^{2}\right)^{\frac{2}{3}}}{2}\right) \\
& y\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right) x^{2}\right)^{\frac{1}{3}} x \\
& -\frac{2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(2 i 2^{\frac{2}{3}} 3^{\frac{5}{6}} x^{2}-2 x^{2} 2^{\frac{2}{3}} 3^{\frac{1}{3}}+i\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right) x^{2}\right)^{\frac{2}{3}} \sqrt{3}+\left(\left(9 x^{3}\right.\right.\right.}{12 x\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right)\right.}
\end{aligned}
$$

$y(x)$
$=\frac{2^{\frac{2}{3}} 3^{\frac{1}{3}}\left(2\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) x^{2} 2^{\frac{2}{3}}+(i \sqrt{3}-1)\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right) x^{2}\right)^{\frac{2}{3}}\right)}{12\left(\left(9 x^{3}+\sqrt{3} \sqrt{27 x^{6}-54 c_{1} x^{3}+27 c_{1}^{2}+32 x^{2}}-9 c_{1}\right) x^{2}\right)^{\frac{1}{3}} x}$

Solution by Mathematica

Time used: 32.075 (sec). Leaf size: 358
DSolve[y'[x] == (3*x^2-2*y[x]-y[x]^3)/(2*x+3*x*y[x]^2),y[x],x,IncludeSingularSolutions $\rightarrow \operatorname{Tr}$

$$
\begin{aligned}
y(x) \rightarrow & \frac{\sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}}{3 \sqrt[3]{2} x} \\
& -\frac{2 \sqrt[3]{2} x}{\sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}} \\
y(x) \rightarrow & \frac{\sqrt[3]{2}(1+i \sqrt{3}) x}{\sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}} \\
& -\frac{(1-i \sqrt{3}) \sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}}{6 \sqrt[3]{2} x} \\
y(x) \rightarrow & \frac{\sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}}{\sqrt[3]{2(1-i \sqrt{3}) x}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{27 x^{5}+27 c_{1} x^{2}+\sqrt{864 x^{6}+729 x^{4}\left(x^{3}+c_{1}\right)^{2}}}}{6}
\end{aligned}
$$

6.20 problem 20

6.20.1 Solving as separable ode . 1626
6.20.2 Solving as first order special form ID 1 ode 1628
6.20.3 Solving as first order ode lie symmetry lookup ode 1629
6.20.4 Solving as exact ode . 1633
6.20.5 Maple step by step solution . 1637

Internal problem ID [587]
Internal file name [OUTPUT/587_Sunday_June_05_2022_01_45_20_AM_44183904/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry__lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\mathrm{e}^{x+y}=0
$$

6.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\mathrm{e}^{x} \mathrm{e}^{y}
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{x}$ and $g(y)=\mathrm{e}^{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{y}} d y & =\mathrm{e}^{x} d x \\
\int \frac{1}{\mathrm{e}^{y}} d y & =\int \mathrm{e}^{x} d x \\
-\mathrm{e}^{-y} & =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(-\frac{1}{\mathrm{e}^{x}+c_{1}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(-\frac{1}{\mathrm{e}^{x}+c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 322: Slope field plot

Verification of solutions

$$
y=\ln \left(-\frac{1}{\mathrm{e}^{x}+c_{1}}\right)
$$

Verified OK.

6.20.2 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\mathrm{e}^{x+y} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{-y}$ then

$$
u^{\prime}=-y^{\prime} \mathrm{e}^{-y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =-u^{\prime}(x) \mathrm{e}^{y} \\
& =-\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
-\frac{u^{\prime}(x)}{u}=\frac{\mathrm{e}^{x}}{u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=-\mathrm{e}^{x} \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
& =-\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{-y}$ gives

$$
\begin{aligned}
y & =-\ln (u(x)) \\
& =-\ln \left(-\mathrm{e}^{x}+c_{1}\right) \\
& =-\ln \left(-\mathrm{e}^{x}+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-\mathrm{e}^{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 323: Slope field plot
Verification of solutions

$$
y=-\ln \left(-\mathrm{e}^{x}+c_{1}\right)
$$

Verified OK.

6.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\mathrm{e}^{x+y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 298: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\mathrm{e}^{-x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\mathrm{e}^{-x}} d x
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\mathrm{e}^{x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\mathrm{e}^{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x}=-\mathrm{e}^{-y}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x}=-\mathrm{e}^{-y}+c_{1}
$$

Which gives

$$
y=-\ln \left(-\mathrm{e}^{x}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\mathrm{e}^{x+y}$		$\frac{d S}{d R}=\mathrm{e}^{-R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{\rightarrow-\infty}+p^{\text {a }}$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		
	$R=y$	$\underline{+1+1+1+9+9 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$
	$S=\mathrm{e}^{x}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$		¢ $\uparrow+\uparrow$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow]{ }$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-\mathrm{e}^{x}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 324: Slope field plot
Verification of solutions

$$
y=-\ln \left(-\mathrm{e}^{x}+c_{1}\right)
$$

Verified OK.

6.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{-y}\right) \mathrm{d} y & =\left(\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}\right) \mathrm{d} x+\left(\mathrm{e}^{-y}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x} \\
N(x, y) & =\mathrm{e}^{-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{-y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{-y}\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{-y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}-\mathrm{e}^{-y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}-\mathrm{e}^{-y}
$$

The solution becomes

$$
y=-\ln \left(-\mathrm{e}^{x}-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-\mathrm{e}^{x}-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 325: Slope field plot

Verification of solutions

$$
y=-\ln \left(-\mathrm{e}^{x}-c_{1}\right)
$$

Verified OK.

6.20.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\mathrm{e}^{x+y}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\mathrm{e}^{y}}=\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\mathrm{e}^{y}} d x=\int \mathrm{e}^{x} d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{\mathrm{e}^{y}}=\mathrm{e}^{x}+c_{1}$
- \quad Solve for y

$$
y=\ln \left(-\frac{1}{\mathrm{e}^{x}+c_{1}}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x) = exp(x+y(x)),y(x), singsol=all)
```

$$
y(x)=\ln \left(-\frac{1}{\mathrm{e}^{x}+c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.752 (sec). Leaf size: 18
DSolve[y'[x] == Exp[x+y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\log \left(-e^{x}-c_{1}\right)
$$

6.21 problem 21

6.21.1 Solving as exact ode

1639
Internal problem ID [588]
Internal file name [OUTPUT/588_Sunday_June_05_2022_01_45_20_AM_85449594/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_rational]

$$
\frac{-4+6 y x+2 y^{2}}{3 x^{2}+4 y x+3 y^{2}}+y^{\prime}=0
$$

6.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x^{2}+4 y x+3 y^{2}\right) \mathrm{d} y & =\left(-6 y x-2 y^{2}+4\right) \mathrm{d} x \\
\left(6 y x+2 y^{2}-4\right) \mathrm{d} x+\left(3 x^{2}+4 y x+3 y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =6 y x+2 y^{2}-4 \\
N(x, y) & =3 x^{2}+4 y x+3 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(6 y x+2 y^{2}-4\right) \\
& =6 x+4 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{2}+4 y x+3 y^{2}\right) \\
& =6 x+4 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 y x+2 y^{2}-4 \mathrm{~d} x \\
\phi & =3 y x^{2}+2 x y^{2}-4 x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =3 x^{2}+4 y x+f^{\prime}(y) \tag{4}\\
& =x(3 x+4 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 x^{2}+4 y x+3 y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 x^{2}+4 y x+3 y^{2}=x(3 x+4 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}\right) \mathrm{d} y \\
f(y) & =y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=3 y x^{2}+2 x y^{2}+y^{3}-4 x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=3 y x^{2}+2 x y^{2}+y^{3}-4 x
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
3 x^{2} y+2 x y^{2}+y^{3}-4 x=c_{1} \tag{1}
\end{equation*}
$$

Figure 326: Slope field plot

Verification of solutions

$$
3 x^{2} y+2 x y^{2}+y^{3}-4 x=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 517

```
dsolve((-4+6*x*y(x)+2*y(x)^2)/(3*x^2+4*x*y(x)+3*y(x)^2)+diff(y(x),x)=0,y(x), singsol=all)
```

$y(x)$
$\begin{aligned}= & \frac{\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{1}{3}}}{6} \\ & -\frac{10 x^{2}}{3\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{1}{3}}}\end{aligned}$
$-\frac{2 x}{3}$
$y(x)=$
$-\frac{(1+i \sqrt{3})\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{1}{3}}}{12}$
$-\frac{5 x\left(i \sqrt{3} x-x+\frac{2\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{1}{3}}}{5}\right)}{3\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{1}{3}}}$
$y(x)$
$=\xrightarrow{i\left(152 x^{3}-108 c_{1}+432 x+12 \sqrt{216 x^{6}-228 c_{1} x^{3}+912 x^{4}+81 c_{1}^{2}-648 c_{1} x+1296 x^{2}}\right)^{\frac{2}{3}} \sqrt{3}+20 i \sqrt{3} x^{2}}$

Solution by Mathematica

Time used: 4.748 (sec). Leaf size: 383
DSolve $\left[(-4+6 * x * y[x]+2 * y[x] \sim 2) /\left(3 * x^{\wedge} 2+4 * x * y[x]+3 * y[x] \sim 2\right)+y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolut
$y(x) \rightarrow \frac{1}{6}\left(2^{2 / 3} \sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}\right.$

$$
\left.-\frac{10 \sqrt[3]{2} x^{2}}{\sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}}-4 x\right)
$$

$y(x) \rightarrow \frac{1}{12}\left(i 2^{2 / 3}(\sqrt{3}+i) \sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}\right.$
$\left.+\frac{10 \sqrt[3]{2}(1+i \sqrt{3}) x^{2}}{\sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}}-8 x\right)$
$y(x) \rightarrow \frac{1}{12}\left(-2^{2 / 3}(1+i \sqrt{3}) \sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}\right.$

$$
\left.+\frac{10 \sqrt[3]{2}(1-i \sqrt{3}) x^{2}}{\sqrt[3]{38 x^{3}+\sqrt{500 x^{6}+\left(38 x^{3}+108 x+27 c_{1}\right)^{2}}+108 x+27 c_{1}}}-8 x\right)
$$

6.22 problem 22

6.22.1 Existence and uniqueness analysis 1647
6.22.2 Solving as separable ode . 1647
6.22.3 Solving as differentialType ode 1650
6.22.4 Solving as first order ode lie symmetry lookup ode 1652
6.22.5 Solving as exact ode . 1656
6.22.6 Maple step by step solution . 1659

Internal problem ID [589]
Internal file name [OUTPUT/589_Sunday_June_05_2022_01_45_22_AM_65389013/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2}-1}{1+y^{2}}=0
$$

With initial conditions

$$
[y(-1)=1]
$$

6.22.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x^{2}-1}{y^{2}+1}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x^{2}-1}{y^{2}+1}\right) \\
& =-\frac{2\left(x^{2}-1\right) y}{\left(y^{2}+1\right)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

6.22.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}-1}{y^{2}+1}
\end{aligned}
$$

Where $f(x)=x^{2}-1$ and $g(y)=\frac{1}{y^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y^{2}+1}} d y & =x^{2}-1 d x \\
\int \frac{1}{\frac{1}{y^{2}+1}} d y & =\int x^{2}-1 d x \\
\frac{1}{3} y^{3}+y & =\frac{1}{3} x^{3}-x+c_{1}
\end{aligned}
$$

Which results in

$$
\left.\begin{array}{rl}
y= & \frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{2} \\
& -\frac{2}{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right.}{}\right)^{\frac{1}{3}}}{2} \\
y= & -\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{4} \\
& +\frac{1}{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{2}+\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right.}{2}\right.
\end{array}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{-i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}-4 i \sqrt{3}-\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}+4}{4\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}
$$

Unable to solve for constant of integration.Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}-\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}+4 i \sqrt{3}+4}{4\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}
$$

Unable to solve for constant of integration.Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}-4}{2\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}} \\
c_{1}=\frac{2}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}}
$$

Verified OK.

6.22.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x^{2}-1}{1+y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}+1\right) d y=\left(x^{2}-1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(x^{2}-1\right) d x=d\left(\frac{1}{3} x^{3}-x\right)
$$

Hence (2) becomes

$$
\left(y^{2}+1\right) d y=d\left(\frac{1}{3} x^{3}-x\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{2}-\frac{}{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}}\right.} \\
& y=-\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{4}+\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{2}\right.}{4}+\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{4}+\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{2}\right.}{y=-\frac{(1)}{(4)}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{-i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}-\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}+4 c_{1}\left(8+12 c_{1}+4 \sqrt{9 c^{2}}\right.}{4\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{i \sqrt{3}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}-\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}+4 c_{1}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}}-\right.}{4\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\frac{\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{2}{3}}+2 c_{1}\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}-4}{2\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}
$$

Warning: Unable to solve for constant of integration.
Verification of solutions N/A

6.22.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}-1}{y^{2}+1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 301: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}-1} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}-1}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{1}{3} x^{3}-x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}-1}{y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2}-1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y^{2}+1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}+1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{1}{3} x^{3}-x=\frac{y^{3}}{3}+y+c_{1}
$$

Which simplifies to

$$
\frac{1}{3} x^{3}-x=\frac{y^{3}}{3}+y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}-1}{y^{2}+1}$		$\frac{d S}{d R}=R^{2}+1$
	$R=y$	
	$S=\frac{1}{3} x^{3}-x$	

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{2}{3}=c_{1}+\frac{4}{3} \\
c_{1}=-\frac{2}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{3} x^{3}-x=\frac{1}{3} y^{3}+y-\frac{2}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{1}{3} x^{3}-x=\frac{y^{3}}{3}+y-\frac{2}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{1}{3} x^{3}-x=\frac{y^{3}}{3}+y-\frac{2}{3}
$$

Verified OK.

6.22.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}+1\right) \mathrm{d} y & =\left(x^{2}-1\right) \mathrm{d} x \\
\left(-x^{2}+1\right) \mathrm{d} x+\left(y^{2}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}+1 \\
& N(x, y)=y^{2}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}+1\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}+1 \mathrm{~d} x \\
\phi & =-\frac{1}{3} x^{3}+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}+1$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}+1=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}+1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}+1\right) \mathrm{d} y \\
f(y) & =\frac{1}{3} y^{3}+y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{3} x^{3}+x+\frac{1}{3} y^{3}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{3} x^{3}+x+\frac{1}{3} y^{3}+y
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{2}{3}=c_{1} \\
& c_{1}=\frac{2}{3}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{3} x^{3}+x+\frac{1}{3} y^{3}+y=\frac{2}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}+x+\frac{y^{3}}{3}+y=\frac{2}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{x^{3}}{3}+x+\frac{y^{3}}{3}+y=\frac{2}{3}
$$

Verified OK.

6.22.6 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{x^{2}-1}{1+y^{2}}=0, y(-1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$y^{\prime}\left(1+y^{2}\right)=x^{2}-1$
- Integrate both sides with respect to x
$\int y^{\prime}\left(1+y^{2}\right) d x=\int\left(x^{2}-1\right) d x+c_{1}$
- Evaluate integral
$\frac{y^{3}}{3}+y=\frac{1}{3} x^{3}-x+c_{1}$
- \quad Solve for y
$y=\frac{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(4 x^{3}+12 c_{1}-12 x+4 \sqrt{x^{6}+6 c_{1} x^{3}-6 x^{4}+9 c_{1}^{2}-18 c_{1} x+9 x^{2}+4}\right)}$
- Use initial condition $y(-1)=1$
$1=\frac{\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}{2}-\frac{2}{\left(8+12 c_{1}+4 \sqrt{9 c_{1}^{2}+12 c_{1}+8}\right)^{\frac{1}{3}}}$
- \quad Solve for c_{1}
$c_{1}=\frac{2}{3}$
- \quad Substitute $c_{1}=\frac{2}{3}$ into general solution and simplify
$y=\frac{\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}}$
- Solution to the IVP
$y=\frac{\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(4 x^{3}+8-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 87

```
dsolve([diff(y(x),x) = (x^2-1)/(1+y(x)~2),y(-1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\left(8+4 x^{3}-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{2}{3}}-4}{2\left(8+4 x^{3}-12 x+4 \sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}\right)^{\frac{1}{3}}}
$$

Solution by Mathematica
Time used: 2.95 (sec). Leaf size: 97
DSolve[\{y' $\left.[x]==\left(x^{\wedge} 2-1\right) /(1+y[x] \sim 2), y[-1]==1\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sqrt[3]{2}\left(x^{3}+\sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}-3 x+2\right)^{2 / 3}-2}{2^{2 / 3} \sqrt[3]{x^{3}+\sqrt{x^{6}-6 x^{4}+4 x^{3}+9 x^{2}-12 x+8}-3 x+2}}
$$

6.23 problem 23

6.23.1 Solving as linear ode . 1661
6.23.2 Solving as first order ode lie symmetry lookup ode 1663
6.23.3 Solving as exact ode . 1667
6.23.4 Maple step by step solution . 1671

Internal problem ID [590]
Internal file name [OUTPUT/590_Sunday_June_05_2022_01_45_23_AM_42038206/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
(t+1) y+t y^{\prime}=\mathrm{e}^{2 t}
$$

6.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{-t-1}{t} \\
& q(t)=\frac{\mathrm{e}^{2 t}}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-t-1) y}{t}=\frac{\mathrm{e}^{2 t}}{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-t-1}{t} d t} \\
& =\mathrm{e}^{t+\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
\mu=t \mathrm{e}^{t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{\mathrm{e}^{2 t}}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t \mathrm{e}^{t} y\right) & =\left(t \mathrm{e}^{t}\right)\left(\frac{\mathrm{e}^{2 t}}{t}\right) \\
\mathrm{d}\left(t \mathrm{e}^{t} y\right) & =\mathrm{e}^{3 t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t \mathrm{e}^{t} y=\int \mathrm{e}^{3 t} \mathrm{~d} t \\
& t \mathrm{e}^{t} y=\frac{\mathrm{e}^{3 t}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t \mathrm{e}^{t}$ results in

$$
y=\frac{\mathrm{e}^{-t} \mathrm{e}^{3 t}}{3 t}+\frac{c_{1} \mathrm{e}^{-t}}{t}
$$

which simplifies to

$$
y=\frac{3 c_{1} \mathrm{e}^{-t}+\mathrm{e}^{2 t}}{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 c_{1} \mathrm{e}^{-t}+\mathrm{e}^{2 t}}{3 t} \tag{1}
\end{equation*}
$$

Figure 328: Slope field plot

Verification of solutions

$$
y=\frac{3 c_{1} \mathrm{e}^{-t}+\mathrm{e}^{2 t}}{3 t}
$$

Verified OK.

6.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-t y+\mathrm{e}^{2 t}-y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 304: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t-\ln (t)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t-\ln (t)}} d y
\end{aligned}
$$

Which results in

$$
S=t \mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{-t y+\mathrm{e}^{2 t}-y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{t}(t+1) \\
S_{y} & =t \mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{3 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{3 R}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t \mathrm{e}^{t} y=\frac{\mathrm{e}^{3 t}}{3}+c_{1}
$$

Which simplifies to

$$
t \mathrm{e}^{t} y=\frac{\mathrm{e}^{3 t}}{3}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{-t y+\mathrm{e}^{2 t}-y}{t}$		$\frac{d S}{d R}=\mathrm{e}^{3 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { S }]{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+3+1}$
	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$S=t \mathrm{e}^{t} y$	
	$S=t \mathrm{e}^{t} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t} \tag{1}
\end{equation*}
$$

Figure 329: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t}
$$

Verified OK.

6.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =\left(-(t+1) y+\mathrm{e}^{2 t}\right) \mathrm{d} t \\
\left(-\mathrm{e}^{2 t}+(t+1) y\right) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\mathrm{e}^{2 t}+(t+1) y \\
& N(t, y)=t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{2 t}+(t+1) y\right) \\
& =t+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((t+1)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}\left(-\mathrm{e}^{2 t}+(t+1) y\right) \\
& =\left(-\mathrm{e}^{2 t}+(t+1) y\right) \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(t) \\
& =t \mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(-\mathrm{e}^{2 t}+(t+1) y\right) \mathrm{e}^{t}\right)+\left(t \mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-\mathrm{e}^{2 t}+(t+1) y\right) \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =t \mathrm{e}^{t} y-\frac{\mathrm{e}^{3 t}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t \mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
t \mathrm{e}^{t}=t \mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t \mathrm{e}^{t} y-\frac{\mathrm{e}^{3 t}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t \mathrm{e}^{t} y-\frac{\mathrm{e}^{3 t}}{3}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t} \tag{1}
\end{equation*}
$$

Figure 330: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{3 t}+3 c_{1}\right) \mathrm{e}^{-t}}{3 t}
$$

Verified OK.

6.23.4 Maple step by step solution

Let's solve
$(t+1) y+t y^{\prime}=\mathrm{e}^{2 t}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{(t+1) y}{t}+\frac{\mathrm{e}^{2 t}}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(t+1) y}{t}=\frac{\mathrm{e}^{2 t}}{t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\frac{\mu(t) \mathrm{e}^{2 t}}{t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{(t+1) y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)(t+1)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=t \mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \frac{\mu(t) \mathrm{e}^{2 t}}{t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \frac{\mu(t) \mathrm{e}^{2 t}}{t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(t) \mathrm{e}^{2 t}}{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t \mathrm{e}^{t}$
$y=\frac{\int \mathrm{e}^{2 t} \mathrm{e}^{t} d t+c_{1}}{t \mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\mathrm{e}^{3 t}}{3}+c_{1}}{t \mathrm{e}^{t}}$
- Simplify
$y=\frac{3 c_{1} \mathrm{e}^{-t}+\mathrm{e}^{2 t}}{3 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve((1+t)*y(t)+t*diff(y(t),t) = exp(2*t),y(t), singsol=all)
```

$$
y(t)=\frac{\mathrm{e}^{2 t}+3 \mathrm{e}^{-t} c_{1}}{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 27
DSolve[(1+t)*y[t]+t*y'[t] == Exp[2*t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{e^{2 t}+3 c_{1} e^{-t}}{3 t}
$$

6.24 problem 24

6.24.1 Solving as separable ode . 1674
6.24.2 Solving as first order ode lie symmetry lookup ode 1676
6.24.3 Solving as exact ode . 1680
6.24.4 Maple step by step solution . 1684

Internal problem ID [591]
Internal file name [OUTPUT/591_Sunday_June_05_2022_01_45_24_AM_63570909/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 \cos (x) \sin (x) \sin (y)+\cos (y) \sin (x)^{2} y^{\prime}=0
$$

6.24.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{2 \cos (x) \tan (y)}{\sin (x)}
\end{aligned}
$$

Where $f(x)=-\frac{2 \cos (x)}{\sin (x)}$ and $g(y)=\tan (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (y)} d y & =-\frac{2 \cos (x)}{\sin (x)} d x \\
\int \frac{1}{\tan (y)} d y & =\int-\frac{2 \cos (x)}{\sin (x)} d x \\
\ln (\sin (y)) & =-2 \ln (\sin (x))+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (y)=\mathrm{e}^{-2 \ln (\sin (x))+c_{1}}
$$

Which simplifies to

$$
\sin (y)=\frac{c_{2}}{\sin (x)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sin (x)^{2}}\right) \tag{1}
\end{equation*}
$$

Figure 331: Slope field plot

Verification of solutions

$$
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sin (x)^{2}}\right)
$$

Verified OK.

6.24.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 \cos (x) \sin (y)}{\sin (x) \cos (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 307: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{\sin (x)}{2 \cos (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{\sin (x)}{2 \cos (x)}} d x
\end{aligned}
$$

Which results in

$$
S=-2 \ln (\sin (x))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 \cos (x) \sin (y)}{\sin (x) \cos (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-2 \cot (x) \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cot (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cot (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (\sin (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-2 \ln (\sin (x))=\ln (\sin (y))+c_{1}
$$

Which simplifies to

$$
-2 \ln (\sin (x))=\ln (\sin (y))+c_{1}
$$

Which gives

$$
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\sin (x)^{2}}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 \cos (x) \sin (y)}{\sin (x) \cos (y)}$		$\frac{d S}{d R}=\cot (R)$
$\rightarrow \rightarrow 0$		
		$\rightarrow-1+5(R)$
	$R=y$	
$\rightarrow-4 \times \rightarrow+{ }^{\text {a }}$	$S=-2 \ln (\sin (x))$	
	$S=-2 \ln (\sin (x))$	$\rightarrow x^{+}$
$\xrightarrow{1}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\sin (x)^{2}}\right) \tag{1}
\end{equation*}
$$

Figure 332: Slope field plot

Verification of solutions

$$
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\sin (x)^{2}}\right)
$$

Verified OK.

6.24.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\cos (y)}{2 \sin (y)}\right) \mathrm{d} y & =\left(\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x \\
\left(-\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x+\left(-\frac{\cos (y)}{2 \sin (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& N(x, y)=-\frac{\cos (y)}{2 \sin (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\cos (x)}{\sin (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\cos (y)}{2 \sin (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\cos (x)}{\sin (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\cos (y)}{2 \sin (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\cos (y)}{2 \sin (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{\cos (y)}{2 \sin (y)} \\
& =-\frac{\cot (y)}{2}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{\cot (y)}{2}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (\sin (y))}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (x))-\frac{\ln (\sin (y))}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (x))-\frac{\ln (\sin (y))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (\sin (x))-\frac{\ln (\sin (y))}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 333: Slope field plot

Verification of solutions

$$
-\ln (\sin (x))-\frac{\ln (\sin (y))}{2}=c_{1}
$$

Verified OK.

6.24.4 Maple step by step solution

Let's solve

$$
2 \cos (x) \sin (x) \sin (y)+\cos (y) \sin (x)^{2} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int\left(2 \cos (x) \sin (x) \sin (y)+\cos (y) \sin (x)^{2} y^{\prime}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
\sin (x)^{2} \sin (y)=c_{1}
$$

- \quad Solve for y

$$
y=\arcsin \left(\frac{c_{1}}{\sin (x)^{2}}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 18
dsolve $(2 * \cos (x) * \sin (x) * \sin (y(x))+\cos (y(x)) * \sin (x) \sim 2 * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=-\arcsin \left(\frac{2 c_{1}}{-1+\cos (2 x)}\right)
$$

\checkmark Solution by Mathematica
Time used: 5.176 (sec). Leaf size: 21
DSolve $\left[2 * \operatorname{Cos}[x] * \operatorname{Sin}[x] * \operatorname{Sin}[y[x]]+\operatorname{Cos}[y[x]] * \operatorname{Sin}[x] \sim 2 * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutio

$$
\begin{aligned}
& y(x) \rightarrow \arcsin \left(\frac{1}{2} c_{1} \csc ^{2}(x)\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

6.25 problem 25

6.25.1 Solving as exact ode . 1686
6.25.2 Maple step by step solution . 1690

Internal problem ID [592]
Internal file name [OUTPUT/592_Sunday_June_05_2022_01_45_26_AM_93723432/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational]

$$
\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}}+\left(-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}\right) y^{\prime}=0
$$

6.25.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{2 x}{y}+\frac{y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}} \\
& N(x, y)=-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}}\right) \\
& =-\frac{2 x}{y^{2}}-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}\right) \\
& =-\frac{2 x}{y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x}{y}-\frac{y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x^{2}}{y^{2}}+\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}=-\frac{\left((x-1) y^{2}+x^{3}\right) x}{y^{2}\left(x^{2}+y^{2}\right)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 334: Slope field plot
Verification of solutions

$$
\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)=c_{1}
$$

Verified OK.

6.25.2 Maple step by step solution

Let's solve

$$
\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}}+\left(-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-\frac{2 x}{y^{2}}-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{2 x}{y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}
$$

- Simplify

$$
-\frac{2 x}{y^{2}}-\frac{1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{2 x}{y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\frac{2 x}{y}-\frac{y}{x^{2}+y^{2}}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$-\frac{x^{2}}{y^{2}}+\frac{x}{x^{2}+y^{2}}=-\frac{x^{2}}{y^{2}}+\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{x}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{x^{2}}{y}-\arctan \left(\frac{x}{y}\right)=c_{1}
$$

- \quad Solve for y

$$
y=\frac{x}{\tan \left(\operatorname{RootOf}\left(_Z-x \tan \left(_Z\right)+c_{1}\right)\right)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve $\left(2 * x / y(x)-y(x) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)+\left(-x^{\wedge} 2 / y(x)^{\wedge} 2+x /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singso

$$
y(x)=\cot \left(\operatorname{RootOf}\left(-_Z+x \tan \left(_Z\right)+c_{1}\right)\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.255 (sec). Leaf size: 23
DSolve $\left[2 * x / y[x]-y[x] /\left(x^{\wedge} 2+y[x] \sim 2\right)+\left(-x^{\wedge} 2 / y[x]^{\wedge} 2+x /\left(x^{\wedge} 2+y[x]^{\wedge} 2\right)\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSing

Solve $\left[\arctan \left(\frac{x}{y(x)}\right)-\frac{x^{2}}{y(x)}=c_{1}, y(x)\right]$

6.26 problem 26

6.26.1 Solving as homogeneousTypeD ode 1693
6.26.2 Solving as homogeneousTypeD2 ode 1695
6.26.3 Solving as first order ode lie symmetry lookup ode 1697

Internal problem ID [593]
Internal file name [OUTPUT/593_Sunday_June_05_2022_01_45_28_AM_41374823/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime} x-\mathrm{e}^{\frac{y}{x}} x-y=0
$$

6.26.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\mathrm{e}^{\frac{y}{x}}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\mathrm{e}^{\frac{y}{x}}
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{\mathrm{e}^{u(x)}}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 335: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{1}=0
$$

Verified OK.

6.26.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) x-\mathrm{e}^{u(x)} x-u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int \frac{1}{x} d x \\
-\mathrm{e}^{-u} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \\
& -\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 336: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}-\ln (x)-c_{2}=0
$$

Verified OK.

6.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\mathrm{e}^{\frac{y}{x}} x+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 311: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=y x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y x}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\mathrm{e}^{\frac{y}{x}} x+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-\frac{y}{x}}}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{\mathrm{e}^{-R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\frac{y}{x}}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\frac{y}{x}}
$$

Which gives

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\mathrm{e}^{\frac{y}{x} x+y}}{x}$		$\frac{d S}{d R}=-S(R) \mathrm{e}^{-R}$
$\triangle \rightarrow x^{*}$		
\rightarrow -	$R=\underline{y}$	
	$S=-\frac{1}{x}$	
	x	
		+ + + + + ¢ft

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 337: Slope field plot
Verification of solutions

$$
y=-\ln \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\exp (\mathrm{y}(\mathrm{x}) / \mathrm{x}) * \mathrm{x}+\mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\ln \left(-\frac{1}{\ln (x)+c_{1}}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 18
DSolve[x*y'[x] == Exp $[y[x] / x] * x+y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \log \left(-\log (x)-c_{1}\right)
$$

6.27 problem 27

6.27.1 Solving as exact ode

1704
Internal problem ID [594]
Internal file name [OUTPUT/594_Sunday_June_05_2022_01_45_29_AM_32116103/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]

$$
y^{\prime}-\frac{x}{x^{2}+y+y^{3}}=0
$$

6.27.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{3}+x^{2}+y\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(y^{3}+x^{2}+y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y^{3}+x^{2}+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{3}+x^{2}+y\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y^{3}+x^{2}+y}((0)-(2 x)) \\
& =-\frac{2 x}{y^{3}+x^{2}+y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{x}((2 x)-(0)) \\
& =-2
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-2 \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 y} \\
& =\mathrm{e}^{-2 y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 y}(-x) \\
& =-x \mathrm{e}^{-2 y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 y}\left(y^{3}+x^{2}+y\right) \\
& =\left(y^{3}+x^{2}+y\right) \mathrm{e}^{-2 y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-x \mathrm{e}^{-2 y}\right)+\left(\left(y^{3}+x^{2}+y\right) \mathrm{e}^{-2 y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{e}^{-2 y} \mathrm{~d} x \\
\phi & =-\frac{x^{2} \mathrm{e}^{-2 y}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2} \mathrm{e}^{-2 y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(y^{3}+x^{2}+y\right) \mathrm{e}^{-2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(y^{3}+x^{2}+y\right) \mathrm{e}^{-2 y}=x^{2} \mathrm{e}^{-2 y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\mathrm{e}^{-2 y} y^{3}+\mathrm{e}^{-2 y} y \\
& =\mathrm{e}^{-2 y}\left(y^{3}+y\right)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{-2 y}\left(y^{3}+y\right)\right) \mathrm{d} y \\
f(y) & =-\frac{\mathrm{e}^{-2 y}\left(4 y^{3}+6 y^{2}+10 y+5\right)}{8}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2} \mathrm{e}^{-2 y}}{2}-\frac{\mathrm{e}^{-2 y}\left(4 y^{3}+6 y^{2}+10 y+5\right)}{8}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2} \mathrm{e}^{-2 y}}{2}-\frac{\mathrm{e}^{-2 y}\left(4 y^{3}+6 y^{2}+10 y+5\right)}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2} \mathrm{e}^{-2 y}}{2}-\frac{\mathrm{e}^{-2 y}\left(4 y^{3}+6 y^{2}+10 y+5\right)}{8}=c_{1} \tag{1}
\end{equation*}
$$

Figure 338: Slope field plot

Verification of solutions

$$
-\frac{x^{2} \mathrm{e}^{-2 y}}{2}-\frac{\mathrm{e}^{-2 y}\left(4 y^{3}+6 y^{2}+10 y+5\right)}{8}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve(diff(y(x),x) = x/(x^2+y(x)+y(x)^3),y(x), singsol=all)
```

$$
\frac{\left(-4 y(x)^{3}-4 x^{2}-6 y(x)^{2}-10 y(x)-5\right) \mathrm{e}^{-2 y(x)}}{4}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.173 (sec). Leaf size: 48
DSolve[y'[x] == $x /\left(x^{\wedge} 2+y[x]+y[x] \wedge 3\right), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[-\frac{1}{2} x^{2} e^{-2 y(x)}-\frac{1}{8} e^{-2 y(x)}\left(4 y(x)^{3}+6 y(x)^{2}+10 y(x)+5\right)=c_{1}, y(x)\right]
$$

6.28 problem 28

6.28.1 Solving as linear ode . 1710
6.28.2 Solving as homogeneousTypeD2 ode 1712
6.28.3 Solving as first order ode lie symmetry lookup ode 1714
6.28.4 Solving as exact ode . 1718
6.28.5 Maple step by step solution . 1723

Internal problem ID [595]
Internal file name [OUTPUT/595_Sunday_June_05_2022_01_45_31_AM_56902748/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
2 y+t y^{\prime}=-3 t
$$

6.28.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=-3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=-3
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{t} d t} \\
& =t^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(-3) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)(-3) \\
\mathrm{d}\left(t^{2} y\right) & =\left(-3 t^{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int-3 t^{2} \mathrm{~d} t \\
& t^{2} y=-t^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=-t+\frac{c_{1}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-t+\frac{c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 339: Slope field plot
Verification of solutions

$$
y=-t+\frac{c_{1}}{t^{2}}
$$

Verified OK.

6.28.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
2 u(t) t+t\left(u^{\prime}(t) t+u(t)\right)=-3 t
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{-3 u-3}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(u)=-3 u-3$. Integrating both sides gives

$$
\frac{1}{-3 u-3} d u=\frac{1}{t} d t
$$

$$
\begin{aligned}
\int \frac{1}{-3 u-3} d u & =\int \frac{1}{t} d t \\
-\frac{\ln (u+1)}{3} & =\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(u+1)^{\frac{1}{3}}}=\mathrm{e}^{\ln (t)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{(u+1)^{\frac{1}{3}}}=c_{3} t
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u t \\
& =-\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} t^{3}-1\right) \mathrm{e}^{-3 c_{2}}}{t^{2} c_{3}^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} t^{3}-1\right) \mathrm{e}^{-3 c_{2}}}{t^{2} c_{3}^{3}} \tag{1}
\end{equation*}
$$

Figure 340: Slope field plot
Verification of solutions

$$
y=-\frac{\left(c_{3}^{3} \mathrm{e}^{3 c_{2}} t^{3}-1\right) \mathrm{e}^{-3 c_{2}}}{t^{2} c_{3}^{3}}
$$

Verified OK.

6.28.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{3 t+2 y}{t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 313: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=t^{2} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{3 t+2 y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t y \\
S_{y} & =t^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-3 t^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-3 R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y t^{2}=-t^{3}+c_{1}
$$

Which simplifies to

$$
y t^{2}=-t^{3}+c_{1}
$$

Which gives

$$
y=\frac{-t^{3}+c_{1}}{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{3 t+2 y}{t}$		$\frac{d S}{d R}=-3 R^{2}$
		, $S^{*} R R_{y} \rightarrow+1$
	$S=t^{2} y$	$L^{4}{ }^{\text {a }}$
		$\rightarrow 1$
		$!$
		Wd. ${ }^{\text {dod }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-t^{3}+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 341: Slope field plot
Verification of solutions

$$
y=\frac{-t^{3}+c_{1}}{t^{2}}
$$

Verified OK.

6.28.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(-3 t-2 y) \mathrm{d} t \\
(3 t+2 y) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =3 t+2 y \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 t+2 y) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =\frac{1}{t}((2)-(1)) \\
& =\frac{1}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{1}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =t(3 t+2 y) \\
& =t(3 t+2 y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =t(t) \\
& =t^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
(t(3 t+2 y))+\left(t^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int t(3 t+2 y) \mathrm{d} t \\
\phi & =t^{2}(t+y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
t^{2}=t^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=t^{2}(t+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=t^{2}(t+y)
$$

The solution becomes

$$
y=\frac{-t^{3}+c_{1}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-t^{3}+c_{1}}{t^{2}} \tag{1}
\end{equation*}
$$

Figure 342: Slope field plot

Verification of solutions

$$
y=\frac{-t^{3}+c_{1}}{t^{2}}
$$

Verified OK.

6.28.5 Maple step by step solution

Let's solve
$2 y+t y^{\prime}=-3 t$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-3-\frac{2 y}{t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{t}=-3$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=-3 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t^{2}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-3 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-3 \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int-3 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t^{2}$
$y=\frac{\int-3 t^{2} d t+c_{1}}{t^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{-t^{3}+c_{1}}{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(3*t+2*y(t) = -t*diff(y(t),t),y(t), singsol=all)
```

$$
y(t)=-t+\frac{c_{1}}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 15
DSolve[3*t+2*y[t] == -t*y'[t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow-t+\frac{c_{1}}{t^{2}}
$$

6.29 problem 29

6.29.1 Solving as homogeneousTypeD2 ode 1725
6.29.2 Solving as first order ode lie symmetry calculated ode 1727
6.29.3 Solving as exact ode . 1732

Internal problem ID [596]
Internal file name [OUTPUT/596_Sunday_June_05_2022_01_45_32_AM_62306633/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, class A`]]

$$
y^{\prime}-\frac{x+y}{x-y}=0
$$

6.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x+u(x) x}{x-u(x) x}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 343: Slope field plot
Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

6.29.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x+y}{-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+y)\left(b_{3}-a_{2}\right)}{-x+y}-\frac{(x+y)^{2} a_{3}}{(-x+y)^{2}} \\
& -\left(-\frac{1}{-x+y}-\frac{x+y}{(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{-x+y}+\frac{x+y}{(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}+2 x b_{1}-2 y a}{(x-y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-a_{2}-a_{3}-b_{2}+b_{3} & =0 \\
a_{2}+a_{3}+b_{2}-b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =-b_{2} \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x+y}{-x+y}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+y}{-x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y}{x^{2}+y^{2}} \\
S_{y} & =\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 344: Slope field plot
Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
$$

Verified OK.

6.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x+y) \mathrm{d} y & =(-x-y) \mathrm{d} x \\
(x+y) \mathrm{d} x+(-x+y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=x+y \\
& N(x, y)=-x+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x+y) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=x+y$ and $N=-x+y$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{x+y}{x^{2}+y^{2}} \\
N & =\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{-x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{x+y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{x+y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{-x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{x+y}{x^{2}+y^{2}} \\
& N(x, y)=\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x+y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 y x-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-x+y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 y x-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x+y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{y}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{-x+y}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x+y}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x+y}{x^{2}+y^{2}}=\frac{-x+y}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 345: Slope field plot

Verification of solutions

$$
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve(diff(y(x),x) = (x+y(x))/(x-y(x)),y(x), singsol=all)
```

$$
y(x)=\tan \left(\text { RootOf }\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
$$

Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 36
DSolve[y'[x] == $(x+y[x]) /(x-y[x]), y[x], x$, IncludeSingularSolutions $->$ True]

$$
\text { Solve }\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]
$$

6.30 problem 30

6.30.1 Solving as homogeneousTypeD2 ode
6.30.2 Solving as first order ode lie symmetry calculated ode 1741
6.30.3 Solving as exact ode . 1747

Internal problem ID [597]
Internal file name [OUTPUT/597_Sunday_June_05_2022_01_45_33_AM_62087244/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,
    class B`]]
```

$$
2 y x+3 y^{2}-\left(x^{2}+2 y x\right) y^{\prime}=0
$$

6.30.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+3 u(x)^{2} x^{2}-\left(x^{2}+2 u(x) x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u+1)}{(2 u+1) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u(u+1)}{2 u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+1)}{2 u+1}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u(u+1)}{2 u+1}} d u & =\int \frac{1}{x} d x \\
\ln (u(u+1)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u(u+1)=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
u(u+1)=c_{3} x
$$

Which simplifies to

$$
u(x)(u(x)+1)=c_{3} \mathrm{e}^{c_{2}} x
$$

The solution is

$$
u(x)(u(x)+1)=c_{3} \mathrm{e}^{c_{2}} x
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{y\left(1+\frac{y}{x}\right)}{x} & =c_{3} \mathrm{e}^{c_{2}} x \\
\frac{y(x+y)}{x^{2}} & =c_{3} \mathrm{e}^{c_{2}} x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y(x+y)}{x^{2}}=c_{3} \mathrm{e}^{c_{2}} x \tag{1}
\end{equation*}
$$

Figure 346: Slope field plot
Verification of solutions

$$
\frac{y(x+y)}{x^{2}}=c_{3} \mathrm{e}^{c_{2}} x
$$

Verified OK.

6.30.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(2 x+3 y)}{x(x+2 y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y(2 x+3 y)\left(b_{3}-a_{2}\right)}{x(x+2 y)}-\frac{y^{2}(2 x+3 y)^{2} a_{3}}{x^{2}(x+2 y)^{2}} \\
& -\left(\frac{2 y}{x(x+2 y)}-\frac{y(2 x+3 y)}{x^{2}(x+2 y)}-\frac{y(2 x+3 y)}{x(x+2 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 x+3 y}{x(x+2 y)}+\frac{3 y}{x(x+2 y)}-\frac{2 y(2 x+3 y)}{x(x+2 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} b_{2}+2 x^{3} y b_{2}+x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}-x^{2} y^{2} b_{3}+6 x y^{3} a_{3}+3 y^{4} a_{3}+2 x^{3} b_{1}-2 x^{2} y a_{1}+6 x^{2} y b_{1}-}{x^{2}(x+2 y)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} b_{2}-2 x^{3} y b_{2}-x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3}-2 x^{2} y^{2} b_{2}+x^{2} y^{2} b_{3}-6 x y^{3} a_{3} \tag{6E}\\
& \quad-3 y^{4} a_{3}-2 x^{3} b_{1}+2 x^{2} y a_{1}-6 x^{2} y b_{1}+6 x y^{2} a_{1}-6 x y^{2} b_{1}+6 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{1}^{2} v_{2}^{2}-6 a_{3} v_{1} v_{2}^{3}-3 a_{3} v_{2}^{4}-b_{2} v_{1}^{4}-2 b_{2} v_{1}^{3} v_{2}-2 b_{2} v_{1}^{2} v_{2}^{2} \tag{7E}\\
& +b_{3} v_{1}^{2} v_{2}^{2}+2 a_{1} v_{1}^{2} v_{2}+6 a_{1} v_{1} v_{2}^{2}+6 a_{1} v_{2}^{3}-2 b_{1} v_{1}^{3}-6 b_{1} v_{1}^{2} v_{2}-6 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{4}-2 b_{2} v_{1}^{3} v_{2}-2 b_{1} v_{1}^{3}+\left(-a_{2}-2 a_{3}-2 b_{2}+b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+\left(2 a_{1}-6 b_{1}\right) v_{1}^{2} v_{2}-6 a_{3} v_{1} v_{2}^{3}+\left(6 a_{1}-6 b_{1}\right) v_{1} v_{2}^{2}-3 a_{3} v_{2}^{4}+6 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
-6 a_{3} & =0 \\
-3 a_{3} & =0 \\
-2 b_{1} & =0 \\
-2 b_{2} & =0 \\
-b_{2} & =0 \\
2 a_{1}-6 b_{1} & =0 \\
6 a_{1}-6 b_{1} & =0 \\
-a_{2}-2 a_{3}-2 b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y(2 x+3 y)}{x(x+2 y)}\right)(x) \\
& =\frac{-y x-y^{2}}{x+2 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-y x-y^{2}}{x+2 y}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (y(x+y))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(2 x+3 y)}{x(x+2 y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{x+y} \\
S_{y} & =\frac{-2 y-x}{y(x+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{3}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-3 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (y)-\ln (x+y)=-3 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (y)-\ln (x+y)=-3 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(2 x+3 y)}{x(x+2 y)}$		$\frac{d S}{d R}=-\frac{3}{R}$
$\xrightarrow{+\rightarrow \rightarrow \Delta x+x)}$		
	$R=x$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow-4 \rightarrow \rightarrow-2 \rightarrow+1}$		$\bigcirc x^{2}$
	$S=-\ln (y)-\ln (x+y)$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (y)-\ln (x+y)=-3 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 347: Slope field plot

Verification of solutions

$$
-\ln (y)-\ln (x+y)=-3 \ln (x)+c_{1}
$$

Verified OK.

6.30.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}-2 y x\right) \mathrm{d} y & =\left(-2 y x-3 y^{2}\right) \mathrm{d} x \\
\left(2 y x+3 y^{2}\right) \mathrm{d} x+\left(-x^{2}-2 y x\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y x+3 y^{2} \\
N(x, y) & =-x^{2}-2 y x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y x+3 y^{2}\right) \\
& =2 x+6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}-2 y x\right) \\
& =-2 x-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x(x+2 y)}((2 x+6 y)-(-2 x-2 y)) \\
& =-\frac{4}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-4 \ln (x)} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{4}}\left(2 y x+3 y^{2}\right) \\
& =\frac{y(2 x+3 y)}{x^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{4}}\left(-x^{2}-2 y x\right) \\
& =\frac{-2 y-x}{x^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y(2 x+3 y)}{x^{4}}\right)+\left(\frac{-2 y-x}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y(2 x+3 y)}{x^{4}} \mathrm{~d} x \\
\phi & =-\frac{y(x+y)}{x^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x+y}{x^{3}}-\frac{y}{x^{3}}+f^{\prime}(y) \tag{4}\\
& =\frac{-2 y-x}{x^{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-2 y-x}{x^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-2 y-x}{x^{3}}=\frac{-2 y-x}{x^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{y(x+y)}{x^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{y(x+y)}{x^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y(x+y)}{x^{3}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 348: Slope field plot

Verification of solutions

$$
-\frac{y(x+y)}{x^{3}}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 33
dsolve $\left(2 * x * y(x)+3 * y(x)^{\wedge} 2-\left(x^{\wedge} 2+2 * x * y(x)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{\left(1+\sqrt{4 c_{1} x+1}\right) x}{2} \\
& y(x)=\frac{\left(-1+\sqrt{4 c_{1} x+1}\right) x}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.408 (sec). Leaf size: 61
DSolve $\left[2 * x * y[x]+3 * y[x] \wedge 2-\left(x^{\wedge} 2+2 * x * y[x]\right) * y\right.$ ' $\left.x\right]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2} x\left(1+\sqrt{1+4 e^{c_{1}} x}\right) \\
& y(x) \rightarrow \frac{1}{2} x\left(-1+\sqrt{1+4 e^{c_{1}} x}\right) \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-x
\end{aligned}
$$

6.31 problem 31

6.31.1 Solving as first order ode lie symmetry calculated ode 1753
6.31.2 Solving as exact ode . 1759

Internal problem ID [598]
Internal file name [OUTPUT/598_Sunday_June_05_2022_01_45_35_AM_42029649/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Miscellaneous problems, end of chapter 2. Page 133
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{\prime}-\frac{-3 x^{2} y-y^{2}}{2 x^{3}+3 y x}=0
$$

With initial conditions

$$
[y(1)=-2]
$$

6.31.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(3 x^{2}+y\right)\left(b_{3}-a_{2}\right)}{x\left(2 x^{2}+3 y\right)}-\frac{y^{2}\left(3 x^{2}+y\right)^{2} a_{3}}{x^{2}\left(2 x^{2}+3 y\right)^{2}} \\
& -\left(-\frac{6 y}{2 x^{2}+3 y}+\frac{y\left(3 x^{2}+y\right)}{x^{2}\left(2 x^{2}+3 y\right)}+\frac{4 y\left(3 x^{2}+y\right)}{\left(2 x^{2}+3 y\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{3 x^{2}+y}{x\left(2 x^{2}+3 y\right)}-\frac{y}{x\left(2 x^{2}+3 y\right)}+\frac{3 y\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{10 x^{6} b_{2}-15 x^{4} y^{2} a_{3}+6 x^{5} b_{1}-6 x^{4} y a_{1}+16 x^{4} y b_{2}+14 x^{3} y^{2} a_{2}-7 x^{3} y^{2} b_{3}-3 x^{2} y^{3} a_{3}+4 x^{3} y b_{1}+3 x^{2} y^{2} a_{1}+1}{\left(2 x^{2}+3 y\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 10 x^{6} b_{2}-15 x^{4} y^{2} a_{3}+6 x^{5} b_{1}-6 x^{4} y a_{1}+16 x^{4} y b_{2}+14 x^{3} y^{2} a_{2}-7 x^{3} y^{2} b_{3} \tag{6E}\\
& \quad-3 x^{2} y^{3} a_{3}+4 x^{3} y b_{1}+3 x^{2} y^{2} a_{1}+12 x^{2} y^{2} b_{2}-4 y^{4} a_{3}+3 x y^{2} b_{1}-3 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -15 a_{3} v_{1}^{4} v_{2}^{2}+10 b_{2} v_{1}^{6}-6 a_{1} v_{1}^{4} v_{2}+14 a_{2} v_{1}^{3} v_{2}^{2}-3 a_{3} v_{1}^{2} v_{2}^{3}+6 b_{1} v_{1}^{5}+16 b_{2} v_{1}^{4} v_{2} \tag{7E}\\
& \quad-7 b_{3} v_{1}^{3} v_{2}^{2}+3 a_{1} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{2}^{4}+4 b_{1} v_{1}^{3} v_{2}+12 b_{2} v_{1}^{2} v_{2}^{2}-3 a_{1} v_{2}^{3}+3 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 10 b_{2} v_{1}^{6}+6 b_{1} v_{1}^{5}-15 a_{3} v_{1}^{4} v_{2}^{2}+\left(-6 a_{1}+16 b_{2}\right) v_{1}^{4} v_{2}+\left(14 a_{2}-7 b_{3}\right) v_{1}^{3} v_{2}^{2} \tag{8E}\\
& \quad+4 b_{1} v_{1}^{3} v_{2}-3 a_{3} v_{1}^{2} v_{2}^{3}+\left(3 a_{1}+12 b_{2}\right) v_{1}^{2} v_{2}^{2}+3 b_{1} v_{1} v_{2}^{2}-4 a_{3} v_{2}^{4}-3 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-3 a_{1}=0 \\
-15 a_{3}=0 \\
-4 a_{3}=0 \\
-3 a_{3}=0 \\
3 b_{1}=0 \\
4 b_{1}=0 \\
6 b_{1}=0 \\
10 b_{2}=0 \\
-6 a_{1}+16 b_{2}=0 \\
3 a_{1}+12 b_{2}=0 \\
14 a_{2}-7 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=a_{2} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(-\frac{y\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)}\right)(x) \\
& =\frac{7 y x^{2}+7 y^{2}}{2 x^{2}+3 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{7 y x^{2}+7 y^{2}}{2 x^{2}+3 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{7 x^{2}+7 y} \\
S_{y} & =\frac{1}{7 x^{2}+7 y}+\frac{2}{7 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{7 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{7 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{7}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}=-\frac{\ln (x)}{7}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}=-\frac{\ln (x)}{7}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(3 x^{2}+y\right)}{x\left(2 x^{2}+3 y\right)}$		$\frac{d S}{d R}=-\frac{1}{7 R}$
		$\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$ (R)
	$R=x$	
	$\ln \left(x^{2}+y\right), \quad 2 \ln (y)$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2}+$
	$S=\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}$	$\rightarrow)^{+} \rightarrow \rightarrow \rightarrow R^{+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm}$ -
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
- 1.1		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-4+]{+}$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{3 i \pi}{7}+\frac{2 \ln (2)}{7}=c_{1} \\
& c_{1}=\frac{3 i \pi}{7}+\frac{2 \ln (2)}{7}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}=-\frac{\ln (x)}{7}+\frac{3 i \pi}{7}+\frac{2 \ln (2)}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}=-\frac{\ln (x)}{7}+\frac{3 i \pi}{7}+\frac{2 \ln (2)}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\ln \left(x^{2}+y\right)}{7}+\frac{2 \ln (y)}{7}=-\frac{\ln (x)}{7}+\frac{3 i \pi}{7}+\frac{2 \ln (2)}{7}
$$

Verified OK.

6.31.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x\left(2 x^{2}+3 y\right)\right) \mathrm{d} y & =\left(-y\left(3 x^{2}+y\right)\right) \mathrm{d} x \\
\left(y\left(3 x^{2}+y\right)\right) \mathrm{d} x+\left(x\left(2 x^{2}+3 y\right)\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y\left(3 x^{2}+y\right) \\
N(x, y) & =x\left(2 x^{2}+3 y\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y\left(3 x^{2}+y\right)\right) \\
& =3 x^{2}+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x\left(2 x^{2}+3 y\right)\right) \\
& =6 x^{2}+3 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x^{3}+3 y x}\left(\left(3 x^{2}+2 y\right)-\left(6 x^{2}+3 y\right)\right) \\
& =\frac{-3 x^{2}-y}{2 x^{3}+3 y x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{3 y x^{2}+y^{2}}\left(\left(6 x^{2}+3 y\right)-\left(3 x^{2}+2 y\right)\right) \\
& =\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (y)} \\
& =y
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =y\left(y\left(3 x^{2}+y\right)\right) \\
& =y^{2}\left(3 x^{2}+y\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =y\left(x\left(2 x^{2}+3 y\right)\right) \\
& =y x\left(2 x^{2}+3 y\right)
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2}\left(3 x^{2}+y\right)\right)+\left(y x\left(2 x^{2}+3 y\right)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2}\left(3 x^{2}+y\right) \mathrm{d} x \\
\phi & =y^{2} x\left(x^{2}+y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =2 y x\left(x^{2}+y\right)+x y^{2}+f^{\prime}(y) \tag{4}\\
& =y x\left(2 x^{2}+3 y\right)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y x\left(2 x^{2}+3 y\right)$. Therefore equation (4) becomes

$$
\begin{equation*}
y x\left(2 x^{2}+3 y\right)=y x\left(2 x^{2}+3 y\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{2} x\left(x^{2}+y\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{2} x\left(x^{2}+y\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-4=c_{1} \\
c_{1}=-4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y^{2} x\left(x^{2}+y\right)=-4
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y^{2} x\left(x^{2}+y\right)=-4 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y^{2} x\left(x^{2}+y\right)=-4
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 1.266 (sec). Leaf size: 111

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(-3 * \mathrm{x}^{\wedge} 2 * \mathrm{y}(\mathrm{x})-\mathrm{y}(\mathrm{x})^{\wedge} 2\right) /\left(2 * \mathrm{x}^{\wedge} 3+3 * \mathrm{x} * \mathrm{y}(\mathrm{x})\right), \mathrm{y}(1)=-2\right], \mathrm{y}(\mathrm{x}),\right. \text { singsol=all) } \\
& y(x) \\
& =\frac{(i \sqrt{3}-1)\left(-\left(x^{7}-6 \sqrt{3} \sqrt{x^{7}+27}+54\right) x^{2}\right)^{\frac{2}{3}}-x^{3}\left(i \sqrt{3} x^{3}+x^{3}+2\left(-\left(x^{7}-6 \sqrt{3} \sqrt{x^{7}+27}+54\right) x^{2}\right)^{\frac{1}{3}}\right.}{6\left(-\left(x^{7}-6 \sqrt{3} \sqrt{x^{7}+27}+54\right) x^{2}\right)^{\frac{1}{3}} x}
\end{aligned}
$$

 Solution by Mathematica
 Time used: 40.923 (sec). Leaf size: 136
DSolve[\{y' $\left.[x]==\left(-3 * x^{\wedge} 2 * y[x]-y[x] \wedge 2\right) /\left(2 * x^{\wedge} 3+3 * x * y[x]\right), y[1]==-2\right\}, y[x], x$, IncludeSingularSoluti
$y(x)$

$$
\rightarrow \frac{i\left((\sqrt{3}+i) x^{3}-(\sqrt{3}-i) x^{3}+(\sqrt{3}+i) \sqrt[3]{-x^{9}-54 x^{2}+6 \sqrt{3} \sqrt{x^{4}\left(x^{7}+27\right)}}-\frac{(\sqrt[3]{3}-i) x^{6}}{\sqrt[3]{-x^{9}-54 x^{2}+6 \sqrt{3}}}\right.}{6 x}
$$

7 Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
7.1 problem 1 1765
7.2 problem 2 1773
7.3 problem 3 1781
7.4 problem 4 1789
7.5 problem 5 1797
7.6 problem 6 1812
7.7 problem 7 1823
7.8 problem 8 1831
7.9 problem 9 1839
7.10 problem 10 1849
7.11 problem 11 1859
7.12 problem 12 1869
7.13 problem 13 1885
7.14 problem 14 1896
7.15 problem 15 1907
7.16 problem 16 1917
7.17 problem 19 1931
7.18 problem 20 1944
7.19 problem 21 1954
7.20 problem 22 1963
7.21 problem 23 1976
7.22 problem 24 1983
7.23 problem 25 1990
7.24 problem 26 2000

7.1 problem 1

7.1.1 Solving as second order linear constant coeff ode 1765
7.1.2 Solving using Kovacic algorithm 1767
7.1.3 Maple step by step solution . 1771

Internal problem ID [599]
Internal file name [OUTPUT/599_Sunday_June_05_2022_01_45_39_AM_9710673/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

7.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-3)} \\
& =-1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 \\
& \lambda_{2}=-1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
$$

Figure 349: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 x} c_{2}
$$

Verified OK.

7.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 316: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4} \tag{1}
\end{equation*}
$$

Figure 350: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{x}}{4}
$$

Verified OK.

7.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+2 r-3=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-1)=0
$$

- Roots of the characteristic polynomial
$r=(-3,1)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-3 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)-3 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{1} \mathrm{e}^{4 x}+c_{2}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20
DSolve[y''[x]+2*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-3 x}+c_{2} e^{x}
$$

7.2 problem 2

7.2.1 Solving as second order linear constant coeff ode 1773
7.2.2 Solving using Kovacic algorithm 1775
7.2.3 Maple step by step solution . 1779

Internal problem ID [600]
Internal file name [OUTPUT/600_Sunday_June_05_2022_01_45_39_AM_98928217/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

7.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 351: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

7.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 318: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 352: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

7.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[y'' $[x]+3 * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{x}+c_{1}\right)
$$

7.3 problem 3

7.3.1 Solving as second order linear constant coeff ode

7.3.2 Solving using Kovacic algorithm 1783
7.3.3 Maple step by step solution . 1787

Internal problem ID [601]
Internal file name [OUTPUT/601_Sunday_June_05_2022_01_45_40_AM_67843365/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 3 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
6 y^{\prime \prime}-y^{\prime}-y=0
$$

7.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=6, B=-1, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
6 \lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
6 \lambda^{2}-\lambda-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=6, B=-1, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(6)} \pm \frac{1}{(2)(6)} \sqrt{-1^{2}-(4)(6)(-1)} \\
& =\frac{1}{12} \pm \frac{5}{12}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{12}+\frac{5}{12} \\
& \lambda_{2}=\frac{1}{12}-\frac{5}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{3}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{3}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 353: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

7.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
6 y^{\prime \prime}-y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=6 \\
& B=-1 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{144} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=144
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{144} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 320: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{144}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{12}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{6} d x} \\
& =z_{1} e^{\frac{x}{12}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{12}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{6} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{x}{6}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{6 \mathrm{e}^{\frac{5 x}{6}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{3}}\left(\frac{6 \mathrm{e}^{\frac{5 x}{6}}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 354: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+\frac{6 c_{2} \mathrm{e}^{\frac{x}{2}}}{5}
$$

Verified OK.

7.3.3 Maple step by step solution

Let's solve
$6 y^{\prime \prime}-y^{\prime}-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{y^{\prime}}{6}+\frac{y}{6}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y^{\prime}}{6}-\frac{y}{6}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{1}{6} r-\frac{1}{6}=0
$$

- Factor the characteristic polynomial
$\frac{(3 r+1)(2 r-1)}{6}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{3}, \frac{1}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{3}}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(6*diff(y(x),x$2) - diff(y(x),x)-y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{\frac{5 x}{6}}+c_{2}\right) \mathrm{e}^{-\frac{x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 26
DSolve[6*y' ' $[x]-y$ ' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x / 3}\left(c_{2} e^{5 x / 6}+c_{1}\right)
$$

7.4 problem 4

7.4.1 Solving as second order linear constant coeff ode 1789
7.4.2 Solving using Kovacic algorithm 1791
7.4.3 Maple step by step solution . 1795

Internal problem ID [602]
Internal file name [OUTPUT/602_Sunday_June_05_2022_01_45_41_AM_23423378/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

7.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=-3, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}-3 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=-3, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-3^{2}-(4)(2)(1)} \\
& =\frac{3}{4} \pm \frac{1}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{4}+\frac{1}{4} \\
& \lambda_{2}=\frac{3}{4}-\frac{1}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{\left(\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 355: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Verified OK.

7.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}-3 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=-3 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 322: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{2} d x} \\
& =z_{1} e^{\frac{3 x}{4}} \\
& =z_{1}\left(e^{\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(2 \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}}\left(2 \mathrm{e}^{\frac{x}{2}}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+2 c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 356: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+2 c_{2} \mathrm{e}^{x}
$$

Verified OK.

7.4.3 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{2}-\frac{y}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{2}+\frac{y}{2}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{3}{2} r+\frac{1}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)(r-1)}{2}=0
$$

- Roots of the characteristic polynomial
$r=\left(1, \frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(2*diff(y(x),x$2) -3*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 35

```
DSolve[y''[x]-3*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-\frac{1}{2}(\sqrt{5}-3) x}\left(c_{2} e^{\sqrt{5} x}+c_{1}\right)
$$

7.5 problem 5

7.5.1 Solving as second order linear constant coeff ode 1797
7.5.2 Solving as second order integrable as is ode 1799
7.5.3 Solving as second order ode missing y ode 1801
7.5.4 Solving as type second_order_integrable_as_is (not using ABC version) 1802
7.5.5 Solving using Kovacic algorithm 1804
7.5.6 Solving as exact linear second order ode ode 1807
7.5.7 Maple step by step solution 1810

Internal problem ID [603]
Internal file name [OUTPUT/603_Sunday_June_05_2022_01_45_42_AM_87737464/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

7.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(0)} \\
& =-\frac{5}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-5) x}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 357: Slope field plot
Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

Verified OK.

7.5.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+5 y^{\prime}\right) d x=0 \\
5 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 358: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.5.3 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+5 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{5 p} d p & =\int d x \\
-\frac{\ln (p)}{5} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p^{\frac{1}{5}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p^{\frac{1}{5}}}=c_{2} \mathrm{e}^{x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{\mathrm{e}^{-5 x}}{c_{2}^{5}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\mathrm{e}^{-5 x}}{c_{2}^{5}} \mathrm{~d} x \\
& =-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3} \tag{1}
\end{equation*}
$$

Figure 359: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+c_{3}
$$

Verified OK.

7.5.4 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+5 y^{\prime}\right) d x=0 \\
5 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 360: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.5.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 324: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2}}{5} \tag{1}
\end{equation*}
$$

Figure 361: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2}}{5}
$$

Verified OK.

7.5.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =5 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
5 y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
5 y+y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-5 y+c_{1}\right)}{5} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-5 y+c_{1}\right)^{\frac{1}{5}}}=c_{3} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5} \tag{1}
\end{equation*}
$$

Figure 362: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{3}^{5}}+\frac{c_{1}}{5}
$$

Verified OK.

7.5.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+5 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+5 r=0$
- Factor the characteristic polynomial

$$
r(r+5)=0
$$

- Roots of the characteristic polynomial
$r=(-5,0)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-5 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=1$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-5 x}+c_{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x$2) +5*diff(y(x),x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{-5 x}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 19
DSolve[y'' $[x]+5 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{2}-\frac{1}{5} c_{1} e^{-5 x}
$$

7.6 problem 6

7.6.1 Solving as second order linear constant coeff ode 1812
7.6.2 Solving as second order ode can be made integrable ode 1814
7.6.3 Solving using Kovacic algorithm 1817
7.6.4 Maple step by step solution . 1820

Internal problem ID [604]
Internal file name [OUTPUT/604_Sunday_June_05_2022_01_45_42_AM_9328719/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-9 y=0
$$

7.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=-9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(-9)} \\
& = \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{3}{2} \\
\lambda_{2} & =-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2} \\
\lambda_{2} & =-\frac{3}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{3}{2}\right) x}+c_{2} e^{\left(-\frac{3}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 363: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

7.6.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
4 y^{\prime} y^{\prime \prime}-9 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(4 y^{\prime} y^{\prime \prime}-9 y y^{\prime}\right) d x=0 \\
2 y^{\prime 2}-\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{\sqrt{9 y^{2}+2 c_{1}}}{2} \tag{1}\\
y^{\prime} & =-\frac{\sqrt{9 y^{2}+2 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{2 \ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{2 \ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{2}{3}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{\sqrt{9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{2 \ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{2 \ln \left(y \sqrt{9}+\sqrt{9 y^{2}+2 c_{1}}\right) \sqrt{9}}{9}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(3 y+\sqrt{9 y^{2}+2 c_{1}}\right)^{\frac{2}{3}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(c_{3}^{3} \mathrm{e}^{3 x}-2 c_{1}\right) \mathrm{e}^{-x}}{6 c_{3} \sqrt{c_{3} \mathrm{e}^{x}}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{3} \mathrm{e}^{3 x}-1\right) \mathrm{e}^{-x}}{6 c_{5} \sqrt{c_{5} \mathrm{e}^{x}}} \tag{2}
\end{align*}
$$

Figure 364: Slope field plot
Verification of solutions

$$
y=\frac{\left(c_{3}^{3} \mathrm{e}^{3 x}-2 c_{1}\right) \mathrm{e}^{-x}}{6 c_{3} \sqrt{c_{3} \mathrm{e}^{x}}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{3} \mathrm{e}^{3 x}-1\right) \mathrm{e}^{-x}}{6 c_{5} \sqrt{c_{5} \mathrm{e}^{x}}}
$$

Verified OK.

7.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=0 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 326: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\frac{3 x}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\frac{3 x}{2}} \int \frac{1}{\mathrm{e}^{-3 x}} d x \\
& =\mathrm{e}^{-\frac{3 x}{2}}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{3 x}{2}}}{3} \tag{1}
\end{equation*}
$$

Figure 365: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{3 x}{2}}}{3}
$$

Verified OK.

7.6.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-9 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{9 y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{9 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{9}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r-3)(2 r+3)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{3}{2}, \frac{3}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{3 x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2) -9*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[4*y''[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-3 x / 2}\left(c_{1} e^{3 x}+c_{2}\right)
$$

7.7 problem 7

7.7.1 Solving as second order linear constant coeff ode 1823
7.7.2 Solving using Kovacic algorithm 1825
7.7.3 Maple step by step solution . 1829

Internal problem ID [605]
Internal file name [OUTPUT/605_Sunday_June_05_2022_01_45_43_AM_24728919/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-9 y^{\prime}+9 y=0
$$

7.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-9, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-9 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-9 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-9, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{9}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-9^{2}-(4)(1)(9)} \\
& =\frac{9}{2} \pm \frac{3 \sqrt{5}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{9}{2}+\frac{3 \sqrt{5}}{2} \\
& \lambda_{2}=\frac{9}{2}-\frac{3 \sqrt{5}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{9}{2}+\frac{3 \sqrt{5}}{2} \\
& \lambda_{2}=\frac{9}{2}-\frac{3 \sqrt{5}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}+c_{2} e^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x} \tag{1}
\end{equation*}
$$

Figure 366: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x}
$$

Verified OK.

7.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-9 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-9 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{45}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=45 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{45 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 328: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{45}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x \sqrt{5}}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{9}{1} d x} \\
& =z_{1} e^{\frac{9 x}{2}} \\
& =z_{1}\left(e^{\frac{9 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-9}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{9 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{5} \mathrm{e}^{3 x \sqrt{5}}}{15}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}\left(\frac{\sqrt{5} \mathrm{e}^{3 x \sqrt{5}}}{15}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{3(3+\sqrt{5}) x}{2}}}{15} \tag{1}
\end{equation*}
$$

Figure 367: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{3(3+\sqrt{5}) x}{2}}}{15}
$$

Verified OK.

7.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-9 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-9 r+9=0$
- Use quadratic formula to solve for r
$r=\frac{9 \pm(\sqrt{45})}{2}$
- Roots of the characteristic polynomial
$r=\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}, \frac{9}{2}+\frac{3 \sqrt{5}}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(\frac{9}{2}-\frac{3 \sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{9}{2}+\frac{3 \sqrt{5}}{2}\right) x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve(diff($y(x), x \$ 2)-9 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{\frac{3(3+\sqrt{5}) x}{2}}+c_{2} \mathrm{e}^{-\frac{3(\sqrt{5}-3) x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 36
DSolve[y''[x]-9*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-\frac{3}{2}(\sqrt{5}-3) x}\left(c_{2} e^{3 \sqrt{5} x}+c_{1}\right)
$$

7.8 problem 8

7.8.1 Solving as second order linear constant coeff ode 1831
7.8.2 Solving using Kovacic algorithm 1833
7.8.3 Maple step by step solution . 1837

Internal problem ID [606]
Internal file name [OUTPUT/606_Sunday_June_05_2022_01_45_44_AM_43508000/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

7.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-2)} \\
& =1 \pm \sqrt{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+\sqrt{3} \\
& \lambda_{2}=1-\sqrt{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+\sqrt{3} \\
& \lambda_{2}=-\sqrt{3}+1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(-\sqrt{3}+1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{(-\sqrt{3}+1) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{(-\sqrt{3}+1) x} \tag{1}
\end{equation*}
$$

Figure 368: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{(-\sqrt{3}+1) x}
$$

Verified OK.

7.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=3 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 330: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=3$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\sqrt{3} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-(\sqrt{3}-1) x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-(\sqrt{3}-1) x}\right)+c_{2}\left(\mathrm{e}^{-(\sqrt{3}-1) x}\left(\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} x}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-(\sqrt{3}-1) x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{(1+\sqrt{3}) x}}{6} \tag{1}
\end{equation*}
$$

Figure 369: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-(\sqrt{3}-1) x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{(1+\sqrt{3}) x}}{6}
$$

Verified OK.

7.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-2 r-2=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{12})}{2}$
- Roots of the characteristic polynomial
$r=(1+\sqrt{3},-\sqrt{3}+1)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{(1+\sqrt{3}) x}$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{(-\sqrt{3}+1) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{(-\sqrt{3}+1) x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve(diff($y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{-(\sqrt{3}-1) x}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 34
DSolve[y''[x]-2*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x-\sqrt{3} x}\left(c_{2} e^{2 \sqrt{3} x}+c_{1}\right)
$$

7.9 problem 9

7.9.1 Existence and uniqueness analysis 1839
7.9.2 Solving as second order linear constant coeff ode 1840
7.9.3 Solving using Kovacic algorithm 1842
7.9.4 Maple step by step solution . 1847

Internal problem ID [607]
Internal file name [OUTPUT/607_Sunday_June_05_2022_01_45_44_AM_60102257/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

7.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.9.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-2)} \\
& =-\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{3} \\
& c_{2}=-\frac{1}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3}
$$

Verified OK.

7.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 332: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{x}}{3}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-2 c_{1}+\frac{c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{3} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-2 x}}{3}
$$

Verified OK.

7.9.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=-2 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-\frac{1}{3}, c_{2}=\frac{1}{3}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\left(\mathrm{e}^{3 x}-1\right) \mathrm{e}^{-2 x}}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(e^{3 x}-1\right) \mathrm{e}^{-2 x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(x),x$2) +diff(y(x),x)-2*y(x) = 0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\left(\mathrm{e}^{3 x}-1\right) \mathrm{e}^{-2 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21

```
DSolve[{y''[x]+y'[x]-2*y[x]==0,{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{3} e^{-2 x}\left(e^{3 x}-1\right)
$$

7.10 problem 10

7.10.1 Existence and uniqueness analysis 1849
7.10.2 Solving as second order linear constant coeff ode 1850
7.10.3 Solving using Kovacic algorithm 1852
7.10.4 Maple step by step solution . 1857

Internal problem ID [608]
Internal file name [OUTPUT/608_Sunday_June_05_2022_01_45_46_AM_30342769/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-1\right]
$$

7.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =3 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.10.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(3)} \\
& =-2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+1 \\
& \lambda_{2}=-2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{-3 x} c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}-3 \mathrm{e}^{-3 x} c_{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{2} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

Verified OK.

7.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 334: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-\frac{c_{2} \mathrm{e}^{-x}}{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=-3 c_{1}-\frac{c_{2}}{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

Verified OK.

7.10.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+3 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4 r+3=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,-1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-x}$

- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-c_{2} \mathrm{e}^{-x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$

$$
-1=-3 c_{1}-c_{2}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-\frac{1}{2}, c_{2}=\frac{5}{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{5 \mathrm{e}^{-x}}{2}-\frac{\mathrm{e}^{-3 x}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff(y(x),x$2) +4*diff(y(x),x)+3*y(x) = 0,y(0) = 2, D(y)(0) = -1],y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{-3 x}}{2}+\frac{5 \mathrm{e}^{-x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime \prime}[x]+4 * y\right.\right.$ ' $[x]+3 * y[x]==0,\{y[0]==2, y$ ' $\left.[0]==-1\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \frac{1}{2} e^{-3 x}\left(5 e^{2 x}-1\right)
$$

7.11 problem 11

7.11.1 Existence and uniqueness analysis 1859
7.11.2 Solving as second order linear constant coeff ode 1860
7.11.3 Solving using Kovacic algorithm 1862
7.11.4 Maple step by step solution . 1866

Internal problem ID [609]
Internal file name [OUTPUT/609_Sunday_June_05_2022_01_45_47_AM_47206086/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 11.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
6 y^{\prime \prime}-5 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=0\right]
$$

7.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{5}{6} \\
q(x) & =\frac{1}{6} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{5 y^{\prime}}{6}+\frac{y}{6}=0
$$

The domain of $p(x)=-\frac{5}{6}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{6}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=6, B=-5, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
6 \lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
6 \lambda^{2}-5 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=6, B=-5, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(6)} \pm \frac{1}{(2)(6)} \sqrt{-5^{2}-(4)(6)(1)} \\
& =\frac{5}{12} \pm \frac{1}{12}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{12}+\frac{1}{12} \\
& \lambda_{2}=\frac{5}{12}-\frac{1}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =\frac{1}{3}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(\frac{1}{3}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{3}}}{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+\frac{c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-8 \\
& c_{2}=12
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}
$$

Verified OK.

7.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
6 y^{\prime \prime}-5 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=6 \\
& B=-5 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{144} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=144
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{144} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 336: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{144}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{12}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{6} d x} \\
& =z_{1} e^{\frac{5 x}{12}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 x}{12}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{6} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{5 x}{6}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(6 \mathrm{e}^{\frac{x}{6}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{3}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{3}}\left(6 \mathrm{e}^{\frac{x}{6}}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}}+6 c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=c_{1}+6 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{3}}}{3}+3 c_{2} \mathrm{e}^{\frac{x}{2}}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{3}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=12 \\
& c_{2}=-\frac{4}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}
$$

Verified OK.

7.11.4 Maple step by step solution

Let's solve

$$
\left[6 y^{\prime \prime}-5 y^{\prime}+y=0, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{5 y^{\prime}}{6}-\frac{y}{6}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{5 y^{\prime}}{6}+\frac{y}{6}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-\frac{5}{6} r+\frac{1}{6}=0
$$

- Factor the characteristic polynomial

$$
\frac{(3 r-1)(2 r-1)}{6}=0
$$

- Roots of the characteristic polynomial
$r=\left(\frac{1}{2}, \frac{1}{3}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{x}{2}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{3}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{3}}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{3}}$
- Use initial condition $y(0)=4$
$4=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}+\frac{c_{2} e^{\frac{x}{3}}}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=\frac{c_{1}}{2}+\frac{c_{2}}{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-8, c_{2}=12\right\}$
- Substitute constant values into general solution and simplify
$y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}$
- Solution to the IVP
$y=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([6*diff(y(x),x$2) -5*diff(y(x),x)+y(x) = 0,y(0) = 4, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=-8 \mathrm{e}^{\frac{x}{2}}+12 \mathrm{e}^{\frac{x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 48
DSolve $[\{6 * y$ '' $[x]-5 * y$ ' $[x]+2 * y[x]==0,\{y[0]==4, y$ ' $[0]==0\}\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow \frac{4}{23} e^{5 x / 12}\left(23 \cos \left(\frac{\sqrt{23} x}{12}\right)-5 \sqrt{23} \sin \left(\frac{\sqrt{23} x}{12}\right)\right)
$$

7.12 problem 12

7.12.1 Existence and uniqueness analysis 1870
7.12.2 Solving as second order linear constant coeff ode 1870
7.12.3 Solving as second order integrable as is ode 1872
7.12.4 Solving as second order ode missing y ode 1873
$\begin{aligned} & \text { 7.12.5 } \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 1875\end{aligned}$
7.12.6 Solving using Kovacic algorithm 1877
7.12.7 Solving as exact linear second order ode ode 1881
7.12.8 Maple step by step solution . 1883

Internal problem ID [610]
Internal file name [OUTPUT/610_Sunday_June_05_2022_01_45_47_AM_93318101/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+3 y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=3\right]
$$

7.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =0 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}=0
$$

The domain of $p(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. Hence solution exists and is unique.

7.12.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(0)} \\
& =-\frac{3}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1}+\mathrm{e}^{-3 x} c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 x} c_{2}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-1-\mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1-\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-1-\mathrm{e}^{-3 x}
$$

Verified OK.

7.12.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+3 y^{\prime}\right) d x=0 \\
3 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-3 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-3 x}}{3 c_{3}^{3}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}^{3}-1}{3 c_{3}^{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-3 x}}{c_{3}^{3}}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=\frac{1}{c_{3}^{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

Verification of solutions N/A

7.12.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)+3 p(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{3 p} d p & =\int d x \\
-\frac{\ln (p)}{3} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{p^{\frac{1}{3}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{p^{\frac{1}{3}}}=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $p=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\frac{1}{c_{2}^{3}} \\
c_{2}=\frac{3^{\frac{2}{3}}}{3}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
p(x)=3 \mathrm{e}^{-3 x}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=3 \mathrm{e}^{-3 x}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int 3 \mathrm{e}^{-3 x} \mathrm{~d} x \\
& =-\mathrm{e}^{-3 x}+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{3}. Substituting $x=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=-1+c_{3}
$$

$$
c_{3}=-1
$$

Substituting c_{3} found above in the general solution gives

$$
y=-1-\mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1-\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-1-\mathrm{e}^{-3 x}
$$

Verified OK.

7.12.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+3 y^{\prime}=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime \prime}+3 y^{\prime}\right) d x=0 \\
3 y+y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-3 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-3 x}}{3 c_{3}^{3}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}^{3}-1}{3 c_{3}^{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-3 x}}{c_{3}^{3}}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=\frac{1}{c_{3}^{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

7.12.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 338: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=-3 c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-1-\mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1-\mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-1-\mathrm{e}^{-3 x}
$$

Verified OK.

7.12.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =3 \\
r(x) & =0 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
3 y+y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
3 y+y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-3 y+c_{1}} d y & =\int d x \\
-\frac{\ln \left(-3 y+c_{1}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\left(-3 y+c_{1}\right)^{\frac{1}{3}}}=c_{3} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-3 x}}{3 c_{3}^{3}}+\frac{c_{1}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-2$ and $x=0$ in the above gives

$$
\begin{equation*}
-2=\frac{c_{1} c_{3}^{3}-1}{3 c_{3}^{3}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{\mathrm{e}^{-3 x}}{c_{3}^{3}}
$$

substituting $y^{\prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=\frac{1}{c_{3}^{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of integrations.

Verification of solutions N/A

7.12.8 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y^{\prime}=0, y(0)=-2,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+3 r=0
$$

- Factor the characteristic polynomial

$$
r(r+3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,0)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=1
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2}$

- Use initial condition $y(0)=-2$

$$
-2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$
$3=-3 c_{1}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify

$$
y=-1-\mathrm{e}^{-3 x}
$$

- \quad Solution to the IVP

$$
y=-1-\mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x$2) +3*diff(y(x),x) = 0,y(0) = -2, D(y)(0) = 3],y(x), singsol=all)
```

$$
y(x)=-1-\mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 14
DSolve[\{y'' $[x]+3 * y$ ' $\left.[x]==0,\left\{y[0]==-2, y^{\prime}[0]==3\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-e^{-3 x}-1
$$

7.13 problem 13

7.13.1 Existence and uniqueness analysis 1885
7.13.2 Solving as second order linear constant coeff ode 1886
7.13.3 Solving using Kovacic algorithm 1889
7.13.4 Maple step by step solution . 1893

Internal problem ID [611]
Internal file name [OUTPUT/611_Sunday_June_05_2022_01_45_48_AM_49802737/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+5 y^{\prime}+3 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

7.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =5 \\
q(x) & =3 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+3 y=0
$$

The domain of $p(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.13.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(3)} \\
& =-\frac{5}{2} \pm \frac{\sqrt{13}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{\sqrt{13}}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{\sqrt{13}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{\sqrt{13}}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{\sqrt{13}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}+c_{2} e^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}+c_{2}\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{\left(c_{1}-c_{2}\right) \sqrt{13}}{2}-\frac{5 c_{1}}{2}-\frac{5 c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2}+\frac{5 \sqrt{13}}{26} \\
& c_{2}=\frac{1}{2}-\frac{5 \sqrt{13}}{26}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{2}+\frac{5 \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}} \sqrt{13}}{26}+\frac{\mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{2}-\frac{5 \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}} \sqrt{13}}{26}
$$

Which simplifies to

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

Verified OK.

7.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{13}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=13 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{13 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 340: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{13}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x \sqrt{13}}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{13} \mathrm{e}^{x \sqrt{13}}}{13}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}\left(\frac{\sqrt{13} \mathrm{e}^{x \sqrt{13}}}{13}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}} \sqrt{13}}{13} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2} \sqrt{13}}{13} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}+\frac{c_{2}\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}} \sqrt{13}}{13}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{\left(-13 c_{1}-5 c_{2}\right) \sqrt{13}}{26}-\frac{5 c_{1}}{2}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2}-\frac{5 \sqrt{13}}{26} \\
& c_{2}=\frac{5}{2}+\frac{\sqrt{13}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{2}+\frac{5 \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}} \sqrt{13}}{26}+\frac{\mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{2}-\frac{5 \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}} \sqrt{13}}{26}
$$

Which simplifies to

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

Verified OK.

7.13.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+3 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+5 r+3=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-5) \pm(\sqrt{13})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{5}{2}-\frac{\sqrt{13}}{2},-\frac{5}{2}+\frac{\sqrt{13}}{2}\right)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}
$$

- \quad 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}$
Check validity of solution $y=c_{1} \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1}\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) \mathrm{e}^{\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right) x}+c_{2}\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) \mathrm{e}^{\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$ $0=c_{1}\left(-\frac{5}{2}-\frac{\sqrt{13}}{2}\right)+\left(-\frac{5}{2}+\frac{\sqrt{13}}{2}\right) c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{1}{2}-\frac{5 \sqrt{13}}{26}, c_{2}=\frac{1}{2}+\frac{5 \sqrt{13}}{26}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

- \quad Solution to the IVP

$$
y=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 39

```
dsolve([diff(y(x),x$2) +5*diff(y(x),x)+3*y(x) = 0,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{(13+5 \sqrt{13}) \mathrm{e}^{\frac{(-5+\sqrt{13}) x}{2}}}{26}+\frac{(13-5 \sqrt{13}) \mathrm{e}^{-\frac{(5+\sqrt{13}) x}{2}}}{26}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 51
DSolve $\left[\left\{y^{\prime \prime}[x]+5 * y\right.\right.$ ' $\left.[x]+3 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow \frac{1}{26} e^{-\frac{1}{2}(5+\sqrt{13}) x}\left((13+5 \sqrt{13}) e^{\sqrt{13} x}+13-5 \sqrt{13}\right)
$$

7.14 problem 14

7.14.1 Existence and uniqueness analysis 1896
7.14.2 Solving as second order linear constant coeff ode 1897
7.14.3 Solving using Kovacic algorithm 1900
7.14.4 Maple step by step solution . 1904

Internal problem ID [612]
Internal file name [OUTPUT/612_Sunday_June_05_2022_01_45_50_AM_78937181/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}+y^{\prime}-4 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

7.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{2} \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{2}-2 y=0
$$

The domain of $p(x)=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.14.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=1, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}+\lambda-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=1, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{1^{2}-(4)(2)(-4)} \\
& =-\frac{1}{4} \pm \frac{\sqrt{33}}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{4}+\frac{\sqrt{33}}{4} \\
& \lambda_{2}=-\frac{1}{4}-\frac{\sqrt{33}}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{4}+\frac{\sqrt{33}}{4} \\
& \lambda_{2}=-\frac{1}{4}-\frac{\sqrt{33}}{4}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}+c_{2} e^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}+c_{2}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{\left(c_{1}-c_{2}\right) \sqrt{33}}{4}-\frac{c_{1}}{4}-\frac{c_{2}}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2 \sqrt{33}}{33} \\
& c_{2}=-\frac{2 \sqrt{33}}{33}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \sqrt{33} \mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}}{33}-\frac{2 \sqrt{33} \mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}}{33}
$$

Which simplifies to

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33}
$$

Verified OK.

7.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}+y^{\prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=1 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{33}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=33 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{33 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 342: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{33}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x \sqrt{33}}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{2} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{33} \mathrm{e}^{\frac{x \sqrt{33}}{2}}}{33}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\left(\frac{2 \sqrt{33} \mathrm{e}^{\frac{x \sqrt{33}}{2}}}{33}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}+\frac{2 c_{2} \sqrt{33} \mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}}{33} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{2 c_{2} \sqrt{33}}{33} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) \mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}+\frac{2 c_{2} \sqrt{33}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) \mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}}{33}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{\left(-33 c_{1}-2 c_{2}\right) \sqrt{33}}{132}-\frac{c_{1}}{4}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2 \sqrt{33}}{33} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2 \sqrt{33} \mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}}{33}-\frac{2 \sqrt{33} \mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}}{33}
$$

Which simplifies to

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right)}{33}
$$

Verified OK.

7.14.4 Maple step by step solution

Let's solve

$$
\left[2 y^{\prime \prime}+y^{\prime}-4 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2}+2 y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{2}-2 y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{1}{2} r-2=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{1}{2}\right) \pm\left(\sqrt{\frac{33}{4}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{4}-\frac{\sqrt{33}}{4},-\frac{1}{4}+\frac{\sqrt{33}}{4}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}$
- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}$
Check validity of solution $y=c_{1} \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1}\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) \mathrm{e}^{\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) x}+c_{2}\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) \mathrm{e}^{\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=\left(-\frac{1}{4}-\frac{\sqrt{33}}{4}\right) c_{1}+\left(-\frac{1}{4}+\frac{\sqrt{33}}{4}\right) c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{2 \sqrt{33}}{33}, c_{2}=\frac{2 \sqrt{33}}{33}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{\left.-\frac{(1+\sqrt{33}) x}{4}\right)}\right.}{33}
$$

- Solution to the IVP

$$
y=\frac{2 \sqrt{33}\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{\left.-\frac{(1+\sqrt{33}) x}{4}\right)}\right.}{33}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 30

```
dsolve([2*diff(y(x),x$2) +diff(y(x),x)-4*y(x) = 0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{2\left(\mathrm{e}^{\frac{(-1+\sqrt{33}) x}{4}}-\mathrm{e}^{-\frac{(1+\sqrt{33}) x}{4}}\right) \sqrt{33}}{33}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 40
DSolve $\left[\left\{2 * y\right.\right.$ ' ' $[x]+y$ ' $\left.[x]-4 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{2 e^{-\frac{1}{4}(1+\sqrt{33}) x}\left(e^{\frac{\sqrt{33} x}{2}}-1\right)}{\sqrt{33}}
$$

7.15 problem 15

7.15.1 Existence and uniqueness analysis 1907
7.15.2 Solving as second order linear constant coeff ode 1908
7.15.3 Solving using Kovacic algorithm 1910
7.15.4 Maple step by step solution . 1915

Internal problem ID [613]
Internal file name [OUTPUT/613_Sunday_June_05_2022_01_45_51_AM_15862367/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=0\right]
$$

7.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =8 \\
q(x) & =-9 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0
$$

The domain of $p(x)=8$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-9$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.15.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=8, C=-9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+8 \lambda \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+8 \lambda-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=8, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{8^{2}-(4)(1)(-9)} \\
& =-4 \pm 5
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-4+5 \\
& \lambda_{2}=-4-5
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-9
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-9) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-9 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-9 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\left(\mathrm{e}^{10} c_{1}+c_{2}\right) \mathrm{e}^{-9} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-9 c_{2} \mathrm{e}^{-9 x}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\left(\mathrm{e}^{10} c_{1}-9 c_{2}\right) \mathrm{e}^{-9} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{9 \mathrm{e}^{-1}}{10} \\
& c_{2}=\frac{\mathrm{e}^{9}}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10}
$$

Verified OK.

7.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+8 y^{\prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=25 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 344: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=25$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-5 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x} \\
& =z_{1} e^{-4 x} \\
& =z_{1}\left(\mathrm{e}^{-4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-9 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{10 x}}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-9 x}\right)+c_{2}\left(\mathrm{e}^{-9 x}\left(\frac{\mathrm{e}^{10 x}}{10}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-9 x}+\frac{c_{2} \mathrm{e}^{x}}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{\left(\mathrm{e}^{10} c_{2}+10 c_{1}\right) \mathrm{e}^{-9}}{10} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-9 c_{1} \mathrm{e}^{-9 x}+\frac{c_{2} \mathrm{e}^{x}}{10}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{\left(\mathrm{e}^{10} c_{2}-90 c_{1}\right) \mathrm{e}^{-9}}{10} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{9}}{10} \\
& c_{2}=9 \mathrm{e}^{-1}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{10}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{10}
$$

Verified OK.

7.15.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+8 y^{\prime}-9 y=0, y(1)=1,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+8 r-9=0
$$

- Factor the characteristic polynomial

$$
(r+9)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-9,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-9 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}$
- Use initial condition $y(1)=1$
$1=c_{1} \mathrm{e}^{-9}+\mathrm{e}_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-9 c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=0$
$0=-9 c_{1} \mathrm{e}^{-9}+\mathrm{e} c_{2}$
- Solve for c_{1} and c_{2} $\left\{c_{1}=\frac{1}{10 \mathrm{e}^{-9}}, c_{2}=\frac{9}{10 \mathrm{e}}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{9 \mathrm{e}^{x-1}}{10}+\frac{\mathrm{e}^{-9 x+9}}{10}
$$

- \quad Solution to the IVP

$$
y=\frac{9 \mathrm{e}^{x-1}}{10}+\frac{\mathrm{e}^{-9 x+9}}{10}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

```
dsolve([diff(y(x),x$2) +8*diff(y(x),x)-9*y(x) = 0,y(1) = 1, D(y)(1) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{9-9 x}}{10}+\frac{9 \mathrm{e}^{x-1}}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+8 * y\right.\right.$ ' $\left.[x]-9 * y[x]==0,\left\{y[1]==1, y^{\prime}[1]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{1}{10} e^{9-9 x}+\frac{9 e^{x-1}}{10}
$$

7.16 problem 16

7.16.1 Existence and uniqueness analysis 1917
7.16.2 Solving as second order linear constant coeff ode 1918
7.16.3 Solving as second order ode can be made integrable ode 1920
7.16.4 Solving using Kovacic algorithm 1924
7.16.5 Maple step by step solution . 1928

Internal problem ID [614]
Internal file name [OUTPUT/614_Sunday_June_05_2022_01_45_52_AM_59244929/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_cconstant_coeff", "second__order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(-2)=1, y^{\prime}(-2)=-1\right]
$$

7.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{1}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y}{4}=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. The domain of $q(x)=-\frac{1}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is also inside this domain. Hence solution exists and is unique.

7.16.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(-1)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=-2$ in the above gives

$$
\begin{equation*}
1=\mathrm{e}^{-1} c_{1}+\mathrm{e} c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}}}{2}
$$

substituting $y^{\prime}=-1$ and $x=-2$ in the above gives

$$
\begin{equation*}
-1=\frac{\mathrm{e}^{-1} c_{1}}{2}-\frac{\mathrm{e} c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{\mathrm{e}}{2} \\
& c_{2}=\frac{3 \mathrm{e}^{-1}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2}
$$

Verified OK.

7.16.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
4 y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(4 y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
2 y^{\prime 2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{\sqrt{y^{2}+2 c_{1}}}{2} \tag{1}\\
y^{\prime} & =-\frac{\sqrt{y^{2}+2 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
2 \ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-2 \ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

$$
\begin{equation*}
y=\frac{c_{3} \mathrm{e}^{x}-2 c_{1}}{2 \sqrt{c_{3} \mathrm{e}^{x}}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=-2$ in the above gives

$$
\begin{equation*}
1=-\frac{\left(\mathrm{e}^{2} c_{1}-\frac{c_{3}}{2}\right) \mathrm{e}^{-1}}{\sqrt{c_{3}}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{3} \mathrm{e}^{x}}{2 \sqrt{c_{3} \mathrm{e}^{x}}}-\frac{\left(c_{3} \mathrm{e}^{x}-2 c_{1}\right) c_{3} \mathrm{e}^{x}}{4\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}
$$

substituting $y^{\prime}=-1$ and $x=-2$ in the above gives

$$
\begin{equation*}
-1=\frac{2 \mathrm{e} c_{1}+c_{3} \mathrm{e}^{-1}}{4 \sqrt{c_{3}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{2 c_{1} c_{5} \mathrm{e}^{x}-1}{2 \sqrt{c_{5} \mathrm{e}^{x}}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=-2$ in the above gives

$$
\begin{equation*}
1=\frac{-2 c_{1} c_{5} \mathrm{e}^{-1}+\mathrm{e}}{2 \sqrt{c_{5}}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{5} \mathrm{e}^{x} c_{1}}{\sqrt{c_{5} \mathrm{e}^{x}}}+\frac{\left(2 c_{1} c_{5} \mathrm{e}^{x}-1\right) c_{5} \mathrm{e}^{x}}{4\left(c_{5} \mathrm{e}^{x}\right)^{\frac{3}{2}}}
$$

substituting $y^{\prime}=-1$ and $x=-2$ in the above gives

$$
\begin{equation*}
-1=-\frac{c_{1} c_{5} \mathrm{e}^{-1}+\frac{\mathrm{e}}{2}}{2 \sqrt{c_{5}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3}{2} \\
& c_{5}=\frac{\mathrm{e}^{2}}{9}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{-1} \mathrm{e}^{2+x}+3 \mathrm{e}^{-1}}{2 \sqrt{\mathrm{e}^{x}}}
$$

Which simplifies to

$$
y=-\frac{\left(\mathrm{e}^{2+x}-3\right) \mathrm{e}^{-1}}{2 \sqrt{\mathrm{e}^{x}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\mathrm{e}^{2+x}-3\right) \mathrm{e}^{-1}}{2 \sqrt{\mathrm{e}^{x}}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\left(\mathrm{e}^{2+x}-3\right) \mathrm{e}^{-1}}{2 \sqrt{\mathrm{e}^{x}}}
$$

Verified OK.

7.16.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 346: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\frac{x}{2}} \int \frac{1}{\mathrm{e}^{-x}} d x \\
& =\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=-2$ in the above gives

$$
\begin{equation*}
1=\mathrm{e} c_{1}+c_{2} \mathrm{e}^{-1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{2}
$$

substituting $y^{\prime}=-1$ and $x=-2$ in the above gives

$$
\begin{equation*}
-1=-\frac{\mathrm{e} c_{1}}{2}+\frac{c_{2} \mathrm{e}^{-1}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3 \mathrm{e}^{-1}}{2} \\
& c_{2}=-\frac{\mathrm{e}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}} \mathrm{e}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}} \mathrm{e}^{-1}}{2}
$$

Verified OK.

7.16.5 Maple step by step solution

Let's solve

$$
\left[4 y^{\prime \prime}-y=0, y(-2)=1,\left.y^{\prime}\right|_{\{x=-2\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y}{4}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-\frac{1}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)(2 r+1)}{4}=0
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{x}{2}}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}$

- Use initial condition $y(-2)=1$

$$
1=\mathrm{e} c_{1}+c_{2} \mathrm{e}^{-1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}}}{2}+\frac{c_{2} e^{\frac{x}{2}}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=-2\}}=-1$

$$
-1=-\frac{\mathrm{e} c_{1}}{2}+\frac{c_{2} \mathrm{e}^{-1}}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{3}{2 \mathrm{e}}, c_{2}=-\frac{1}{2 \mathrm{e}^{-1}}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}+1}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}-1}}{2}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{\frac{x}{2}+1}}{2}+\frac{3 \mathrm{e}^{-\frac{x}{2}-1}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 21
dsolve([4*diff $(y(x), x \$ 2)-y(x)=0, y(-2)=1, D(y)(-2)=-1], y(x)$, singsol=all)

$$
y(x)=-\frac{\mathrm{e}^{1+\frac{x}{2}}}{2}+\frac{3 \mathrm{e}^{-1-\frac{x}{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 25
DSolve[\{4*y' ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[-2]==1, \mathrm{y}$ ' $[-2]==-1\}\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{2} e^{-\frac{x}{2}-1}\left(e^{x+2}-3\right)
$$

7.17 problem 19

7.17.1 Existence and uniqueness analysis 1931
7.17.2 Solving as second order linear constant coeff ode 1932
7.17.3 Solving as second order ode can be made integrable ode 1934
7.17.4 Solving using Kovacic algorithm 1938
7.17.5 Maple step by step solution . 1942

Internal problem ID [615]
Internal file name [OUTPUT/615_Sunday_June_05_2022_01_45_53_AM_95572567/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second__order_oode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=\frac{5}{4}, y^{\prime}(0)=-\frac{3}{4}\right]
$$

7.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.17.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{5}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{5}{4}=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-\frac{3}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{3}{4}=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Verified OK.

7.17.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{5}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{5}{4}=\frac{c_{3}^{2}-2 c_{1}}{2 c_{3}} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}+c_{3} \mathrm{e}^{x}
$$

substituting $y^{\prime}=-\frac{3}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{3}{4}=\frac{c_{3}^{2}+2 c_{1}}{2 c_{3}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{3}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x}\left(4+\mathrm{e}^{2 x}\right)}{4}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{5}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{5}{4}=\frac{-2 c_{1} c_{5}^{2}+1}{2 c_{5}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} c_{5} \mathrm{e}^{x}+\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

substituting $y^{\prime}=-\frac{3}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{3}{4}=\frac{-2 c_{1} c_{5}^{2}-1}{2 c_{5}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{5}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x}\left(4+\mathrm{e}^{2 x}\right)}{4}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x} \tag{1}\\
& y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x} \tag{2}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Verified OK.

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Verified OK.

7.17.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 348: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\frac{5}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{5}{4}=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

substituting $y^{\prime}=-\frac{3}{4}$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{3}{4}=-c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Verified OK.

7.17.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y=0, y(0)=\frac{5}{4},\left.y^{\prime}\right|_{\{x=0\}}=-\frac{3}{4}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}$

- Use initial condition $y(0)=\frac{5}{4}$
$\frac{5}{4}=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-\frac{3}{4}$

$$
-\frac{3}{4}=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=1, c_{2}=\frac{1}{4}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 13

```
dsolve([diff(y(x),x$2) - y(x) = 0,y(0) = 5/4, D(y)(0) = -3/4],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}}{4}+\mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18

```
DSolve[{y''[x]-y[x]==0,{y[0]==5/4,y'[0]==-3/4}},y[x],x, IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}+\frac{e^{x}}{4}
$$

7.18 problem 20

7.18.1 Existence and uniqueness analysis 1944
7.18.2 Solving as second order linear constant coeff ode 1945
7.18.3 Solving using Kovacic algorithm 1947
7.18.4 Maple step by step solution . 1951

Internal problem ID [616]
Internal file name [OUTPUT/616_Sunday_June_05_2022_01_45_54_AM_32300670/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 20.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}-3 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=\frac{1}{2}\right]
$$

7.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{3}{2} \\
q(x) & =\frac{1}{2} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{2}+\frac{y}{2}=0
$$

The domain of $p(x)=-\frac{3}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.18.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=-3, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}-3 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=-3, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-3^{2}-(4)(2)(1)} \\
& =\frac{3}{4} \pm \frac{1}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{4}+\frac{1}{4} \\
& \lambda_{2}=\frac{3}{4}-\frac{1}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{\left(\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{2}
$$

substituting $y^{\prime}=\frac{1}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

Verified OK.

7.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}-3 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=-3 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 350: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{2} d x} \\
& =z_{1} e^{\frac{3 x}{4}} \\
& =z_{1}\left(e^{\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(2 \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}}\left(2 \mathrm{e}^{\frac{x}{2}}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+2 c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+2 c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}+2 c_{2} \mathrm{e}^{x}
$$

substituting $y^{\prime}=\frac{1}{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{1}{2}=\frac{c_{1}}{2}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

Verified OK.

7.18.4 Maple step by step solution

Let's solve

$$
\left[2 y^{\prime \prime}-3 y^{\prime}+y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{2}-\frac{y}{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{2}+\frac{y}{2}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-\frac{3}{2} r+\frac{1}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)(r-1)}{2}=0
$$

- Roots of the characteristic polynomial
$r=\left(1, \frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}$
Check validity of solution $y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{\frac{x}{2}}$
- Use initial condition $y(0)=2$
$2=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\frac{1}{2}$
$\frac{1}{2}=c_{1}+\frac{c_{2}}{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify
$y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}$
- Solution to the IVP

$$
y=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([2*diff(y(x),x$2) -3*diff(y(x),x)+y(x) = 0,y(0) = 2, D(y)(0) = 1/2],y(x), singsol=all
```

$$
y(x)=-\mathrm{e}^{x}+3 \mathrm{e}^{\frac{x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve $[\{2 * y$ '' $[x]-3 * y$ ' $[x]+y[x]==0,\{y[0]==2, y$ ' $[0]==1 / 2\}\}, y[x], x$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(x) \rightarrow 3 e^{x / 2}-e^{x}
$$

7.19 problem 21

7.19.1 Existence and uniqueness analysis 1954
7.19.2 Solving as second order linear constant coeff ode 1955
7.19.3 Solving using Kovacic algorithm 1957
7.19.4 Maple step by step solution . 1961

Internal problem ID [617]
Internal file name [OUTPUT/617_Sunday_June_05_2022_01_45_55_AM_95430660/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=\alpha, y^{\prime}(0)=2\right]
$$

7.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.19.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\alpha$ and $x=0$ in the above gives

$$
\begin{equation*}
\alpha=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=2 c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{\alpha}{3}+\frac{2}{3} \\
& c_{2}=-\frac{2}{3}+\frac{2 \alpha}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{2 x} \alpha}{3}+\frac{2 \mathrm{e}^{2 x}}{3}-\frac{2 \mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{-x} \alpha}{3}
$$

Which simplifies to

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

Verified OK.

7.19.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 352: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\alpha$ and $x=0$ in the above gives

$$
\begin{equation*}
\alpha=c_{1}+\frac{c_{2}}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{3}
$$

substituting $y^{\prime}=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=-c_{1}+\frac{2 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{3}+\frac{2 \alpha}{3} \\
& c_{2}=\alpha+2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{2 x} \alpha}{3}+\frac{2 \mathrm{e}^{2 x}}{3}-\frac{2 \mathrm{e}^{-x}}{3}+\frac{2 \mathrm{e}^{-x} \alpha}{3}
$$

Which simplifies to

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

Verified OK.

7.19.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=\alpha,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

```
y'
```

- Characteristic polynomial of ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=\alpha$

$$
\alpha=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=2$

$$
2=-c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{2}{3}+\frac{2 \alpha}{3}, c_{2}=\frac{\alpha}{3}+\frac{2}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

```
dsolve([diff(y(x),x$2) - diff(y(x),x)-2*y(x) = 0,y(0) = alpha, D(y)(0) = 2],y(x), singsol=all
```

$$
y(x)=\frac{(2 \alpha-2) \mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{2 x}(\alpha+2)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 29
DSolve $\left[\left\{y^{\prime \prime}[x]-y\right.\right.$ ' $\left.[x]-2 * y[x]==0,\left\{y[0]==\backslash[A l p h a], y^{\prime}[0]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{3} e^{-x}\left(2(\alpha-1)+(\alpha+2) e^{3 x}\right)
$$

7.20 problem 22

7.20.1 Existence and uniqueness analysis 1963
7.20.2 Solving as second order linear constant coeff ode 1964
7.20.3 Solving as second order ode can be made integrable ode 1966
7.20.4 Solving using Kovacic algorithm 1969
7.20.5 Maple step by step solution . 1973

Internal problem ID [618]
Internal file name [OUTPUT/618_Sunday_June_05_2022_01_45_56_AM_92637636/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=\beta\right]
$$

7.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{1}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{y}{4}=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{1}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.20.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(-1)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}}}{2}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=\frac{c_{1}}{2}-\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1+\beta \\
& c_{2}=-\beta+1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{\frac{x}{2}} \beta-\mathrm{e}^{-\frac{x}{2}} \beta+\mathrm{e}^{\frac{x}{2}}+\mathrm{e}^{-\frac{x}{2}}
$$

Which simplifies to

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.20.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
4 y^{\prime} y^{\prime \prime}-y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(4 y^{\prime} y^{\prime \prime}-y y^{\prime}\right) d x=0 \\
2 y^{\prime 2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{y^{2}+2 c_{1}}}{2} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{y^{2}+2 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
2 \ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}=\mathrm{e}^{x+c_{2}}
$$

Which simplifies to

$$
\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-2 \ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\left(y+\sqrt{y^{2}+2 c_{1}}\right)^{2}}=c_{5} \mathrm{e}^{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
y=\frac{c_{3} \mathrm{e}^{x}-2 c_{1}}{2 \sqrt{c_{3} \mathrm{e}^{x}}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=\frac{c_{3}-2 c_{1}}{2 \sqrt{c_{3}}} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{3} \mathrm{e}^{x}}{2 \sqrt{c_{3} \mathrm{e}^{x}}}-\frac{\left(c_{3} \mathrm{e}^{x}-2 c_{1}\right) c_{3} \mathrm{e}^{x}}{4\left(c_{3} \mathrm{e}^{x}\right)^{\frac{3}{2}}}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=\frac{c_{3}+2 c_{1}}{4 \sqrt{c_{3}}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-4 \operatorname{csgn}(1+\beta) \beta+2 \beta^{2}-4 \operatorname{csgn}(1+\beta)+4 \beta+2 \\
& c_{3}=4(1+\beta)^{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x} \beta^{2}+2 \operatorname{csgn}(1+\beta) \beta+2 \mathrm{e}^{x} \beta-\beta^{2}+2 \operatorname{csgn}(1+\beta)+\mathrm{e}^{x}-2 \beta-1}{\sqrt{\mathrm{e}^{x} \beta^{2}+2 \mathrm{e}^{x} \beta+\mathrm{e}^{x}}}
$$

Which simplifies to

$$
y=\frac{(1+\beta)\left(2 \operatorname{csgn}(1+\beta)+\left(\mathrm{e}^{x}-1\right)(1+\beta)\right)}{\sqrt{(1+\beta)^{2} \mathrm{e}^{x}}}
$$

Looking at the Second solution

$$
\begin{equation*}
y=-\frac{2 c_{1} c_{5} \mathrm{e}^{x}-1}{2 \sqrt{c_{5} \mathrm{e}^{x}}} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=\frac{-2 c_{1} c_{5}+1}{2 \sqrt{c_{5}}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{5} \mathrm{e}^{x} c_{1}}{\sqrt{c_{5} \mathrm{e}^{x}}}+\frac{\left(2 c_{1} c_{5} \mathrm{e}^{x}-1\right) c_{5} \mathrm{e}^{x}}{4\left(c_{5} \mathrm{e}^{x}\right)^{\frac{3}{2}}}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=\frac{-2 c_{1} c_{5}-1}{4 \sqrt{c_{5}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \beta^{2}-2 \\
& c_{5}=\frac{1}{4(\beta-1)^{2}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{-\mathrm{e}^{x} \beta-\mathrm{e}^{x}+\beta-1}{\sqrt{\frac{\mathrm{e}^{x}}{\beta^{2}-2 \beta+1}} \beta-\sqrt{\frac{\mathrm{e}^{x}}{\beta^{2}-2 \beta+1}}}
$$

Which simplifies to

$$
y=\frac{(-1-\beta) \mathrm{e}^{x}+\beta-1}{\sqrt{\frac{\mathrm{e}^{x}}{(\beta-1)^{2}}}}(\beta-1)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{(1+\beta)\left(2 \operatorname{csgn}(1+\beta)+\left(\mathrm{e}^{x}-1\right)(1+\beta)\right)}{\sqrt{(1+\beta)^{2} \mathrm{e}^{x}}} \tag{1}\\
& y=\frac{(-1-\beta) \mathrm{e}^{x}+\beta-1}{\sqrt{\frac{\mathrm{e}^{x}}{(\beta-1)^{2}}}(\beta-1)} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\frac{(1+\beta)\left(2 \operatorname{csgn}(1+\beta)+\left(\mathrm{e}^{x}-1\right)(1+\beta)\right)}{\sqrt{(1+\beta)^{2} \mathrm{e}^{x}}}
$$

Verified OK.

$$
y=\frac{(-1-\beta) \mathrm{e}^{x}+\beta-1}{\sqrt{\frac{\mathrm{e}^{x}}{(\beta-1)^{2}}}(\beta-1)}
$$

Verified OK.

7.20.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 354: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\frac{x}{2}} \int \frac{1}{\mathrm{e}^{-x}} d x \\
& =\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{2}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=-\frac{c_{1}}{2}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\beta+1 \\
& c_{2}=1+\beta
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{\frac{x}{2}} \beta-\mathrm{e}^{-\frac{x}{2}} \beta+\mathrm{e}^{\frac{x}{2}}+\mathrm{e}^{-\frac{x}{2}}
$$

Which simplifies to

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

7.20.5 Maple step by step solution

Let's solve

$$
\left[4 y^{\prime \prime}-y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=\beta\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y}{4}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-\frac{1}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)(2 r+1)}{4}=0
$$

- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}, \frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}$
Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}$
- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\beta$
$\beta=-\frac{c_{1}}{2}+\frac{c_{2}}{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\beta+1, c_{2}=1+\beta\right\}$
- Substitute constant values into general solution and simplify

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

- \quad Solution to the IVP

$$
y=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve([4*diff(y(x),x$2) - y(x) = 0,y(0) = 2, D(y)(0) = beta],y(x), singsol=all)
```

$$
y(x)=(1+\beta) \mathrm{e}^{\frac{x}{2}}-(\beta-1) \mathrm{e}^{-\frac{x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 25

DSolve $[\{4 * y$ ' ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==2, \mathrm{y}$ '[0]==\[Beta]\}\},y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x / 2}\left(-\beta+(\beta+1) e^{x}+1\right)
$$

7.21 problem 23

7.21.1 Solving as second order linear constant coeff ode 1976
7.21.2 Solving using Kovacic algorithm 1978
7.21.3 Maple step by step solution . 1981

Internal problem ID [619]
Internal file name [OUTPUT/619_Sunday_June_05_2022_01_45_56_AM_20917638/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-(2 \alpha-1) y^{\prime}+\alpha(\alpha-1) y=0
$$

7.21.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 \alpha+1, C=\alpha^{2}-\alpha$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(-2 \alpha+1) \lambda \mathrm{e}^{\lambda x}+\left(\alpha^{2}-\alpha\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(-2 \alpha+1) \lambda+\alpha^{2}-\alpha=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 \alpha+1, C=\alpha^{2}-\alpha$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 \alpha-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2 \alpha+1^{2}-(4)(1)\left(\alpha^{2}-\alpha\right)} \\
& =\alpha-\frac{1}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\alpha-\frac{1}{2}+\frac{1}{2} \\
& \lambda_{2}=\alpha-\frac{1}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\alpha \\
\lambda_{2} & =\alpha-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(\alpha) x}+c_{2} e^{(\alpha-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\alpha x}+c_{2} \mathrm{e}^{(\alpha-1) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\alpha x}+c_{2} \mathrm{e}^{(\alpha-1) x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\alpha x}+c_{2} \mathrm{e}^{(\alpha-1) x}
$$

Verified OK.

7.21.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+(-2 \alpha+1) y^{\prime}+\left(\alpha^{2}-\alpha\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \alpha+1 \tag{3}\\
& C=\alpha^{2}-\alpha
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 356: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 \alpha+1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\left(\alpha-\frac{1}{2}\right) x} \\
& =z_{1}\left(\mathrm{e}^{\left(\alpha-\frac{1}{2}\right) x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{(\alpha-1) x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 \alpha+1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(2 \alpha-1) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{(\alpha-1) x}\right)+c_{2}\left(\mathrm{e}^{(\alpha-1) x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{(\alpha-1) x}+c_{2} \mathrm{e}^{\alpha x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{(\alpha-1) x}+c_{2} \mathrm{e}^{\alpha x}
$$

Verified OK.

7.21.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+(-2 \alpha+1) y^{\prime}+\left(\alpha^{2}-\alpha\right) y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+(-2 \alpha+1) r+\alpha^{2}-\alpha=0
$$

- Factor the characteristic polynomial

$$
(\alpha-r)(\alpha-r-1)=0
$$

- Roots of the characteristic polynomial
$r=(\alpha, \alpha-1)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\alpha x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{(\alpha-1) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\alpha x}+c_{2} \mathrm{e}^{(\alpha-1) x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve (diff $(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-(2 * \operatorname{alpha}-1) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\operatorname{alpha} *(\operatorname{alpha}-1) * y(\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{\alpha x}+c_{2} \mathrm{e}^{(\alpha-1) x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24
DSolve [y' $\quad[\mathrm{x}]-(2 * \backslash[$ Alpha $]-1) * y$ ' $[\mathrm{x}]+\backslash[$ Alpha $] *(\backslash[$ Alpha $]-1) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolut

$$
y(x) \rightarrow c_{1} e^{(\alpha-1) x}+c_{2} e^{\alpha x}
$$

7.22 problem 24

7.22.1 Solving as second order linear constant coeff ode 1983
7.22.2 Solving using Kovacic algorithm 1985
7.22.3 Maple step by step solution . 1988

Internal problem ID [620]
Internal file name [OUTPUT/620_Sunday_June_05_2022_01_45_57_AM_13631438/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+(3-\alpha) y^{\prime}-2(\alpha-1) y=0
$$

7.22.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=3-\alpha, C=-2 \alpha+2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(3-\alpha) \lambda \mathrm{e}^{\lambda x}+(-2 \alpha+2) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(3-\alpha) \lambda-2 \alpha+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3-\alpha, C=-2 \alpha+2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{\alpha-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3-\alpha^{2}-(4)(1)(-2 \alpha+2)} \\
& =-\frac{3}{2}+\frac{\alpha}{2} \pm \frac{\sqrt{(\alpha+1)^{2}}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2} \\
& \lambda_{2}=-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2} \\
& \lambda_{2}=-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}+c_{2} e^{\left(-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}+\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\alpha}{2}-\frac{\sqrt{(\alpha+1)^{2}}}{2}\right) x}
$$

Verified OK.

7.22.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+(3-\alpha) y^{\prime}+(-2 \alpha+2) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3-\alpha \tag{3}\\
& C=-2 \alpha+2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{\alpha^{2}+2 \alpha+1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=\alpha^{2}+2 \alpha+1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{1}{4} \alpha^{2}+\frac{1}{2} \alpha+\frac{1}{4}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 358: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4} \alpha^{2}+\frac{1}{2} \alpha+\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\frac{\sqrt{(\alpha+1)^{2}} x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3-\alpha}{1} d x} \\
& =z_{1} e^{\left(-\frac{3}{2}+\frac{\alpha}{2}\right) x} \\
& =z_{1}\left(\mathrm{e}^{\frac{(\alpha-3) x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{(\operatorname{csgn}(\alpha+1) \alpha+\operatorname{csgn}(\alpha+1)+\alpha-3) x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3-\alpha}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(\alpha-3) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\operatorname{csgn}(\alpha+1) \mathrm{e}^{-\operatorname{csgn}(\alpha+1)(\alpha+1) x}}{\alpha+1}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\mathrm{e}^{\frac{(\operatorname{csgn}(\alpha+1) \alpha+\operatorname{csgn}(\alpha+1)+\alpha-3) x}{2}}\right) \\
& +c_{2}\left(\mathrm{e}^{\frac{(\operatorname{csgn}(\alpha+1) \alpha+\operatorname{csgn}(\alpha+1)+\alpha-3) x}{2}}\left(-\frac{\operatorname{csgn}(\alpha+1) \mathrm{e}^{-\operatorname{csgn}(\alpha+1)(\alpha+1) x}}{\alpha+1}\right)\right)
\end{aligned}
$$

Simplifying the solution $y=c_{1} e^{\left.\frac{(\operatorname{cosg}(\alpha+1) \alpha+\operatorname{css} n}{2}(\alpha+1)+\alpha-3\right) x}-\frac{c_{2} \operatorname{c\operatorname {csgn}(\alpha +1)\mathrm {e}^{-\frac {(\operatorname {cosg}(\alpha +1)\alpha +\operatorname {css}n}{2}(\alpha +1)-\alpha +3)x}}}{\alpha+1}$ Summary
The solution(s) found are the following
to $y=c_{1} \mathrm{e}^{\frac{(2 \alpha-2) x}{2}}-\frac{c_{2} e^{-2 x}}{\alpha+1}$

$$
y=c_{1} \mathrm{e}^{\frac{(2 \alpha-2) x}{2}}-\frac{c_{2} \mathrm{e}^{-2 x}}{\alpha+1}
$$

Verification of solutions

$$
y=c_{1} e^{\frac{(2 \alpha-2) x}{2}}-\frac{c_{2} \mathrm{e}^{-2 x}}{\alpha+1}
$$

Verified OK.

7.22.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+(3-\alpha) y^{\prime}+(-2 \alpha+2) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+(3-\alpha) r-2 \alpha+2=0$
- Factor the characteristic polynomial
$-(r+2)(-r+\alpha-1)=0$
- Roots of the characteristic polynomial
$r=(-2, \alpha-1)$
- 1 st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-2 x}$
- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{(\alpha-1) x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{(\alpha-1) x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$2) +(3-alpha)*diff (y (x),x)-2*(alpha-1)*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{(\alpha-1) x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 24
DSolve $[y$ '' $[x]+(3-\backslash[$ Alpha $]) * y$ ' $[x]-2 *(\backslash[$ Alpha $]-1) * y[x]==0, y[x], x$, IncludeSingularSolutions $->~ I$

$$
y(x) \rightarrow e^{-2 x}\left(c_{1} e^{\alpha x+x}+c_{2}\right)
$$

7.23 problem 25

7.23.1 Existence and uniqueness analysis 1990
7.23.2 Solving as second order linear constant coeff ode 1991
7.23.3 Solving using Kovacic algorithm 1993
7.23.4 Maple step by step solution . 1997

Internal problem ID [621]
Internal file name [OUTPUT/621_Sunday_June_05_2022_01_45_58_AM_931008/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
2 y^{\prime \prime}+3 y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-\beta\right]
$$

7.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{2} \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{2}-y=0
$$

The domain of $p(x)=\frac{3}{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.23.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=3, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}+3 \lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=3, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{3^{2}-(4)(2)(-2)} \\
& =-\frac{3}{4} \pm \frac{5}{4}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{4}+\frac{5}{4} \\
& \lambda_{2}=-\frac{3}{4}-\frac{5}{4}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2} \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}}}{2}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=-\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
-\beta=\frac{c_{1}}{2}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{4}{5}-\frac{2 \beta}{5} \\
& c_{2}=\frac{2 \beta}{5}+\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{\frac{x}{2}}}{5}-\frac{2 \mathrm{e}^{\frac{x}{2}} \beta}{5}+\frac{2 \mathrm{e}^{-2 x} \beta}{5}+\frac{\mathrm{e}^{-2 x}}{5}
$$

Which simplifies to

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

Verified OK.

7.23.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}+3 y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 \\
& B=3 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{16} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=16
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{16} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 360: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{16}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{4}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{13}{2} \frac{d x}{2}} \\
& =z_{1} e^{-\frac{3 x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \mathrm{e}^{\frac{5 x}{2}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{2 \mathrm{e}^{\frac{5 x}{2}}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{2 c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}}}{5}
$$

substituting $y^{\prime}=-\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
-\beta=-2 c_{1}+\frac{c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2 \beta}{5}+\frac{1}{5} \\
& c_{2}=2-\beta
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{\frac{x}{2}}}{5}-\frac{2 \mathrm{e}^{\frac{x}{2}} \beta}{5}+\frac{2 \mathrm{e}^{-2 x} \beta}{5}+\frac{\mathrm{e}^{-2 x}}{5}
$$

Which simplifies to

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

Verified OK.

7.23.4 Maple step by step solution

Let's solve

$$
\left[2 y^{\prime \prime}+3 y^{\prime}-2 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-\beta\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{2}+y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{2}-y=0
$$

- Characteristic polynomial of ODE
$r^{2}+\frac{3}{2} r-1=0$
- Factor the characteristic polynomial

$$
\frac{(r+2)(2 r-1)}{2}=0
$$

- Roots of the characteristic polynomial

$$
r=\left(-2, \frac{1}{2}\right)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{x}{2}}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{\frac{x}{2}}$

- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} e^{\frac{x}{2}}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-\beta$

$$
-\beta=-2 c_{1}+\frac{c_{2}}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2 \beta}{5}+\frac{1}{5}, c_{2}=\frac{4}{5}-\frac{2 \beta}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

- \quad Solution to the IVP

$$
y=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

```
dsolve([2*diff(y(x),x$2) +3*diff(y(x),x)-2*y(x) = 0,y(0) = 1, D(y)(0) = -beta],y(x), singsol
```

$$
y(x)=-\frac{\left(2 \mathrm{e}^{\frac{5 x}{2}} \beta-4 \mathrm{e}^{\frac{5 x}{2}}-2 \beta-1\right) \mathrm{e}^{-2 x}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 67
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+3 * y\right.\right.$ ' $[x]-2 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==-\backslash[\right.$ Beta $\left.\left.]\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{34} e^{-\frac{1}{2}(3+\sqrt{17}) x}\left(2 \sqrt{17} \beta+(-2 \sqrt{17} \beta+3 \sqrt{17}+17) e^{\sqrt{17} x}-3 \sqrt{17}+17\right)
$$

7.24 problem 26

7.24.1 Existence and uniqueness analysis 2000
7.24.2 Solving as second order linear constant coeff ode 2001
7.24.3 Solving using Kovacic algorithm 2003
7.24.4 Maple step by step solution . 2007

Internal problem ID [622]
Internal file name [OUTPUT/622_Sunday_June_05_2022_01_45_59_AM_64820801/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.1 Homogeneous Equations with Constant Coefficients, page 144
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=\beta\right]
$$

7.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =5 \\
q(x) & =6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The domain of $p(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.24.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}-3 \mathrm{e}^{-3 x} c_{2}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=-2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=6+\beta \\
& c_{2}=-\beta-4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-2 x} \beta-\mathrm{e}^{-3 x} \beta+6 \mathrm{e}^{-2 x}-4 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

Verified OK.

7.24.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 362: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=\beta$ and $x=0$ in the above gives

$$
\begin{equation*}
\beta=-3 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\beta-4 \\
& c_{2}=6+\beta
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-2 x} \beta-\mathrm{e}^{-3 x} \beta+6 \mathrm{e}^{-2 x}-4 \mathrm{e}^{-3 x}
$$

Which simplifies to

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

Verified OK.

7.24.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+6 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=\beta\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,-2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-2 x}$

- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\beta$

$$
\beta=-3 c_{1}-2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\beta-4, c_{2}=6+\beta\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

- \quad Solution to the IVP

$$
y=(-\beta-4) \mathrm{e}^{-3 x}+(6+\beta) \mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(y(x),x$2) +5*\operatorname{diff}(y(x),x)+6*y(x)=0,y(0) = 2, D(y)(0) = beta],y(x), singsol=al
```

$$
y(x)=\mathrm{e}^{-2 x}(6+\beta)+(-\beta-4) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 23
DSolve $\left[\left\{y{ }^{\prime} '[x]+5 * y{ }^{\prime}[x]+6 * y[x]==0,\left\{y[0]==2, y^{\prime}[0]==\backslash[\right.\right.\right.$ Beta $\left.\left.]\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow e^{-3 x}\left(-\beta+(\beta+6) e^{x}-4\right)
$$

8 Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation , page 164

8.1 problem 720108.2 problem 8 2018
8.3 problem 9 2026
8.4 problem 10 2034
8.5 problem 11 2042
8.6 problem 12 2050
8.7 problem 13 2061
8.8 problem 14 2069
8.9 problem 15 2077
8.10 problem 16 2085
8.11 problem 17 2093
8.12 problem 18 2105
8.13 problem 19 2115
8.14 problem 20 2125
8.15 problem 21 2138
8.16 problem 22 2148
8.17 problem 23 2158
8.18 problem 24 2169
8.19 problem 25 2180
8.20 problem 26 2190
8.21 problem 35 2199
8.22 problem 36 2216
8.23 problem 37 2238
8.24 problem 38 2256
8.25 problem 39 2276
8.26 problem 40 2293
8.27 problem 41 2310
8.28 problem 42 2327
8.29 problem 44 2344
8.30 problem 46 2351

8.1 problem 7

8.1.1 Solving as second order linear constant coeff ode 2010
8.1.2 Solving using Kovacic algorithm 2012
8.1.3 Maple step by step solution . 2016

Internal problem ID [623]
Internal file name [OUTPUT/623_Sunday_June_05_2022_01_46_00_AM_10820559/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

8.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =1+i \\
\lambda_{2} & =1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Figure 393: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Verified OK.

8.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 364: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 394: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}
$$

Verified OK.

8.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-2 r+2=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x) \mathrm{e}^{x}$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\sin (x) \mathrm{e}^{x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x}\left(c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[y'' $[x]-2 * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

8.2 problem 8

8.2.1 Solving as second order linear constant coeff ode 2018
8.2.2 Solving using Kovacic algorithm 2020
8.2.3 Maple step by step solution . 2024

Internal problem ID [624]
Internal file name [OUTPUT/624_Sunday_June_05_2022_01_46_01_AM_78108325/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

8.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(6)} \\
& =1 \pm i \sqrt{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \sqrt{5} \\
& \lambda_{2}=1-i \sqrt{5}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \sqrt{5} \\
& \lambda_{2}=1-i \sqrt{5}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=\sqrt{5}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right) \tag{1}
\end{equation*}
$$

Figure 395: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right)
$$

Verified OK.

8.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-5 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 366: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-5$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x \sqrt{5})
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x} \cos (x \sqrt{5})
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{5} \tan (x \sqrt{5})}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (x \sqrt{5})\right)+c_{2}\left(\mathrm{e}^{x} \cos (x \sqrt{5})\left(\frac{\sqrt{5} \tan (x \sqrt{5})}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \cos (x \sqrt{5})+\frac{c_{2} \sin (x \sqrt{5}) \mathrm{e}^{x} \sqrt{5}}{5} \tag{1}
\end{equation*}
$$

Figure 396: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x} \cos (x \sqrt{5})+\frac{c_{2} \sin (x \sqrt{5}) \mathrm{e}^{x} \sqrt{5}}{5}
$$

Verified OK.

8.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-2 r+6=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-20})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I} \sqrt{5}, 1+\mathrm{I} \sqrt{5})
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x} \cos (x \sqrt{5})$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{x} \sin (x \sqrt{5})$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{x} \cos (x \sqrt{5})+c_{2} \mathrm{e}^{x} \sin (x \sqrt{5})$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+6 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x}\left(c_{1} \sin (\sqrt{5} x)+c_{2} \cos (\sqrt{5} x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 32
DSolve[y''[x]-2*y'[x]+6*y[x]==0,y[x],x, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x}\left(c_{2} \cos (\sqrt{5} x)+c_{1} \sin (\sqrt{5} x)\right)
$$

8.3 problem 9

8.3.1 Solving as second order linear constant coeff ode 2026
8.3.2 Solving using Kovacic algorithm 2028
8.3.3 Maple step by step solution . 2032

Internal problem ID [625]
Internal file name [OUTPUT/625_Sunday_June_05_2022_01_46_02_AM_10842904/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}-8 y=0
$$

8.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=-8$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda-8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=-8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-8)} \\
& =-1 \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+3 \\
& \lambda_{2}=-1-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-4 x} \tag{1}
\end{equation*}
$$

Figure 397: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-4 x}
$$

Verified OK.

8.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 368: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-3 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{6 x}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{2 x}}{6} \tag{1}
\end{equation*}
$$

Figure 398: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+\frac{c_{2} \mathrm{e}^{2 x}}{6}
$$

Verified OK.

8.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}-8 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+2 r-8=0$
- Factor the characteristic polynomial

$$
(r+4)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-4,2)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-4 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)-8 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(\mathrm{e}^{6 x} c_{1}+c_{2}\right) \mathrm{e}^{-4 x}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 22
DSolve [y' $\quad[x]+2 * y$ ' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-4 x}\left(c_{2} e^{6 x}+c_{1}\right)
$$

8.4 problem 10

8.4.1 Solving as second order linear constant coeff ode 2034
8.4.2 Solving using Kovacic algorithm 2036
8.4.3 Maple step by step solution . 2040

Internal problem ID [626]
Internal file name [OUTPUT/626_Sunday_June_05_2022_01_46_02_AM_81884660/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

8.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(2)} \\
& =-1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Figure 399: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Verified OK.

8.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 370: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{-x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{-x}(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 400: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x}
$$

Verified OK.

8.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+2 r+2=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I},-1+\mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x) \mathrm{e}^{-x}$
- 2 nd solution of the ODE
$y_{2}(x)=\sin (x) \mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22
DSolve[y'' $[x]+2 * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

8.5 problem 11

8.5.1 Solving as second order linear constant coeff ode 2042
8.5.2 Solving using Kovacic algorithm 2044
8.5.3 Maple step by step solution . 2048

Internal problem ID [627]
Internal file name [OUTPUT/627_Sunday_June_05_2022_01_46_03_AM_30401613/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

8.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=13$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+13 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(13)} \\
& =-3 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-3+2 i \\
\lambda_{2}=-3-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Figure 401: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Verified OK.

8.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 372: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 402: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+\frac{c_{2} \mathrm{e}^{-3 x} \sin (2 x)}{2}
$$

Verified OK.

8.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+6 r+13=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3-2 \mathrm{I},-3+2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-3 x} \cos (2 x)$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-3 x} \sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x} \cos (2 x)+c_{2} \mathrm{e}^{-3 x} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+13 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-3 x}\left(\sin (2 x) c_{1}+c_{2} \cos (2 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 26
DSolve $\left[y^{\prime \prime}[x]+6 * y\right.$ ' $[x]+13 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow e^{-3 x}\left(c_{2} \cos (2 x)+c_{1} \sin (2 x)\right)
$$

8.6 problem 12

8.6.1 Solving as second order linear constant coeff ode 2050
8.6.2 Solving as second order ode can be made integrable ode 2052
8.6.3 Solving using Kovacic algorithm 2054
8.6.4 Maple step by step solution . 2058

Internal problem ID [628]
Internal file name [OUTPUT/628_Sunday_June_05_2022_01_46_04_AM_31108206/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 12.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}+9 y=0
$$

8.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(9)} \\
& = \pm \frac{3 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{3 i}{2} \\
& \lambda_{2}=-\frac{3 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{3 i}{2} \\
\lambda_{2} & =-\frac{3 i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\frac{3}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)\right)
$$

Or

$$
y=c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right) \tag{1}
\end{equation*}
$$

Figure 403: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)
$$

Verified OK.

8.6.2 Solving as second order ode can be made integrable ode

 Multiplying the ode by y^{\prime} gives$$
4 y^{\prime} y^{\prime \prime}+9 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(4 y^{\prime} y^{\prime \prime}+9 y y^{\prime}\right) d x=0 \\
2 y^{\prime 2}+\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{\sqrt{-9 y^{2}+2 c_{1}}}{2} \tag{1}\\
y^{\prime} & =-\frac{\sqrt{-9 y^{2}+2 c_{1}}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{2}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{2}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =c_{3}+x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{2} \tag{1}\\
-\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =c_{3}+x \tag{2}
\end{align*}
$$

Figure 404: Slope field plot

Verification of solutions

$$
\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=x+c_{2}
$$

Verified OK.

$$
-\frac{2 \arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=c_{3}+x
$$

Verified OK.

8.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =4 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 374: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{3 x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos \left(\frac{3 x}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos \left(\frac{3 x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos \left(\frac{3 x}{2}\right) \int \frac{1}{\cos \left(\frac{3 x}{2}\right)^{2}} d x \\
& =\cos \left(\frac{3 x}{2}\right)\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos \left(\frac{3 x}{2}\right)\right)+c_{2}\left(\cos \left(\frac{3 x}{2}\right)\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{3 x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{3 x}{2}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 405: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{3 x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{3 x}{2}\right)}{3}
$$

Verified OK.

8.6.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{9 y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{9 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}+\frac{9}{4}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-9})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{3 \mathrm{I}}{2}, \frac{3 \mathrm{I}}{2}\right)
$$

- \quad 1st solution of the ODE

$$
y_{1}(x)=\cos \left(\frac{3 x}{2}\right)
$$

- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin \left(\frac{3 x}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2) +9*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin \left(\frac{3 x}{2}\right)+c_{2} \cos \left(\frac{3 x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[y'' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

8.7 problem 13

8.7.1 Solving as second order linear constant coeff ode 2061
8.7.2 Solving using Kovacic algorithm 2063
8.7.3 Maple step by step solution . 2067

Internal problem ID [629]
Internal file name [OUTPUT/629_Sunday_June_05_2022_01_46_05_AM_47762062/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+2 y^{\prime}+\frac{5 y}{4}=0
$$

8.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=\frac{5}{4}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\frac{5 \mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+\frac{5}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=\frac{5}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)\left(\frac{5}{4}\right)} \\
& =-1 \pm \frac{i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-1+\frac{i}{2} \\
\lambda_{2} & =-1-\frac{i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-1+\frac{i}{2} \\
\lambda_{2} & =-1-\frac{i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=\frac{1}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Figure 406: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right)
$$

Verified OK.

8.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+\frac{5 y}{4} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=\frac{5}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 376: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(2 \tan \left(\frac{x}{2}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)\left(2 \tan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)+2 c_{2} \mathrm{e}^{-x} \sin \left(\frac{x}{2}\right) \tag{1}
\end{equation*}
$$

Figure 407: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)+2 c_{2} \mathrm{e}^{-x} \sin \left(\frac{x}{2}\right)
$$

Verified OK.

8.7.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+2 y^{\prime}+\frac{5 y}{4}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+\frac{5}{4}=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-1})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-1-\frac{\mathrm{I}}{2},-1+\frac{\mathrm{I}}{2}\right)
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-x} \sin \left(\frac{x}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos \left(\frac{x}{2}\right)+c_{2} \mathrm{e}^{-x} \sin \left(\frac{x}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve(diff $(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+125 / 100 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(c_{1} \sin \left(\frac{x}{2}\right)+c_{2} \cos \left(\frac{x}{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 30
DSolve[y''[x] $+2 * y$ ' $[x]+125 / 100 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(c_{2} \cos \left(\frac{x}{2}\right)+c_{1} \sin \left(\frac{x}{2}\right)\right)
$$

8.8 problem 14

8.8.1 Solving as second order linear constant coeff ode 2069
8.8.2 Solving using Kovacic algorithm 2071
8.8.3 Maple step by step solution . 2075

Internal problem ID [630]
Internal file name [OUTPUT/630_Sunday_June_05_2022_01_46_06_AM_17484274/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
9 y^{\prime \prime}+9 y^{\prime}-4 y=0
$$

8.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=9, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}+9 \lambda \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}+9 \lambda-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=9, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-9}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{9^{2}-(4)(9)(-4)} \\
& =-\frac{1}{2} \pm \frac{5}{6}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{6} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} \\
& \lambda_{2}=-\frac{4}{3}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{3}\right) x}+c_{2} e^{\left(-\frac{4}{3}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}} \tag{1}
\end{equation*}
$$

Figure 408: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{4 x}{3}}
$$

Verified OK.

8.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}+9 y^{\prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=9 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{36} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=36
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{36} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 378: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{36}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{6}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{9}{9} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{4 x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{9}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3 e^{\frac{5 x}{3}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{4 x}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{4 x}{3}}\left(\frac{3 \mathrm{e}^{\frac{5 x}{3}}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+\frac{3 c_{2} \mathrm{e}^{\frac{x}{3}}}{5} \tag{1}
\end{equation*}
$$

Figure 409: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+\frac{3 c_{2} \mathrm{e}^{\frac{x}{3}}}{5}
$$

Verified OK.

8.8.3 Maple step by step solution

Let's solve

$$
9 y^{\prime \prime}+9 y^{\prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}+\frac{4 y}{9}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}-\frac{4 y}{9}=0$
- Characteristic polynomial of ODE

$$
r^{2}+r-\frac{4}{9}=0
$$

- Factor the characteristic polynomial
$\frac{(3 r+4)(3 r-1)}{9}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{4}{3}, \frac{1}{3}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{4 x}{3}}$
- $\quad 2 \mathrm{nd}$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{x}{3}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{4 x}{3}}+c_{2} \mathrm{e}^{\frac{x}{3}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(9*diff(y(x),x$2) +9*diff(y(x),x)-4*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\left(c_{2} \mathrm{e}^{\frac{5 x}{3}}+c_{1}\right) \mathrm{e}^{-\frac{4 x}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 26
DSolve[9*y' ' $[\mathrm{x}]+9 * y$ ' $[\mathrm{x}]-4 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-4 x / 3}\left(c_{2} e^{5 x / 3}+c_{1}\right)
$$

8.9 problem 15

8.9.1 Solving as second order linear constant coeff ode 2077
8.9.2 Solving using Kovacic algorithm 2079
8.9.3 Maple step by step solution . 2083

Internal problem ID [631]
Internal file name [OUTPUT/631_Sunday_June_05_2022_01_46_06_AM_45655324/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y^{\prime}+\frac{5 y}{4}=0
$$

8.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=\frac{5}{4}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\frac{5 \mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+\frac{5}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=\frac{5}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)\left(\frac{5}{4}\right)} \\
& =-\frac{1}{2} \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+i \\
\lambda_{2} & =-\frac{1}{2}-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+i \\
& \lambda_{2}=-\frac{1}{2}-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Figure 410: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Verified OK.

8.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+\frac{5 y}{4} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=\frac{5}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 380: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos (x)(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x) \tag{1}
\end{equation*}
$$

Figure 411: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)
$$

Verified OK.

8.9.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y^{\prime}+\frac{5 y}{4}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+r+\frac{5}{4}=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\mathrm{I},-\frac{1}{2}+\mathrm{I}\right)
$$

- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos (x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff $(y(x), x \$ 2)+\operatorname{diff}(y(x), x)+125 / 100 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24
DSolve $[y$ '' $[x]+y$ ' $[x]+125 / 100 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x / 2}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

8.10 problem 16

8.10.1 Solving as second order linear constant coeff ode 2085
8.10.2 Solving using Kovacic algorithm 2087
8.10.3 Maple step by step solution . 2091

Internal problem ID [632]
Internal file name [DUTPUT/632_Sunday_June_05_2022_01_46_07_AM_6524054/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+4 y^{\prime}+\frac{25 y}{4}=0
$$

8.10.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=\frac{25}{4}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+\frac{25 \mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+\frac{25}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=\frac{25}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)\left(\frac{25}{4}\right)} \\
& =-2 \pm \frac{3 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+\frac{3 i}{2} \\
& \lambda_{2}=-2-\frac{3 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+\frac{3 i}{2} \\
& \lambda_{2}=-2-\frac{3 i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=\frac{3}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-2 x}\left(c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Figure 412: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(c_{1} \cos \left(\frac{3 x}{2}\right)+c_{2} \sin \left(\frac{3 x}{2}\right)\right)
$$

Verified OK.

8.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+\frac{25 y}{4} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=\frac{25}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 382: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{3 x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-2 x} \sin \left(\frac{3 x}{2}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 413: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-2 x} \sin \left(\frac{3 x}{2}\right)}{3}
$$

Verified OK.

8.10.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+\frac{25 y}{4}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+4 r+\frac{25}{4}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-9})}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(-2-\frac{3 \mathrm{I}}{2},-2+\frac{3 \mathrm{I}}{2}\right)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-2 x} \sin \left(\frac{3 x}{2}\right)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x} \cos \left(\frac{3 x}{2}\right)+c_{2} \mathrm{e}^{-2 x} \sin \left(\frac{3 x}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+ 4*diff(y(x),x)+625/100*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(c_{1} \sin \left(\frac{3 x}{2}\right)+c_{2} \cos \left(\frac{3 x}{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 30

```
DSolve[y''[x]+4*y'[x]+625/100*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} \cos \left(\frac{3 x}{2}\right)+c_{1} \sin \left(\frac{3 x}{2}\right)\right)
$$

8.11 problem 17

8.11.1 Existence and uniqueness analysis 2093
8.11.2 Solving as second order linear constant coeff ode 2094
8.11.3 Solving as second order ode can be made integrable ode 2096
8.11.4 Solving using Kovacic algorithm 2099
8.11.5 Maple step by step solution . 2103

Internal problem ID [633]
Internal file name [OUTPUT/633_Sunday_June_05_2022_01_46_08_AM_45312836/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

8.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\sin (2 x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (2 x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (2 x)}{2}
$$

Verified OK.

8.11.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+4 y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+4 y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{\left(2 \tan \left(2 x+2 c_{2}\right)^{2}+2\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(2 x+2 c_{2}\right)^{2}+1}}}{2}-\frac{\tan \left(2 x+2 c_{2}\right)^{2} \sqrt{2} c_{1}\left(2 \tan \left(2 x+2 c_{2}\right)^{2}+2\right)}{2 \sqrt{\frac{c_{1}}{\tan \left(2 x+2 c_{2}\right)^{2}+1}}\left(\tan \left(2 x+2 c_{2}\right)^{2}+1\right)^{2}}$
substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{\cos \left(2 c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(2 c_{2}\right)^{2} c_{1}}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+1}}\right)}{2}=x
$$

Looking at the Second solution

$$
\begin{equation*}
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\left(2 \tan \left(2 c_{3}+2 x\right)^{2}+2\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(2 c_{3}+2 x\right)^{2}+1}}}{2}+\frac{\tan \left(2 c_{3}+2 x\right)^{2} \sqrt{2} c_{1}\left(2 \tan \left(2 c_{3}+2 x\right)^{2}+2\right)}{2 \sqrt{\frac{c_{1}}{\tan \left(2 c_{3}+2 x\right)^{2}+1}}\left(\tan \left(2 c_{3}+2 x\right)^{2}+1\right)^{2}}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-\frac{\cos \left(2 c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(2 c_{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Warning, unable to solve for constants of Summary
The solution(s) found are the following
integrations.

$$
\begin{equation*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+1}}\right)}{2}=x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+1}}\right)}{2}=x
$$

Verified OK.

8.11.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 384: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\sin (2 x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (2 x)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (2 x)}{2}
$$

Verified OK.

8.11.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\sin (2 x)}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{\sin (2 x)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([diff(y(x),x$2)+4*y(x) = 0,y(0) = 0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\sin (2 x)}{2}
$$

Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 10

```
DSolve[{y''[x]+4*y[x]==0,{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions >> True]
```

$$
y(x) \rightarrow \sin (x) \cos (x)
$$

8.12 problem 18

8.12.1 Existence and uniqueness analysis 2105
8.12.2 Solving as second order linear constant coeff ode 2106
8.12.3 Solving using Kovacic algorithm 2108
8.12.4 Maple step by step solution . 2112

Internal problem ID [634]
Internal file name [OUTPUT/634_Sunday_June_05_2022_01_46_09_AM_49749350/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

8.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =5 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.12.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))
$$

Verified OK.

8.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 386: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x} \cos (x)+c_{2} \mathrm{e}^{-2 x} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x} \cos (x)-c_{1} \mathrm{e}^{-2 x} \sin (x)-2 c_{2} \mathrm{e}^{-2 x} \sin (x)+c_{2} \mathrm{e}^{-2 x} \cos (x)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-2 x} \cos (x)+2 \mathrm{e}^{-2 x} \sin (x)
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))
$$

Verified OK.

8.12.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y^{\prime}+5 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+4 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-2-\mathrm{I},-2+\mathrm{I})$
- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x} \cos (x)
$$

- \quad 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-2 x} \sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x} \cos (x)+c_{2} \mathrm{e}^{-2 x} \sin (x)$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x} \cos (x)+c_{2} \mathrm{e}^{-2 x} \sin (x)$
- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x} \cos (x)-c_{1} \mathrm{e}^{-2 x} \sin (x)-2 c_{2} \mathrm{e}^{-2 x} \sin (x)+c_{2} \mathrm{e}^{-2 x} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-2 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify
$y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))$
- \quad Solution to the IVP
$y=\mathrm{e}^{-2 x}(\cos (x)+2 \sin (x))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve([diff $(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(0)=1, D(y)(0)=0], y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18
DSolve $\left[\left\{y^{\prime \prime}[x]+4 * y\right.\right.$ ' $\left.[x]+5 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow e^{-2 x}(2 \sin (x)+\cos (x))
$$

8.13 problem 19

8.13.1 Existence and uniqueness analysis 2115
8.13.2 Solving as second order linear constant coeff ode 2116
8.13.3 Solving using Kovacic algorithm 2118
8.13.4 Maple step by step solution . 2122

Internal problem ID [635]
Internal file name [OUTPUT/635_Sunday_June_05_2022_01_46_10_AM_46194284/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 19.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{2}\right)=0, y^{\prime}\left(\frac{\pi}{2}\right)=2\right]
$$

8.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =5 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is inside this domain. The domain of $q(x)=5$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{2}$ is also inside this domain. Hence solution exists and is unique.

8.13.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(5)} \\
& =1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=-c_{1} \mathrm{e}^{\frac{\pi}{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{x}\left(-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)\right)
$$

substituting $y^{\prime}=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
2=\left(-c_{1}-2 c_{2}\right) \mathrm{e}^{\frac{\pi}{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-\mathrm{e}^{-\frac{\pi}{2}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

Verified OK.

8.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 388: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x} \cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \cos (2 x)+\frac{\mathrm{e}^{x} c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=-c_{1} \mathrm{e}^{\frac{\pi}{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x} \cos (2 x)-2 c_{1} \mathrm{e}^{x} \sin (2 x)+\frac{\mathrm{e}^{x} c_{2} \sin (2 x)}{2}+\mathrm{e}^{x} c_{2} \cos (2 x)
$$

substituting $y^{\prime}=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
2=\left(-c_{1}-c_{2}\right) \mathrm{e}^{\frac{\pi}{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-2 \mathrm{e}^{-\frac{\pi}{2}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

Verified OK.

8.13.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}+5 y=0, y\left(\frac{\pi}{2}\right)=0,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(1-2 \mathrm{I}, 1+2 \mathrm{I})$
- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x} \cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{x} \cos (2 x)+\mathrm{e}^{x} c_{2} \sin (2 x)$
Check validity of solution $y=c_{1} \mathrm{e}^{x} \cos (2 x)+\mathrm{e}^{x} c_{2} \sin (2 x)$
- Use initial condition $y\left(\frac{\pi}{2}\right)=0$

$$
0=-c_{1} \mathrm{e}^{\frac{\pi}{2}}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{x} \cos (2 x)-2 c_{1} \mathrm{e}^{x} \sin (2 x)+\mathrm{e}^{x} c_{2} \sin (2 x)+2 \mathrm{e}^{x} c_{2} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=2$

$$
2=-c_{1} \mathrm{e}^{\frac{\pi}{2}}-2 \mathrm{e}^{\frac{\pi}{2}} c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=-\frac{1}{\mathrm{e}^{\frac{\pi}{2}}}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

- \quad Solution to the IVP

$$
y=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve $([\operatorname{diff}(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(1 / 2 * \operatorname{Pi})=0, D(y)(1 / 2 * \operatorname{Pi})=2], y(x)$, sin

$$
y(x)=-\sin (2 x) \mathrm{e}^{-\frac{\pi}{2}+x}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve $\left[\left\{y y^{\prime} \cdot[x]-2 * y\right.\right.$ ' $\left.[x]+5 * y[x]==0,\left\{y[\mathrm{Pi} / 2]==0, y^{\prime}[\mathrm{Pi} / 2]==2\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow-e^{x-\frac{\pi}{2}} \sin (2 x)
$$

8.14 problem 20

8.14.1 Existence and uniqueness analysis 2125
8.14.2 Solving as second order linear constant coeff ode 2126
8.14.3 Solving as second order ode can be made integrable ode 2129
8.14.4 Solving using Kovacic algorithm 2131
8.14.5 Maple step by step solution . 2135

Internal problem ID [636]
Internal file name [OUTPUT/636_Sunday_June_05_2022_01_46_11_AM_56093143/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_oode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{3}\right)=2, y^{\prime}\left(\frac{\pi}{3}\right)=-4\right]
$$

8.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{3}$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{3}$ is also inside this domain. Hence solution exists and is unique.

8.14.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
2=\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)
$$

substituting $y^{\prime}=-4$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
-4=-\frac{\sqrt{3} c_{1}}{2}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \sqrt{3}+1 \\
& c_{2}=\sqrt{3}-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (x) \sqrt{3}+\sin (x) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Which simplifies to

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Verified OK.

8.14.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y y^{\prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y y^{\prime}\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{3}+x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
\arctan \left(\frac{2}{\sqrt{-4+2 c_{1}}}\right)=\frac{\pi}{3}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\left(\tan \left(x+c_{2}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}-\frac{\tan \left(x+c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(x+c_{2}\right)^{2}+1}}\left(\tan \left(x+c_{2}\right)^{2}+1\right)}
$$

substituting $y^{\prime}=-4$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
-4=\frac{\cos \left(\frac{\pi}{3}+c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(\frac{\pi}{3}+c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{3}+x \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
-\arctan \left(\frac{2}{\sqrt{-4+2 c_{1}}}\right)=c_{3}+\frac{\pi}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(c_{3}+x\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}+\frac{\tan \left(c_{3}+x\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(c_{3}+x\right)^{2}+1}}\left(\tan \left(c_{3}+x\right)^{2}+1\right)}
$$

substituting $y^{\prime}=-4$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
-4=-\frac{\cos \left(c_{3}+\frac{\pi}{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(c_{3}+\frac{\pi}{3}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=10 \\
& c_{3}=-\arctan \left(\frac{1}{2}\right)-\frac{\pi}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+20}}\right)=-\arctan \left(\frac{1}{2}\right)-\frac{\pi}{3}+x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+20}}\right)=-\arctan \left(\frac{1}{2}\right)-\frac{\pi}{3}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+20}}\right)=-\arctan \left(\frac{1}{2}\right)-\frac{\pi}{3}+x
$$

Verified OK.

8.14.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 390: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x)+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
2=\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)
$$

substituting $y^{\prime}=-4$ and $x=\frac{\pi}{3}$ in the above gives

$$
\begin{equation*}
-4=-\frac{\sqrt{3} c_{1}}{2}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \sqrt{3}+1 \\
& c_{2}=\sqrt{3}-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \cos (x) \sqrt{3}+\sin (x) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Which simplifies to

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Verified OK.

8.14.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y\left(\frac{\pi}{3}\right)=2,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{3}\right\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE $r^{2}+1=0$
- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (x)+c_{2} \sin (x)
$$

$\square \quad$ Check validity of solution $y=c_{1} \cos (x)+c_{2} \sin (x)$

- Use initial condition $y\left(\frac{\pi}{3}\right)=2$

$$
2=\frac{c_{1}}{2}+\frac{\sqrt{3} c_{2}}{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sin (x)+c_{2} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{3}\right\}}=-4$
$-4=-\frac{\sqrt{3} c_{1}}{2}+\frac{c_{2}}{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2 \sqrt{3}+1, c_{2}=\sqrt{3}-2\right\}$
- Substitute constant values into general solution and simplify

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

- \quad Solution to the IVP

$$
y=(2 \cos (x)+\sin (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23
dsolve([diff $(y(x), x \$ 2)+y(x)=0, y(1 / 3 * P i)=2, D(y)(1 / 3 * P i)=-4], y(x)$, singsol=all)

$$
y(x)=(\sin (x)+2 \cos (x)) \sqrt{3}+\cos (x)-2 \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 28
DSolve[\{y''[x]+y[x]==0,\{y[Pi/3]==2,y'[Pi/3]==-4\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow(\sqrt{3}-2) \sin (x)+(1+2 \sqrt{3}) \cos (x)
$$

8.15 problem 21

8.15.1 Existence and uniqueness analysis 2138
8.15.2 Solving as second order linear constant coeff ode 2139
8.15.3 Solving using Kovacic algorithm 2142
8.15.4 Maple step by step solution . 2146

Internal problem ID [637]
Internal file name [OUTPUT/637_Sunday_June_05_2022_01_46_12_AM_12825249/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}+\frac{5 y}{4}=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=1\right]
$$

8.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{5}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+\frac{5 y}{4}=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{5}{4}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.15.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=\frac{5}{4}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\frac{5 \mathrm{e}^{\lambda x}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda+\frac{5}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=\frac{5}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)\left(\frac{5}{4}\right)} \\
& =-\frac{1}{2} \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+i \\
& \lambda_{2}=-\frac{1}{2}-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+i \\
& \lambda_{2}=-\frac{1}{2}-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)}{2}+\mathrm{e}^{-\frac{x}{2}}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

Verified OK.

8.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}+\frac{5 y}{4} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=\frac{5}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 392: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos (x)(\tan (x))\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)}{2}-c_{1} \mathrm{e}^{-\frac{x}{2}} \sin (x)-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)}{2}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos (x)
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5 \mathrm{e}^{-\frac{x}{2}} \sin (x)}{2}+3 \mathrm{e}^{-\frac{x}{2}} \cos (x)
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

Verified OK.

8.15.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y^{\prime}+\frac{5 y}{4}=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE $r^{2}+r+\frac{5}{4}=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\mathrm{I},-\frac{1}{2}+\mathrm{I}\right)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos (x)
$$

- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)$
- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{2}} \cos (x)}{2}-c_{1} \mathrm{e}^{-\frac{x}{2}} \sin (x)-\frac{c_{2} \mathrm{e}^{-\frac{x}{2}} \sin (x)}{2}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=-\frac{c_{1}}{2}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=\frac{5}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{-\frac{x}{2}}(6 \cos (x)+5 \sin (x))}{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve([diff(y(x),x$2)+ diff (y(x),x)+125/100*y(x) = 0,y(0) = 3, D(y)(0) = 1],y(x), singsol=a
```

$$
y(x)=\frac{\mathrm{e}^{-\frac{x}{2}}(5 \sin (x)+6 \cos (x))}{2}
$$

Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 25
DSolve[\{y'' $[x]+y$ ' $\left.[x]+125 / 100 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow \frac{1}{2} e^{-x / 2}(5 \sin (x)+6 \cos (x))
$$

8.16 problem 22

8.16.1 Existence and uniqueness analysis 2148
8.16.2 Solving as second order linear constant coeff ode 2149
8.16.3 Solving using Kovacic algorithm 2152
8.16.4 Maple step by step solution . 2156

Internal problem ID [638]
Internal file name [OUTPUT/638_Sunday_June_05_2022_01_46_13_AM_47679787/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 22.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

With initial conditions

$$
\left[y\left(\frac{\pi}{4}\right)=2, y^{\prime}\left(\frac{\pi}{4}\right)=-2\right]
$$

8.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

The domain of $p(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{4}$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\frac{\pi}{4}$ is also inside this domain. Hence solution exists and is unique.

8.16.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(2)} \\
& =-1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-1+i \\
\lambda_{2} & =-1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{4}$ in the above gives

$$
\begin{equation*}
2=\frac{\left(c_{1}+c_{2}\right) \sqrt{2} \mathrm{e}^{-\frac{\pi}{4}}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

substituting $y^{\prime}=-2$ and $x=\frac{\pi}{4}$ in the above gives

$$
\begin{equation*}
-2=-\sqrt{2} \mathrm{e}^{-\frac{\pi}{4}} c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}} \\
& c_{2}=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sqrt{2} \cos (x) \mathrm{e}^{\frac{\pi}{4}-x}+\sqrt{2} \sin (x) \mathrm{e}^{\frac{\pi}{4}-x}
$$

Which simplifies to

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

Verified OK.

8.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 394: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{-x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{-x}(\tan (x))\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{4}$ in the above gives

$$
\begin{equation*}
2=\frac{\left(c_{1}+c_{2}\right) \sqrt{2} \mathrm{e}^{-\frac{\pi}{4}}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sin (x) \mathrm{e}^{-x}-c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \cos (x) \mathrm{e}^{-x}-c_{2} \sin (x) \mathrm{e}^{-x}
$$

substituting $y^{\prime}=-2$ and $x=\frac{\pi}{4}$ in the above gives

$$
\begin{equation*}
-2=-\sqrt{2} \mathrm{e}^{-\frac{\pi}{4}} c_{1} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}} \\
& c_{2}=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\sqrt{2} \cos (x) \mathrm{e}^{\frac{\pi}{4}-x}+\sqrt{2} \sin (x) \mathrm{e}^{\frac{\pi}{4}-x}
$$

Which simplifies to

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x)) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

Verified OK.

8.16.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+2 y=0, y\left(\frac{\pi}{4}\right)=2,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{4}\right\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+2=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-1-\mathrm{I},-1+\mathrm{I})$
- 1st solution of the ODE
$y_{1}(x)=\cos (x) \mathrm{e}^{-x}$
- \quad 2nd solution of the ODE
$y_{2}(x)=\sin (x) \mathrm{e}^{-x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x}$
Check validity of solution $y=c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \sin (x) \mathrm{e}^{-x}$
- Use initial condition $y\left(\frac{\pi}{4}\right)=2$
$2=\frac{\sqrt{2} \mathrm{e}^{-\frac{\pi}{4}} c_{1}}{2}+\frac{\sqrt{2} \mathrm{e}^{-\frac{\pi}{4}} c_{2}}{2}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \sin (x) \mathrm{e}^{-x}-c_{1} \cos (x) \mathrm{e}^{-x}+c_{2} \cos (x) \mathrm{e}^{-x}-c_{2} \sin (x) \mathrm{e}^{-x}$
- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{4}\right\}}=-2$
$-2=-\sqrt{2} \mathrm{e}^{-\frac{\pi}{4}} c_{1}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{\sqrt{2}}{\mathrm{e}^{-\frac{\pi}{4}}}, c_{2}=\frac{\sqrt{2}}{\mathrm{e}^{-\frac{\pi}{4}}}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

- \quad Solution to the IVP

$$
y=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}-x}(\cos (x)+\sin (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 21

```
dsolve([diff(y(x),x$2)+ 2*diff (y(x),x)+2*y(x) = 0,y(1/4*Pi) = 2, D (y)(1/4*Pi) = -2],y(x), si
```

$$
y(x)=\sqrt{2} \mathrm{e}^{-x+\frac{\pi}{4}}(\sin (x)+\cos (x))
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+2 * y\right.\right.$ ' $\left.[x]+2 * y[x]==0,\left\{y[P i / 4]==2, y^{\prime}[P i / 4]==-2\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \sqrt{2} e^{\frac{\pi}{4}-x}(\sin (x)+\cos (x))
$$

8.17 problem 23

8.17.1 Existence and uniqueness analysis 2158
8.17.2 Solving as second order linear constant coeff ode 2159
8.17.3 Solving using Kovacic algorithm 2162
8.17.4 Maple step by step solution . 2166

Internal problem ID [639]
Internal file name [OUTPUT/639_Sunday_June_05_2022_01_46_15_AM_93629760/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
u^{\prime \prime}-u^{\prime}+2 u=0
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=0\right]
$$

8.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(x) u^{\prime}+q(x) u=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1 \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}-u^{\prime}+2 u=0
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.17.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(x)+B u^{\prime}(x)+C u(x)=0
$$

Where in the above $A=1, B=-1, C=2$. Let the solution be $u=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(2)} \\
& =\frac{1}{2} \pm \frac{i \sqrt{7}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{7}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{7}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=\frac{1}{2}$ and $\beta=\frac{\sqrt{7}}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
u=e^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=\frac{\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)}{2}+\mathrm{e}^{\frac{x}{2}}\left(-\frac{c_{1} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{c_{2} \sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}\right)
$$

substituting $u^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+\frac{\sqrt{7} c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{2 \sqrt{7}}{7}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=-\frac{2 \sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} \sqrt{7}}{7}+2 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
$$

Which simplifies to

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

Verified OK.

8.17.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}-u^{\prime}+2 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=u e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-7}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-7 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{7 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then u is found using the inverse transformation

$$
u=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 396: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{7}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{7} x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{u_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(u_{1}\right)^{2}} d x \\
& =u_{1} \int \frac{e^{x}}{\left(u_{1}\right)^{2}} d x \\
& =u_{1}\left(\frac{2 \sqrt{7} \tan \left(\frac{\sqrt{7} x}{2}\right)}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)\left(\frac{2 \sqrt{7} \tan \left(\frac{\sqrt{7} x}{2}\right)}{7}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
u=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\frac{2 c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} \sqrt{7}}{7} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+c_{2} \cos \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}}+\frac{c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} \sqrt{7}}{7}
$$

substituting $u^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=-\frac{2 \sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} \sqrt{7}}{7}+2 \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
$$

Which simplifies to

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

Verified OK.

8.17.4 Maple step by step solution

Let's solve
$\left[u^{\prime \prime}-u^{\prime}+2 u=0, u(0)=2,\left.u^{\prime}\right|_{\{x=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$u^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-r+2=0$
- Use quadratic formula to solve for r
$r=\frac{1 \pm(\sqrt{-7})}{2}$
- Roots of the characteristic polynomial
$r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{7}}{2}\right)$
- 1st solution of the ODE

$$
u_{1}(x)=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
$$

- 2 nd solution of the ODE

$$
u_{2}(x)=\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right)
$$

- General solution of the ODE

$$
u=c_{1} u_{1}(x)+c_{2} u_{2}(x)
$$

- Substitute in solutions

$$
u=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} c_{2}
$$

$\square \quad$ Check validity of solution $u=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} c_{2}$

- Use initial condition $u(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
u^{\prime}=\frac{c_{1} e^{\frac{x}{2}} \cos \left(\frac{\sqrt{\sqrt{7}} x}{2}\right)}{2}-\frac{c_{1} e^{\frac{x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{\sqrt{7} \cos \left(\frac{\sqrt{\sqrt{x}} x}{2}\right) \mathrm{e}^{\frac{x}{2}} c_{2}}{2}+\frac{\sin \left(\frac{\sqrt{7} x}{2}\right) \mathrm{e}^{\frac{x}{2}} c_{2}}{2}
$$

- Use the initial condition $\left.u^{\prime}\right|_{\{x=0\}}=0$

$$
0=\frac{c_{1}}{2}+\frac{\sqrt{7} c_{2}}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-\frac{2 \sqrt{7}}{7}\right\}
$$

- Substitute constant values into general solution and simplify

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

- Solution to the IVP

$$
u=-\frac{2\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \mathrm{e}^{\frac{x}{2}}}{7}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 31

```
dsolve([diff(u(x),x$2)- diff(u(x),x)+2*u(x) = 0,u(0) = 2, D(u)(0) = 0],u(x), singsol=all)
```

$$
u(x)=-\frac{2 \mathrm{e}^{\frac{x}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)-7 \cos \left(\frac{\sqrt{7} x}{2}\right)\right)}{7}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 19
DSolve $\left[\left\{u^{\prime}{ }^{\prime}[x]+4 * u '[x]+5 * u[x]==0,\left\{u[0]==2, u{ }^{\prime}[0]==0\right\}\right\}, u[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
u(x) \rightarrow 2 e^{-2 x}(2 \sin (x)+\cos (x))
$$

8.18 problem 24

8.18.1 Existence and uniqueness analysis 2169
8.18.2 Solving as second order linear constant coeff ode 2170
8.18.3 Solving using Kovacic algorithm 2173
8.18.4 Maple step by step solution . 2177

Internal problem ID [640]
Internal file name [OUTPUT/640_Sunday_June_05_2022_01_46_16_AM_5872921/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
5 u^{\prime \prime}+2 u^{\prime}+7 u=0
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=1\right]
$$

8.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(x) u^{\prime}+q(x) u=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{5} \\
q(x) & =\frac{7}{5} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}+\frac{2 u^{\prime}}{5}+\frac{7 u}{5}=0
$$

The domain of $p(x)=\frac{2}{5}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{7}{5}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.18.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(x)+B u^{\prime}(x)+C u(x)=0
$$

Where in the above $A=5, B=2, C=7$. Let the solution be $u=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
5 \lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+7 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
5 \lambda^{2}+2 \lambda+7=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=5, B=2, C=7$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(5)} \pm \frac{1}{(2)(5)} \sqrt{2^{2}-(4)(5)(7)} \\
& =-\frac{1}{5} \pm \frac{i \sqrt{34}}{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{5}+\frac{i \sqrt{34}}{5} \\
& \lambda_{2}=-\frac{1}{5}-\frac{i \sqrt{34}}{5}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{5}+\frac{i \sqrt{34}}{5} \\
& \lambda_{2}=-\frac{1}{5}-\frac{i \sqrt{34}}{5}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{5}$ and $\beta=\frac{\sqrt{34}}{5}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
u=e^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{34} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{34} x}{5}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{34} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{34} x}{5}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$u^{\prime}=-\frac{\mathrm{e}^{-\frac{x}{5}}\left(c_{1} \cos \left(\frac{\sqrt{34} x}{5}\right)+c_{2} \sin \left(\frac{\sqrt{34} x}{5}\right)\right)}{5}+\mathrm{e}^{-\frac{x}{5}}\left(-\frac{c_{1} \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)}{5}+\frac{c_{2} \sqrt{34} \cos \left(\frac{\sqrt{34} x}{5}\right)}{5}\right)$
substituting $u^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{5}+\frac{\sqrt{34} c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=\frac{7 \sqrt{34}}{34}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=\frac{7 \sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} \sqrt{34}}{34}+2 \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)
$$

Which simplifies to

$$
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34}
$$

Verified OK.

8.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
5 u^{\prime \prime}+2 u^{\prime}+7 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=5 \\
& B=2 \tag{3}\\
& C=7
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=u e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-34}{25} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-34 \\
& t=25
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{34 z(x)}{25} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then u is found using the inverse transformation

$$
u=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 398: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{34}{25}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{\sqrt{34} x}{5}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\frac{1}{2} \frac{2}{5} d x} \\
& =z_{1} e^{-\frac{x}{5}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{5}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{u_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{2}{5} d x}}{\left(u_{1}\right)^{2}} d x \\
& =u_{1} \int \frac{e^{-\frac{2 x}{5}}}{\left(u_{1}\right)^{2}} d x \\
& =u_{1}\left(\frac{5 \sqrt{34} \tan \left(\frac{\sqrt{34} x}{5}\right)}{34}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)\left(\frac{5 \sqrt{34} \tan \left(\frac{\sqrt{34} x}{5}\right)}{34}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
u=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)+\frac{5 c_{2} \sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} \sqrt{34}}{34} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)}{5}-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)}{5}+c_{2} \cos \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}}-\frac{c_{2} \sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} \sqrt{34}}{34}
$$

substituting $u^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=\frac{7}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=\frac{7 \sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} \sqrt{34}}{34}+2 \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)
$$

Which simplifies to

$$
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34}
$$

Verified OK.

8.18.4 Maple step by step solution

Let's solve

$$
\left[5 u^{\prime \prime}+2 u^{\prime}+7 u=0, u(0)=2,\left.u^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
u^{\prime \prime}
$$

- Isolate 2nd derivative

$$
u^{\prime \prime}=-\frac{2 u^{\prime}}{5}-\frac{7 u}{5}
$$

- Group terms with u on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
u^{\prime \prime}+\frac{2 u^{\prime}}{5}+\frac{7 u}{5}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+\frac{2}{5} r+\frac{7}{5}=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{2}{5}\right) \pm\left(\sqrt{-\frac{136}{25}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{5}-\frac{\mathrm{I} \sqrt{34}}{5},-\frac{1}{5}+\frac{\mathrm{I} \sqrt{34}}{5}\right)$
- $\quad 1$ st solution of the ODE
$u_{1}(x)=\mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)$
- 2nd solution of the ODE
$u_{2}(x)=\mathrm{e}^{-\frac{x}{5}} \sin \left(\frac{\sqrt{34} x}{5}\right)$
- General solution of the ODE
$u=c_{1} u_{1}(x)+c_{2} u_{2}(x)$
- Substitute in solutions
$u=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)+\sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} c_{2}$
Check validity of solution $u=c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)+\sin \left(\frac{\sqrt{34 x}}{5}\right) \mathrm{e}^{-\frac{x}{5}} c_{2}$
- Use initial condition $u(0)=2$
$2=c_{1}$
- Compute derivative of the solution

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{x}{5}} \cos \left(\frac{\sqrt{34} x}{5}\right)}{5}-\frac{c_{1} \mathrm{e}^{-\frac{x}{5} \sqrt{34}} \sin \left(\frac{\sqrt{34} x}{5}\right)}{5}+\frac{\sqrt{34} \cos \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} c_{2}}{5}-\frac{\sin \left(\frac{\sqrt{34} x}{5}\right) \mathrm{e}^{-\frac{x}{5}} c_{2}}{5}
$$

- Use the initial condition $\left.u^{\prime}\right|_{\{x=0\}}=1$
$1=-\frac{c_{1}}{5}+\frac{\sqrt{34} c_{2}}{5}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=\frac{7 \sqrt{34}}{34}\right\}$
- Substitute constant values into general solution and simplify
$u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{3} 4 x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}}{34}$
- \quad Solution to the IVP
$\left.\left.u=\frac{\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos (\sqrt{34} x\right.}{5}\right)\right) \mathrm{e}^{-\frac{x}{5}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 32

```
dsolve([5*diff(u(x),x$2)+ 2*diff(u(x),x)+7*u(x) = 0,u(0) = 2, D(u)(0) = 1],u(x), singsol=all
```

$$
u(x)=\frac{\mathrm{e}^{-\frac{x}{5}}\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right)}{34}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 48
DSolve $\left[\left\{5 * u^{\prime}{ }^{\prime}[x]+2 * u '[x]+7 * u[x]==0,\left\{u[0]==2, u u^{\prime}[0]==1\right\}\right\}, u[x], x\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
u(x) \rightarrow \frac{1}{34} e^{-x / 5}\left(7 \sqrt{34} \sin \left(\frac{\sqrt{34} x}{5}\right)+68 \cos \left(\frac{\sqrt{34} x}{5}\right)\right)
$$

8.19 problem 25

8.19.1 Existence and uniqueness analysis 2180
8.19.2 Solving as second order linear constant coeff ode 2181
8.19.3 Solving using Kovacic algorithm 2183
8.19.4 Maple step by step solution . 2187

Internal problem ID [641]
Internal file name [OUTPUT/641_Sunday_June_05_2022_01_46_17_AM_9066687/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=\alpha\right]
$$

8.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0
$$

The domain of $p(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.19.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(6)} \\
& =-1 \pm i \sqrt{5}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{5} \\
& \lambda_{2}=-1-i \sqrt{5}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{5} \\
& \lambda_{2}=-1-i \sqrt{5}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=\sqrt{5}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\mathrm{e}^{-x}\left(c_{1} \cos (x \sqrt{5})+c_{2} \sin (x \sqrt{5})\right)+\mathrm{e}^{-x}\left(-c_{1} \sqrt{5} \sin (x \sqrt{5})+c_{2} \sqrt{5} \cos (x \sqrt{5})\right)$
substituting $y^{\prime}=\alpha$ and $x=0$ in the above gives

$$
\begin{equation*}
\alpha=-c_{1}+\sqrt{5} c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=\frac{\sqrt{5}(\alpha+2)}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x} \sin (x \sqrt{5}) \sqrt{5}(\alpha+2)}{5}+2 \mathrm{e}^{-x} \cos (x \sqrt{5})
$$

Which simplifies to

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

Verified OK.

8.19.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-5 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 400: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-5$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x \sqrt{5})
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (x \sqrt{5})
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{5} \tan (x \sqrt{5})}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (x \sqrt{5})\right)+c_{2}\left(\mathrm{e}^{-x} \cos (x \sqrt{5})\left(\frac{\sqrt{5} \tan (x \sqrt{5})}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{5})+\frac{c_{2} \mathrm{e}^{-x} \sin (x \sqrt{5}) \sqrt{5}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (x \sqrt{5})-c_{1} \mathrm{e}^{-x} \sqrt{5} \sin (x \sqrt{5})-\frac{c_{2} \mathrm{e}^{-x} \sin (x \sqrt{5}) \sqrt{5}}{5}+c_{2} \mathrm{e}^{-x} \cos (x \sqrt{5})
$$

substituting $y^{\prime}=\alpha$ and $x=0$ in the above gives

$$
\begin{equation*}
\alpha=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=\alpha+2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x} \sin (x \sqrt{5}) \sqrt{5}(\alpha+2)}{5}+2 \mathrm{e}^{-x} \cos (x \sqrt{5})
$$

Which simplifies to

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

Verified OK.

8.19.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+2 y^{\prime}+6 y=0, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=\alpha\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+6=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-20})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I} \sqrt{5},-1+\mathrm{I} \sqrt{5})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (x \sqrt{5})
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (x \sqrt{5})
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{5})+\mathrm{e}^{-x} \sin (x \sqrt{5}) c_{2}
$$Check validity of solution $y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{5})+\mathrm{e}^{-x} \sin (x \sqrt{5}) c_{2}$

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (x \sqrt{5})-c_{1} \mathrm{e}^{-x} \sqrt{5} \sin (x \sqrt{5})-\mathrm{e}^{-x} \sin (x \sqrt{5}) c_{2}+\mathrm{e}^{-x} \sqrt{5} \cos (x \sqrt{5}) c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\alpha$

$$
\alpha=-c_{1}+\sqrt{5} c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=\frac{\sqrt{5}(\alpha+2)}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

- \quad Solution to the IVP

$$
y=\frac{(\sin (x \sqrt{5}) \sqrt{5}(\alpha+2)+10 \cos (x \sqrt{5})) \mathrm{e}^{-x}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 32

```
dsolve([diff (y (x),x$2)+2*\operatorname{diff}(y(x),x)+6*y(x)=0,y(0)=2, D(y)(0) = alpha],y(x), singsol=a
```

$$
y(x)=\frac{\mathrm{e}^{-x}(\sqrt{5}(\alpha+2) \sin (\sqrt{5} x)+10 \cos (\sqrt{5} x))}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 42
DSolve $\left[\left\{\mathrm{y}^{\prime} \mathrm{'}^{\prime}[\mathrm{x}]+2 * \mathrm{y}\right.\right.$ ' $[\mathrm{x}]+6 * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==2, \mathrm{y}$ ' $[0]==\backslash[$ Alpha $\left.]\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{5} e^{-x}(\sqrt{5}(\alpha+2) \sin (\sqrt{5} x)+10 \cos (\sqrt{5} x))
$$

8.20 problem 26

8.20.1 Existence and uniqueness analysis 2190
8.20.2 Solving as second order linear constant coeff ode 2191
8.20.3 Solving using Kovacic algorithm 2193
8.20.4 Maple step by step solution . 2196

Internal problem ID [642]
Internal file name [OUTPUT/642_Sunday_June_05_2022_01_46_18_AM_29576795/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 a y^{\prime}+\left(a^{2}+1\right) y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

8.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =2 a \\
q(x) & =a^{2}+1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 a y^{\prime}+\left(a^{2}+1\right) y=0
$$

The domain of $p(x)=2 a$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=a^{2}+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.20.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2 a, C=a^{2}+1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 a \lambda \mathrm{e}^{\lambda x}+\left(a^{2}+1\right) \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
a^{2}+2 a \lambda+\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2 a, C=a^{2}+1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2 a}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2 a^{2}-(4)(1)\left(a^{2}+1\right)} \\
& =-a \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-a+i \\
\lambda_{2} & =-a-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-a+i \\
& \lambda_{2}=-a-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-a$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-a x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-a x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-a \mathrm{e}^{-a x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\mathrm{e}^{-a x}\left(-c_{1} \sin (x)+c_{2} \cos (x)\right)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-a c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=a
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x))
$$

Verified OK.

8.20.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 a y^{\prime}+\left(a^{2}+1\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 a \tag{3}\\
& C=a^{2}+1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 402: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 a}{1} d x} \\
& =z_{1} e^{-a x} \\
& =z_{1}\left(\mathrm{e}^{-a x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-a x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 a}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 a x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-a x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-a x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-a x} \cos (x)+c_{2} \mathrm{e}^{-a x} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} a \mathrm{e}^{-a x} \cos (x)-c_{1} \mathrm{e}^{-a x} \sin (x)-c_{2} a \mathrm{e}^{-a x} \sin (x)+c_{2} \mathrm{e}^{-a x} \cos (x)
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-a c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=a
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-a x} \sin (x) a+\mathrm{e}^{-a x} \cos (x)
$$

Which simplifies to

$$
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-a x}(\sin (x) a+\cos (x))
$$

Verified OK.

8.20.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 a y^{\prime}+\left(a^{2}+1\right) y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
a^{2}+2 a r+r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2 a) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-a-\mathrm{I},-a+\mathrm{I})$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\Re(a) x} \cos (|\Im(a)+1| x)$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\Re(a) x} \sin (|\Im(a)+1| x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-\Re(a) x} \cos (|\Im(a)+1| x)+c_{2} \mathrm{e}^{-\Re(a) x} \sin (|\Im(a)+1| x)$
Check validity of solution $y=c_{1} \mathrm{e}^{-\Re(a) x} \cos (|\Im(a)+1| x)+c_{2} \mathrm{e}^{-\Re(a) x} \sin (|\Im(a)+1| x)$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \Re(a) \mathrm{e}^{-\Re(a) x} \cos (|\Im(a)+1| x)-c_{1} \mathrm{e}^{-\Re(a) x}|\Im(a)+1| \sin (|\Im(a)+1| x)-c_{2} \Re(a) \mathrm{e}^{-\Re(a) x} \operatorname{si}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-c_{1} \Re(a)+c_{2}|\Im(a)+1|
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=\frac{\Re(a)}{|\Im(a)+1|}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{\mathrm{e}^{-\Re(a) x}(\operatorname{signum}(\Im(a)+1) \sin (x(\Im(a)+1)) \Re(a)+\cos (x(\Im(a)+1))|\Im(a)+1|)}{|\Im(a)+1|}$
- \quad Solution to the IVP
$y=\frac{\mathrm{e}^{-\Re(a) x}(\operatorname{signum}(\Im(a)+1) \sin (x(\Im(a)+1)) \Re(a)+\cos (x(\Im(a)+1))|\Im(a)+1|)}{|\Im(a)+1|}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve([diff (y (x),x$2)+ 2*a*diff (y(x),x)+(a^2+1)*y(x) = 0,y(0) = 1, D(y)(0) = 0],y(x), sings
```

$$
y(x)=\mathrm{e}^{-a x}(a \sin (x)+\cos (x))
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 94
DSolve[\{y' ' $[x]+2 * a * y$ ' $\left.[x]+(a \wedge 1+1) * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{\left.e^{-\left(\left(\sqrt{a^{2}-a-1}+a\right) x\right.}\right)\left(a\left(e^{2 \sqrt{a^{2}-a-1} x}-1\right)+\sqrt{a^{2}-a-1}\left(e^{2 \sqrt{a^{2}-a-1} x}+1\right)\right)}{2 \sqrt{a^{2}-a-1}}
$$

8.21 problem 35

8.21.1 Solving as second order euler ode ode 2199
8.21.2 Solving as second order change of variable on x method 2 ode . 2201
8.21.3 Solving as second order change of variable on x method 1 ode . 2203
8.21.4 Solving as second order change of variable on y method 2 ode . 2205
8.21.5 Solving using Kovacic algorithm 2208
8.21.6 Maple step by step solution . 2213

Internal problem ID [643]
Internal file name [OUTPUT/643_Sunday_June_05_2022_01_46_19_AM_92480596/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_ [0,F(x)]•]

$$
t^{2} y^{\prime \prime}+t y^{\prime}+y=0
$$

8.21.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+t r t^{r-1}+t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+r t^{r}+t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-i \\
& r_{2}=i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-1$, the above becomes

$$
y=t^{0}\left(c_{1} e^{-i \ln (t)}+c_{2} e^{i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Verified OK.

8.21.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{t} d t\right)} d t \\
& =\int e^{-\ln (t)} d t \\
& =\int \frac{1}{t} d t \\
& =\ln (t) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{1}{t^{2}}}{\frac{1}{t^{2}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Verified OK.

8.21.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{1}{t} \frac{\sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Verified OK.

8.21.4 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
t^{2} y^{\prime \prime}+t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n}{t^{2}}+\frac{1}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{2 i}{t}+\frac{1}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+2 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+2 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-2 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-2 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{t} d t \\
\ln (u) & =(-1-2 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-2 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-2 i}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{i} \\
& =t^{i} c_{2}+\frac{i t^{-i} c_{1}}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{i}
$$

Verified OK.

8.21.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+t y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=t \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-5 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{5}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 404: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{t} \\
& =\frac{\frac{1}{2}-i}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-i}{t}\right)^{2}-\left(-\frac{5}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} t d t \\
& =t^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{\ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{t}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{-i}\right)+c_{2}\left(t^{-i}\left(-\frac{i t^{2 i}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{-i} c_{1}-\frac{i c_{2} t^{i}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{-i} c_{1}-\frac{i c_{2} t^{i}}{2}
$$

Verified OK.

8.21.6 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}+t y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{t}-\frac{y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{t}+\frac{y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+t y^{\prime}+y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2 nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+\frac{d}{d s} y(s)+y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+y(s)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(s)=\cos (s)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(s)=\sin (s)
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \cos (s)+c_{2} \sin (s)
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(t^2*diff(y(t),t$2)+t*diff(y(t),t)+y(t) = 0,y(t), singsol=all)
```

$$
y(t)=c_{1} \sin (\ln (t))+c_{2} \cos (\ln (t))
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 18
DSolve[t^2*y''[t]+t*y'[t]+y[t]==0,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow c_{1} \cos (\log (t))+c_{2} \sin (\log (t))
$$

8.22 problem 36

8.22.1 Solving as second order euler ode ode 2217
8.22.2 Solving as linear second order ode solved by an integrating factor
ode . 2218
8.22.3 Solving as second order change of variable on x method 2 ode . 2219
8.22.4 Solving as second order change of variable on x method 1 ode . 2221
8.22.5 Solving as second order change of variable on y method 1 ode . 2223
8.22.6 Solving as second order change of variable on y method 2 ode . 2225
8.22.7 Solving as second order integrable as is ode 2227
8.22.8 $\begin{aligned} & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \\ & \text { version) . } 2229\end{aligned}$
8.22.9 Solving using Kovacic algorithm 2230
8.22.10 Solving as exact linear second order ode ode 2233
8.22.11 Maple step by step solution . 2235

Internal problem ID [644]
Internal file name [OUTPUT/644_Sunday_June_05_2022_01_46_20_AM_35632985/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 36.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable__as_is", "second_order_change_of_cvariable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of_cvariable_on_y_method_2", "linear_second__order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

8.22.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+4 t r t^{r-1}+2 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+4 r t^{r}+2 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+4 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}+3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t}
$$

Verified OK.

8.22.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=\frac{4}{t}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{4}{t} d x} \\
& =t^{2}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(t^{2} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(t^{2} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(t^{2} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Or

$$
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}
$$

Verified OK.

8.22.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{4}{t} \\
& q(t)=\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{4}{t} d t\right)} d t \\
& =\int e^{-4 \ln (t)} d t \\
& =\int \frac{1}{t^{4}} d t \\
& =-\frac{1}{3 t^{3}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{2}{t^{2}}}{\frac{1}{t^{8}}} \\
& =2 t^{6} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 t^{6} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
2 t^{6}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{2}{3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{2}{3}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(-\frac{1}{t^{3}}\right)^{\frac{2}{3}}}{3}
$$

Verified OK.

8.22.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{4}{t} \\
q(t) & =\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{t^{2}} t^{3}}+\frac{4}{t} \frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c}}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)}{t^{\frac{3}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)}{t^{\frac{3}{2}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)}{t^{\frac{3}{2}}}
$$

Verified OK.

8.22.5 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{4}{t} \\
q(t) & =\frac{2}{t^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{t^{2}}-\frac{\left(\frac{4}{t}\right)^{\prime}}{2}-\frac{\left(\frac{4}{t}\right)^{2}}{4} \\
& =\frac{2}{t^{2}}-\frac{\left(-\frac{4}{t^{2}}\right)}{2}-\frac{\left(\frac{16}{t^{2}}\right)}{4} \\
& =\frac{2}{t^{2}}-\left(-\frac{2}{t^{2}}\right)-\frac{4}{t^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable t then the transformation

$$
\begin{equation*}
y=v(t) z(t) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(t)$ is given by

$$
\begin{align*}
z(t) & =\mathrm{e}^{-\left(\int \frac{p(t)}{2} d t\right)} \\
& =e^{-\int \frac{4}{2}} \\
& =\frac{1}{t^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(t)}{t^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(t)=0
$$

Which is now solved for $v(t)$ Integrating twice gives the solution

$$
v(t)=c_{1} t+c_{2}
$$

Now that $v(t)$ is known, then

$$
\begin{align*}
y & =v(t) z(t) \\
& =\left(c_{1} t+c_{2}\right)(z(t)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(t)=\frac{1}{t^{2}}
$$

Hence (7) becomes

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} t+c_{2}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Verified OK.

8.22.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{4}{t} \\
q(t) & =\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{4 n}{t^{2}}+\frac{2}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t}=0 \\
& v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{2 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{2 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{2}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{2}{t} d t \\
\ln (u) & =-2 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\frac{-\frac{c_{1}}{t}+c_{2}}{t} \\
& =\frac{c_{2} t-c_{1}}{t^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\frac{c_{1}}{t}+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-\frac{c_{1}}{t}+c_{2}}{t}
$$

Verified OK.

8.22.7 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y\right) d t=0 \\
y^{\prime} t^{2}+2 y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(t^{2} y\right) & =c_{1} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int c_{1} \mathrm{~d} t \\
& t^{2} y=c_{1} t+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} t+c_{2}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Verified OK.

8.22.8 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y=0
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y\right) d t=0 \\
y^{\prime} t^{2}+2 y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(t^{2} y\right) & =c_{1} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int c_{1} \mathrm{~d} t \\
& t^{2} y=c_{1} t+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} t+c_{2}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Verified OK.

8.22.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+4 t y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=4 t \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 406: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\frac{1}{2} \frac{t t}{t^{2}} d t} \\
& =z_{1} e^{-2 \ln (t)} \\
& =z_{1}\left(\frac{1}{t^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t^{2}}\right)+c_{2}\left(\frac{1}{t^{2}}(t)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t}
$$

Verified OK.

8.22.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =t^{2} \\
q(x) & =4 t \\
r(x) & =2 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(4)+(2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} t^{2}+2 y t=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} t^{2}+2 y t=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{2}{t} d t} \\
=t^{2}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{2} y\right) & =\left(t^{2}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(t^{2} y\right) & =c_{1} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{2} y=\int c_{1} \mathrm{~d} t \\
& t^{2} y=c_{1} t+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{2}$ results in

$$
y=\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}
$$

which simplifies to

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} t+c_{2}}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} t+c_{2}}{t^{2}}
$$

Verified OK.

8.22.11 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}+4 t y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y^{\prime}}{t}-\frac{2 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{4 y^{\prime}}{t}+\frac{2 y}{t^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+4 t y^{\prime}+2 y=0$
- Make a change of variables
$s=\ln (t)$
\square
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to t , using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the $2 n d$ derivative of y with respect to t, using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+4 \frac{d}{d s} y(s)+2 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+3 \frac{d}{d s} y(s)+2 y(s)=0
$$

- Characteristic polynomial of ODE $r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-2 s}$
- \quad 2nd solution of the ODE

$$
y_{2}(s)=\mathrm{e}^{-s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-2 s}+c_{2} \mathrm{e}^{-s}
$$

- \quad Change variables back using $s=\ln (t)$ $y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t}$
- Simplify

$$
y=\frac{c_{1}}{t^{2}}+\frac{c_{2}}{t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(t`2*diff(y(t),t$2)+4*t*diff(y(t),t)+2*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{2} t+c_{1}}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 34
DSolve[t~2*y' ' [t] $+4 * t * y$ '[t]+y[t] ==0,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t^{-\frac{3}{2}-\frac{\sqrt{5}}{2}}\left(c_{2} t^{\sqrt{5}}+c_{1}\right)
$$

8.23 problem 37

8.23.1 Solving as second order euler ode ode 2239
8.23.2 Solving as second order change of variable on x method 2 ode . 2240
8.23.3 Solving as second order change of variable on x method 1 ode . 2243
8.23.4 Solving as second order change of variable on y method 2 ode . 2245
8.23.5 Solving using Kovacic algorithm 2247
8.23.6 Maple step by step solution . 2253

Internal problem ID [645]
Internal file name [OUTPUT/645_Sunday_June_05_2022_01_46_21_AM_42626299/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 37 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+\frac{5 y}{4}=0
$$

The ode can be written as

$$
4 t^{2} y^{\prime \prime}+12 t y^{\prime}+5 y=0
$$

Which shows it is a Euler ODE.

8.23.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
4 t^{2}(r(r-1)) t^{r-2}+12 t r t^{r-1}+5 t^{r}=0
$$

Simplifying gives

$$
4 r(r-1) t^{r}+12 r t^{r}+5 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
4 r(r-1)+12 r+5=0
$$

Or

$$
\begin{equation*}
4 r^{2}+8 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1-\frac{i}{2} \\
& r_{2}=-1+\frac{i}{2}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=-1$ and $\beta=-\frac{1}{2}$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=-1, \beta=-\frac{1}{2}$, the above becomes

$$
y=t^{-1}\left(c_{1} e^{-\frac{i \ln (t)}{2}}+c_{2} e^{\frac{i \ln (t)}{2}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=\frac{1}{t}\left(c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t}
$$

Verified OK.

8.23.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+12 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{5}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{t} d t\right)} d t \\
& =\int e^{-3 \ln (t)} d t \\
& =\int \frac{1}{t^{3}} d t \\
& =-\frac{1}{2 t^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{5}{4 t^{2}}}{\frac{1}{t^{6}}} \\
& =\frac{5 t^{4}}{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 t^{4} y(\tau)}{4} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{5 t^{4}}{4}=\frac{5}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i}{4} \\
& r_{2}=\frac{1}{2}+\frac{i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \ln (\tau)}{4}}+c_{2} e^{\frac{i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{\ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)+c_{2} \sin \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)\right) \sqrt{2} \sqrt{-\frac{1}{t^{2}}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)+c_{2} \sin \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)\right) \sqrt{2} \sqrt{-\frac{1}{t^{2}}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)+c_{2} \sin \left(-\frac{\ln (2)}{4}+\frac{\ln \left(-\frac{1}{t^{2}}\right)}{4}\right)\right) \sqrt{2} \sqrt{-\frac{1}{t^{2}}}}{2}
$$

Verified OK.

8.23.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+12 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{5}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{2 c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{3}{t} \frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{2 c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{2 c}\right)^{2}} \\
& =\frac{4 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{2 \sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{\sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{\sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{2} d t}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)+c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t}
$$

Verified OK.

8.23.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+12 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{5}{4 t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{3 n}{t^{2}}+\frac{5}{4 t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1+\frac{i}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{-2+i}{t}+\frac{3}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-i}{t} d t \\
\ln (u) & =(-1-i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =i t^{-i} c_{1}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(i t^{-i} c_{1}+c_{2}\right) t^{-1+\frac{i}{2}} \\
& =t^{-1-\frac{i}{2}}\left(i c_{1}+t^{i} c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(i t^{-i} c_{1}+c_{2}\right) t^{-1+\frac{i}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(i t^{-i} c_{1}+c_{2}\right) t^{-1+\frac{i}{2}}
$$

Verified OK.

8.23.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 t^{2} y^{\prime \prime}+12 t y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 t^{2} \\
& B=12 t \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{2 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=2 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{2 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 408: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=2 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{2 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=-\frac{1}{2}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{i}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{2 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{2}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{i}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{2 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+\frac{i}{2}$	$\frac{1}{2}-\frac{i}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+\frac{i}{2}$	$\frac{1}{2}-\frac{i}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}-\frac{i}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\frac{i}{2}-\left(\frac{1}{2}-\frac{i}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{i}{2}}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{i}{2}}{t} \\
& =\frac{\frac{1}{2}-\frac{i}{2}}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{gathered}
(0)+2\left(\frac{\frac{1}{2}-\frac{i}{2}}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+\frac{i}{2}}{t^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{i}{2}}{t}\right)^{2}-\left(-\frac{1}{2 t^{2}}\right)\right)=0 \\
0=0
\end{gathered}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-\frac{i}{2}} d t \\
& =t^{\frac{1}{2}-\frac{i}{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{12 t}{4 t^{2}} d t} \\
& =z_{1} e^{-\frac{3 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{-1-\frac{i}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{12 t}{4 t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-i t^{i}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{-1-\frac{i}{2}}\right)+c_{2}\left(t^{-1-\frac{i}{2}}\left(-i t^{i}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{-1-\frac{i}{2}}-i c_{2} t^{-1+\frac{i}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{-1-\frac{i}{2}}-i c_{2} t^{-1+\frac{i}{2}}
$$

Verified OK.

8.23.6 Maple step by step solution

Let's solve
$4 y^{\prime \prime} t^{2}+12 t y^{\prime}+5 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{t}-\frac{5 y}{4 t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{t}+\frac{5 y}{4 t^{2}}=0$
- Multiply by denominators of the ODE
$4 y^{\prime \prime} t^{2}+12 t y^{\prime}+5 y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d} s(s)}{t^{2}}$
Substitute the change of variables back into the ODE
$4\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+12 \frac{d}{d s} y(s)+5 y(s)=0$
- \quad Simplify
$4 \frac{d^{2}}{d s^{2}} y(s)+8 \frac{d}{d s} y(s)+5 y(s)=0$
- Isolate 2 nd derivative

$$
\frac{d^{2}}{d s^{2}} y(s)=-2 \frac{d}{d s} y(s)-\frac{5 y(s)}{4}
$$

- Group terms with $y(s)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{2}}{d s^{2}} y(s)+2 \frac{d}{d s} y(s)+\frac{5 y(s)}{4}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+2 r+\frac{5}{4}=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{ }-1)}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-1-\frac{\mathrm{I}}{2},-1+\frac{\mathrm{I}}{2}\right)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{-s} \cos \left(\frac{s}{2}\right)
$$

- 2nd solution of the ODE

$$
y_{2}(s)=\mathrm{e}^{-s} \sin \left(\frac{s}{2}\right)
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-s} \cos \left(\frac{s}{2}\right)+c_{2} \mathrm{e}^{-s} \sin \left(\frac{s}{2}\right)
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)}{t}+\frac{c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t}
$$

- Simplify

$$
y=\frac{c_{1} \cos \left(\frac{\ln (t)}{2}\right)}{t}+\frac{c_{2} \sin \left(\frac{\ln (t)}{2}\right)}{t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve (t~2*diff $(y(t), t \$ 2)+3 * t * \operatorname{diff}(y(t), t)+125 / 100 * y(t)=0, y(t)$, singsol=all)

$$
y(t)=\frac{c_{1} \sin \left(\frac{\ln (t)}{2}\right)+c_{2} \cos \left(\frac{\ln (t)}{2}\right)}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 30
DSolve[t~2*y' '[t] $+3 * t * y$ ' $[\mathrm{t}]+125 / 100 * y[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{c_{2} \cos \left(\frac{\log (t)}{2}\right)+c_{1} \sin \left(\frac{\log (t)}{2}\right)}{t}
$$

8.24 problem 38

8.24.1 Solving as second order euler ode ode 2257
8.24.2 Solving as second order change of variable on x method 2 ode . 2258
8.24.3 Solving as second order change of variable on y method 2 ode . 2260
8.24.4 Solving as second order integrable as is ode 2263
$\begin{aligned} & \text { 8.24.5 } \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 2264\end{aligned}$
8.24.6 Solving using Kovacic algorithm 2265
8.24.7 Solving as exact linear second order ode ode 2271
8.24.8 Maple step by step solution . 2273

Internal problem ID [646]
Internal file name [OUTPUT/646_Sunday_June_05_2022_01_46_22_AM_79982171/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_cvariable_on_x_method_2", "second__order_change_of__variable__on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y=0
$$

8.24.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-4 t r t^{r-1}-6 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-4 r t^{r}-6 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)-4 r-6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=6
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{t}+c_{2} t^{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+c_{2} t^{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+c_{2} t^{6}
$$

Verified OK.

8.24.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =-\frac{4}{t} \\
q(t) & =-\frac{6}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{t} d t\right)} d t \\
& =\int e^{4 \ln (t)} d t \\
& =\int t^{4} d t \\
& =\frac{t^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{6}{t^{2}}}{t^{8}} \\
& =-\frac{6}{t^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{t^{10}}=0
\end{aligned}
$$

But in terms of τ

$$
-\frac{6}{t^{10}}=-\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}-6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0-6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{1}{5} \\
& r_{2}=\frac{6}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{\frac{1}{5}}}+c_{2} \tau^{\frac{6}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{5^{\frac{1}{5}}\left(c_{2} 5^{\frac{3}{5}} t^{5}\left(t^{5}\right)^{\frac{2}{5}}+25 c_{1}\right)}{25\left(t^{5}\right)^{\frac{1}{5}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5^{\frac{1}{5}}\left(c_{2} 5^{\frac{3}{5}} t^{5}\left(t^{5}\right)^{\frac{2}{5}}+25 c_{1}\right)}{25\left(t^{5}\right)^{\frac{1}{5}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{5^{\frac{1}{5}}\left(c_{2} 5^{\frac{3}{5}} t^{5}\left(t^{5}\right)^{\frac{2}{5}}+25 c_{1}\right)}{25\left(t^{5}\right)^{\frac{1}{5}}}
$$

Verified OK.

8.24.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{4}{t} \\
& q(t)=-\frac{6}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{4 n}{t^{2}}-\frac{6}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=6 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{8 v^{\prime}(t)}{t}=0 \\
& v^{\prime \prime}(t)+\frac{8 v^{\prime}(t)}{t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{8 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{8 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{8}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{8}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{8}{t} d t \\
\ln (u) & =-8 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-8 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{8}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{7 t^{7}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(-\frac{c_{1}}{7 t^{7}}+c_{2}\right) t^{6} \\
& =\frac{7 c_{2} t^{7}-c_{1}}{7 t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{7 t^{7}}+c_{2}\right) t^{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{7 t^{7}}+c_{2}\right) t^{6}
$$

Verified OK.

8.24.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y\right) d t=0 \\
y^{\prime} t^{2}-6 y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{6}{t} \\
q(t) & =\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{6 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6}{t} d t} \\
& =\frac{1}{t^{6}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{6}}\right) & =\left(\frac{1}{t^{6}}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{6}}\right) & =\left(\frac{c_{1}}{t^{8}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{t^{6}}=\int \frac{c_{1}}{t^{8}} \mathrm{~d} t \\
& \frac{y}{t^{6}}=-\frac{c_{1}}{7 t^{7}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{6}}$ results in

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{7 t}+c_{2} t^{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Verified OK.

8.24.5 Solving as type second__order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y=0
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y\right) d t=0 \\
y^{\prime} t^{2}-6 y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{6}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{6 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6}{t} d t} \\
& =\frac{1}{t^{6}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{6}}\right) & =\left(\frac{1}{t^{6}}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{6}}\right) & =\left(\frac{c_{1}}{t^{8}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{6}} & =\int \frac{c_{1}}{t^{8}} \mathrm{~d} t \\
\frac{y}{t^{6}} & =-\frac{c_{1}}{7 t^{7}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{6}}$ results in

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{7 t}+c_{2} t^{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Verified OK.

8.24.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-4 t y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-4 t \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{12}{t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=12 \\
& t=t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{12}{t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 410: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{12}{t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{12}{t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=12$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{12}{t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	4	-3

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	4	-3

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-3$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-3-(-3) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{t}+(-)(0) \\
& =-\frac{3}{t} \\
& =-\frac{3}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{t}\right)(0)+\left(\left(\frac{3}{t^{2}}\right)+\left(-\frac{3}{t}\right)^{2}-\left(\frac{12}{t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{3}{t} d t} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 t}{t^{2}} d t} \\
& =z_{1} e^{2 \ln (t)} \\
& =z_{1}\left(t^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{4 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{t^{7}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t}\right)+c_{2}\left(\frac{1}{t}\left(\frac{t^{7}}{7}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2} t^{6}}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2} t^{6}}{7}
$$

Verified OK.

8.24.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =t^{2} \\
q(x) & =-4 t \\
r(x) & =-6 \\
s(x) & =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =-4
\end{aligned}
$$

Therefore (1) becomes

$$
2-(-4)+(-6)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} t^{2}-6 y t=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} t^{2}-6 y t=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{6}{t} \\
q(t) & =\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{6 y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{6}{t} d t} \\
& =\frac{1}{t^{6}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{6}}\right) & =\left(\frac{1}{t^{6}}\right)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{6}}\right) & =\left(\frac{c_{1}}{t^{8}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{6}} & =\int \frac{c_{1}}{t^{8}} \mathrm{~d} t \\
\frac{y}{t^{6}} & =-\frac{c_{1}}{7 t^{7}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{6}}$ results in

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{7 t}+c_{2} t^{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{7 t}+c_{2} t^{6}
$$

Verified OK.

8.24.8 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}-4 t y^{\prime}-6 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{t}+\frac{6 y}{t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{t}-\frac{6 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}-4 t y^{\prime}-6 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t, using the chain rule

$$
y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2nd derivative of y with respect to t, using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-4 \frac{d}{d s} y(s)-6 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)-5 \frac{d}{d s} y(s)-6 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}-5 r-6=0$
- Factor the characteristic polynomial

$$
(r+1)(r-6)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,6)
$$

- 1st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{-s}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(s)=\mathrm{e}^{6 s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-s}+c_{2} \mathrm{e}^{6 s}
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=\frac{c_{1}}{t}+c_{2} t^{6}
$$

- Simplify

$$
y=\frac{c_{1}}{t}+c_{2} t^{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(t^2*diff(y(t),t$2)- 4*t*diff(y(t),t)-6*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{1} t^{7}+c_{2}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18
DSolve[t^2*y' ' $[\mathrm{t}]-4 * \mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]-6 * \mathrm{y}[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{c_{2} t^{7}+c_{1}}{t}
$$

8.25 problem 39

8.25.1 Solving as second order euler ode ode 2277
8.25.2 Solving as linear second order ode solved by an integrating factor
ode . 2278
8.25.3 Solving as second order change of variable on x method 2 ode . 2279
8.25.4 Solving as second order change of variable on x method 1 ode . 2281
8.25.5 Solving as second order change of variable on y method 1 ode . 2283
8.25.6 Solving as second order change of variable on y method 2 ode . 2285
8.25.7 Solving using Kovacic algorithm 2287
8.25.8 Maple step by step solution . 2290

Internal problem ID [647]
Internal file name [OUTPUT/647_Sunday_June_05_2022_01_46_22_AM_3994398/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second__order_change_of_cvariable_on_y_method_2", "linear_second_order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F( x)] 〕]
```

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0
$$

8.25.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-4 t r t^{r-1}+6 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-4 r t^{r}+6 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)-4 r+6=0
$$

Or

$$
\begin{equation*}
r^{2}-5 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=c_{2} t^{3}+c_{1} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t^{3}+c_{1} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} t^{3}+c_{1} t^{2}
$$

Verified OK.

8.25.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-\frac{4}{t}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{t} d x} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{t^{2}}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{t^{2}}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{t^{2}}\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\frac{1}{t^{2}}}
$$

Or

$$
y=c_{1} t^{3}+c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{3}+c_{2} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{3}+c_{2} t^{2}
$$

Verified OK.

8.25.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{4}{t} \\
& q(t)=\frac{6}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{4}{t} d t\right)} d t \\
& =\int \mathrm{e}^{4 \ln (t)} d t \\
& =\int t^{4} d t \\
& =\frac{t^{5}}{5} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{6}{t^{2}}}{t^{8}} \\
& =\frac{6}{t^{10}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau)=0 \\
& \frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{t^{10}}=0
\end{aligned}
$$

But in terms of τ

$$
\frac{6}{t^{10}}=\frac{6}{25 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 y(\tau)}{25 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
25\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
25 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+6 \tau^{r}=0
$$

Simplifying gives

$$
25 r(r-1) \tau^{r}+0 \tau^{r}+6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
25 r(r-1)+0+6=0
$$

Or

$$
\begin{equation*}
25 r^{2}-25 r+6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{5} \\
& r_{2}=\frac{3}{5}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{5}}+c_{2} \tau^{\frac{3}{5}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(t^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(t^{5}\right)^{\frac{3}{5}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 5^{\frac{3}{5}}\left(t^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(t^{5}\right)^{\frac{3}{5}}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 5^{\frac{3}{5}}\left(t^{5}\right)^{\frac{2}{5}}}{5}+\frac{c_{2} 5^{\frac{2}{5}}\left(t^{5}\right)^{\frac{3}{5}}}{5}
$$

Verified OK.

8.25.4 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{4}{t} \\
& q(t)=\frac{6}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{6}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{6}}{c \sqrt{\frac{1}{t^{2}} t^{3}}-\frac{4}{t} \frac{\sqrt{6} \sqrt{\frac{1}{t^{2}}}}{c}}}{\left(\frac{\sqrt{6} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =-\frac{5 c \sqrt{6}}{6}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{5 c \sqrt{6}\left(\frac{d}{d \tau} y(\tau)\right)}{6}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{5 \sqrt{6} c \tau}{12}}\left(c_{1} \cosh \left(\frac{\sqrt{6} c \tau}{12}\right)+i c_{2} \sinh \left(\frac{\sqrt{6} c \tau}{12}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{6} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{6} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{\frac{5}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right)
$$

Verified OK.

8.25.5 Solving as second order change of variable on y method 1 ode

 In normal form the given ode is written as$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{4}{t} \\
& q(t)=\frac{6}{t^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{6}{t^{2}}-\frac{\left(-\frac{4}{t}\right)^{\prime}}{2}-\frac{\left(-\frac{4}{t}\right)^{2}}{4} \\
& =\frac{6}{t^{2}}-\frac{\left(\frac{4}{t^{2}}\right)}{2}-\frac{\left(\frac{16}{t^{2}}\right)}{4} \\
& =\frac{6}{t^{2}}-\left(\frac{2}{t^{2}}\right)-\frac{4}{t^{2}} \\
& =0
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable t then the transformation

$$
\begin{equation*}
y=v(t) z(t) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(t)$ is given by

$$
\begin{align*}
z(t) & =\mathrm{e}^{-\left(\int \frac{p(t)}{2} d t\right)} \\
& =e^{-\int \frac{-\frac{4}{t}}{2}} \\
& =t^{2} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(t) t^{2} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
t^{4} v^{\prime \prime}(t)=0
$$

Which is now solved for $v(t)$ Integrating twice gives the solution

$$
v(t)=c_{1} t+c_{2}
$$

Now that $v(t)$ is known, then

$$
\begin{align*}
y & =v(t) z(t) \\
& =\left(c_{1} t+c_{2}\right)(z(t)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(t)=t^{2}
$$

Hence (7) becomes

$$
y=\left(c_{1} t+c_{2}\right) t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} t+c_{2}\right) t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} t+c_{2}\right) t^{2}
$$

Verified OK.

8.25.6 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{4}{t} \\
& q(t)=\frac{6}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{4 n}{t^{2}}+\frac{6}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t}=0 \\
& v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{2 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{2 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{2}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{2}{t} d t \\
\ln (u) & =-2 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(-\frac{c_{1}}{t}+c_{2}\right) t^{3} \\
& =\left(c_{2} t-c_{1}\right) t^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{t}+c_{2}\right) t^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{t}+c_{2}\right) t^{3}
$$

Verified OK.

8.25.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-4 t \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 412: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4 t}{t^{2}} d t} \\
& =z_{1} e^{2 \ln (t)} \\
& =z_{1}\left(t^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{4 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{2}\right)+c_{2}\left(t^{2}(t)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t^{3}+c_{1} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} t^{3}+c_{1} t^{2}
$$

Verified OK.

8.25.8 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}-4 t y^{\prime}+6 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{t}-\frac{6 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{t}+\frac{6 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}-4 t y^{\prime}+6 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

$\square \quad$ Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t, using the chain rule

$$
y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2 nd derivative of y with respect to t , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-4 \frac{d}{d s} y(s)+6 y(s)=0$

- \quad Simplify
$\frac{d^{2}}{d s^{2}} y(s)-5 \frac{d}{d s} y(s)+6 y(s)=0$
- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial
$r=(2,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(s)=\mathrm{e}^{2 s}$
- $\quad 2$ nd solution of the ODE
$y_{2}(s)=\mathrm{e}^{3 s}$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- \quad Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{2 s}+c_{2} \mathrm{e}^{3 s}$
- \quad Change variables back using $s=\ln (t)$
$y=c_{2} t^{3}+c_{1} t^{2}$
- Simplify
$y=t^{2}\left(c_{2} t+c_{1}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(t` 2*diff(y(t),t$2)-4*t*diff(y(t),t)+6*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=t^{2}\left(c_{2} t+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve[t~2*y''[t]-4*t*y'[t]+6*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow t^{2}\left(c_{2} t+c_{1}\right)
$$

8.26 problem 40

8.26.1 Solving as second order euler ode ode 2293
8.26.2 Solving as second order change of variable on x method 2 ode . 2295
8.26.3 Solving as second order change of variable on x method 1 ode . 2298
8.26.4 Solving as second order change of variable on y method 2 ode . 2299
8.26.5 Solving using Kovacic algorithm 2302
8.26.6 Maple step by step solution . 2307

Internal problem ID [648]
Internal file name [OUTPUT/648_Sunday_June_05_2022_01_46_23_AM_19111792/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0
$$

8.26.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-t r t^{r-1}+5 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-r t^{r}+5 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)-r+5=0
$$

Or

$$
\begin{equation*}
r^{2}-2 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1-2 i \\
& r_{2}=1+2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=1$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=1, \beta=-2$, the above becomes

$$
y=t^{1}\left(c_{1} e^{-2 i \ln (t)}+c_{2} e^{2 i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right)
$$

Verified OK.

8.26.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{1}{t} d t\right)} d t \\
& =\int \mathrm{e}^{\ln (t)} d t \\
& =\int t d t \\
& =\frac{t^{2}}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{5}{t^{2}}}{t^{2}} \\
& =\frac{5}{t^{4}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{t^{4}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{5}{t^{4}}=\frac{5}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =\frac{1}{2}-i \\
r_{2} & =\frac{1}{2}+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-1$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-i \ln (\tau)}+c_{2} e^{i \ln (\tau)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos (\ln (\tau))+c_{2} \sin (\ln (\tau))\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} t\left(c_{1} \cos (-\ln (2)+2 \ln (t))+c_{2} \sin (-\ln (2)+2 \ln (t))\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} t\left(c_{1} \cos (-\ln (2)+2 \ln (t))+c_{2} \sin (-\ln (2)+2 \ln (t))\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} t\left(c_{1} \cos (-\ln (2)+2 \ln (t))+c_{2} \sin (-\ln (2)+2 \ln (t))\right)}{2}
$$

Verified OK.

8.26.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}-\frac{1}{t} \frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =-\frac{2 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{\sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{2 \sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{2 \sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right)
$$

Verified OK.

8.26.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{n}{t^{2}}+\frac{5}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1+2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{2+4 i}{t}-\frac{1}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+4 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+4 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-4 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-4 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{t} d t \\
\ln (u) & =(-1-4 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-4 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-4 i}}{4}+c_{2}\right) t^{1+2 i} \\
& =t^{1+2 i} c_{2}+\frac{i t^{1-2 i} c_{1}}{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-4 i}}{4}+c_{2}\right) t^{1+2 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} t^{-4 i}}{4}+c_{2}\right) t^{1+2 i}
$$

Verified OK.

8.26.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-t y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-t \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{17}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 414: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{t} \\
& =\frac{\frac{1}{2}-2 i}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{t}\right)^{2}-\left(-\frac{17}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} t d t \\
& =t^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-t}{t^{2}} d t} \\
& =z_{1} e^{\frac{\ln (t)}{2}} \\
& =z_{1}(\sqrt{t})
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{1-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{1-2 i}\right)+c_{2}\left(t^{1-2 i}\left(-\frac{i t^{4 i}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{1-2 i} c_{1}-\frac{i c_{2} t^{1+2 i}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{1-2 i} c_{1}-\frac{i c_{2} t^{1+2 i}}{4}
$$

Verified OK.

8.26.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}-t y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{t}-\frac{5 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y^{\prime}}{t}+\frac{5 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}-t y^{\prime}+5 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative $y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-\frac{d}{d s} y(s)+5 y(s)=0
$$

- Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)-2 \frac{d}{d s} y(s)+5 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}-2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(1-2 \mathrm{I}, 1+2 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{s} \cos (2 s)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(s)=\mathrm{e}^{s} \sin (2 s)$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- \quad Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{s} \cos (2 s)+c_{2} \mathrm{e}^{s} \sin (2 s)$
- \quad Change variables back using $s=\ln (t)$
$y=c_{1} t \cos (2 \ln (t))+c_{2} t \sin (2 \ln (t))$
- Simplify
$y=t\left(c_{1} \cos (2 \ln (t))+c_{2} \sin (2 \ln (t))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(t^2*diff(y(t),t$2)-t*diff(y(t),t)+5*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=t\left(c_{1} \sin (2 \ln (t))+c_{2} \cos (2 \ln (t))\right)
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 24
DSolve[t^2*y''[t]-t*y'[t]+5*y[t]==0,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t\left(c_{2} \cos (2 \log (t))+c_{1} \sin (2 \log (t))\right)
$$

8.27 problem 41

8.27.1 Solving as second order euler ode ode 2310
8.27.2 Solving as second order change of variable on x method 2 ode . 2311
8.27.3 Solving as second order change of variable on y method 2 ode . 2314
8.27.4 Solving as second order ode non constant coeff transformation
on B ode . 2316$]$
8.27.5 Solving using Kovacic algorithm 2318
8.27.6 Maple step by step solution . 2324

Internal problem ID [649]
Internal file name [OUTPUT/649_Sunday_June_05_2022_01_46_24_AM_12275308/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 41.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0
$$

8.27.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+3 t r t^{r-1}-3 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+3 r t^{r}-3 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+3 r-3=0
$$

Or

$$
\begin{equation*}
r^{2}+2 r-3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{t^{3}}+c_{2} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{3}}+c_{2} t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{3}}+c_{2} t
$$

Verified OK.

8.27.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{3}{t} \\
q(t) & =-\frac{3}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int_{\frac{3}{t}} d t\right)} d t \\
& =\int e^{-3 \ln (t)} d t \\
& =\int \frac{1}{t^{3}} d t \\
& =-\frac{1}{2 t^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{3}{t^{2}}}{\frac{1}{t^{6}}} \\
& =-3 t^{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-3 t^{4} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-3 t^{4}=-\frac{3}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-3 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-3 \tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}-3 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0-3=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r-3=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-\frac{1}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\sqrt{\tau}}+c_{2} \tau^{\frac{3}{2}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(4 c_{1} t^{4}+c_{2}\right) \sqrt{2}}{4 t^{4} \sqrt{-\frac{1}{t^{2}}}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(4 c_{1} t^{4}+c_{2}\right) \sqrt{2}}{4 t^{4} \sqrt{-\frac{1}{t^{2}}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(4 c_{1} t^{4}+c_{2}\right) \sqrt{2}}{4 t^{4} \sqrt{-\frac{1}{t^{2}}}}
$$

Verified OK.

8.27.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{3}{t} \\
q(t) & =-\frac{3}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{3 n}{t^{2}}-\frac{3}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{t} & =0 \\
v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{5 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{5 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{5}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{5}{t} d t \\
\ln (u) & =-5 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{5}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{4 t^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(-\frac{c_{1}}{4 t^{4}}+c_{2}\right) t \\
& =\left(-\frac{c_{1}}{4 t^{4}}+c_{2}\right) t
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{4 t^{4}}+c_{2}\right) t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{4 t^{4}}+c_{2}\right) t
$$

Verified OK.

8.27.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t^{2} \\
& B=3 t \\
& C=-3 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(t^{2}\right)(0)+(3 t)(3)+(-3)(3 t) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
3 t^{3} v^{\prime \prime}+\left(15 t^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
3 t^{2}\left(u^{\prime}(t) t+5 u(t)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{5 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{5}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{5}{t} d t \\
\ln (u) & =-5 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{5}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{t^{5}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1}}{t^{5}} \mathrm{~d} t \\
& =-\frac{c_{1}}{4 t^{4}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(t) & =B v \\
& =(3 t)\left(-\frac{c_{1}}{4 t^{4}}+c_{2}\right) \\
& =\frac{3 c_{2} t^{4}-\frac{3 c_{1}}{4}}{t^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 c_{2} t^{4}-\frac{3 c_{1}}{4}}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{3 c_{2} t^{4}-\frac{3 c_{1}}{4}}{t^{3}}
$$

Verified OK.

8.27.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
& t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0 \tag{1}\\
& A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=3 t \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{15}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 416: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition
of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 t}+(-)(0) \\
& =-\frac{3}{2 t} \\
& =-\frac{3}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 t}\right)(0)+\left(\left(\frac{3}{2 t^{2}}\right)+\left(-\frac{3}{2 t}\right)^{2}-\left(\frac{15}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{3}{2 t} d t} \\
& =\frac{1}{t^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{3 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{t^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t^{3}}\right)+c_{2}\left(\frac{1}{t^{3}}\left(\frac{t^{4}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{3}}+\frac{c_{2} t}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{3}}+\frac{c_{2} t}{4}
$$

Verified OK.

8.27.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}+3 t y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{t}+\frac{3 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{t}-\frac{3 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+3 t y^{\prime}-3 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t , using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2nd derivative of y with respect to t, using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+3 \frac{d}{d s} y(s)-3 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+2 \frac{d}{d s} y(s)-3 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}+2 r-3=0$
- Factor the characteristic polynomial
$(r+3)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-3,1)$
- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-3 s}$
- \quad 2nd solution of the ODE
$y_{2}(s)=\mathrm{e}^{s}$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- \quad Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{-3 s}+c_{2} \mathrm{e}^{s}$
- \quad Change variables back using $s=\ln (t)$
$y=\frac{c_{1}}{t^{3}}+c_{2} t$
- Simplify
$y=\frac{c_{1}}{t^{3}}+c_{2} t$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ($t \sim 2 * \operatorname{diff}(y(t), t \$ 2)+3 * t * \operatorname{diff}(y(t), t)-3 * y(t)=0, y(t)$, singsol=all)

$$
y(t)=\frac{c_{1} t^{4}+c_{2}}{t^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve[t~2*y''[t]+3*t*y'[t]-3*y[t]==0,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{c_{1}}{t^{3}}+c_{2} t
$$

8.28 problem 42

8.28.1 Solving as second order euler ode ode 2327
8.28.2 Solving as second order change of variable on x method 2 ode . 2329
8.28.3 Solving as second order change of variable on x method 1 ode . 2332
8.28.4 Solving as second order change of variable on y method 2 ode . 2334
8.28.5 Solving using Kovacic algorithm 2336
8.28.6 Maple step by step solution . 2341

Internal problem ID [650]
Internal file name [OUTPUT/650_Sunday_June_05_2022_01_46_25_AM_47152662/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+10 y=0
$$

8.28.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+7 t r t^{r-1}+10 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+7 r t^{r}+10 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+7 r+10=0
$$

Or

$$
\begin{equation*}
r^{2}+6 r+10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3-i \\
& r_{2}=-3+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=-3$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=-3, \beta=-1$, the above becomes

$$
y=t^{-3}\left(c_{1} e^{-i \ln (t)}+c_{2} e^{i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=\frac{1}{t^{3}}\left(c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))}{t^{3}}
$$

Verified OK.

8.28.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{7}{t} \\
& q(t)=\frac{10}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{7}{t} d t\right)} d t \\
& =\int e^{-7 \ln (t)} d t \\
& =\int \frac{1}{t^{7}} d t \\
& =-\frac{1}{6 t^{6}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{10}{t^{2}}}{\frac{1}{t^{14}}} \\
& =10 t^{12} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+10 t^{12} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
10 t^{12}=\frac{5}{18 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{18 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
18\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
18 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
18 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
18 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
18 r^{2}-18 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i}{6} \\
& r_{2}=\frac{1}{2}+\frac{i}{6}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{6}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{1}{6}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \ln (\tau)}{6}}+c_{2} e^{\frac{i \ln (\tau)}{6}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\ln (\tau)}{6}\right)+c_{2} \sin \left(\frac{\ln (\tau)}{6}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)\right) \sqrt{6} \sqrt{-\frac{1}{t^{6}}}}{6}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)\right) \sqrt{6} \sqrt{-\frac{1}{t^{6}}}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)+c_{2} \sin \left(-\frac{\ln (2)}{6}-\frac{\ln (3)}{6}+\frac{\ln \left(-\frac{1}{t^{6}}\right)}{6}\right)\right) \sqrt{6} \sqrt{-\frac{1}{t^{6}}}}{6}
$$

Verified OK.

8.28.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{7}{t} \\
& q(t)=\frac{10}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{10}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{10}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}+\frac{7}{t} \frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =\frac{3 c \sqrt{10}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 c \sqrt{10}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{10} c \tau}{10}}\left(c_{1} \cos \left(\frac{\sqrt{10} c \tau}{10}\right)+c_{2} \sin \left(\frac{\sqrt{10} c \tau}{10}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{10} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))}{t^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))}{t^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (\ln (t))+c_{2} \sin (\ln (t))}{t^{3}}
$$

Verified OK.

8.28.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+10 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{7}{t} \\
q(t) & =\frac{10}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{7 n}{t^{2}}+\frac{10}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-3+i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{-6+2 i}{t}+\frac{7}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+2 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+2 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-2 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-2 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{t} d t \\
\ln (u) & =(-1-2 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-2 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-2 i}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{-3+i} \\
& =c_{2} t^{-3+i}+\frac{i c_{1} t^{-3-i}}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{-3+i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} t^{-2 i}}{2}+c_{2}\right) t^{-3+i}
$$

Verified OK.

8.28.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=7 t \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-5 \\
t & =4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{5}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 418: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{t} \\
& =\frac{\frac{1}{2}-i}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-i}{t}\right)^{2}-\left(-\frac{5}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} t d t \\
& =t^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7 t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{7 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{7}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{-3-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-7 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{-3-i}\right)+c_{2}\left(t^{-3-i}\left(-\frac{i t^{2 i}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{-3-i}-\frac{i c_{2} t^{-3+i}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{-3-i}-\frac{i c_{2} t^{-3+i}}{2}
$$

Verified OK.

8.28.6 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}+7 t y^{\prime}+10 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{7 y^{\prime}}{t}-\frac{10 y}{t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{7 y^{\prime}}{t}+\frac{10 y}{t^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} t^{2}+7 t y^{\prime}+10 y=0
$$

- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the $2 n d$ derivative of y with respect to t, using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+7 \frac{d}{d s} y(s)+10 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+6 \frac{d}{d s} y(s)+10 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}+6 r+10=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-3-\mathrm{I},-3+\mathrm{I})$
- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-3 s} \cos (s)$
- 2nd solution of the ODE
$y_{2}(s)=\mathrm{e}^{-3 s} \sin (s)$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- \quad Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{-3 s} \cos (s)+c_{2} \mathrm{e}^{-3 s} \sin (s)$
- \quad Change variables back using $s=\ln (t)$
$y=\frac{c_{1} \cos (\ln (t))}{t^{3}}+\frac{c_{2} \sin (\ln (t))}{t^{3}}$
- \quad Simplify
$y=\frac{c_{1} \cos (\ln (t))}{t^{3}}+\frac{c_{2} \sin (\ln (t))}{t^{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(t`2*diff(y(t),t$2)+7*t*diff(y(t),t)+10*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{1} \sin (\ln (t))+c_{2} \cos (\ln (t))}{t^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 22
DSolve[t~2*y''[t]+7*t*y'[t]+10*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{c_{2} \cos (\log (t))+c_{1} \sin (\log (t))}{t^{3}}
$$

8.29 problem 44

8.29.1 Solving as second order change of variable on x method 2 ode . 2344
8.29.2 Solving as second order change of variable on x method 1 ode . 2347

Internal problem ID [651]
Internal file name [OUTPUT/651_Sunday_June_05_2022_01_46_25_AM_16115400/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2"
Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
y^{\prime \prime}+t y^{\prime}+\mathrm{e}^{-t^{2}} y=0
$$

8.29.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+t y^{\prime}+\mathrm{e}^{-t^{2}} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=t \\
& q(t)=\mathrm{e}^{-t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int t d t\right)} d t \\
& =\int e^{-\frac{t^{2}}{2}} d t \\
& =\int \mathrm{e}^{-\frac{t^{2}}{2}} d t \\
& =\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\mathrm{e}^{-t^{2}}}{\mathrm{e}^{-t^{2}}} \\
& =1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (\tau)+c_{2} \sin (\tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (\tau)+c_{2} \sin (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)
$$

Verified OK.

8.29.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
y^{\prime \prime}+t y^{\prime}+\mathrm{e}^{-t^{2}} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =t \\
q(t) & =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\mathrm{e}^{-t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{\mathrm{e}^{-t^{2}}} t}{c}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{\mathrm{e}^{-t^{2}}} t}{c}+t \frac{\sqrt{\mathrm{e}^{-t^{2}}}}{c}}{\left(\frac{\sqrt{\mathrm{e}^{-t^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{\mathrm{e}^{-t^{2}}} d t}{c} \\
& =\frac{\sqrt{\mathrm{e}^{-t^{2}}} \mathrm{e}^{\frac{t^{2}}{2}} \sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cos \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right)}{2}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 55

```
dsolve(diff(y(t),t$2)+t*diff(y(t),t)+exp(-t^2)*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=c_{1} \operatorname{csgn}\left(\mathrm{e}^{\frac{t^{2}}{2}}\right) \sin \left(\frac{\sqrt{2} \sqrt{\pi} \operatorname{erf}\left(\frac{t \sqrt{2}}{2}\right)}{2}\right)+c_{2} \cos \left(\frac{\sqrt{2} \operatorname{csgn}\left(\mathrm{e}^{\frac{t^{2}}{2}}\right) \sqrt{\pi} \operatorname{erf}\left(\frac{t \sqrt{2}}{2}\right)}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 102
DSolve[y''[t] $\mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]+\exp \left(-\mathrm{t}^{\wedge} 2\right) * \mathrm{y}[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow e^{-\frac{1}{4}(\sqrt{4 \exp +1}+1) t^{2}}\left(c_{1} \text { HermiteH }\left(-\frac{1}{2}-\frac{1}{2 \sqrt{4 \exp +1}}, \frac{\sqrt[4]{4 \exp +1} t}{\sqrt{2}}\right)\right. \\
&\left.+c_{2} \text { Hypergeometric1F1 }\left(\frac{1}{4}\left(1+\frac{1}{\sqrt{4 \exp +1}}\right), \frac{1}{2}, \frac{1}{2} \sqrt{4 \exp +1} t^{2}\right)\right)
\end{aligned}
$$

8.30 problem 46

8.30.1 Solving as second order change of variable on x method 2 ode . 2351
8.30.2 Solving as second order change of variable on x method 1 ode . 2355
8.30.3 Solving using Kovacic algorithm 2357
8.30.4 Maple step by step solution . 2363

Internal problem ID [652]
Internal file name [OUTPUT/652_Sunday_June_05_2022_01_46_26_AM_50356826/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.3 Complex Roots of the Characteristic Equation, page 164
Problem number: 46.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_crariable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3}=0
$$

8.30.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{t^{2}-1}{t} \\
& q(t)=t^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{t^{2}-1}{t} d t\right)} d t \\
& =\int e^{-\frac{t^{2}}{2}+\ln (t)} d t \\
& =\int t \mathrm{e}^{-\frac{t^{2}}{2}} d t \\
& =-\mathrm{e}^{-\frac{t^{2}}{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{t^{2}}{t^{2} \mathrm{e}^{-t^{2}}} \\
& =\mathrm{e}^{t^{2}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\mathrm{e}^{t^{2}} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
\mathrm{e}^{t^{2}}=\frac{1}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
r^{2}-r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& r_{2}=\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{\sqrt{3}}{2}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{\sqrt{3}}{2}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \sqrt{3} \ln (\tau)}{2}}+c_{2} e^{\frac{i \sqrt{3} \ln (\tau)}{2}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\sqrt{3} \ln (\tau)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} \ln (\tau)}{2}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\sqrt{-\mathrm{e}^{-\frac{t^{2}}{2}}}\left(c_{1} \cos \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-\mathrm{e}^{-\frac{t^{2}}{2}}}\left(c_{1} \cos \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{-\mathrm{e}^{-\frac{t^{2}}{2}}}\left(c_{1} \cos \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} \ln \left(-\mathrm{e}^{-\frac{t^{2}}{2}}\right)}{2}\right)\right)
$$

Verified OK.

8.30.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3}=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{t^{2}-1}{t} \\
& q(t)=t^{2}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{t^{2}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{t}{c \sqrt{t^{2}}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{t}{c \sqrt{t^{2}}}+\frac{t^{2}-1}{t} \frac{\sqrt{t^{2}}}{c}}{\left(\frac{\sqrt{t^{2}}}{c}\right)^{2}} \\
& =c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{c \tau}{2}}\left(c_{1} \cos \left(\frac{c \sqrt{3} \tau}{2}\right)+c_{2} \sin \left(\frac{c \sqrt{3} \tau}{2}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{t^{2}} d t}{c} \\
& =\frac{t \sqrt{t^{2}}}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\mathrm{e}^{-\frac{t^{2}}{4}}\left(c_{1} \cos \left(\frac{\sqrt{3} t^{2}}{4}\right)+c_{2} \sin \left(\frac{\sqrt{3} t^{2}}{4}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{t^{2}}{4}}\left(c_{1} \cos \left(\frac{\sqrt{3} t^{2}}{4}\right)+c_{2} \sin \left(\frac{\sqrt{3} t^{2}}{4}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\frac{t^{2}}{4}}\left(c_{1} \cos \left(\frac{\sqrt{3} t^{2}}{4}\right)+c_{2} \sin \left(\frac{\sqrt{3} t^{2}}{4}\right)\right)
$$

Verified OK.

8.30.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t \\
& B=t^{2}-1 \tag{3}\\
& C=t^{3}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-3 t^{4}+3}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-3 t^{4}+3 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{-3 t^{4}+3}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 420: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-4 \\
& =-2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is -2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3 t^{2}}{4}+\frac{3}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=-2$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{2}{2}=1
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving t^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{1} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $t^{v}=t^{1}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{i \sqrt{3} t}{2}-\frac{i \sqrt{3}}{4 t^{3}}-\frac{i \sqrt{3}}{16 t^{7}}-\frac{i \sqrt{3}}{32 t^{11}}-\frac{5 i \sqrt{3}}{256 t^{15}}-\frac{7 i \sqrt{3}}{512 t^{19}}-\frac{21 i \sqrt{3}}{2048 t^{23}}-\frac{33 i \sqrt{3}}{4096 t^{27}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{i \sqrt{3}}{2}
$$

From Eq. (9) the sum up to $v=1$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{1} a_{i} t^{i} \\
& =\frac{i \sqrt{3} t}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $t^{v-1}=t^{0}=1$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=-\frac{3 t^{2}}{4}
$$

This shows that the coefficient of 1 in the above is 0 . Now we need to find the coefficient of 1 in r. How this is done depends on if $v=0$ or not. Since $v=1$ which is not zero, then starting $r=\frac{s}{t}$, we do long division and write this in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of 1 in r will be the coefficient this term in the quotient. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{-3 t^{4}+3}{4 t^{2}} \\
& =Q+\frac{R}{4 t^{2}} \\
& =\left(-\frac{3 t^{2}}{4}\right)+\left(\frac{3}{4 t^{2}}\right) \\
& =-\frac{3 t^{2}}{4}+\frac{3}{4 t^{2}}
\end{aligned}
$$

We see that the coefficient of the term t in the quotient is 0 . Now b can be found.

$$
\begin{aligned}
b & =(0)-(0) \\
& =0
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{i \sqrt{3} t}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{0}{\frac{i \sqrt{3}}{2}}-1\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{0}{\frac{i \sqrt{3}}{2}}-1\right)=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{-3 t^{4}+3}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
-2	$\frac{i \sqrt{3} t}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 t}+(-)\left(\frac{i \sqrt{3} t}{2}\right) \\
& =-\frac{1}{2 t}-\frac{i \sqrt{3} t}{2} \\
& =\frac{-i \sqrt{3} t^{2}-1}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 t}-\frac{i \sqrt{3} t}{2}\right)(0)+\left(\left(\frac{1}{2 t^{2}}-\frac{i \sqrt{3}}{2}\right)+\left(-\frac{1}{2 t}-\frac{i \sqrt{3} t}{2}\right)^{2}-\left(\frac{-3 t^{4}+3}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2 t}-\frac{i \sqrt{3} t}{2}\right) d t} \\
& =\frac{\mathrm{e}^{-\frac{i \sqrt{3} t^{2}}{4}}}{\sqrt{t}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t^{2}-1}{t} d t} \\
& =z_{1} e^{-\frac{t^{2}}{4}+\frac{\ln (t)}{2}} \\
& =z_{1}\left(\sqrt{t} \mathrm{e}^{-\frac{t^{2}}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{t^{2}(1+i \sqrt{3})}{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{t^{2}-1}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\frac{t^{2}}{2}+\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i \sqrt{3} \mathrm{e}^{\frac{i \sqrt{3} t^{2}}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t^{2}(1+i \sqrt{3})}{4}}\right)+c_{2}\left(\mathrm{e}^{-\frac{t^{2}(1+i \sqrt{3})}{4}}\left(-\frac{i \sqrt{3} \mathrm{e}^{\frac{i \sqrt{3} t^{2}}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left.y=c_{1} \mathrm{e}^{-\frac{t^{2}(1+i \sqrt{3})}{4}}-\frac{i c_{2} \sqrt{3} \mathrm{e}^{t^{2}(i \sqrt{3}-1)}}{4}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\left.y=c_{1} \mathrm{e}^{-\frac{t^{2}(1+i \sqrt{3})}{4}}-\frac{i c_{2} \sqrt{3} \mathrm{e}^{t^{2}(i \sqrt{3}-1)}}{4}\right)
$$

Verified OK.

8.30.4 Maple step by step solution

Let's solve
$t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{\left(t^{2}-1\right) y^{\prime}}{t}-y t^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{\left(t^{2}-1\right) y^{\prime}}{t}+y t^{2}=0$
Check to see if $t_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(t)=\frac{t^{2}-1}{t}, P_{3}(t)=t^{2}\right]$
- $t \cdot P_{2}(t)$ is analytic at $t=0$
$\left.\left(t \cdot P_{2}(t)\right)\right|_{t=0}=-1$
- $t^{2} \cdot P_{3}(t)$ is analytic at $t=0$
$\left.\left(t^{2} \cdot P_{3}(t)\right)\right|_{t=0}=0$
- $t=0$ is a regular singular point

Check to see if $t_{0}=0$ is a regular singular point
$t_{0}=0$

- Multiply by denominators
$t y^{\prime \prime}+\left(t^{2}-1\right) y^{\prime}+y t^{3}=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} t^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $t^{3} \cdot y$ to series expansion
$t^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} t^{k+r+3}$
- Shift index using $k->k-3$
$t^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} t^{k+r}$
- Convert $t^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .2$

$$
t^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) t^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$t^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) t^{k+r}$
- Convert $t \cdot y^{\prime \prime}$ to series expansion
$t \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) t^{k+r-1}$
- Shift index using $k->k+1$
$t \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) t^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) t^{-1+r}+a_{1}(1+r)(-1+r) t^{r}+\left(a_{2}(2+r) r+a_{0} r\right) t^{1+r}+\left(a_{3}(3+r)(1+r)+a_{1}(1-\right.$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- \quad The coefficients of each power of t must be 0

$$
\left[a_{1}(1+r)(-1+r)=0, a_{2}(2+r) r+a_{0} r=0, a_{3}(3+r)(1+r)+a_{1}(1+r)=0\right]
$$

- Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=-\frac{a_{0}}{2+r}, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(k+r-1)+a_{k-1}(k+r-1)+a_{k-3}=0$
- \quad Shift index using $k->k+3$
$a_{k+4}(k+4+r)(k+2+r)+a_{k+2}(k+2+r)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+4}=-\frac{k a_{k+2}+r a_{k+2}+a_{k}+2 a_{k+2}}{(k+4+r)(k+2+r)}$
- \quad Recursion relation for $r=0$
$a_{k+4}=-\frac{k a_{k+2}+a_{k}+2 a_{k+2}}{(k+4)(k+2)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} t^{k}, a_{k+4}=-\frac{k a_{k+2}+a_{k}+2 a_{k+2}}{(k+4)(k+2)}, a_{1}=0, a_{2}=-\frac{a_{0}}{2}, a_{3}=0\right]$
- \quad Recursion relation for $r=2$
$a_{k+4}=-\frac{k a_{k+2}+a_{k}+4 a_{k+2}}{(k+6)(k+4)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} t^{k+2}, a_{k+4}=-\frac{k a_{k+2}+a_{k}+4 a_{k+2}}{(k+6)(k+4)}, a_{1}=0, a_{2}=-\frac{a_{0}}{4}, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} t^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} t^{k+2}\right), a_{k+4}=-\frac{k a_{k+2}+a_{k}+2 a_{k+2}}{(k+4)(k+2)}, a_{1}=0, a_{2}=-\frac{a_{0}}{2}, a_{3}=0, b_{k+4}=-\frac{k b_{k}}{}\right.
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve(t*diff(y(t),t$2)+(t^2-1)*diff(y(t),t)+t^3*y(t) = 0,y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-\frac{t^{2}}{4}}\left(c_{1} \cos \left(\frac{t^{2} \sqrt{3}}{4}\right)+c_{2} \sin \left(\frac{t^{2} \sqrt{3}}{4}\right)\right)
$$

Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 48

```
DSolve[t*y''[t]+(t^2-1)*y'[t]+t^3*y[t]==0,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow e^{-\frac{t^{2}}{4}}\left(c_{2} \cos \left(\frac{\sqrt{3} t^{2}}{4}\right)+c_{1} \sin \left(\frac{\sqrt{3} t^{2}}{4}\right)\right)
$$

9 Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
9.1 problem 1 2368
9.2 problem 2 2377
9.3 problem 3 2386
9.4 problem 4 2394
9.5 problem 5 2403
9.6 problem 6 2411
9.7 problem 7 2420
9.8 problem 8 2428
9.9 problem 9 2437
9.10 problem 10 2446
9.11 problem 11 2454
9.12 problem 12 2467
9.13 problem 13 2479
9.14 problem 14 2490
9.15 problem 15 2502
9.16 problem 16 2515
9.17 problem 23 2526
9.18 problem 24 2530
9.19 problem 25 2534
9.20 problem 26 2538
9.21 problem 27 2543
9.22 problem 28 2548
9.23 problem 29 2553
9.24 problem 30 2558
9.25 problem 40 2563
9.26 problem 41 2579
9.27 problem 42 2595
9.28 problem 43 2614
9.29 problem 44 2636
9.30 problem 45 2652

9.1 problem 1

9.1.1 Solving as second order linear constant coeff ode 2368
9.1.2 Solving as linear second order ode solved by an integrating factor ode . 2370
9.1.3 Solving using Kovacic algorithm 2371
9.1.4 Maple step by step solution . 2375

Internal problem ID [653]
Internal file name [OUTPUT/653_Sunday_June_05_2022_01_46_28_AM_41212301/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

9.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 430: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

Verified OK.

9.1.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 431: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

9.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 422: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 432: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

Verified OK.

9.1.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial
$(r-1)^{2}=0$
- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathbf{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions
$y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff($y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve[y'' $[\mathrm{x}]-2 * y$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} x+c_{1}\right)
$$

9.2 problem 2

9.2.1 Solving as second order linear constant coeff ode 2377

$\begin{array}{ll}\text { 9.2.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2379\end{array}$
9.2.3 Solving using Kovacic algorithm 2380
9.2.4 Maple step by step solution . 2384

Internal problem ID [654]
Internal file name [OUTPUT/654_Sunday_June_05_2022_01_46_28_AM_19432812/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
9 y^{\prime \prime}+6 y^{\prime}+y=0
$$

9.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=9, B=6, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
9 \lambda^{2}+6 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=6, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{(6)^{2}-(4)(9)(1)} \\
& =-\frac{1}{3}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{1}{3}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 433: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

9.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{2}{3}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{2}{3} d x} \\
& =\mathrm{e}^{\frac{x}{3}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{\frac{x}{3}} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{x}{3}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{x}{3}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{x}{3}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 434: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{x}{3}}+c_{2} \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

9.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}+6 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =9 \\
B & =6 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 424: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{9} d x} \\
& =z_{1} e^{-\frac{x}{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{9} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{2 x}{3}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{3}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{3}}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 435: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

9.2.4 Maple step by step solution

Let's solve
$9 y^{\prime \prime}+6 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y^{\prime}}{3}-\frac{y}{9}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{y}{9}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{2}{3} r+\frac{1}{9}=0$
- Factor the characteristic polynomial
$\frac{(3 r+1)^{2}}{9}=0$
- Root of the characteristic polynomial
$r=-\frac{1}{3}$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{3}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-\frac{x}{3}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{3}}+c_{2} x \mathrm{e}^{-\frac{x}{3}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(9*diff(y(x),x$2)+6*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{3}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[9*y' ' $[x]+6 * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x / 3}\left(c_{2} x+c_{1}\right)
$$

9.3 problem 3

9.3.1 Solving as second order linear constant coeff ode

9.3.2 Solving using Kovacic algorithm 2388
9.3.3 Maple step by step solution 2392

Internal problem ID [655]
Internal file name [OUTPUT/655_Sunday_June_05_2022_01_46_29_AM_67197608/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}-4 y^{\prime}-3 y=0
$$

9.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=-4, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-4 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=-4, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{-4^{2}-(4)(4)(-3)} \\
& =\frac{1}{2} \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+1 \\
& \lambda_{2}=\frac{1}{2}-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{3}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{3}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 436: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

9.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-4 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=-4 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 426: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{4} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{3 x}{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 437: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{c_{2} \mathrm{e}^{\frac{3 x}{2}}}{2}
$$

Verified OK.

9.3.3 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-4 y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=y^{\prime}+\frac{3 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime}-\frac{3 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}-r-\frac{3}{4}=0
$$

- Factor the characteristic polynomial
$\frac{(2 r+1)(2 r-3)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}, \frac{3}{2}\right)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{\frac{3 x}{2}}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)-4*\operatorname{diff}(y(x),x)-3*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[4*y''[x]-4*y'[x]-3*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x / 2}\left(c_{2} e^{2 x}+c_{1}\right)
$$

9.4 problem 4

9.4.1 Solving as second order linear constant coeff ode
 2394

$\begin{array}{ll}\text { 9.4.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2396\end{array}$
9.4.3 Solving using Kovacic algorithm 2397
9.4.4 Maple step by step solution . 2401

Internal problem ID [656]
Internal file name [OUTPUT/656_Sunday_June_05_2022_01_46_30_AM_9155155/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0
$$

9.4.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=12, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+12 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+12 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=12, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(12)^{2}-(4)(4)(9)} \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{3}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} x \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

Figure 438: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} x \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

9.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=3$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 3 d x} \\
& =\mathrm{e}^{\frac{3 x}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{\frac{3 x}{2}} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{3 x}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{3 x}{2}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{3 x}{2}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 439: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

9.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
4 y^{\prime \prime}+12 y^{\prime}+9 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=12 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 428: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{12}{4} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{12}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} x \mathrm{e}^{-\frac{3 x}{2}} \tag{1}
\end{equation*}
$$

Figure 440: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} x \mathrm{e}^{-\frac{3 x}{2}}
$$

Verified OK.

9.4.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-3 y^{\prime}-\frac{9 y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+3 y^{\prime}+\frac{9 y}{4}=0$
- Characteristic polynomial of ODE

$$
r^{2}+3 r+\frac{9}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r+3)^{2}}{4}=0
$$

- Root of the characteristic polynomial
$r=-\frac{3}{2}$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-\frac{3 x}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} x \mathrm{e}^{-\frac{3 x}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(4*diff(y(x),x$2)+12*diff(y(x),x)+9*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{3 x}{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20
DSolve[4*y''[x]+12*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-3 x / 2}\left(c_{2} x+c_{1}\right)
$$

9.5 problem 5

9.5.1 Solving as second order linear constant coeff ode 2403
9.5.2 Solving using Kovacic algorithm 2405
9.5.3 Maple step by step solution . 2409

Internal problem ID [657]
Internal file name [OUTPUT/657_Sunday_June_05_2022_01_46_31_AM_43935394/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

9.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(10)} \\
& =1 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+3 i \\
& \lambda_{2}=1-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+3 i \\
& \lambda_{2}=1-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right) \tag{1}
\end{equation*}
$$

Figure 441: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Verified OK.

9.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 430: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x} \cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (3 x)\right)+c_{2}\left(\mathrm{e}^{x} \cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{x} \sin (3 x)}{3} \tag{1}
\end{equation*}
$$

Figure 442: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x} \cos (3 x)+\frac{c_{2} \mathrm{e}^{x} \sin (3 x)}{3}
$$

Verified OK.

9.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-2 r+10=0
$$

- Use quadratic formula to solve for r
$r=\frac{2 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(1-3 \mathrm{I}, 1+3 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x} \cos (3 x)$
- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{x} \sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x} \cos (3 x)+c_{2} \mathrm{e}^{x} \sin (3 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve(diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)+10 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x}\left(c_{1} \sin (3 x)+c_{2} \cos (3 x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24
DSolve[y'' $[x]-2 * y$ ' $[x]+10 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} \cos (3 x)+c_{1} \sin (3 x)\right)
$$

9.6 problem 6

> 9.6.1 Solving as second order linear constant coeff ode
$\begin{array}{ll}\text { 9.6.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2413\end{array}$
9.6.3 Solving using Kovacic algorithm 2414
9.6.4 Maple step by step solution . 2418

Internal problem ID [658]
Internal file name [OUTPUT/658_Sunday_June_05_2022_01_46_32_AM_72033730/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

9.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-6, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-6)^{2}-(4)(1)(9)} \\
& =3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

Figure 443: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

Verified OK.

9.6.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-6 d x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-3 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-3 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-3 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-3 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 444: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x}
$$

Verified OK.

9.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 432: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Figure 445: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

Verified OK.

9.6.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-6 r+9=0$
- Factor the characteristic polynomial
$(r-3)^{2}=0$
- Root of the characteristic polynomial

$$
r=3
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{3 x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{3 x}+c_{2} x \mathrm{e}^{3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{3 x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve[y'' $[x]-6 * y$ ' $[x]+9 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{3 x}\left(c_{2} x+c_{1}\right)
$$

9.7 problem 7

9.7.1 Solving as second order linear constant coeff ode 2420
9.7.2 Solving using Kovacic algorithm 2422
9.7.3 Maple step by step solution . 2426

Internal problem ID [659]
Internal file name [OUTPUT/659_Sunday_June_05_2022_01_46_32_AM_89046047/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
4 y^{\prime \prime}+17 y^{\prime}+4 y=0
$$

9.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=17, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+17 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}+17 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=17, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-17}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{17^{2}-(4)(4)(4)} \\
& =-\frac{17}{8} \pm \frac{15}{8}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{17}{8}+\frac{15}{8} \\
& \lambda_{2}=-\frac{17}{8}-\frac{15}{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{4} \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{1}{4}\right) x}+c_{2} e^{(-4) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-\frac{x}{4}}+c_{2} \mathrm{e}^{-4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{4}}+c_{2} \mathrm{e}^{-4 x} \tag{1}
\end{equation*}
$$

Figure 446: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=c_{1} \mathrm{e}^{-\frac{x}{4}}+c_{2} \mathrm{e}^{-4 x}
$$

Verified OK.

9.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
4 y^{\prime \prime}+17 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=17 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{225}{64} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=225 \\
& t=64
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{225 z(x)}{64} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 434: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{225}{64}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{15 x}{8}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{17}{4} d x} \\
& =z_{1} e^{-\frac{17 x}{8}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{17 x}{8}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{17}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{17 x}{4}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{4 \mathrm{e}^{\frac{15 x}{4}}}{15}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 x}\right)+c_{2}\left(\mathrm{e}^{-4 x}\left(\frac{4 \mathrm{e}^{\frac{15 x}{4}}}{15}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 x}+\frac{4 c_{2} \mathrm{e}^{-\frac{x}{4}}}{15} \tag{1}
\end{equation*}
$$

Figure 447: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+\frac{4 c_{2} \mathrm{e}^{-\frac{x}{4}}}{15}
$$

Verified OK.

9.7.3 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}+17 y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{17 y^{\prime}}{4}-y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{17 y^{\prime}}{4}+y=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{17}{4} r+1=0$
- Factor the characteristic polynomial
$\frac{(r+4)(4 r+1)}{4}=0$
- Roots of the characteristic polynomial
$r=\left(-4,-\frac{1}{4}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-4 x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\frac{x}{4}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-\frac{x}{4}}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(4*diff(y(x),x$2)+17*diff(y(x),x)+4*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-4 x}+c_{2} \mathrm{e}^{-\frac{x}{4}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 24
DSolve[4*y''[x]+17*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-4 x}\left(c_{1} e^{15 x / 4}+c_{2}\right)
$$

9.8 problem 8

9.8.1 Solving as second order linear constant coeff ode 2428
9.8.2 Solving as linear second order ode solved by an integrating factor ode . 2430
9.8.3 Solving using Kovacic algorithm 2431
9.8.4 Maple step by step solution . 2435

Internal problem ID [660]
Internal file name [OUTPUT/660_Sunday_June_05_2022_01_46_33_AM_61322730/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
16 y^{\prime \prime}+24 y^{\prime}+9 y=0
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=16, B=24, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
16 \lambda^{2} \mathrm{e}^{\lambda x}+24 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
16 \lambda^{2}+24 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=16, B=24, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-24}{(2)(16)} \pm \frac{1}{(2)(16)} \sqrt{(24)^{2}-(4)(16)(9)} \\
& =-\frac{3}{4}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{3}{4}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}} \tag{1}
\end{equation*}
$$

Figure 448: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}}
$$

Verified OK.

9.8.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=\frac{3}{2}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int \frac{3}{2} d x} \\
& =\mathrm{e}^{\frac{3 x}{4}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{gathered}
(M(x) y)^{\prime \prime}=0 \\
\left(\mathrm{e}^{\frac{3 x}{4}} y\right)^{\prime \prime}=0
\end{gathered}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{3 x}{4}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{3 x}{4}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{3 x}{4}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-\frac{3 x}{4}}+\mathrm{e}^{-\frac{3 x}{4}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{3 x}{4}}+\mathrm{e}^{-\frac{3 x}{4}} c_{2} \tag{1}
\end{equation*}
$$

Figure 449: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{-\frac{3 x}{4}}+\mathrm{e}^{-\frac{3 x}{4}} c_{2}
$$

Verified OK.

9.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
16 y^{\prime \prime}+24 y^{\prime}+9 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=16 \\
& B=24 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 436: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{24}{6} d x} \\
& =z_{1} e^{-\frac{3 x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{4}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{24}{16} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{4}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{4}}(x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}} \tag{1}
\end{equation*}
$$

Figure 450: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}}
$$

Verified OK.

9.8.4 Maple step by step solution

Let's solve
$16 y^{\prime \prime}+24 y^{\prime}+9 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{2}-\frac{9 y}{16}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{2}+\frac{9 y}{16}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{3}{2} r+\frac{9}{16}=0$
- Factor the characteristic polynomial
$\frac{(4 r+3)^{2}}{16}=0$
- Root of the characteristic polynomial
$r=-\frac{3}{4}$
- \quad 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{3 x}{4}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{-\frac{3 x}{4}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{3 x}{4}}+c_{2} x \mathrm{e}^{-\frac{3 x}{4}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(16*diff(y(x),x$2)+24*diff(y(x),x)+9*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{3 x}{4}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20

```
DSolve[16*y''[x]+24*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-3 x / 4}\left(c_{2} x+c_{1}\right)
$$

9.9 problem 9

$$
\text { 9.9.1 Solving as second order linear constant coeff ode } 2437
$$

$\begin{array}{ll}\text { 9.9.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2439\end{array}$
9.9.3 Solving using Kovacic algorithm 2440
9.9.4 Maple step by step solution . 2444

Internal problem ID [661]
Internal file name [OUTPUT/661_Sunday_June_05_2022_01_46_34_AM_88618893/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_byy_an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
25 y^{\prime \prime}-20 y^{\prime}+4 y=0
$$

9.9.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=25, B=-20, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
25 \lambda^{2} \mathrm{e}^{\lambda x}-20 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
25 \lambda^{2}-20 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=25, B=-20, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{20}{(2)(25)} \pm \frac{1}{(2)(25)} \sqrt{(-20)^{2}-(4)(25)(4)} \\
& =\frac{2}{5}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{2}{5}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{5}}+c_{2} x \mathrm{e}^{\frac{2 x}{5}} \tag{1}
\end{equation*}
$$

Summary

The solution(s) found are the following

Figure 451: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{2 x}{5}}+c_{2} x \mathrm{e}^{\frac{2 x}{5}}
$$

Verified OK.

9.9.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-\frac{4}{5}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{5} d x} \\
& =\mathrm{e}^{-\frac{2 x}{5}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{2 x}{5}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{2 x}{5}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{2 x}{5}} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{2 x}{5}}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{\frac{2 x}{5}}+\mathrm{e}^{\frac{2 x}{5}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{2 x}{5}}+\mathrm{e}^{\frac{2 x}{5}} c_{2} \tag{1}
\end{equation*}
$$

Figure 452: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{\frac{2 x}{5}}+\mathrm{e}^{\frac{2 x}{5}} c_{2}
$$

Verified OK.

9.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
25 y^{\prime \prime}-20 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=25 \\
& B=-20 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 438: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{20}{25} d x} \\
& =z_{1} e^{\frac{2 x}{5}} \\
& =z_{1}\left(\mathrm{e}^{\frac{2 x}{5}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{2 x}{5}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-20}{25} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\frac{4 x}{5}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{2 x}{5}}\right)+c_{2}\left(\mathrm{e}^{\frac{2 x}{5}}(x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 x}{5}}+c_{2} x \mathrm{e}^{\frac{2 x}{5}} \tag{1}
\end{equation*}
$$

Figure 453: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{2 x}{5}}+c_{2} x \mathrm{e}^{\frac{2 x}{5}}
$$

Verified OK.

9.9.4 Maple step by step solution

Let's solve
$25 y^{\prime \prime}-20 y^{\prime}+4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{5}-\frac{4 y}{25}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{5}+\frac{4 y}{25}=0$
- Characteristic polynomial of ODE

$$
r^{2}-\frac{4}{5} r+\frac{4}{25}=0
$$

- Factor the characteristic polynomial
$\frac{(5 r-2)^{2}}{25}=0$
- Root of the characteristic polynomial
$r=\frac{2}{5}$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{2 x}{5}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{\frac{2 x}{5}}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{2 x}{5}}+c_{2} x \mathrm{e}^{\frac{2 x}{5}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(25*diff(y(x),x$2)-20*diff(y(x),x)+4*y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{2 x}{5}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

```
DSolve[25*y''[x]-20*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{2 x / 5}\left(c_{2} x+c_{1}\right)
$$

9.10 problem 10

9.10.1 Solving as second order linear constant coeff ode 2446
9.10.2 Solving using Kovacic algorithm 2448
9.10.3 Maple step by step solution . 2452

Internal problem ID [662]
Internal file name [OUTPUT/662_Sunday_June_05_2022_01_46_34_AM_57523948/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
2 y^{\prime \prime}+2 y^{\prime}+y=0
$$

9.10.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=2, B=2, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
2 \lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=2, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{2^{2}-(4)(2)(1)} \\
& =-\frac{1}{2} \pm \frac{i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{2}$ and $\beta=\frac{1}{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Figure 454: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x}{2}\right)+c_{2} \sin \left(\frac{x}{2}\right)\right)
$$

Verified OK.

9.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =2 \\
B & =2 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 440: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{2} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(2 \tan \left(\frac{x}{2}\right)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)\left(2 \tan \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)+2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right) \tag{1}
\end{equation*}
$$

Figure 455: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)+2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right)
$$

Verified OK.

9.10.3 Maple step by step solution

Let's solve
$2 y^{\prime \prime}+2 y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-y^{\prime}-\frac{y}{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+\frac{y}{2}=0$
- Characteristic polynomial of ODE
$r^{2}+r+\frac{1}{2}=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-1})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I}}{2},-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)$
- 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(2*diff(y(x),x$2)+2*diff(y(x),x)+y(x) = 0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \sin \left(\frac{x}{2}\right)+c_{2} \cos \left(\frac{x}{2}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 32
DSolve[2*y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-x / 2}\left(c_{2} \cos \left(\frac{x}{2}\right)+c_{1} \sin \left(\frac{x}{2}\right)\right)
$$

9.11 problem 11

9.11.1 Existence and uniqueness analysis 2455
9.11.2 Solving as second order linear constant coeff ode 2455
9.11.3 Solving as linear second order ode solved by an integrating factor
ode . 2457]
9.11.4 Solving using Kovacic algorithm 2460
9.11.5 Maple step by step solution . 2464

Internal problem ID [663]
Internal file name [OUTPUT/663_Sunday_June_05_2022_01_46_35_AM_83642007/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-1\right]
$$

9.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{4}{3} \\
q(t) & =\frac{4}{9} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{3}+\frac{4 y}{9}=0
$$

The domain of $p(t)=-\frac{4}{3}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{4}{9}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.11.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=9, B=-12, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda t}-12 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
9 \lambda^{2}-12 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=-12, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{(-12)^{2}-(4)(9)(4)} \\
& =\frac{2}{3}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{2}{3}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 t}{3}}+c_{2} \mathrm{e}^{\frac{2 t}{3}} t \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 t}{3}}+c_{2} t \mathrm{e}^{\frac{2 t}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} \mathrm{e}^{\frac{2 t}{3}}}{3}+c_{2} \mathrm{e}^{\frac{2 t}{3}}+\frac{2 c_{2} t \mathrm{e}^{\frac{2 t}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=\frac{2 c_{1}}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{7}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{7 \mathrm{e}^{\frac{2 t}{3}} t}{3}+2 \mathrm{e}^{\frac{2 t}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Verified OK.

9.11.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-\frac{4}{3}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{4}{3} d x} \\
& =\mathrm{e}^{-\frac{2 t}{3}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{2 t}{3}} y\right)^{\prime \prime}=0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{2 t}{3}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{2 t}{3}} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\mathrm{e}^{-\frac{2 t}{3}}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{\frac{2 t}{3}}+c_{2} \mathrm{e}^{\frac{2 t}{3}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{\frac{2 t}{3}}+c_{2} \mathrm{e}^{\frac{2 t}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{\frac{2 t}{3}}+\frac{2 c_{1} t \mathrm{e}^{\frac{2 t}{3}}}{3}+\frac{2 c_{2} \mathrm{e}^{\frac{2 t}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+\frac{2 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{7}{3} \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{7 \mathrm{e}^{\frac{2 t}{3}} t}{3}+2 \mathrm{e}^{\frac{2 t}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Verified OK.

9.11.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}-12 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=-12 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 442: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{12}{9} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\frac{2 t}{3}} \\
& =z_{1}\left(\mathrm{e}^{\frac{2 t}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{2 t}{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{9} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{\frac{4 t}{3}}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{2 t}{3}}\right)+c_{2}\left(\mathrm{e}^{\frac{2 t}{3}}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{2 t}{3}}+c_{2} t \mathrm{e}^{\frac{2 t}{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{2 c_{1} \mathrm{e}^{\frac{2 t}{3}}}{3}+c_{2} \mathrm{e}^{\frac{2 t}{3}}+\frac{2 c_{2} t \mathrm{e}^{\frac{2 t}{3}}}{3}
$$

substituting $y^{\prime}=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=\frac{2 c_{1}}{3}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{7}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{7 \mathrm{e}^{\frac{2 t}{3}} t}{3}+2 \mathrm{e}^{\frac{2 t}{3}}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Verified OK.

9.11.5 Maple step by step solution

Let's solve

$$
\left[9 y^{\prime \prime}-12 y^{\prime}+4 y=0, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{4 y^{\prime}}{3}-\frac{4 y}{9}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{4 y^{\prime}}{3}+\frac{4 y}{9}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{4}{3} r+\frac{4}{9}=0$
- Factor the characteristic polynomial
$\frac{(3 r-2)^{2}}{9}=0$
- Root of the characteristic polynomial
$r=\frac{2}{3}$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{2 t}{3}}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=\mathrm{e}^{\frac{2 t}{3} t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\frac{2 t}{3}}+c_{2} t \mathrm{e}^{\frac{2 t}{3}}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{\frac{2 t}{3}}+c_{2} t \mathrm{e}^{\frac{2 t}{3}}$

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=\frac{2 c_{1} \mathrm{e}^{\frac{2 t}{3}}}{3}+c_{2} \mathrm{e}^{\frac{2 t}{3}}+\frac{2 c_{2} t \mathrm{e}^{\frac{2 t}{3}}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$
$-1=\frac{2 c_{1}}{3}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-\frac{7}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{\frac{2 t}{3}}\left(2-\frac{7 t}{3}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([9*diff(y(t),t$2)-12*\operatorname{diff}(y(t),t)+4*y(t)=0,y(0)=2, D(y)(0) = -1],y(t), singsol=al
```

$$
y(t)=-\frac{\mathrm{e}^{\frac{2 t}{3}}(-6+7 t)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 15
DSolve $\left[\left\{9 * y\right.\right.$ ' ' $[t]-12 * y$ ' $\left.[t]+4 * y[t]==0,\left\{y[0]==0, y^{\prime}[0]==-1\right\}\right\}, y[t], t$, IncludeSingularSolutions $->$

$$
y(t) \rightarrow-e^{2 t / 3} t
$$

9.12 problem 12

9.12.1 Existence and uniqueness analysis 2468
9.12.2 Solving as second order linear constant coeff ode 2468
9.12.3 Solving as linear second order ode solved by an integrating factor
ode . 2470
9.12.4 Solving using Kovacic algorithm 2472
9.12.5 Maple step by step solution . 2476

Internal problem ID [664]
Internal file name [OUTPUT/664_Sunday_June_05_2022_01_46_36_AM_49512898/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=2\right]
$$

9.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-6 \\
q(t) & =9 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

The domain of $p(t)=-6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.12.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-6, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-6 \lambda \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-6)^{2}-(4)(1)(9)} \\
& =3
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-3$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 t}+3 c_{2} \mathrm{e}^{3 t} t+c_{2} \mathrm{e}^{3 t}
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 t} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 t} t
$$

Verified OK.

9.12.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-6$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-6 d x} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-3 t} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-3 t} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-3 t} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\mathrm{e}^{-3 t}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{3 t}+3 c_{1} t \mathrm{e}^{3 t}+3 c_{2} \mathrm{e}^{3 t}
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 t} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 t} t
$$

Verified OK.

9.12.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 444: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{d} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d t} \\
& =z_{1} e^{3 t} \\
& =z_{1}\left(\mathrm{e}^{3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 t}\right)+c_{2}\left(\mathrm{e}^{3 t}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 c_{1} \mathrm{e}^{3 t}+3 c_{2} \mathrm{e}^{3 t} t+c_{2} \mathrm{e}^{3 t}
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{3 t} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{3 t} t \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{3 t} t
$$

Verified OK.

9.12.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=2\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-6 r+9=0$
- Factor the characteristic polynomial
$(r-3)^{2}=0$
- Root of the characteristic polynomial

$$
r=3
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{3 t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=\mathrm{e}^{3 t} t$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} t
$$

Check validity of solution $y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{3 t} t$

- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$y^{\prime}=3 c_{1} \mathrm{e}^{3 t}+3 c_{2} \mathrm{e}^{3 t} t+c_{2} \mathrm{e}^{3 t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=3 c_{1}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify $y=2 \mathrm{e}^{3 t} t$
- Solution to the IVP

$$
y=2 \mathrm{e}^{3 t} t
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve([diff $(y(t), t \$ 2)-6 * \operatorname{diff}(y(t), t)+9 * y(t)=0, y(0)=0, D(y)(0)=2], y(t)$, singsol=all)

$$
y(t)=2 \mathrm{e}^{3 t} t
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 13
DSolve $\left\{\left\{y\right.\right.$ '' $[t]-6 * y$ ' $\left.[t]+9 * y[t]==0,\left\{y[0]==0, y^{\prime}[0]==2\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow 2 e^{3 t} t
$$

9.13 problem 13

9.13.1 Existence and uniqueness analysis 2479
9.13.2 Solving as second order linear constant coeff ode 2480
9.13.3 Solving using Kovacic algorithm 2482
9.13.4 Maple step by step solution . 2487

Internal problem ID [665]
Internal file name [OUTPUT/665_Sunday_June_05_2022_01_46_37_AM_75605177/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
9 y^{\prime \prime}+6 y^{\prime}+82 y=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=2\right]
$$

9.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{2}{3} \\
q(t) & =\frac{82}{9} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{82 y}{9}=0
$$

The domain of $p(t)=\frac{2}{3}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{82}{9}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.13.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=9, B=6, C=82$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
9 \lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+82 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
9 \lambda^{2}+6 \lambda+82=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=9, B=6, C=82$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(9)} \pm \frac{1}{(2)(9)} \sqrt{6^{2}-(4)(9)(82)} \\
& =-\frac{1}{3} \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{3}+3 i \\
& \lambda_{2}=-\frac{1}{3}-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{3}+3 i \\
& \lambda_{2}=-\frac{1}{3}-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{3}$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-\frac{t}{3}}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{t}{3}}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{\mathrm{e}^{-\frac{t}{3}}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)}{3}+\mathrm{e}^{-\frac{t}{3}}\left(-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)\right)
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-\frac{c_{1}}{3}+3 c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =-1 \\
c_{2} & =\frac{5}{9}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

Verified OK.

9.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9 y^{\prime \prime}+6 y^{\prime}+82 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9 \\
& B=6 \tag{3}\\
& C=82
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 446: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{9} d t} \\
& =z_{1} e^{-\frac{t}{3}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{3}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{t}{3}} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{9} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-\frac{2 t}{3}}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{3}} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{3}} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)+\frac{c_{2} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)}{3}-3 c_{1} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)-\frac{c_{2} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)}{9}+c_{2} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-\frac{c_{1}}{3}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{5}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{-\frac{t}{3}} \cos (3 t)+\frac{5 \mathrm{e}^{-\frac{t}{3}} \sin (3 t)}{9}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

Verified OK.

9.13.4 Maple step by step solution

Let's solve

$$
\left[9 y^{\prime \prime}+6 y^{\prime}+82 y=0, y(0)=-1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{3}-\frac{82 y}{9}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{3}+\frac{82 y}{9}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{2}{3} r+\frac{82}{9}=0$
- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{2}{3}\right) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{3}-3 \mathrm{I},-\frac{1}{3}+3 \mathrm{I}\right)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-\frac{t}{3}} \cos (3 t)$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{-\frac{t}{3}} \sin (3 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)+c_{2} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)+c_{2} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)$

- Use initial condition $y(0)=-1$

$$
-1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)}{3}-3 c_{1} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)-\frac{c_{2} \mathrm{e}^{-\frac{t}{3}} \sin (3 t)}{3}+3 c_{2} \mathrm{e}^{-\frac{t}{3}} \cos (3 t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$

$$
2=-\frac{c_{1}}{3}+3 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-1, c_{2}=\frac{5}{9}\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-\frac{t}{3}}(9 \cos (3 t)-5 \sin (3 t))}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23
dsolve $([9 * \operatorname{diff}(y(t), t \$ 2)+6 * \operatorname{diff}(y(t), t)+82 * y(t)=0, y(0)=-1, D(y)(0)=2], y(t)$, singsol=al

$$
y(t)=\frac{\mathrm{e}^{-\frac{t}{3}}(5 \sin (3 t)-9 \cos (3 t))}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 29
DSolve $\left[\left\{9 * y\right.\right.$ ' ' $[\mathrm{t}]+6 * y$ ' $\left.[\mathrm{t}]+82 * y[\mathrm{t}]==0,\left\{y[0]==-1, \mathrm{y}^{\prime}[0]==2\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$

$$
y(t) \rightarrow \frac{1}{9} e^{-t / 3}(5 \sin (3 t)-9 \cos (3 t))
$$

9.14 problem 14

9.14.1 Existence and uniqueness analysis 2491
9.14.2 Solving as second order linear constant coeff ode 2491
9.14.3 Solving as linear second order ode solved by an integrating factor
ode . 2493
9.14.4 Solving using Kovacic algorithm 2495
9.14.5 Maple step by step solution . 2499

Internal problem ID [666]
Internal file name [OUTPUT/666_Sunday_June_05_2022_01_46_38_AM_29132401/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

With initial conditions

$$
\left[y(-1)=2, y^{\prime}(-1)=1\right]
$$

9.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is also inside this domain. Hence solution exists and is unique.

9.14.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x} x \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=-1$ in the above gives

$$
\begin{equation*}
2=\mathrm{e}^{2}\left(c_{1}-c_{2}\right) \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

substituting $y^{\prime}=1$ and $x=-1$ in the above gives

$$
\begin{equation*}
1=\mathrm{e}^{2}\left(-2 c_{1}+3 c_{2}\right) \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=7 \mathrm{e}^{-2} \\
& c_{2}=5 \mathrm{e}^{-2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 x \mathrm{e}^{-2 x} \mathrm{e}^{-2}+7 \mathrm{e}^{-2 x} \mathrm{e}^{-2}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x-2}(7+5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Verified OK.

9.14.3 Solving as linear second order ode solved by an integrating factor

 odeThe ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{2 x} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{2 x} y\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{2 x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=-1$ in the above gives

$$
\begin{equation*}
2=\left(-c_{1}+c_{2}\right) \mathrm{e}^{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-2 x}-2 c_{1} x \mathrm{e}^{-2 x}-2 c_{2} \mathrm{e}^{-2 x}
$$

substituting $y^{\prime}=1$ and $x=-1$ in the above gives

$$
\begin{equation*}
1=\left(3 c_{1}-2 c_{2}\right) \mathrm{e}^{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=5 \mathrm{e}^{-2} \\
& c_{2}=7 \mathrm{e}^{-2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 x \mathrm{e}^{-2 x-2}+7 \mathrm{e}^{-2 x} \mathrm{e}^{-2}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x-2}(7+5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Verified OK.

9.14.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 448: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=-1$ in the above gives

$$
\begin{equation*}
2=\mathrm{e}^{2}\left(c_{1}-c_{2}\right) \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

substituting $y^{\prime}=1$ and $x=-1$ in the above gives

$$
\begin{equation*}
1=\mathrm{e}^{2}\left(-2 c_{1}+3 c_{2}\right) \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=7 \mathrm{e}^{-2} \\
& c_{2}=5 \mathrm{e}^{-2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=5 x \mathrm{e}^{-2 x} \mathrm{e}^{-2}+7 \mathrm{e}^{-2 x} \mathrm{e}^{-2}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x-2}(7+5 x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

Verified OK.

9.14.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+4 y=0, y(-1)=2,\left.y^{\prime}\right|_{\{x=-1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial

$$
(r+2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-2
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=\mathrm{e}^{-2 x} x$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}$Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}$
- Use initial condition $y(-1)=2$
$2=\mathrm{e}^{2} c_{1}-\mathrm{e}^{2} c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x} c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=-1\}}=1$
$1=-2 \mathrm{e}^{2} c_{1}+3 \mathrm{e}^{2} c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{7}{\mathrm{e}^{2}}, c_{2}=\frac{5}{\mathrm{e}^{2}}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-2 x-2}(7+5 x)
$$

- \quad Solution to the IVP
$y=\mathrm{e}^{-2 x-2}(7+5 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve $([\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+4 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(-1)=2, \mathrm{D}(\mathrm{y})(-1)=1], \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\mathrm{e}^{-2 x-2}(5 x+7)
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve $[\{y$ ' ' $[x]+4 * y$ ' $[x]+4 * y[x]==0,\{y[-1]==2, y$ ' $[-1]==1\}\}, y[x], x$, IncludeSingularSolutions $\rightarrow T r$

$$
y(x) \rightarrow e^{-2(x+1)}(5 x+7)
$$

9.15 problem 15

9.15.1 Existence and uniqueness analysis 2503
9.15.2 Solving as second order linear constant coeff ode 2503
9.15.3 Solving as linear second order ode solved by an integrating factor
ode . 2505]
9.15.4 Solving using Kovacic algorithm 2508
9.15.5 Maple step by step solution . 2512

Internal problem ID [667]
Internal file name [OUTPUT/667_Sunday_June_05_2022_01_46_39_AM_14025215/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 15 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-4\right]
$$

9.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =\frac{9}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}+\frac{9 y}{4}=0
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{9}{4}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.15.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=4, B=12, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda t}+12 \lambda \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
4 \lambda^{2}+12 \lambda+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=12, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(12)^{2}-(4)(4)(9)} \\
& =-\frac{3}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=\frac{3}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} \mathrm{e}^{-\frac{3 t}{2}} t \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} t \mathrm{e}^{-\frac{3 t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{3 t}{2}}}{2}+c_{2} \mathrm{e}^{-\frac{3 t}{2}}-\frac{3 c_{2} t \mathrm{e}^{-\frac{3 t}{2}}}{2}
$$

substituting $y^{\prime}=-4$ and $t=0$ in the above gives

$$
\begin{equation*}
-4=-\frac{3 c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5 \mathrm{e}^{-\frac{3 t}{2} t}}{2}+\mathrm{e}^{-\frac{3 t}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Verified OK.

9.15.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=3$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 3 d x} \\
& =\mathrm{e}^{\frac{3 t}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{array}{r}
(M(x) y)^{\prime \prime}=0 \\
\left(\mathrm{e}^{\frac{3 t}{2}} y\right)^{\prime \prime}=0
\end{array}
$$

Integrating once gives

$$
\left(\mathrm{e}^{\frac{3 t}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{\frac{3 t}{2}} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\mathrm{e}^{\frac{3 t}{2}}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{-\frac{3 t}{2}}+c_{2} \mathrm{e}^{-\frac{3 t}{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{-\frac{3 t}{2}}+c_{2} \mathrm{e}^{-\frac{3 t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-\frac{3 t}{2}}-\frac{3 c_{1} t \mathrm{e}^{-\frac{3 t}{2}}}{2}-\frac{3 c_{2} \mathrm{e}^{-\frac{3 t}{2}}}{2}
$$

substituting $y^{\prime}=-4$ and $t=0$ in the above gives

$$
\begin{equation*}
-4=c_{1}-\frac{3 c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{5}{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5 \mathrm{e}^{-\frac{3 t}{2}} t}{2}+\mathrm{e}^{-\frac{3 t}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Verified OK.

9.15.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}+12 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=12 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 450: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{12}{4} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 t}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{12}{4} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 t}{2}}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} t \mathrm{e}^{-\frac{3 t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{3 t}{2}}}{2}+c_{2} \mathrm{e}^{-\frac{3 t}{2}}-\frac{3 c_{2} t \mathrm{e}^{-\frac{3 t}{2}}}{2}
$$

substituting $y^{\prime}=-4$ and $t=0$ in the above gives

$$
\begin{equation*}
-4=-\frac{3 c_{1}}{2}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-\frac{5}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5 \mathrm{e}^{-\frac{3 t}{2}} t}{2}+\mathrm{e}^{-\frac{3 t}{2}}
$$

Which simplifies to

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Verified OK.

9.15.5 Maple step by step solution

Let's solve

$$
\left[4 y^{\prime \prime}+12 y^{\prime}+9 y=0, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-4\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-3 y^{\prime}-\frac{9 y}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+3 y^{\prime}+\frac{9 y}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+3 r+\frac{9}{4}=0$
- Factor the characteristic polynomial

$$
\frac{(2 r+3)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=-\frac{3}{2}
$$

- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=\mathrm{e}^{-\frac{3 t}{2} t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} t \mathrm{e}^{-\frac{3 t}{2}}$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-\frac{3 t}{2}}+c_{2} t \mathrm{e}^{-\frac{3 t}{2}}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{3 t}{2}}}{2}+c_{2} \mathrm{e}^{-\frac{3 t}{2}}-\frac{3 c_{2} t \mathrm{e}^{-\frac{3 t}{2}}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-4$

$$
-4=-\frac{3 c_{1}}{2}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=-\frac{5}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-\frac{3 t}{2}}\left(1-\frac{5 t}{2}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve([4*diff (y(t),t$2)+12*\operatorname{diff}(y(t),t)+9*y(t)=0,y(0)=1,D(y)(0) = -4],y(t), singsol=al
```

$$
y(t)=-\frac{\mathrm{e}^{-\frac{3 t}{2}}(-2+5 t)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 21
DSolve $[\{4 * y$ ' ' $[\mathrm{t}]+12 * \mathrm{y}$ ' $[\mathrm{t}]+9 * y[\mathrm{t}]==0,\{\mathrm{y}[0]==1, \mathrm{y}$ ' $[0]==-4\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$

$$
y(t) \rightarrow \frac{1}{2} e^{-3 t / 2}(2-5 t)
$$

9.16 problem 16

9.16.1 Existence and uniqueness analysis 2516
9.16.2 Solving as second order linear constant coeff ode 2516
9.16.3 Solving as linear second order ode solved by an integrating factor
ode . 2518]
9.16.4 Solving using Kovacic algorithm 2520
9.16.5 Maple step by step solution . 2523

Internal problem ID [668]
Internal file name [OUTPUT/668_Sunday_June_05_2022_01_46_40_AM_23845844/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}+\frac{y}{4}=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=b\right]
$$

9.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =\frac{1}{4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime}+\frac{y}{4}=0
$$

The domain of $p(t)=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\frac{1}{4}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

9.16.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-1, C=\frac{1}{4}$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\lambda \mathrm{e}^{\lambda t}+\frac{\mathrm{e}^{\lambda t}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda+\frac{1}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=\frac{1}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-1)^{2}-(4)(1)\left(\frac{1}{4}\right)} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{1}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{t}{2}}}{2}+c_{2} \mathrm{e}^{\frac{t}{2}}+\frac{c_{2} t \mathrm{e}^{\frac{t}{2}}}{2}
$$

substituting $y^{\prime}=b$ and $t=0$ in the above gives

$$
\begin{equation*}
b=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=b-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=(b-1) t \mathrm{e}^{\frac{t}{2}}+2 \mathrm{e}^{\frac{t}{2}}
$$

Which simplifies to

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

9.16.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-1$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-1 d x} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-\frac{t}{2}} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{t}{2}} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{t}{2}} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\mathrm{e}^{-\frac{t}{2}}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{\frac{t}{2}}+\frac{c_{1} t \mathrm{e}^{\frac{t}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{t}{2}}}{2}
$$

substituting $y^{\prime}=b$ and $t=0$ in the above gives

$$
\begin{equation*}
b=c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=b-1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=t \mathrm{e}^{\frac{t}{2}} b-t \mathrm{e}^{\frac{t}{2}}+2 \mathrm{e}^{\frac{t}{2}}
$$

Which simplifies to

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

9.16.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}+\frac{y}{4} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=\frac{1}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 452: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{t}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{t}{2}}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{t}{2}}}{2}+c_{2} \mathrm{e}^{\frac{t}{2}}+\frac{c_{2} t \mathrm{e}^{\frac{t}{2}}}{2}
$$

substituting $y^{\prime}=b$ and $t=0$ in the above gives

$$
\begin{equation*}
b=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=b-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=(b-1) t \mathrm{e}^{\frac{t}{2}}+2 \mathrm{e}^{\frac{t}{2}}
$$

Which simplifies to

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

9.16.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-y^{\prime}+\frac{y}{4}=0, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=b\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-r+\frac{1}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=\frac{1}{2}
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{\frac{t}{2}}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{\frac{t}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}$
Check validity of solution $y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}$
- Use initial condition $y(0)=2$
$2=c_{1}$
- Compute derivative of the solution
$y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{t}{2}}}{2}+c_{2} \mathrm{e}^{\frac{t}{2}}+\frac{c_{2} \mathrm{e}^{\frac{t}{2}}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=b$
$b=\frac{c_{1}}{2}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=b-1\right\}$
- Substitute constant values into general solution and simplify

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

- \quad Solution to the IVP

$$
y=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve([diff $(y(t), t \$ 2)-\operatorname{diff}(y(t), t)+25 / 100 * y(t)=0, y(0)=2, D(y)(0)=b], y(t)$, singsol=all

$$
y(t)=(2+t(b-1)) \mathrm{e}^{\frac{t}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20
DSolve[\{y''[t]-y'[t]+25/100*y[t]==0,\{y[0]==2,y'[0]==b\}\},y[t],t,IncludeSingularSolutions \rightarrow I

$$
y(t) \rightarrow e^{t / 2}((b-1) t+2)
$$

9.17 problem 23

9.17.1 Maple step by step solution . 2527

Internal problem ID [669]
Internal file name [OUTPUT/669_Sunday_June_05_2022_01_46_41_AM_12322057/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "second__order_change__of_variable_on_x_method_1", "second_order_change_of_variable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_1", "second_order_change_of_variable_on_y_method_2", "linear_second_order_ode__solved__by__an_integrating_factor"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(x)]•]

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0
$$

Given that one solution of the ode is

$$
y_{1}=t^{2}
$$

Given one basis solution $y_{1}(t)$, then the second basis solution is given by

$$
y_{2}(t)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d t\right)}}{y_{1}^{2}} d t\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Looking at the ode to solve shows that

$$
p(t)=-\frac{4}{t}
$$

Therefore

$$
\begin{aligned}
& y_{2}(t)=t^{2}\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{4}{t} d t\right)}}{t^{4}} d t\right) \\
& y_{2}(t)=t^{2} \int \frac{t^{4}}{t^{4}}, d t \\
& y_{2}(t)=t^{2}\left(\int 1 d t\right) \\
& y_{2}(t)=t^{3}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =c_{2} t^{3}+c_{1} t^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} t^{3}+c_{1} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} t^{3}+c_{1} t^{2}
$$

Verified OK.

9.17.1 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}-4 t y^{\prime}+6 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{4 y^{\prime}}{t}-\frac{6 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{4 y^{\prime}}{t}+\frac{6 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}-4 t y^{\prime}+6 y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to t , using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t, using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{d d}{d d^{2} y(s)} t^{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{d}{d} y(s)\right) t^{2}-4 \frac{d}{d s} y(s)+6 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)-5 \frac{d}{d s} y(s)+6 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- $\quad 1$ st solution of the ODE
$y_{1}(s)=\mathrm{e}^{2 s}$
- 2nd solution of the ODE

$$
y_{2}(s)=\mathrm{e}^{3 s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{2 s}+c_{2} \mathrm{e}^{3 s}
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=c_{2} t^{3}+c_{1} t^{2}
$$

- Simplify

$$
y=t^{2}\left(c_{2} t+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve([t^2*diff(y(t),t$2)-4*t*diff(y(t),t)+6*y(t)=0,t~2],singsol=all)
```

$$
y(t)=t^{2}\left(c_{2} t+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 16

```
DSolve[t~2*y''[t]-4*t*y'[t]+6*y[t]==0,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow t^{2}\left(c_{2} t+c_{1}\right)
$$

9.18 problem 24

9.18.1 Maple step by step solution . 2531

Internal problem ID [670]
Internal file name [OUTPUT/670_Sunday_June_05_2022_01_46_42_AM_6399244/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_culer_ode", "second_order_change__of_cvariable_on_x_method_2", "second_order__change__of__variable__on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=t
$$

Given one basis solution $y_{1}(t)$, then the second basis solution is given by

$$
y_{2}(t)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d t\right)}}{y_{1}^{2}} d t\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Looking at the ode to solve shows that

$$
p(t)=\frac{2}{t}
$$

Therefore

$$
\begin{aligned}
& y_{2}(t)=t\left(\int \frac{\mathrm{e}^{-\left(\int \frac{2}{t} d t\right)}}{t^{2}} d t\right) \\
& y_{2}(t)=t \int \frac{\frac{1}{t^{2}}}{t^{2}}, d t \\
& y_{2}(t)=t\left(\int \frac{1}{t^{4}} d t\right) \\
& y_{2}(t)=-\frac{1}{3 t^{2}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =c_{1} t-\frac{c_{2}}{3 t^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t-\frac{c_{2}}{3 t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t-\frac{c_{2}}{3 t^{2}}
$$

Verified OK.

9.18.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}+2 t y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{t}+\frac{2 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{t}-\frac{2 y}{t^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+2 t y^{\prime}-2 y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+2 \frac{d}{d s} y(s)-2 y(s)=0
$$

- \quad Simplify
$\frac{d^{2}}{d s^{2}} y(s)+\frac{d}{d s} y(s)-2 y(s)=0$
- Characteristic polynomial of ODE
$r^{2}+r-2=0$
- Factor the characteristic polynomial
$(r+2)(r-1)=0$
- Roots of the characteristic polynomial
$r=(-2,1)$
- $\quad 1$ st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{-2 s}
$$

- $\quad 2 n d$ solution of the ODE
$y_{2}(s)=\mathrm{e}^{s}$
- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-2 s}+c_{2} \mathrm{e}^{s}
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=\frac{c_{1}}{t^{2}}+c_{2} t
$$

- \quad Simplify

$$
y=\frac{c_{1}}{t^{2}}+c_{2} t
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ([t^2*diff $(y(t), t \$ 2)+2 * t * \operatorname{diff}(y(t), t)-2 * y(t)=0, t]$, singsol=all)

$$
y(t)=\frac{c_{1} t^{3}+c_{2}}{t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve[t^2*y' ' [t$]+2 * \mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]-2 * y[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{c_{1}}{t^{2}}+c_{2} t
$$

9.19 problem 25

9.19.1 Maple step by step solution 2535

Internal problem ID [671]
Internal file name [OUTPUT/671_Sunday_June_05_2022_01_46_43_AM_97850935/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_cchange__of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=\frac{1}{t}
$$

Given one basis solution $y_{1}(t)$, then the second basis solution is given by

$$
y_{2}(t)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d t\right)}}{y_{1}^{2}} d t\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Looking at the ode to solve shows that

$$
p(t)=\frac{3}{t}
$$

Therefore

$$
\begin{aligned}
& y_{2}(t)=\frac{\int \mathrm{e}^{-\left(\int \frac{3}{t} d t\right)} t^{2} d t}{t} \\
& y_{2}(t)=\frac{1}{t} \int \frac{\frac{1}{t^{3}}}{\frac{1}{t^{2}}}, d t \\
& y_{2}(t)=\frac{\int \frac{1}{t} d t}{t} \\
& y_{2}(t)=\frac{\ln (t)}{t}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

Verified OK.

9.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}+3 t y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{t}-\frac{y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{t}+\frac{y}{t^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+3 t y^{\prime}+y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE
$\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+3 \frac{d}{d s} y(s)+y(s)=0$
- \quad Simplify
$\frac{d^{2}}{d s^{2}} y(s)+2 \frac{d}{d s} y(s)+y(s)=0$
- Characteristic polynomial of ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial
$r=-1$
- $\quad 1$ st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{-s}
$$

- Repeated root, multiply $y_{1}(s)$ by s to ensure linear independence

$$
y_{2}(s)=s \mathrm{e}^{-s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-s}+c_{2} s \mathrm{e}^{-s}
$$

- \quad Change variables back using $s=\ln (t)$
$y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}$
- Simplify
$y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([t^2*diff(y(t),t$2)+3*t*diff(y(t),t)+y(t)=0,1/t], singsol=all)
```

$$
y(t)=\frac{c_{2} \ln (t)+c_{1}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 17

```
DSolve[t^2*y''[t]+3*t*y'[t]+y[t]==0,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{c_{2} \log (t)+c_{1}}{t}
$$

9.20 problem 26

9.20.1 Maple step by step solution 2539

Internal problem ID [672]
Internal file name [OUTPUT/672_Sunday_June_05_2022_01_46_43_AM_19696878/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__change__of_variable_on_y_method_1", "second_order_change_of_cariable__on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t^{2} y^{\prime \prime}-t(2+t) y^{\prime}+(2+t) y=0
$$

Given that one solution of the ode is

$$
y_{1}=t
$$

Given one basis solution $y_{1}(t)$, then the second basis solution is given by

$$
y_{2}(t)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d t\right)}}{y_{1}^{2}} d t\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)
$$

Looking at the ode to solve shows that

$$
p(t)=\frac{-t^{2}-2 t}{t^{2}}
$$

Therefore

$$
\begin{aligned}
& y_{2}(t)=t\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-t^{2}-2 t}{t^{2}} d t\right)}}{t^{2}} d t\right) \\
& y_{2}(t)=t \int \frac{\mathrm{e}^{t+2 \ln (t)}}{t^{2}}, d t \\
& y_{2}(t)=t\left(\int \mathrm{e}^{t} d t\right) \\
& y_{2}(t)=t \mathrm{e}^{t}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =c_{1} t+c_{2} t \mathrm{e}^{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} t \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t+c_{2} t \mathrm{e}^{t}
$$

Verified OK.

9.20.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{(2+t) y}{t^{2}}+\frac{(2+t) y^{\prime}}{t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(2+t) y^{\prime}}{t}+\frac{(2+t) y}{t^{2}}=0$
Check to see if $t_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(t)=-\frac{2+t}{t}, P_{3}(t)=\frac{2+t}{t^{2}}\right]
$$

- $t \cdot P_{2}(t)$ is analytic at $t=0$
$\left.\left(t \cdot P_{2}(t)\right)\right|_{t=0}=-2$
- $t^{2} \cdot P_{3}(t)$ is analytic at $t=0$

$$
\left.\left(t^{2} \cdot P_{3}(t)\right)\right|_{t=0}=2
$$

- $t=0$ is a regular singular point

Check to see if $t_{0}=0$ is a regular singular point $t_{0}=0$

- Multiply by denominators
$y^{\prime \prime} t^{2}-t(2+t) y^{\prime}+(2+t) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} t^{k+r}$
\square
Rewrite ODE with series expansions
- Convert $t^{m} \cdot y$ to series expansion for $m=0 . .1$
$t^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} t^{k+r+m}$
- Shift index using $k->k-m$
$t^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} t^{k+r}$
- Convert $t^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$t^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) t^{k+r-1+m}$
- Shift index using $k->k+1-m$
$t^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) t^{k+r}$
- Convert $t^{2} \cdot y^{\prime \prime}$ to series expansion
$t^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) t^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+r)(-2+r) t^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)(k+r-2)-a_{k-1}(k+r-2)\right) t^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(-1+r)(-2+r)=0
$$

- Values of r that satisfy the indicial equation $r \in\{1,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r-2)\left(a_{k}(k+r-1)-a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r-1)\left(a_{k+1}(k+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+r}
$$

- Recursion relation for $r=1$
$a_{k+1}=\frac{a_{k}}{k+1}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} t^{k+1}, a_{k+1}=\frac{a_{k}}{k+1}\right]$
- \quad Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}}{k+2}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} t^{k+2}, a_{k+1}=\frac{a_{k}}{k+2}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} t^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} t^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+2}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([t^2*diff(y(t),t$2)-t*(t+2)*diff(y(t),t)+(t+2)*y(t)=0,t], singsol=all)
```

$$
y(t)=t\left(c_{1}+c_{2} \mathrm{e}^{t}\right)
$$

Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 16
DSolve $[t \sim 2 * y$ ' ' $[t]-t *(t+2) * y$ ' $[t]+(t+2) * y[t]==0, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t\left(c_{2} e^{t}+c_{1}\right)
$$

9.21 problem 27

9.21.1 Maple step by step solution 2544

Internal problem ID [673]
Internal file name [OUTPUT/673_Sunday_June_05_2022_01_46_44_AM_69159856/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second_order_change_of_cvariable_on__x_method_1", "second__order_change_of__variable__on_x_method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, '_with_symmetry_[0,F(x)]•]

$$
x y^{\prime \prime}-y^{\prime}+4 y x^{3}=0
$$

Given that one solution of the ode is

$$
y_{1}=\sin \left(x^{2}\right)
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\sin \left(x^{2}\right)\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)}}{\sin \left(x^{2}\right)^{2}} d x\right) \\
& y_{2}(x)=\sin \left(x^{2}\right) \int \frac{x}{\sin \left(x^{2}\right)^{2}}, d x \\
& y_{2}(x)=\sin \left(x^{2}\right)\left(\int \csc \left(x^{2}\right)^{2} x d x\right) \\
& y_{2}(x)=-\frac{\sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sin \left(x^{2}\right) c_{1}-\frac{c_{2} \sin \left(x^{2}\right) \cot \left(x^{2}\right)}{2}
$$

Verified OK.

9.21.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-4 x^{2} y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+4 x^{2} y=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=4 x^{2}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{3} \cdot y$ to series expansion
$x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}$
- Shift index using $k->k-3$
$x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- \quad Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) x^{-1+r}+a_{1}(1+r)(-1+r) x^{r}+a_{2}(2+r) r x^{1+r}+a_{3}(3+r)(1+r) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- \quad The coefficients of each power of x must be 0
$\left[a_{1}(1+r)(-1+r)=0, a_{2}(2+r) r=0, a_{3}(3+r)(1+r)=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0, giving the recursion relation

$$
a_{k+1}(k+1+r)(k+r-1)+4 a_{k-3}=0
$$

- \quad Shift index using $k->k+3$
$a_{k+4}(k+4+r)(k+2+r)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+2+r)}$
- Recursion relation for $r=0$
$a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}$
- \quad Solution for $r=0$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0\right]$
- \quad Recursion relation for $r=2$
$a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k+4}=-\frac{4 b_{k}}{(k+6)(k+4)}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve([x*diff(y(x),x$2)-diff(y(x),x)+4*x^3*y(x)=0, sin(x^2)],singsol=all)
```

$$
y(x)=c_{1} \sin \left(x^{2}\right)+c_{2} \cos \left(x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 20
DSolve[x*y''[x]-y'[x]+4*x^3*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos \left(x^{2}\right)+c_{2} \sin \left(x^{2}\right)
$$

9.22 problem 28

9.22.1 Maple step by step solution 2549

Internal problem ID [674]
Internal file name [OUTPUT/674_Sunday_June_05_2022_01_46_45_AM_64926509/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x-1) y^{\prime \prime}-y^{\prime} x+y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{x}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{x}{x-1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int-\frac{x}{x-1} d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{\mathrm{e}^{x+\ln (x-1)}}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int(x-1) \mathrm{e}^{-x} d x\right) \\
& y_{2}(x)=-\mathrm{e}^{x} x \mathrm{e}^{-x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} x \mathrm{e}^{-x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} x \mathrm{e}^{-x}
$$

Verified OK.

9.22.1 Maple step by step solution

Let's solve
$(x-1) y^{\prime \prime}-y^{\prime} x+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x-1}+\frac{x y^{\prime}}{x-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{y}{x-1}=0$Check to see if $x_{0}=1$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{x}{x-1}, P_{3}(x)=\frac{1}{x-1}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$

$$
\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1
$$

- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$

$$
\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0
$$

- $x=1$ is a regular singular point

Check to see if $x_{0}=1$ is a regular singular point $x_{0}=1$

- Multiply by denominators
$(x-1) y^{\prime \prime}-y^{\prime} x+y=0$
- \quad Change variables using $x=u+1$ so that the regular singular point is at $u=0$

$$
u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- \quad Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
$$

- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(-2+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{0,2\}
$$

- Each term in the series must be 0 , giving the recursion relation
$(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+1+r}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x-1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]$
- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k}}{k+3}$
- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- \quad Revert the change of variables $u=x-1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0, exp(x)], singsol=all)
```

$$
y(x)=c_{1} x+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 17

```
DSolve[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}-c_{2} x
$$

9.23 problem 29

9.23.1 Maple step by step solution . 2554

Internal problem ID [675]
Internal file name [OUTPUT/675_Sunday_June_05_2022_01_46_46_AM_68547472/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order, page 172
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-\left(x-\frac{3}{16}\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=0
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}}\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)} \mathrm{e}^{-4 \sqrt{x}}}{\sqrt{x}} d x\right) \\
& y_{2}(x)=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} \int \frac{1}{\sqrt{x} \mathrm{e}^{4 \sqrt{x}}}, d x \\
& y_{2}(x)=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}}\left(\int \frac{\mathrm{e}^{-4 \sqrt{x}}}{\sqrt{x}} d x\right) \\
& y_{2}(x)=-\frac{x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} \mathrm{e}^{-4 \sqrt{x}}}{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} c_{1}-\frac{c_{2} x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} \mathrm{e}^{-4 \sqrt{x}}}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} c_{1}-\frac{c_{2} x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} \mathrm{e}^{-4 \sqrt{x}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} c_{1}-\frac{c_{2} x^{\frac{1}{4}} \mathrm{e}^{2 \sqrt{x}} \mathrm{e}^{-4 \sqrt{x}}}{2}
$$

Verified OK.

9.23.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x+\frac{3}{16}\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{(16 x-3) y}{16 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{(16 x-3) y}{16 x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=-\frac{16 x-3}{16 x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{3}{16}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$16 x^{2} y^{\prime \prime}+(-16 x+3) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(-1+4 r)(-3+4 r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(4 k+4 r-1)(4 k+4 r-3)-16 a_{k-1}\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(-1+4 r)(-3+4 r)=0
$$

- Values of r that satisfy the indicial equation $r \in\left\{\frac{1}{4}, \frac{3}{4}\right\}$
- Each term in the series must be 0, giving the recursion relation
$16\left(k+r-\frac{3}{4}\right)\left(k+r-\frac{1}{4}\right) a_{k}-16 a_{k-1}=0$
- \quad Shift index using $k->k+1$
$16\left(k+\frac{1}{4}+r\right)\left(k+\frac{3}{4}+r\right) a_{k+1}-16 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{16 a_{k}}{(4 k+1+4 r)(4 k+3+4 r)}$
- Recursion relation for $r=\frac{1}{4}$
$a_{k+1}=\frac{16 a_{k}}{(4 k+2)(4 k+4)}$
- \quad Solution for $r=\frac{1}{4}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+1}=\frac{16 a_{k}}{(4 k+2)(4 k+4)}\right]$
- Recursion relation for $r=\frac{3}{4}$

$$
a_{k+1}=\frac{16 a_{k}}{(4 k+4)(4 k+6)}
$$

- \quad Solution for $r=\frac{3}{4}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{3}{4}}, a_{k+1}=\frac{16 a_{k}}{(4 k+4)(4 k+6)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{3}{4}}\right), a_{k+1}=\frac{16 a_{k}}{(4 k+2)(4 k+4)}, b_{k+1}=\frac{16 b_{k}}{(4 k+4)(4 k+6)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve([x^2*diff(y(x),x$2)-(x-1875/10000)*y(x)=0, x^(1/4)*exp(2*sqrt(x))],singsol=all)
```

$$
y(x)=x^{\frac{1}{4}}\left(c_{1} \sinh (2 \sqrt{x})+c_{2} \cosh (2 \sqrt{x})\right)
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 41
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}[\mathrm{x}]-(\mathrm{x}-1875 / 10000) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{-2 \sqrt{x}} \sqrt[4]{x}\left(2 c_{1} e^{4 \sqrt{x}}-c_{2}\right)
$$

9.24 problem 30

9.24.1 Maple step by step solution 2559

Internal problem ID [676]
Internal file name [OUTPUT/676_Sunday_June_05_2022_01_46_46_AM_36615809/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second__order_change_of_cvariable_on_y_method__1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=\frac{\sin (x)}{\sqrt{x}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\frac{\sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} x x\right)}}{\sin (x)^{2}} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=\frac{\sin (x)}{\sqrt{x}} \int \frac{\frac{1}{x}}{\frac{\sin (x)^{2}}{x}} d x \\
& y_{2}(x)=\frac{\sin (x)\left(\int \csc (x)^{2} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=-\frac{\sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
$$

Verified OK.

9.24.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
4 x^{2} y^{\prime \prime}+4 y^{\prime} x+\left(4 x^{2}-1\right) y=0
$$

- Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k-}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$
- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}$
- \quad Recursion relation for $r=-\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}$
- \quad Solution for $r=-\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}$
- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]$
- \quad Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([x^2*diff (y(x),x$2)+x*diff(y(x),x)+(x^2-25/100)*y(x)=0, x^(-1/2)*sin(x)],singsol=all)
```

$$
y(x)=\frac{c_{1} \sin (x)+c_{2} \cos (x)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 39
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x * y$ ' $[x]+\left(x^{\wedge} 2-25 / 100\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{-i x}\left(2 c_{1}-i c_{2} e^{2 i x}\right)}{2 \sqrt{x}}
$$

9.25 problem 40

9.25.1 Solving as second order euler ode ode 2563
9.25.2 Solving as second order change of variable on x method 2 ode . 2564
9.25.3 Solving as second order change of variable on x method 1 ode . 2567
9.25.4 Solving as second order change of variable on y method 2 ode . 2569
9.25.5 Solving using Kovacic algorithm 2571
9.25.6 Maple step by step solution . 2576

Internal problem ID [677]
Internal file name [OUTPUT/677_Sunday_June_05_2022_01_46_47_AM_3427519/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_ [0,F(x)]•]

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0
$$

9.25.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-3 t r t^{r-1}+4 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-3 r t^{r}+4 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r}$ and $y_{2}=t^{r} \ln (t)$. Hence

$$
y=c_{1} t^{2}+c_{2} t^{2} \ln (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{2}+c_{2} t^{2} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{2}+c_{2} t^{2} \ln (t)
$$

Verified OK.

9.25.2 Solving as second order change of variable on x method 2 ode

 In normal form the ode$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{4}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{t} d t\right)} d t \\
& =\int e^{3 \ln (t)} d t \\
& =\int t^{3} d t \\
& =\frac{t^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{4}{t^{2}}}{t^{6}} \\
& =\frac{4}{t^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{t^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{t^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(t^{4}\right)+c_{1}\right) \sqrt{t^{4}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(t^{4}\right)+c_{1}\right) \sqrt{t^{4}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(t^{4}\right)+c_{1}\right) \sqrt{t^{4}}}{2}
$$

Verified OK.

9.25.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{4}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{t^{2}} t^{3}}}-\frac{3}{t} \frac{2 \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int 2 \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{2 \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{2}
$$

Verified OK.

9.25.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{4}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{3 n}{t^{2}}+\frac{4}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t} & =0 \\
v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t} d t \\
\ln (u) & =-\ln (t)+c_{1} \\
u & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(c_{1} \ln (t)+c_{2}\right) t^{2} \\
& =\left(c_{1} \ln (t)+c_{2}\right) t^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (t)+c_{2}\right) t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (t)+c_{2}\right) t^{2}
$$

Verified OK.

9.25.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-3 t \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 462: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t}+(-)(0) \\
& =\frac{1}{2 t} \\
& =\frac{1}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 t}\right)(0)+\left(\left(-\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2 t}\right)^{2}-\left(-\frac{1}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2 t} d t} \\
& =\sqrt{t}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 t}{t^{2}} d t} \\
& =z_{1} e^{\frac{3 \ln (t)}{2}} \\
& =z_{1}\left(t^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{3 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(\ln (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{2}\right)+c_{2}\left(t^{2}(\ln (t))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{2}+c_{2} t^{2} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{2}+c_{2} t^{2} \ln (t)
$$

Verified OK.

9.25.6 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}-3 t y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y^{\prime}}{t}-\frac{4 y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{3 y^{\prime}}{t}+\frac{4 y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}-3 t y^{\prime}+4 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t, using the chain rule

$$
y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2nd derivative of y with respect to t , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-3 \frac{d}{d s} y(s)+4 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)-4 \frac{d}{d s} y(s)+4 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+4=0$
- Factor the characteristic polynomial

$$
(r-2)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=2
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{2 s}
$$

- Repeated root, multiply $y_{1}(s)$ by s to ensure linear independence

$$
y_{2}(s)=s \mathrm{e}^{2 s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{2 s}+c_{2} s \mathrm{e}^{2 s}
$$

- Change variables back using $s=\ln (t)$

$$
y=c_{1} t^{2}+c_{2} t^{2} \ln (t)
$$

- Simplify

$$
y=t^{2}\left(c_{2} \ln (t)+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(t^2*diff(y(t),t$2)-3*t*diff(y(t),t)+4*y(t)=0,y(t), singsol=all)
```

$$
y(t)=t^{2}\left(c_{2} \ln (t)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18
DSolve[t^2*y' ' $[\mathrm{t}]-3 * \mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]+4 * \mathrm{y}[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t^{2}\left(2 c_{2} \log (t)+c_{1}\right)
$$

9.26 problem 41

9.26.1 Solving as second order euler ode ode 2580
9.26.2 Solving as second order change of variable on x method 2 ode . 2581
9.26.3 Solving as second order change of variable on x method 1 ode . 2583
9.26.4 Solving as second order change of variable on y method 2 ode . 2585
9.26.5 Solving using Kovacic algorithm 2587
9.26.6 Maple step by step solution . 2592

Internal problem ID [678]
Internal file name [OUTPUT/678_Sunday_June_05_2022_01_46_48_AM_2297909/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
t^{2} y^{\prime \prime}+2 t y^{\prime}+\frac{y}{4}=0
$$

The ode can be written as

$$
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y=0
$$

Which shows it is a Euler ODE.

9.26.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
4 t^{2}(r(r-1)) t^{r-2}+8 t r t^{r-1}+t^{r}=0
$$

Simplifying gives

$$
4 r(r-1) t^{r}+8 r t^{r}+t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
4 r(r-1)+8 r+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}+4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =-\frac{1}{2} \\
r_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r}$ and $y_{2}=t^{r} \ln (t)$. Hence

$$
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}}
$$

Verified OK.

9.26.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{1}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{t} d t\right)} d t \\
& =\int e^{-2 \ln (t)} d t \\
& =\int \frac{1}{t^{2}} d t \\
& =-\frac{1}{t} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{1}{4 t^{2}}}{\frac{1}{t^{4}}} \\
& =\frac{t^{2}}{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{t^{2} y(\tau)}{4} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{t^{2}}{4}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\left(\ln \left(-\frac{1}{t}\right) c_{2}+c_{1}\right) \sqrt{-\frac{1}{t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\ln \left(-\frac{1}{t}\right) c_{2}+c_{1}\right) \sqrt{-\frac{1}{t}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\ln \left(-\frac{1}{t}\right) c_{2}+c_{1}\right) \sqrt{-\frac{1}{t}}
$$

Verified OK.

9.26.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{1}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{t^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{1}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}+\frac{2}{t} \frac{\sqrt{\frac{1}{t^{2}}}}{2 c}}{\left(\frac{\sqrt{\frac{1}{t^{2}}}}{2 c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \frac{\sqrt{\frac{1}{t^{2}}}}{2} d t}{c} \\
& =\frac{\sqrt{\frac{1}{t^{2}}} t \ln (t)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1}}{\sqrt{t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{t}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{t}}
$$

Verified OK.

9.26.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{2}{t} \\
& q(t)=\frac{1}{4 t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{2 n}{t^{2}}+\frac{1}{4 t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-\frac{1}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t}=0 \\
& v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t} d t \\
\ln (u) & =-\ln (t)+c_{1} \\
u & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\frac{c_{1} \ln (t)+c_{2}}{\sqrt{t}} \\
& =\frac{c_{1} \ln (t)+c_{2}}{\sqrt{t}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (t)+c_{2}}{\sqrt{t}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (t)+c_{2}}{\sqrt{t}}
$$

Verified OK.

9.26.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 t^{2} y^{\prime \prime}+8 t y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 t^{2} \\
& B=8 t \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 464: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t}+(-)(0) \\
& =\frac{1}{2 t} \\
& =\frac{1}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 t}\right)(0)+\left(\left(-\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2 t}\right)^{2}-\left(-\frac{1}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2 t} d t} \\
& =\sqrt{t}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{4} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8 t}{4 t^{2}} d t} \\
& =z_{1} e^{-\ln (t)} \\
& =z_{1}\left(\frac{1}{t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{\sqrt{t}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8 t}{4 t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(\ln (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{\sqrt{t}}\right)+c_{2}\left(\frac{1}{\sqrt{t}}(\ln (t))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}}
$$

Verified OK.

9.26.6 Maple step by step solution

Let's solve
$4 y^{\prime \prime} t^{2}+8 t y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{t}-\frac{y}{4 t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y^{\prime}}{t}+\frac{y}{4 t^{2}}=0$
- Multiply by denominators of the ODE
$4 y^{\prime \prime} t^{2}+8 t y^{\prime}+y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the 2nd derivative of y with respect to t , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{d}{d s} y(s)$
Substitute the change of variables back into the ODE
$4\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+8 \frac{d}{d s} y(s)+y(s)=0$
- \quad Simplify
$4 \frac{d^{2}}{d s^{2}} y(s)+4 \frac{d}{d s} y(s)+y(s)=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d s^{2}} y(s)=-\frac{d}{d s} y(s)-\frac{y(s)}{4}$
- Group terms with $y(s)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{2}}{d s^{2}} y(s)+\frac{d}{d s} y(s)+\frac{y(s)}{4}=0$
- Characteristic polynomial of ODE
$r^{2}+r+\frac{1}{4}=0$
- Factor the characteristic polynomial

$$
\frac{(2 r+1)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=-\frac{1}{2}
$$

- $\quad 1$ st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-\frac{s}{2}}$
- Repeated root, multiply $y_{1}(s)$ by s to ensure linear independence

$$
y_{2}(s)=s \mathrm{e}^{-\frac{s}{2}}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- \quad Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-\frac{s}{2}}+c_{2} s \mathrm{e}^{-\frac{s}{2}}
$$

- Change variables back using $s=\ln (t)$

$$
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{\sqrt{t}}+\frac{c_{2} \ln (t)}{\sqrt{t}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(t^2*diff(y(t),t$2)+2*t*diff(y(t),t)+25/100*y(t)=0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{2} \ln (t)+c_{1}}{\sqrt{t}}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 24

```
DSolve[t^2*y''[t]+2*t*y'[t]+25/100*y[t]==0,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{c_{2} \log (t)+2 c_{1}}{2 \sqrt{t}}
$$

9.27 problem 42

$$
\text { 9.27.1 Solving as second order euler ode ode } 2596
$$

9.27.2 Solving as second order change of variable on x method 2 ode . 2597
9.27.3 Solving as second order change of variable on x method 1 ode . 2599
9.27.4 Solving as second order change of variable on y method 2 ode . 2601
9.27.5 $\begin{aligned} & \text { Solving as second order ode non constant coeff transformation } \\ & \text { on B ode . } 2604\end{aligned}$
9.27.6 Solving using Kovacic algorithm 2606
9.27.7 Maple step by step solution . 2611

Internal problem ID [679]
Internal file name [OUTPUT/679_Sunday_June_05_2022_01_46_49_AM_62569225/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "second_order_ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
2 t^{2} y^{\prime \prime}-5 t y^{\prime}+5 y=0
$$

9.27.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
2 t^{2}(r(r-1)) t^{r-2}-5 t r t^{r-1}+5 t^{r}=0
$$

Simplifying gives

$$
2 r(r-1) t^{r}-5 r t^{r}+5 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
2 r(r-1)-5 r+5=0
$$

Or

$$
\begin{equation*}
2 r^{2}-7 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=\frac{5}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=c_{1} t+c_{2} t^{\frac{5}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{2} t^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t+c_{2} t^{\frac{5}{2}}
$$

Verified OK.

9.27.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
2 t^{2} y^{\prime \prime}-5 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{5}{2 t} \\
& q(t)=\frac{5}{2 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{2 t} d t\right)} d t \\
& =\int e^{\frac{5 \ln (t)}{2}} d t \\
& =\int t^{\frac{5}{2}} d t \\
& =\frac{2 t^{\frac{7}{2}}}{7} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{5}{2 t^{2}}}{t^{5}} \\
& =\frac{5}{2 t^{7}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{2 t^{7}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{5}{2 t^{7}}=\frac{10}{49 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{10 y(\tau)}{49 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
49\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+10 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
49 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+10 \tau^{r}=0
$$

Simplifying gives

$$
49 r(r-1) \tau^{r}+0 \tau^{r}+10 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
49 r(r-1)+0+10=0
$$

Or

$$
\begin{equation*}
49 r^{2}-49 r+10=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{2}{7} \\
& r_{2}=\frac{5}{7}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{2}{7}}+c_{2} \tau^{\frac{5}{7}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 2^{\frac{2}{7}} 7^{\frac{5}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 2^{\frac{5}{7}} 7^{\frac{2}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{5}{7}}}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 2^{\frac{2}{7}} 7^{\frac{5}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 2^{\frac{5}{7}} 7^{\frac{2}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{5}{7}}}{7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 2^{\frac{2}{7}} 7^{\frac{5}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{2}{7}}}{7}+\frac{c_{2} 2^{\frac{5}{7}} 7^{\frac{2}{7}}\left(t^{\frac{7}{2}}\right)^{\frac{5}{7}}}{7}
$$

Verified OK.

9.27.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
2 t^{2} y^{\prime \prime}-5 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{5}{2 t} \\
& q(t)=\frac{5}{2 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{10}}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{10}}{2 c \sqrt{\frac{1}{t^{2}}}{ }^{3}}-\frac{5}{2 t} \frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{2 c}}{\left(\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{2 c}\right)^{2}} \\
& =-\frac{7 c \sqrt{10}}{10}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{7 c \sqrt{10}\left(\frac{d}{d \tau} y(\tau)\right)}{10}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{7 \sqrt{10} c \tau}{20}}\left(c_{1} \cosh \left(\frac{3 \sqrt{10} c \tau}{20}\right)+i c_{2} \sinh \left(\frac{3 \sqrt{10} c \tau}{20}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}}}{2} d t}{c} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t^{\frac{7}{4}}\left(c_{1} \cosh \left(\frac{3 \ln (t)}{4}\right)+i c_{2} \sinh \left(\frac{3 \ln (t)}{4}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{\frac{7}{4}}\left(c_{1} \cosh \left(\frac{3 \ln (t)}{4}\right)+i c_{2} \sinh \left(\frac{3 \ln (t)}{4}\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{\frac{7}{4}}\left(c_{1} \cosh \left(\frac{3 \ln (t)}{4}\right)+i c_{2} \sinh \left(\frac{3 \ln (t)}{4}\right)\right)
$$

Verified OK.

9.27.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
2 t^{2} y^{\prime \prime}-5 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =-\frac{5}{2 t} \\
q(t) & =\frac{5}{2 t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{5 n}{2 t^{2}}+\frac{5}{2 t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{5}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{2 t}=0 \\
& v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{2 t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{5 u(t)}{2 t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{5 u}{2 t}
\end{aligned}
$$

Where $f(t)=-\frac{5}{2 t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 t} d t \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 t} d t \\
\ln (u) & =-\frac{5 \ln (t)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (t)}{2}+c_{1}} \\
& =\frac{c_{1}}{t^{\frac{5}{2}}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{2 c_{1}}{3 t^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(-\frac{2 c_{1}}{3 t^{\frac{3}{2}}}+c_{2}\right) t^{\frac{5}{2}} \\
& =c_{2} t^{\frac{5}{2}}-\frac{2 c_{1} t}{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 t^{\frac{3}{2}}}+c_{2}\right) t^{\frac{5}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 t^{\frac{3}{2}}}+c_{2}\right) t^{\frac{5}{2}}
$$

Verified OK.

9.27.5 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=2 t^{2} \\
& B=-5 t \\
& C=5 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(2 t^{2}\right)(0)+(-5 t)(-5)+(5)(-5 t) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-10 t^{3} v^{\prime \prime}+\left(5 t^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-10 t^{3} u^{\prime}(t)+5 t^{2} u(t)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u}{2 t}
\end{aligned}
$$

Where $f(t)=\frac{1}{2 t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{2 t} d t \\
\int \frac{1}{u} d u & =\int \frac{1}{2 t} d t \\
\ln (u) & =\frac{\ln (t)}{2}+c_{1} \\
u & =\mathrm{e}^{\frac{\ln (t)}{2}+c_{1}} \\
& =c_{1} \sqrt{t}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} \sqrt{t}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int c_{1} \sqrt{t} \mathrm{~d} t \\
& =\frac{2 t^{\frac{3}{2}} c_{1}}{3}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(t) & =B v \\
& =(-5 t)\left(\frac{2 t^{\frac{3}{2}} c_{1}}{3}+c_{2}\right) \\
& =-\frac{5 t\left(2 t^{\frac{3}{2}} c_{1}+3 c_{2}\right)}{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5 t\left(2 t^{\frac{3}{2}} c_{1}+3 c_{2}\right)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{5 t\left(2 t^{\frac{3}{2}} c_{1}+3 c_{2}\right)}{3}
$$

Verified OK.

9.27.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 t^{2} y^{\prime \prime}-5 t y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 t^{2} \\
& B=-5 t \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{16 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =5 \\
t & =16 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{5}{16 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 466: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{5}{16 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{5}{16 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{5}{16 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{4}-\left(-\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{4 t}+(-)(0) \\
& =-\frac{1}{4 t} \\
& =-\frac{1}{4 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{4 t}\right)(0)+\left(\left(\frac{1}{4 t^{2}}\right)+\left(-\frac{1}{4 t}\right)^{2}-\left(\frac{5}{16 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{1}{4 t} d t} \\
& =\frac{1}{t^{\frac{1}{4}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5 t}{2 t^{2}} d t} \\
& =z_{1} e^{\frac{5 \ln (t)}{4}} \\
& =z_{1}\left(t^{\frac{5}{4}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 t}{2 t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{\frac{5 \ln (t)}{2}}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{2 t^{\frac{3}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(t)+c_{2}\left(t\left(\frac{2 t^{\frac{3}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+\frac{2 c_{2} t^{\frac{5}{2}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t+\frac{2 c_{2} t^{\frac{5}{2}}}{3}
$$

Verified OK.

9.27.7 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime} t^{2}-5 t y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{5 y^{\prime}}{2 t}-\frac{5 y}{2 t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{5 y^{\prime}}{2 t}+\frac{5 y}{2 t^{2}}=0
$$

- Multiply by denominators of the ODE
$2 y^{\prime \prime} t^{2}-5 t y^{\prime}+5 y=0$
- Make a change of variables

$$
s=\ln (t)
$$

$\square \quad$ Substitute the change of variables back into the ODE

- Calculate the 1 st derivative of y with respect to t , using the chain rule

$$
y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the $2 n d$ derivative of y with respect to t, using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
2\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-5 \frac{d}{d s} y(s)+5 y(s)=0
$$

- Simplify

$$
2 \frac{d^{2}}{d s^{2}} y(s)-7 \frac{d}{d s} y(s)+5 y(s)=0
$$

- Isolate 2 nd derivative

$$
\frac{d^{2}}{d s^{2}} y(s)=\frac{7 \frac{d}{d s} y(s)}{2}-\frac{5 y(s)}{2}
$$

- Group terms with $y(s)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{2}}{d s^{2}} y(s)-\frac{7 \frac{d}{d s} y(s)}{2}+\frac{5 y(s)}{2}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-\frac{7}{2} r+\frac{5}{2}=0
$$

- Factor the characteristic polynomial

$$
\frac{(r-1)(2 r-5)}{2}=0
$$

- Roots of the characteristic polynomial
$r=\left(1, \frac{5}{2}\right)$
- 1st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{s}
$$

- \quad 2nd solution of the ODE

$$
y_{2}(s)=\mathrm{e}^{\frac{5 s}{2}}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{s}+c_{2} \mathrm{e}^{\frac{5 s}{2}}
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=c_{1} t+c_{2} t^{\frac{5}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(2*t^2*diff(y(t),t$2)-5*t*diff(y(t),t)+5*y(t)=0,y(t), singsol=all)
    y(t)=\mp@subsup{c}{1}{}t+\mp@subsup{c}{2}{}\mp@subsup{t}{}{\frac{5}{2}}
```

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve[2*t^2*y' ' $[t]-5 * t * y$ ' $[t]+5 * y[t]==0, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t\left(c_{2} t^{3 / 2}+c_{1}\right)
$$

9.28 problem 43

9.28.1 Solving as second order euler ode ode 2615
9.28.2 Solving as second order change of variable on x method 2 ode . 2616
9.28.3 Solving as second order change of variable on x method 1 ode . 2618
9.28.4 Solving as second order change of variable on y method 2 ode . 2620
9.28.5 Solving as second order integrable as is ode 2623

9.28.7 Solving using Kovacic algorithm 2626
9.28.8 Solving as exact linear second order ode ode 2631
9.28.9 Maple step by step solution . 2633

Internal problem ID [680]
Internal file name [OUTPUT/680_Sunday_June_05_2022_01_46_49_AM_855305/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 43.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on__x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0
$$

9.28.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+3 t r t^{r-1}+t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+3 r t^{r}+t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+3 r+1=0
$$

Or

$$
\begin{equation*}
r^{2}+2 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r}$ and $y_{2}=t^{r} \ln (t)$. Hence

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

Verified OK.

9.28.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{3}{t} \\
& q(t)=\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{t} d t\right)} d t \\
& =\int e^{-3 \ln (t)} d t \\
& =\int \frac{1}{t^{3}} d t \\
& =-\frac{1}{2 t^{2}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{1}{t^{2}}}{\frac{1}{t^{6}}} \\
& =t^{4} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+t^{4} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
t^{4}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{t^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{t^{2}}\right)\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} \sqrt{-\frac{1}{t^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{t^{2}}\right)\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} \sqrt{-\frac{1}{t^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{t^{2}}\right)\right)}{2}
$$

Verified OK.

9.28.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{3}{t} \\
q(t) & =\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{3}{t} \frac{\sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}
$$

Verified OK.

9.28.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{3}{t} \\
q(t) & =\frac{1}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{3 n}{t^{2}}+\frac{1}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t} & =0 \\
v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t} d t \\
\ln (u) & =-\ln (t)+c_{1} \\
u & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\frac{c_{1} \ln (t)+c_{2}}{t} \\
& =\frac{c_{1} \ln (t)+c_{2}}{t}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (t)+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Verified OK.

9.28.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}+3 t y^{\prime}+y\right) d t=0 \\
y^{\prime} t^{2}+y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}(t y) & =\left(\frac{c_{1}}{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int \frac{c_{1}}{t} \mathrm{~d} t \\
& t y=c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=\frac{c_{1} \ln (t)}{t}+\frac{c_{2}}{t}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (t)+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Verified OK.

9.28.6 Solving as type second_oorder_integrable_as_is (not using ABC version)

Writing the ode as

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{gathered}
\int\left(t^{2} y^{\prime \prime}+3 t y^{\prime}+y\right) d t=0 \\
y^{\prime} t^{2}+y t=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}(t y) & =\left(\frac{c_{1}}{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int \frac{c_{1}}{t} \mathrm{~d} t \\
& t y=c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=\frac{c_{1} \ln (t)}{t}+\frac{c_{2}}{t}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (t)+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Verified OK.

9.28.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+3 t y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=3 t \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 468: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t}+(-)(0) \\
& =\frac{1}{2 t} \\
& =\frac{1}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 t}\right)(0)+\left(\left(-\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2 t}\right)^{2}-\left(-\frac{1}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2 t} d t} \\
& =\sqrt{t}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{3 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{3}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(\ln (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t}\right)+c_{2}\left(\frac{1}{t}(\ln (t))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

Verified OK.

9.28.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=t^{2} \\
& q(x)=3 t \\
& r(x)=1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =3
\end{aligned}
$$

Therefore (1) becomes

$$
2-(3)+(1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} t^{2}+y t=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime} t^{2}+y t=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{t} \\
& q(t)=\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{t}=\frac{c_{1}}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{c_{1}}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)\left(\frac{c_{1}}{t^{2}}\right) \\
\mathrm{d}(t y) & =\left(\frac{c_{1}}{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int \frac{c_{1}}{t} \mathrm{~d} t \\
& t y=c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=\frac{c_{1} \ln (t)}{t}+\frac{c_{2}}{t}
$$

which simplifies to

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \ln (t)+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \ln (t)+c_{2}}{t}
$$

Verified OK.

9.28.9 Maple step by step solution

Let's solve

$$
y^{\prime \prime} t^{2}+3 t y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{t}-\frac{y}{t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{t}+\frac{y}{t^{2}}=0
$$

- Multiply by denominators of the ODE
$y^{\prime \prime} t^{2}+3 t y^{\prime}+y=0$
- Make a change of variables

$$
s=\ln (t)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to t, using the chain rule

$$
y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)
$$

- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2 nd derivative of y with respect to t , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+3 \frac{d}{d s} y(s)+y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+2 \frac{d}{d s} y(s)+y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-s}$
- Repeated root, multiply $y_{1}(s)$ by s to ensure linear independence

$$
y_{2}(s)=s \mathrm{e}^{-s}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{-s}+c_{2} s \mathrm{e}^{-s}
$$

- \quad Change variables back using $s=\ln (t)$

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

- Simplify

$$
y=\frac{c_{1}}{t}+\frac{c_{2} \ln (t)}{t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
dsolve(t`2*diff(y(t),t$2)+3*t*diff(y(t),t)+y(t)=0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{2} \ln (t)+c_{1}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 17
DSolve [t^2*y' ' $[\mathrm{t}]+3 * \mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]+\mathrm{y}[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{c_{2} \log (t)+c_{1}}{t}
$$

9.29 problem 44

9.29.1 Solving as second order euler ode ode 2636
9.29.2 Solving as second order change of variable on x method 2 ode . 2637
9.29.3 Solving as second order change of variable on x method 1 ode . 2640
9.29.4 Solving as second order change of variable on y method 2 ode . 2642
9.29.5 Solving using Kovacic algorithm 2644
9.29.6 Maple step by step solution . 2649

Internal problem ID [681]
Internal file name [OUTPUT/681_Sunday_June_05_2022_01_46_50_AM_23754413/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y=0
$$

9.29.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
4 t^{2}(r(r-1)) t^{r-2}-8 t r t^{r-1}+9 t^{r}=0
$$

Simplifying gives

$$
4 r(r-1) t^{r}-8 r t^{r}+9 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
4 r(r-1)-8 r+9=0
$$

Or

$$
\begin{equation*}
4 r^{2}-12 r+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r}$ and $y_{2}=t^{r} \ln (t)$. Hence

$$
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t)
$$

Verified OK.

9.29.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{9}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{t} d t\right)} d t \\
& =\int e^{2 \ln (t)} d t \\
& =\int t^{2} d t \\
& =\frac{t^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{9}{4 t^{2}}}{t^{4}} \\
& =\frac{9}{4 t^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{9 y(\tau)}{4 t^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{9}{4 t^{6}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{3} \sqrt{t^{3}}\left(c_{1}+c_{2} \ln \left(t^{3}\right)-c_{2} \ln (3)\right)}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{3} \sqrt{t^{3}}\left(c_{1}+c_{2} \ln \left(t^{3}\right)-c_{2} \ln (3)\right)}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{3} \sqrt{t^{3}}\left(c_{1}+c_{2} \ln \left(t^{3}\right)-c_{2} \ln (3)\right)}{3}
$$

Verified OK.

9.29.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{9}{4 t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{t^{2}}}}{2 c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{3}{2 c \sqrt{\frac{1}{t^{2}}} t^{3}}-\frac{2}{t} \frac{3 \sqrt{\frac{1}{t^{2}}}}{2 c}}{\left(\frac{3 \sqrt{\frac{1}{t^{2}}}}{2 c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \frac{3 \sqrt{\frac{1}{t^{2}}}}{2} d t}{c} \\
& =\frac{3 \sqrt{\frac{1}{t^{2}}} t \ln (t)}{2 c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t^{\frac{3}{2}} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{\frac{3}{2}} c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{\frac{3}{2}} c_{1}
$$

Verified OK.

9.29.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{9}{4 t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{2 n}{t^{2}}+\frac{9}{4 t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=\frac{3}{2} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t}=0 \\
& v^{\prime \prime}(t)+\frac{v^{\prime}(t)}{t}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t} d t \\
\ln (u) & =-\ln (t)+c_{1} \\
u & =\mathrm{e}^{-\ln (t)+c_{1}} \\
& =\frac{c_{1}}{t}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =c_{1} \ln (t)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(c_{1} \ln (t)+c_{2}\right) t^{\frac{3}{2}} \\
& =\left(c_{1} \ln (t)+c_{2}\right) t^{\frac{3}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{1} \ln (t)+c_{2}\right) t^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{1} \ln (t)+c_{2}\right) t^{\frac{3}{2}}
$$

Verified OK.

9.29.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 t^{2} y^{\prime \prime}-8 t y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 t^{2} \\
& B=-8 t \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{1}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 470: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 t}+(-)(0) \\
& =\frac{1}{2 t} \\
& =\frac{1}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 t}\right)(0)+\left(\left(-\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2 t}\right)^{2}-\left(-\frac{1}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2 t} d t} \\
& =\sqrt{t}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-8 t}{4 t^{2}} d t} \\
& =z_{1} e^{\ln (t)} \\
& =z_{1}(t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{\frac{3}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8 t}{4 t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{2 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(\ln (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{\frac{3}{2}}\right)+c_{2}\left(t^{\frac{3}{2}}(\ln (t))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t)
$$

Verified OK.

9.29.6 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime} t^{2}-8 t y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y^{\prime}}{t}-\frac{9 y}{4 t^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{2 y^{\prime}}{t}+\frac{9 y}{4 t^{2}}=0$
- Multiply by denominators of the ODE
$4 y^{\prime \prime} t^{2}-8 t y^{\prime}+9 y=0$
- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}
$$

- Calculate the 2nd derivative of y with respect to t , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}
$$

Substitute the change of variables back into the ODE
$4\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}-8 \frac{d}{d s} y(s)+9 y(s)=0$

- \quad Simplify
$4 \frac{d^{2}}{d s^{2}} y(s)-12 \frac{d}{d s} y(s)+9 y(s)=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d s^{2}} y(s)=3 \frac{d}{d s} y(s)-\frac{9 y(s)}{4}$
- Group terms with $y(s)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{2}}{d s^{2}} y(s)-3 \frac{d}{d s} y(s)+\frac{9 y(s)}{4}=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-3 r+\frac{9}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-3)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=\frac{3}{2}
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(s)=\mathrm{e}^{\frac{3 s}{2}}
$$

- \quad Repeated root, multiply $y_{1}(s)$ by s to ensure linear independence

$$
y_{2}(s)=s \mathrm{e}^{\frac{3 s}{2}}
$$

- General solution of the ODE

$$
y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)
$$

- Substitute in solutions

$$
y(s)=c_{1} \mathrm{e}^{\frac{3 s}{2}}+c_{2} s \mathrm{e}^{\frac{3 s}{2}}
$$

- Change variables back using $s=\ln (t)$

$$
y=t^{\frac{3}{2}} c_{1}+c_{2} t^{\frac{3}{2}} \ln (t)
$$

- Simplify

$$
y=\left(c_{2} \ln (t)+c_{1}\right) t^{\frac{3}{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve($4 * t^{\wedge} 2 * \operatorname{diff}(y(t), t \$ 2)-8 * t * \operatorname{diff}(y(t), t)+9 * y(t)=0, y(t), \quad$ singsol=all)

$$
y(t)=\left(c_{2} \ln (t)+c_{1}\right) t^{\frac{3}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 25
DSolve[4*t^2*y' ' $[\mathrm{t}]-8 * \mathrm{t} * \mathrm{y}$ ' $[\mathrm{t}]+9 * y[\mathrm{t}]==0, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2} t^{3 / 2}\left(3 c_{2} \log (t)+2 c_{1}\right)
$$

9.30 problem 45

9.30.1 Solving as second order euler ode ode 2652
9.30.2 Solving as second order change of variable on x method 2 ode . 2654
9.30.3 Solving as second order change of variable on x method 1 ode . 2657
9.30.4 Solving as second order change of variable on y method 2 ode . 2659
9.30.5 Solving using Kovacic algorithm 2661
9.30.6 Maple step by step solution . 2666

Internal problem ID [682]
Internal file name [OUTPUT/682_Sunday_June_05_2022_01_46_51_AM_41135738/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.4 Repeated roots, reduction of order , page 172
Problem number: 45.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
t^{2} y^{\prime \prime}+5 t y^{\prime}+13 y=0
$$

9.30.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+5 t r t^{r-1}+13 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+5 r t^{r}+13 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+5 r+13=0
$$

Or

$$
\begin{equation*}
r^{2}+4 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2-3 i \\
& r_{2}=-2+3 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=-2$ and $\beta=-3$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} t^{r_{1}}+c_{2} t^{r_{2}} \\
& =c_{1} t^{\alpha+i \beta}+c_{2} t^{\alpha-i \beta} \\
& =t^{\alpha}\left(c_{1} t^{i \beta}+c_{2} t^{-i \beta}\right) \\
& =t^{\alpha}\left(c_{1} e^{\ln \left(t^{i \beta}\right)}+c_{2} e^{\ln \left(t^{-i \beta}\right)}\right) \\
& =t^{\alpha}\left(c_{1} e^{i(\beta \ln t)}+c_{2} e^{-i(\beta \ln t)}\right)
\end{aligned}
$$

Using the values for $\alpha=-2, \beta=-3$, the above becomes

$$
y=t^{-2}\left(c_{1} e^{-3 i \ln (t)}+c_{2} e^{3 i \ln (t)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=\frac{1}{t^{2}}\left(c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))}{t^{2}}
$$

Verified OK.

9.30.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+5 t y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{5}{t} \\
q(t) & =\frac{13}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{t} d t\right)} d t \\
& =\int e^{-5 \ln (t)} d t \\
& =\int \frac{1}{t^{5}} d t \\
& =-\frac{1}{4 t^{4}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{13}{t^{2}}}{\frac{1}{t^{10}}} \\
& =13 t^{8} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+13 t^{8} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
13 t^{8}=\frac{13}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{13 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+13 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+13 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+13 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+13=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+13=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{3 i}{4} \\
& r_{2}=\frac{1}{2}+\frac{3 i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{3}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{3 i \ln (\tau)}{4}}+c_{2} e^{\frac{3 i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{3 \ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{3 \ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{-\frac{1}{t^{4}}}\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{-\frac{1}{t^{4}}}\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{-\frac{1}{t^{4}}}\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{t^{4}}\right)}{4}\right)\right)}{2}
$$

Verified OK.

9.30.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+5 t y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{5}{t} \\
& q(t)=\frac{13}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{13}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{13}}{c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{5}{t} \frac{\sqrt{13} \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{13}}{c} \sqrt{\frac{1}{t^{2}}}\right)^{2}} \\
& =\frac{4 c \sqrt{13}}{13}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 c \sqrt{13}\left(\frac{d}{d \tau} y(\tau)\right)}{13}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{2 \sqrt{13} c \tau}{13}}\left(c_{1} \cos \left(\frac{3 \sqrt{13} c \tau}{13}\right)+c_{2} \sin \left(\frac{3 \sqrt{13} c \tau}{13}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{13} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{13} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))}{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))}{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (3 \ln (t))+c_{2} \sin (3 \ln (t))}{t^{2}}
$$

Verified OK.

9.30.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+5 t y^{\prime}+13 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{5}{t} \\
q(t) & =\frac{13}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{5 n}{t^{2}}+\frac{13}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-2+3 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{-4+6 i}{t}+\frac{5}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)+\frac{(1+6 i) v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{(1+6 i) u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{(-1-6 i) u}{t}
\end{aligned}
$$

Where $f(t)=\frac{-1-6 i}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{t} d t \\
\ln (u) & =(-1-6 i) \ln (t)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (t)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} t^{-6 i}}{t}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{i c_{1} t^{-6 i}}{6}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{i c_{1} t^{-6 i}}{6}+c_{2}\right) t^{-2+3 i} \\
& =c_{2} t^{-2+3 i}+\frac{i c_{1} t^{-2-3 i}}{6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i c_{1} t^{-6 i}}{6}+c_{2}\right) t^{-2+3 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i c_{1} t^{-6 i}}{6}+c_{2}\right) t^{-2+3 i}
$$

Verified OK.

9.30.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+5 t y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=5 t \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-37}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-37 \\
t & =4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(-\frac{37}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 472: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{37}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{37}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{37}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{37}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+3 i$	$\frac{1}{2}-3 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-3 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{t}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{t} \\
& =\frac{\frac{1}{2}-3 i}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{t}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{t^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{t}\right)^{2}-\left(-\frac{37}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} t d t \\
& =t^{\frac{1}{2}-3 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{5 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{5}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t^{-2-3 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-5 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\frac{i t^{6 i}}{6}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(t^{-2-3 i}\right)+c_{2}\left(t^{-2-3 i}\left(-\frac{i t^{6 i}}{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{-2-3 i}-\frac{i c_{2} t^{-2+3 i}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{-2-3 i}-\frac{i c_{2} t^{-2+3 i}}{6}
$$

Verified OK.

9.30.6 Maple step by step solution

Let's solve
$y^{\prime \prime} t^{2}+5 t y^{\prime}+13 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{5 y^{\prime}}{t}-\frac{13 y}{t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{5 y^{\prime}}{t}+\frac{13 y}{t^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime} t^{2}+5 t y^{\prime}+13 y=0
$$

- Make a change of variables
$s=\ln (t)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to t, using the chain rule $y^{\prime}=\left(\frac{d}{d s} y(s)\right) s^{\prime}(t)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d s} y(s)}{t}$
- Calculate the $2 n d$ derivative of y with respect to t, using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d s^{2}} y(s)\right) s^{\prime}(t)^{2}+s^{\prime \prime}(t)\left(\frac{d}{d s} y(s)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{2}}{d s^{2}} y(s)}{t^{2}}-\frac{\frac{d}{d s} y(s)}{t^{2}}\right) t^{2}+5 \frac{d}{d s} y(s)+13 y(s)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d s^{2}} y(s)+4 \frac{d}{d s} y(s)+13 y(s)=0
$$

- Characteristic polynomial of ODE
$r^{2}+4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-2-3 \mathrm{I},-2+3 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(s)=\mathrm{e}^{-2 s} \cos (3 s)$
- \quad 2nd solution of the ODE
$y_{2}(s)=\mathrm{e}^{-2 s} \sin (3 s)$
- General solution of the ODE
$y(s)=c_{1} y_{1}(s)+c_{2} y_{2}(s)$
- Substitute in solutions
$y(s)=c_{1} \mathrm{e}^{-2 s} \cos (3 s)+c_{2} \mathrm{e}^{-2 s} \sin (3 s)$
- \quad Change variables back using $s=\ln (t)$
$y=\frac{c_{1} \cos (3 \ln (t))}{t^{2}}+\frac{c_{2} \sin (3 \ln (t))}{t^{2}}$
- \quad Simplify
$y=\frac{c_{1} \cos (3 \ln (t))}{t^{2}}+\frac{c_{2} \sin (3 \ln (t))}{t^{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(t^2*diff(y(t),t$2)+5*t*diff (y(t),t)+13*y(t)=0,y(t), singsol=all)
```

$$
y(t)=\frac{c_{1} \sin (3 \ln (t))+c_{2} \cos (3 \ln (t))}{t^{2}}
$$

Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 26
DSolve[t~2*y''[t]+5*t*y'[t]+13*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{c_{2} \cos (3 \log (t))+c_{1} \sin (3 \log (t))}{t^{2}}
$$

10 Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
10.1 problem 1 2670
10.2 problem 2 2680
10.3 problem 3 2691
10.4 problem 4 2704
10.5 problem 5 2717
10.6 problem 6 2730
10.7 problem 7 2743
10.8 problem 8 2758
10.9 problem 9 2771
10.10problem 10 2784
10.11problem 11 2797
10.12problem 12 2809
10.13problem 13 2822
10.14problem 14 2840
10.15problem 15 2858
10.16problem 16 2873
10.17 problem 17 2893
10.18problem 20 2921
10.19problem 29 2941
10.20problem 30 2970
10.21 problem 31 3003
10.22problem 32 3018

10.1 problem 1

10.1.1 Solving as second order linear constant coeff ode 2670
10.1.2 Solving using Kovacic algorithm 2673
10.1.3 Maple step by step solution . 2678

Internal problem ID [683]
Internal file name [OUTPUT/683_Sunday_June_05_2022_01_46_52_AM_10580708/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-5 y^{\prime}+6 y=2 \mathrm{e}^{t}
$$

10.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-5, C=6, f(t)=2 \mathrm{e}^{t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-5, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-5 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(3) t}+c_{2} e^{(2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 t}, \mathrm{e}^{3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{t}=2 \mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+\mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 470: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+\mathrm{e}^{t}
$$

Verified OK.

10.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 474: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d t} \\
& =z_{1} e^{\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 t}\right)+c_{2}\left(\mathrm{e}^{2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 t}, \mathrm{e}^{3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{t}=2 \mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\mathrm{e}^{t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}\right)+\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+\mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 471: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+\mathrm{e}^{t}
$$

Verified OK.

10.1.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-5 y^{\prime}+6 y=2 \mathrm{e}^{t}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-5 r+6=0$
- Factor the characteristic polynomial
$(r-2)(r-3)=0$
- Roots of the characteristic polynomial
$r=(2,3)$
- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \mathrm{e}^{t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{2 t} & \mathrm{e}^{3 t} \\ 2 \mathrm{e}^{2 t} & 3 \mathrm{e}^{3 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-2 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{-t} d t\right)+2 \mathrm{e}^{3 t}\left(\int \mathrm{e}^{-2 t} d t\right)$
- Compute integrals

$$
y_{p}(t)=\mathrm{e}^{t}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+\mathrm{e}^{t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(t),t$2)-5*diff(y(t),t)+6*y(t) = 2*exp(t),y(t), singsol=all)
```

$$
y(t)=c_{2} \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{3 t}+\mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 25

```
DSolve[y''[t]-5*y'[t]+6*y[t] == 2*Exp[t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow e^{t}\left(c_{1} e^{t}+c_{2} e^{2 t}+1\right)
$$

10.2 problem 2

10.2.1 Solving as second order linear constant coeff ode 2680
10.2.2 Solving using Kovacic algorithm 2683
10.2.3 Maple step by step solution . 2688

Internal problem ID [684]
Internal file name [OUTPUT/684_Sunday_June_05_2022_01_46_53_AM_70729508/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-2 y=2 \mathrm{e}^{-t}
$$

10.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-1, C=-2, f(t)=2 \mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\lambda \mathrm{e}^{\lambda t}-2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(2) t}+c_{2} e^{(-1) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t}, \mathrm{e}^{2 t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \mathrm{e}^{-t}=2 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 t \mathrm{e}^{-t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(-\frac{2 t \mathrm{e}^{-t}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}-\frac{2 t \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

Figure 472: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}-\frac{2 t \mathrm{e}^{-t}}{3}
$$

Verified OK.

10.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 476: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1}{1} d t} \\
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 t}}{3}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC__set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \mathrm{e}^{-t}=2 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 t \mathrm{e}^{-t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}\right)+\left(-\frac{2 t \mathrm{e}^{-t}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}-\frac{2 t \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

Figure 473: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}-\frac{2 t \mathrm{e}^{-t}}{3}
$$

Verified OK.

10.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=2 \mathrm{e}^{-t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(-1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-t} & \mathrm{e}^{2 t} \\ -\mathrm{e}^{-t} & 2 \mathrm{e}^{2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{2 \mathrm{e}^{-t}\left(\int 1 d t\right)}{3}+\frac{2 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{-3 t} d t\right)}{3}$
- Compute integrals

$$
y_{p}(t)=-\frac{2(1+3 t) \mathrm{e}^{-t}}{9}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}-\frac{2(1+3 t) \mathrm{e}^{-t}}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(t),t$2)-diff(y(t),t)-2*y(t) = 2*exp(-t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(-2 t+3 c_{1}\right) \mathrm{e}^{-t}}{3}+c_{2} \mathrm{e}^{2 t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 32
DSolve[y''[t]-y'[t]-2*y[t] == $2 * \operatorname{Exp}[-t], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{9} e^{-t}\left(-6 t+9 c_{2} e^{3 t}-2+9 c_{1}\right)
$$

10.3 problem 3

$$
\text { 10.3.1 Solving as second order linear constant coeff ode } 2691
$$

10.3.2 Solving as linear second order ode solved by an integrating factor ode 2694
10.3.3 Solving using Kovacic algorithm 2696
10.3.4 Maple step by step solution 2701

Internal problem ID [685]
Internal file name [OUTPUT/685_Sunday_June_05_2022_01_46_54_AM_20733644/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+2 y^{\prime}+y=3 \mathrm{e}^{-t}
$$

10.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=1, f(t)=3 \mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t} t
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since $t \mathrm{e}^{-t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-t}=3 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t} t\right)+\left(\frac{3 t^{2} \mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 474: Slope field plot

Verification of solutions

$$
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Verified OK.

10.3.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =3 \mathrm{e}^{-t} \mathrm{e}^{t} \\
\left(y \mathrm{e}^{t}\right)^{\prime \prime} & =3 \mathrm{e}^{-t} \mathrm{e}^{t}
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{t}\right)^{\prime}=3 t+c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{t}\right)=\frac{t\left(3 t+2 c_{1}\right)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{t\left(3 t+2 c_{1}\right)}{2}+c_{2}}{\mathrm{e}^{t}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 475: Slope field plot

Verification of solutions

$$
y=c_{1} t \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t}
$$

Verified OK.

10.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 478: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t} t
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since $t \mathrm{e}^{-t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-t}=3 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t} t\right)+\left(\frac{3 t^{2} \mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 476: Slope field plot

Verification of solutions

$$
y=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Verified OK.

10.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=3 \mathrm{e}^{-t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t} t+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \mathrm{e}^{-t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-\mathrm{e}^{-t} & -t \mathrm{e}^{-t}+\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-3 \mathrm{e}^{-t}\left(\int t d t-\left(\int 1 d t\right) t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{2} \mathrm{e}^{-t} t+c_{1} \mathrm{e}^{-t}+\frac{3 t^{2} \mathrm{e}^{-t}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t) = 3*exp(-t),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-t}\left(c_{2}+c_{1} t+\frac{3}{2} t^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 29
DSolve[y''[t] $+2 * y$ '[t$]+\mathrm{y}[\mathrm{t}]=3 * \operatorname{Exp}[-\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{2} e^{-t}\left(3 t^{2}+2 c_{2} t+2 c_{1}\right)
$$

10.4 problem 4

10.4.1 Solving as second order linear constant coeff ode 2704
10.4.2 Solving as linear second order ode solved by an integrating factor
ode . 2707
10.4.3 Solving using Kovacic algorithm 2709
10.4.4 Maple step by step solution . 2714

Internal problem ID [686]
Internal file name [OUTPUT/686_Sunday_June_05_2022_01_46_55_AM_1679039/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
4 y^{\prime \prime}-4 y^{\prime}+y=16 \mathrm{e}^{\frac{t}{2}}
$$

10.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=4, B=-4, C=1, f(t)=16 \mathrm{e}^{\frac{t}{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=4, B=-4, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda t}-4 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
4 \lambda^{2}-4 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=-4, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(-4)^{2}-(4)(4)(1)} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-\frac{1}{2}$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 \mathrm{e}^{\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{e^{\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{\frac{t}{2}}, \mathrm{e}^{\frac{t}{2}}\right\}
$$

Since $\mathrm{e}^{\frac{t}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC__set becomes

$$
\left[\left\{t \mathrm{e}^{\frac{t}{2}}\right\}\right]
$$

Since $t \mathrm{e}^{\frac{t}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{\frac{t}{2}}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \mathrm{e}^{\frac{t}{2}}=16 \mathrm{e}^{\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}\right)+\left(2 t^{2} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 477: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

10.4.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-1$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-1 d x} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{gathered}
(M(x) y)^{\prime \prime}=4 \mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{t}{2}} \\
\left(\mathrm{e}^{-\frac{t}{2}} y\right)^{\prime \prime}=4 \mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{t}{2}}
\end{gathered}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-\frac{t}{2}} y\right)^{\prime}=4 t+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-\frac{t}{2}} y\right)=t\left(c_{1}+2 t\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{t\left(c_{1}+2 t\right)+c_{2}}{\mathrm{e}^{-\frac{t}{2}}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{\frac{t}{2}}+2 t^{2} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{\frac{t}{2}}+2 t^{2} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 478: Slope field plot

Verification of solutions

$$
y=c_{1} t \mathrm{e}^{\frac{t}{2}}+2 t^{2} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

10.4.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-4 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=-4 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 480: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{4} d t} \\
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\frac{t}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{4} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{t}{2}}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
16 \mathrm{e}^{\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{\frac{t}{2}}, \mathrm{e}^{\frac{t}{2}}\right\}
$$

Since $\mathrm{e}^{\frac{t}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{\frac{t}{2}}\right\}\right]
$$

Since $t \mathrm{e}^{\frac{t}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{\frac{t}{2}}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \mathrm{e}^{\frac{t}{2}}=16 \mathrm{e}^{\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}\right)+\left(2 t^{2} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Figure 479: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}\right)+2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

Verified OK.

10.4.4 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-4 y^{\prime}+y=16 \mathrm{e}^{\frac{t}{2}}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=y^{\prime}-\frac{y}{4}+4 \mathrm{e}^{\frac{t}{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime}+\frac{y}{4}=4 \mathrm{e}^{\frac{t}{2}}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r+\frac{1}{4}=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r-1)^{2}}{4}=0
$$

- Root of the characteristic polynomial

$$
r=\frac{1}{2}
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{\frac{t}{2}}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{\frac{t}{2}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} t \mathrm{e}^{\frac{t}{2}}+y_{p}(t)$
\square
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4 \mathrm{e}^{\frac{t}{2}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}} & t \mathrm{e}^{\frac{t}{2}} \\
\frac{\mathrm{e}^{\frac{t}{2}}}{2} & \mathrm{e}^{\frac{t}{2}}+\frac{t \mathrm{e}^{\frac{t}{2}}}{2}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-4 \mathrm{e}^{\frac{t}{2}}\left(\int t d t-\left(\int 1 d t\right) t\right)
$$

- Compute integrals

$$
y_{p}(t)=2 t^{2} \mathrm{e}^{\frac{t}{2}}
$$

- \quad Substitute particular solution into general solution to ODE $y=c_{2} t \mathrm{e}^{\frac{t}{2}}+2 t^{2} \mathrm{e}^{\frac{t}{2}}+c_{1} \mathrm{e}^{\frac{t}{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(4*diff(y(t),t$2)-4*diff(y(t),t)+y(t) = 16*exp(t/2),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{\frac{t}{2}}\left(c_{1} t+2 t^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 25
DSolve[4*y''[t]-4*y'[t]+y[t]== $16 * \operatorname{Exp}[t / 2], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{t / 2}\left(2 t^{2}+c_{2} t+c_{1}\right)
$$

10.5 problem 5

10.5.1 Solving as second order linear constant coeff ode 2717

10.5.2 Solving using Kovacic algorithm 2722
10.5.3 Maple step by step solution 2727

Internal problem ID [687]
Internal file name [OUTPUT/687_Sunday_June_05_2022_01_46_56_AM_81877378/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+y=\tan (t)
$$

10.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=1, f(t)=\tan (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)
$$

Or

$$
y=c_{1} \cos (t)+c_{2} \sin (t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (t)+c_{2} \sin (t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (t) \\
& y_{2}=\sin (t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
\frac{d}{d t}(\cos (t)) & \frac{d}{d t}(\sin (t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (t))(\cos (t))-(\sin (t))(-\sin (t))
$$

Which simplifies to

$$
W=\cos (t)^{2}+\sin (t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (t) \tan (t)}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int \sin (t) \tan (t) d t
$$

Hence

$$
u_{1}=\sin (t)-\ln (\sec (t)+\tan (t))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (t) \tan (t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int \sin (t) d t
$$

Hence

$$
u_{2}=-\cos (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=(\sin (t)-\ln (\sec (t)+\tan (t))) \cos (t)-\sin (t) \cos (t)
$$

Which simplifies to

$$
y_{p}(t)=-\cos (t) \ln (\sec (t)+\tan (t))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+(-\cos (t) \ln (\sec (t)+\tan (t)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \ln (\sec (t)+\tan (t)) \tag{1}
\end{equation*}
$$

Figure 480: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \ln (\sec (t)+\tan (t))
$$

Verified OK.

10.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 482: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (t) \int \frac{1}{\cos (t)^{2}} d t \\
& =\cos (t)(\tan (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (t))+c_{2}(\cos (t)(\tan (t)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (t)+c_{2} \sin (t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (t) \\
& y_{2}=\sin (t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
\frac{d}{d t}(\cos (t)) & \frac{d}{d t}(\sin (t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (t))(\cos (t))-(\sin (t))(-\sin (t))
$$

Which simplifies to

$$
W=\cos (t)^{2}+\sin (t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (t) \tan (t)}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int \sin (t) \tan (t) d t
$$

Hence

$$
u_{1}=\sin (t)-\ln (\sec (t)+\tan (t))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (t) \tan (t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int \sin (t) d t
$$

Hence

$$
u_{2}=-\cos (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=(\sin (t)-\ln (\sec (t)+\tan (t))) \cos (t)-\sin (t) \cos (t)
$$

Which simplifies to

$$
y_{p}(t)=-\cos (t) \ln (\sec (t)+\tan (t))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+(-\cos (t) \ln (\sec (t)+\tan (t)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \ln (\sec (t)+\tan (t)) \tag{1}
\end{equation*}
$$

Figure 481: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \ln (\sec (t)+\tan (t))
$$

Verified OK.

10.5.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+y=\tan (t)$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\cos (t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (t)+c_{2} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\tan (t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=1$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\cos (t)\left(\int \sin (t) \tan (t) d t\right)+\sin (t)\left(\int \sin (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\cos (t) \ln (\sec (t)+\tan (t))
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (t)+c_{2} \sin (t)-\cos (t) \ln (\sec (t)+\tan (t))$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve(diff(y(t),t$2)+y(t) = tan(t),y(t), singsol=all)
```

$$
y(t)=c_{2} \sin (t)+\cos (t) c_{1}-\cos (t) \ln (\sec (t)+\tan (t))
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 23
DSolve[y''[t]+y[t] == Tan[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \cos (t)(-\operatorname{arctanh}(\sin (t)))+c_{1} \cos (t)+c_{2} \sin (t)
$$

10.6 problem 6

10.6.1 Solving as second order linear constant coeff ode 2730
10.6.2 Solving using Kovacic algorithm 2735
10.6.3 Maple step by step solution . 2741

Internal problem ID [688]
Internal file name [OUTPUT/688_Sunday_June_05_2022_01_46_58_AM_10201183/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=9 \sec (3 t)^{2}
$$

10.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=9 \sec (3 t)^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 t) \\
& y_{2}=\sin (3 t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
\frac{d}{d t}(\cos (3 t)) & \frac{d}{d t}(\sin (3 t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 t))(3 \cos (3 t))-(\sin (3 t))(-3 \sin (3 t))
$$

Which simplifies to

$$
W=3 \cos (3 t)^{2}+3 \sin (3 t)^{2}
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{9 \sin (3 t) \sec (3 t)^{2}}{3} d t
$$

Which simplifies to

$$
u_{1}=-\int 3 \sec (3 t) \tan (3 t) d t
$$

Hence

$$
u_{1}=-\sec (3 t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 \cos (3 t) \sec (3 t)^{2}}{3} d t
$$

Which simplifies to

$$
u_{2}=\int 3 \sec (3 t) d t
$$

Hence

$$
u_{2}=\ln (\sec (3 t)+\tan (3 t))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\sec (3 t) \cos (3 t)+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Which simplifies to

$$
y_{p}(t)=-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+(-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t) \tag{1}
\end{equation*}
$$

Figure 482: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Verified OK.

10.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 484: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (3 t) \\
& y_{2}=\frac{\sin (3 t)}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (3 t) & \frac{\sin (3 t)}{3} \\
\frac{d}{d t}(\cos (3 t)) & \frac{d}{d t}\left(\frac{\sin (3 t)}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (3 t) & \frac{\sin (3 t)}{3} \\
-3 \sin (3 t) & \cos (3 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (3 t))(\cos (3 t))-\left(\frac{\sin (3 t)}{3}\right)(-3 \sin (3 t))
$$

Which simplifies to

$$
W=\cos (3 t)^{2}+\sin (3 t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{3 \sin (3 t) \sec (3 t)^{2}}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int 3 \sec (3 t) \tan (3 t) d t
$$

Hence

$$
u_{1}=-\sec (3 t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{9 \cos (3 t) \sec (3 t)^{2}}{1} d t
$$

Which simplifies to

$$
u_{2}=\int 9 \sec (3 t) d t
$$

Hence

$$
u_{2}=3 \ln (\sec (3 t)+\tan (3 t))
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\sec (3 t) \cos (3 t)+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Which simplifies to

$$
y_{p}(t)=-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+(-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t) \tag{1}
\end{equation*}
$$

Figure 483: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Verified OK.

10.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=9 \sec (3 t)^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=9 \sec (3 t)^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-3 \cos (3 t)\left(\int \sec (3 t) \tan (3 t) d t\right)+3 \sin (3 t)\left(\int \sec (3 t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)-1+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(t),t$2)+9*y(t) = 9*sec(3*t)^2,y(t), singsol=all)
```

$$
y(t)=c_{2} \sin (3 t)+c_{1} \cos (3 t)+\ln (\sec (3 t)+\tan (3 t)) \sin (3 t)-1
$$

\checkmark Solution by Mathematica
Time used: 0.117 (sec). Leaf size: 31

```
DSolve[y''[t]+9*y[t] == 9*Sec[3*t] ~ 2,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow c_{1} \cos (3 t)+\sin (3 t) \operatorname{coth}^{-1}(\sin (3 t))+c_{2} \sin (3 t)-1
$$

10.7 problem 7

10.7.1 Solving as second order linear constant coeff ode 2743
10.7.2 Solving as linear second order ode solved by an integrating factor
ode . 2747
10.7.3 Solving using Kovacic algorithm 2749
10.7.4 Maple step by step solution . 2755

Internal problem ID [689]
Internal file name [OUTPUT/689_Sunday_June_05_2022_01_46_59_AM_21493213/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{\mathrm{e}^{-2 t}}{t^{2}}
$$

10.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=4, f(t)=\frac{\mathrm{e}^{-2 t}}{t^{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=2$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 t} \\
& y_{2}=t \mathrm{e}^{-2 t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
\frac{d}{d t}\left(\mathrm{e}^{-2 t}\right) & \frac{d}{d t}\left(t \mathrm{e}^{-2 t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 t}\right)\left(\mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}\right)-\left(t \mathrm{e}^{-2 t}\right)\left(-2 \mathrm{e}^{-2 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 t}}{t}}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{t} d t
$$

Hence

$$
u_{1}=-\ln (t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-4 t}}{t^{2}}}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{t^{2}} d t
$$

Hence

$$
u_{2}=-\frac{1}{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\ln (t) \mathrm{e}^{-2 t}-\mathrm{e}^{-2 t}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}\right)+\left(\mathrm{e}^{-2 t}(-1-\ln (t))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t)) \tag{1}
\end{equation*}
$$

Figure 484: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Verified OK.

10.7.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=4$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{2 t} \mathrm{e}^{-2 t}}{t^{2}} \\
\left(y \mathrm{e}^{2 t}\right)^{\prime \prime} & =\frac{\mathrm{e}^{2 t} \mathrm{e}^{-2 t}}{t^{2}}
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{2 t}\right)^{\prime}=-\frac{1}{t}+c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{2 t}\right)=c_{1} t-\ln (t)+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t-\ln (t)+c_{2}}{\mathrm{e}^{2 t}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2}-\ln (t) \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2}-\ln (t) \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Figure 485: Slope field plot

Verification of solutions

$$
y=c_{1} t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2}-\ln (t) \mathrm{e}^{-2 t}
$$

Verified OK.

10.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 486: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 t} \\
& y_{2}=t \mathrm{e}^{-2 t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
\frac{d}{d t}\left(\mathrm{e}^{-2 t}\right) & \frac{d}{d t}\left(t \mathrm{e}^{-2 t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 t}\right)\left(\mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}\right)-\left(t \mathrm{e}^{-2 t}\right)\left(-2 \mathrm{e}^{-2 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 t}}{t}}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{1}{t} d t
$$

Hence

$$
u_{1}=-\ln (t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{-4 t}}{t^{2}}}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{t^{2}} d t
$$

Hence

$$
u_{2}=-\frac{1}{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\ln (t) \mathrm{e}^{-2 t}-\mathrm{e}^{-2 t}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}\right)+\left(\mathrm{e}^{-2 t}(-1-\ln (t))\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t)) \tag{1}
\end{equation*}
$$

Figure 486: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{-2 t}(-1-\ln (t))
$$

Verified OK.

10.7.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+4 y=\frac{\mathrm{e}^{-2 t}}{t^{2}}
$$

- Highest derivative means the order of the ODE is 2

$y^{\prime \prime}$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+4=0
$$

- Factor the characteristic polynomial
$(r+2)^{2}=0$
- Root of the characteristic polynomial

$$
r=-2
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\frac{\mathrm{e}^{-2 t}}{t^{2}}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}-2 t \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-2 t}\left(-\left(\int \frac{1}{t} d t\right)+\left(\int \frac{1}{t^{2}} d t\right) t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\mathrm{e}^{-2 t}(1+\ln (t))
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}-\mathrm{e}^{-2 t}(1+\ln (t))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff (y (t),t$2)+4*\operatorname{diff}(y(t),t)+4*y(t)=t^(-2)*exp(-2*t),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-2 t}\left(-1+c_{1} t-\ln (t)+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 23
DSolve[y''[t] $+4 * y$ ' $[t]+4 * y[t]==t \sim(-2) * \operatorname{Exp}[-2 * t], y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow e^{-2 t}\left(-\log (t)+c_{2} t-1+c_{1}\right)
$$

10.8 problem 8

10.8.1 Solving as second order linear constant coeff ode 2758
10.8.2 Solving using Kovacic algorithm 2763
10.8.3 Maple step by step solution . 2769

Internal problem ID [690]
Internal file name [OUTPUT/690_Sunday_June_05_2022_01_47_00_AM_95123719/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=3 \csc (2 t)
$$

10.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=3 \csc (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 t) \\
& y_{2}=\sin (2 t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
\frac{d}{d t}(\cos (2 t)) & \frac{d}{d t}(\sin (2 t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 t))(2 \cos (2 t))-(\sin (2 t))(-2 \sin (2 t))
$$

Which simplifies to

$$
W=2 \cos (2 t)^{2}+2 \sin (2 t)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{3 \sin (2 t) \csc (2 t)}{2} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{3}{2} d t
$$

Hence

$$
u_{1}=-\frac{3 t}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 \cos (2 t) \csc (2 t)}{2} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{3 \cot (2 t)}{2} d t
$$

Hence

$$
u_{2}=-\frac{3 \ln \left(\cot (2 t)^{2}+1\right)}{8}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{3 t}{2} \\
& u_{2}=-\frac{3 \ln \left(\csc (2 t)^{2}\right)}{8}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8} \tag{1}
\end{equation*}
$$

Figure 487: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

Verified OK.

10.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 488: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 t) \\
& y_{2}=\frac{\sin (2 t)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \frac{\sin (2 t)}{2} \\
\frac{d}{d t}(\cos (2 t)) & \frac{d}{d t}\left(\frac{\sin (2 t)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \frac{\sin (2 t)}{2} \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 t))(\cos (2 t))-\left(\frac{\sin (2 t)}{2}\right)(-2 \sin (2 t))
$$

Which simplifies to

$$
W=\cos (2 t)^{2}+\sin (2 t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{3 \sin (2 t) \csc (2 t)}{2}}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{3}{2} d t
$$

Hence

$$
u_{1}=-\frac{3 t}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{3 \cos (2 t) \csc (2 t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int 3 \cot (2 t) d t
$$

Hence

$$
u_{2}=-\frac{3 \ln \left(\cot (2 t)^{2}+1\right)}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{3 t}{2} \\
& u_{2}=-\frac{3 \ln \left(\csc (2 t)^{2}\right)}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8} \tag{1}
\end{equation*}
$$

Figure 488: Slope field plot
Verification of solutions

$$
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

Verified OK.

10.8.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+4 y=3 \csc (2 t)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
\square
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \csc (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{3 \cos (2 t)\left(\int 1 d t\right)}{2}+\frac{3 \sin (2 t)\left(\int \cot (2 t) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 \cos (2 t) t}{2}-\frac{3 \ln \left(\csc (2 t)^{2}\right) \sin (2 t)}{8}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff(y(t),t$2)+4*y(t) = 3*csc(2*t),y(t), singsol=all)
```

$$
y(t)=-\frac{3 \ln (\csc (2 t)) \sin (2 t)}{4}+\frac{\left(-6 t+4 c_{1}\right) \cos (2 t)}{4}+c_{2} \sin (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 39

```
DSolve[y''[t]+4*y[t] ==3*Csc[2*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow\left(-\frac{3 t}{2}+c_{1}\right) \cos (2 t)+\frac{1}{4} \sin (2 t)\left(3 \log (\sin (2 t))+4 c_{2}\right)
$$

10.9 problem 9

10.9.1 Solving as second order linear constant coeff ode 2771
10.9.2 Solving using Kovacic algorithm 2776
10.9.3 Maple step by step solution . 2782

Internal problem ID [691]
Internal file name [OUTPUT/691_Sunday_June_05_2022_01_47_02_AM_48256359/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=2 \sec \left(\frac{t}{2}\right)
$$

10.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=1, f(t)=2 \sec \left(\frac{t}{2}\right)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (t)+c_{2} \sin (t)\right)
$$

Or

$$
y=c_{1} \cos (t)+c_{2} \sin (t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (t)+c_{2} \sin (t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (t) \\
& y_{2}=\sin (t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
\frac{d}{d t}(\cos (t)) & \frac{d}{d t}(\sin (t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (t))(\cos (t))-(\sin (t))(-\sin (t))
$$

Which simplifies to

$$
W=\cos (t)^{2}+\sin (t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \sin (t) \sec \left(\frac{t}{2}\right)}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 \sin \left(\frac{t}{2}\right) d t
$$

Hence

$$
u_{1}=8 \cos \left(\frac{t}{2}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \cos (t) \sec \left(\frac{t}{2}\right)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int 2 \cos (t) \sec \left(\frac{t}{2}\right) d t
$$

Hence

$$
u_{2}=-4 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right)+8 \sin \left(\frac{t}{2}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=8 \cos \left(\frac{t}{2}\right) \cos (t)+\left(-4 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right)+8 \sin \left(\frac{t}{2}\right)\right) \sin (t)
$$

Which simplifies to

$$
y_{p}(t)=\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+\left(\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)(1)
$$

Figure 489: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

Verified OK.

10.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 490: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (t) \int \frac{1}{\cos (t)^{2}} d t \\
& =\cos (t)(\tan (t))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (t))+c_{2}(\cos (t)(\tan (t)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (t)+c_{2} \sin (t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (t) \\
& y_{2}=\sin (t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
\frac{d}{d t}(\cos (t)) & \frac{d}{d t}(\sin (t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (t))(\cos (t))-(\sin (t))(-\sin (t))
$$

Which simplifies to

$$
W=\cos (t)^{2}+\sin (t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \sin (t) \sec \left(\frac{t}{2}\right)}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 \sin \left(\frac{t}{2}\right) d t
$$

Hence

$$
u_{1}=8 \cos \left(\frac{t}{2}\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \cos (t) \sec \left(\frac{t}{2}\right)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int 2 \cos (t) \sec \left(\frac{t}{2}\right) d t
$$

Hence

$$
u_{2}=-4 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right)+8 \sin \left(\frac{t}{2}\right)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=8 \cos \left(\frac{t}{2}\right) \cos (t)+\left(-4 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right)+8 \sin \left(\frac{t}{2}\right)\right) \sin (t)
$$

Which simplifies to

$$
y_{p}(t)=\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (t)+c_{2} \sin (t)\right)+\left(\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)(1)
$$

Figure 490: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

Verified OK.

10.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=2 \sec \left(\frac{t}{2}\right)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (t)+c_{2} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \sec \left(\frac{t}{2}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=1$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-4 \cos (t)\left(\int \sin \left(\frac{t}{2}\right) d t\right)+2 \sin (t)\left(\int \cos (t) \sec \left(\frac{t}{2}\right) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (t)+c_{2} \sin (t)+\cos \left(\frac{t}{2}\right)\left(-8 \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right) \sin \left(\frac{t}{2}\right)+8\right)
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(t),t$2)+y(t) = 2*sec(t/2),y(t), singsol=all)
```

$$
y(t)=-4 \sin (t) \ln \left(\sec \left(\frac{t}{2}\right)+\tan \left(\frac{t}{2}\right)\right)+c_{2} \sin (t)+\cos (t) c_{1}+8 \cos \left(\frac{t}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 35
DSolve[y'' $[t]+y[t]==2 * \operatorname{Sec}[t / 2], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-4 \sin (t) \operatorname{arctanh}\left(\sin \left(\frac{t}{2}\right)\right)+8 \cos \left(\frac{t}{2}\right)+c_{1} \cos (t)+c_{2} \sin (t)
$$

10.10 problem 10

10.10.1 Solving as second order linear constant coeff ode 2784
10.10.2 Solving as linear second order ode solved by an integrating factor
ode . 2788
10.10.3 Solving using Kovacic algorithm 2789
10.10.4 Maple step by step solution . 2794

Internal problem ID [692]
Internal file name [OUTPUT/692_Sunday_June_05_2022_01_47_03_AM_2706801/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an__integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{t}}{t^{2}+1}
$$

10.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-2, C=1, f(t)=\frac{\mathrm{e}^{t}}{t^{2}+1}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$.
y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=t \mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}\left(t \mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\mathrm{e}^{t} & t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)\left(t \mathrm{e}^{t}+\mathrm{e}^{t}\right)-\left(t \mathrm{e}^{t}\right)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{t \mathrm{e}^{2 t}}{t^{2}+1}}{\mathrm{e}^{2 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t}{t^{2}+1} d t
$$

Hence

$$
u_{1}=-\frac{\ln \left(t^{2}+1\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 t}}{t^{2}+1}}{\mathrm{e}^{2 t}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{t^{2}+1} d t
$$

Hence

$$
u_{2}=\arctan (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\ln \left(t^{2}+1\right) \mathrm{e}^{t}}{2}+\arctan (t) t \mathrm{e}^{t}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}\right)+\left(\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Verified OK.

10.10.2 Solving as linear second order ode solved by an integrating factor

 odeThe ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{-t} \mathrm{e}^{t}}{t^{2}+1} \\
\left(\mathrm{e}^{-t} y\right)^{\prime \prime} & =\frac{\mathrm{e}^{-t} \mathrm{e}^{t}}{t^{2}+1}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{-t} y\right)^{\prime}=\arctan (t)+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{-t} y\right)=c_{1} t+t \arctan (t)-\frac{\ln \left(t^{2}+1\right)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+t \arctan (t)-\frac{\ln \left(t^{2}+1\right)}{2}+c_{2}}{\mathrm{e}^{-t}}
$$

Or

$$
y=c_{1} t \mathrm{e}^{t}+t \arctan (t) \mathrm{e}^{t}+c_{2} \mathrm{e}^{t}-\frac{\mathrm{e}^{t} \ln \left(t^{2}+1\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t \mathrm{e}^{t}+t \arctan (t) \mathrm{e}^{t}+c_{2} \mathrm{e}^{t}-\frac{\mathrm{e}^{t} \ln \left(t^{2}+1\right)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t \mathrm{e}^{t}+t \arctan (t) \mathrm{e}^{t}+c_{2} \mathrm{e}^{t}-\frac{\mathrm{e}^{t} \ln \left(t^{2}+1\right)}{2}
$$

Verified OK.

10.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 492: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d t} \\
& =z_{1} e^{t} \\
& =z_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=t \mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}\left(t \mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\mathrm{e}^{t} & t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)\left(t \mathrm{e}^{t}+\mathrm{e}^{t}\right)-\left(t \mathrm{e}^{t}\right)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{t \mathrm{e}^{2 t}}{t^{2}+1}}{\mathrm{e}^{2 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t}{t^{2}+1} d t
$$

Hence

$$
u_{1}=-\frac{\ln \left(t^{2}+1\right)}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\mathrm{e}^{2 t}}{t^{2}+1}}{\mathrm{e}^{2 t}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{t^{2}+1} d t
$$

Hence

$$
u_{2}=\arctan (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{t} \ln \left(t^{2}+1\right)}{2}+t \arctan (t) \mathrm{e}^{t}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}\right)+\left(\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)+\mathrm{e}^{t}\left(-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

Verified OK.

10.10.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{t}}{t^{2}+1}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=t \mathrm{e}^{t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\frac{\mathrm{e}^{t}}{t^{2}+1}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\mathrm{e}^{t} & t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{t}\left(-\left(\int \frac{t}{t^{2}+1} d t\right)+\left(\int \frac{1}{t^{2}+1} d t\right) t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\mathrm{e}^{t}\left(-2 t \arctan (t)+\ln \left(t^{2}+1\right)\right)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}-\frac{\mathrm{e}^{t}\left(-2 t \arctan (t)+\ln \left(t^{2}+1\right)\right)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve(diff(y(t),t$2)-2*diff(y(t),t)+y(t) = exp(t)/(1+t^2),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{t}\left(c_{2}+c_{1} t-\frac{\ln \left(t^{2}+1\right)}{2}+t \arctan (t)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 35

```
DSolve[y''[t]-2*y'[t]+y[t] == Exp[t]/(1+t^2),y[t],t,IncludeSingularSolutions >> True]
```

$$
y(t) \rightarrow \frac{1}{2} e^{t}\left(2 t \arctan (t)-\log \left(t^{2}+1\right)+2\left(c_{2} t+c_{1}\right)\right)
$$

10.11 problem 11

10.11.1 Solving as second order linear constant coeff ode 2797
10.11.2 Solving using Kovacic algorithm 2801
10.11.3 Maple step by step solution . 2806

Internal problem ID [693]
Internal file name [DUTPUT/693_Sunday_June_05_2022_01_47_04_AM_3995225/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t)
$$

10.11.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-5, C=6, f(t)=g(t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-5, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-5 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(3) t}+c_{2} e^{(2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{3 t} \\
& y_{2}=\mathrm{e}^{2 t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 t} & \mathrm{e}^{2 t} \\
\frac{d}{d t}\left(\mathrm{e}^{3 t}\right) & \frac{d}{d t}\left(\mathrm{e}^{2 t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{3 t} & \mathrm{e}^{2 t} \\
3 \mathrm{e}^{3 t} & 2 \mathrm{e}^{2 t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{3 t}\right)\left(2 \mathrm{e}^{2 t}\right)-\left(\mathrm{e}^{2 t}\right)\left(3 \mathrm{e}^{3 t}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{3 t} \mathrm{e}^{2 t}
$$

Which simplifies to

$$
W=-\mathrm{e}^{5 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{2 t} g(t)}{-\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-g(t) \mathrm{e}^{-3 t} d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t}-g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{3 t} g(t)}{-\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{2}=\int-g(t) \mathrm{e}^{-2 t} d t
$$

Hence

$$
u_{2}=\int_{0}^{t}-g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha \\
& u_{2}=-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right)
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}\right)+\left(\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}
$$

Verified OK.

10.11.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 494: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d t} \\
& =z_{1} e^{\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 t}\right)+c_{2}\left(\mathrm{e}^{2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 t} \\
& y_{2}=\mathrm{e}^{3 t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 t} & \mathrm{e}^{3 t} \\
\frac{d}{d t}\left(\mathrm{e}^{2 t}\right) & \frac{d}{d t}\left(\mathrm{e}^{3 t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{2 t} & \mathrm{e}^{3 t} \\
2 \mathrm{e}^{2 t} & 3 \mathrm{e}^{3 t}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{2 t}\right)\left(3 \mathrm{e}^{3 t}\right)-\left(\mathrm{e}^{3 t}\right)\left(2 \mathrm{e}^{2 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{3 t} \mathrm{e}^{2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{5 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{3 t} g(t)}{\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int g(t) \mathrm{e}^{-2 t} d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{2 t} g(t)}{\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{2}=\int g(t) \mathrm{e}^{-3 t} d t
$$

Hence

$$
u_{2}=\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}\right)+\left(-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}-\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-2 \alpha} d \alpha\right) \mathrm{e}^{2 t}+\left(\int_{0}^{t} g(\alpha) \mathrm{e}^{-3 \alpha} d \alpha\right) \mathrm{e}^{3 t}
$$

Verified OK.

10.11.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+6 y=g(t)
$$

- Highest derivative means the order of the ODE is 2

$y^{\prime \prime}$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(2,3)
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{2 t}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=g(t)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{2 t} & \mathrm{e}^{3 t} \\ 2 \mathrm{e}^{2 t} & 3 \mathrm{e}^{3 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{5 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{2 t}\left(\int g(t) \mathrm{e}^{-2 t} d t\right)+\mathrm{e}^{3 t}\left(\int g(t) \mathrm{e}^{-3 t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\mathrm{e}^{2 t}\left(\int g(t) \mathrm{e}^{-2 t} d t\right)+\mathrm{e}^{3 t}\left(\int g(t) \mathrm{e}^{-3 t} d t\right)
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}-\mathrm{e}^{2 t}\left(\int g(t) \mathrm{e}^{-2 t} d t\right)+\mathrm{e}^{3 t}\left(\int g(t) \mathrm{e}^{-3 t} d t\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 46

```
dsolve(diff(y(t),t$2)-5*diff(y(t),t)+6*y(t) = g(t),y(t), singsol=all)
```

$$
y(t)=c_{2} \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{3 t}-\left(\int g(t) \mathrm{e}^{-2 t} d t\right) \mathrm{e}^{2 t}+\left(\int g(t) \mathrm{e}^{-3 t} d t\right) \mathrm{e}^{3 t}
$$

Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 59

```
DSolve[y''[t]-5*y'[t]+6*y[t] == g[t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow e^{2 t}\left(\int_{1}^{t}-e^{-2 K[1]} g(K[1]) d K[1]+e^{t} \int_{1}^{t} e^{-3 K[2]} g(K[2]) d K[2]+c_{2} e^{t}+c_{1}\right)
$$

10.12 problem 12

10.12.1 Solving as second order linear constant coeff ode 2809
10.12.2 Solving using Kovacic algorithm 2813
10.12.3 Maple step by step solution . 2819

Internal problem ID [694]
Internal file name [OUTPUT/694_Sunday_June_05_2022_01_47_06_AM_78756365/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=g(t)
$$

10.12.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=g(t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 t) \\
& y_{2}=\sin (2 t)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
\frac{d}{d t}(\cos (2 t)) & \frac{d}{d t}(\sin (2 t))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 t))(2 \cos (2 t))-(\sin (2 t))(-2 \sin (2 t))
$$

Which simplifies to

$$
W=2 \cos (2 t)^{2}+2 \sin (2 t)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 t) g(t)}{2} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 t) g(t)}{2} d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t} \frac{\sin (2 \alpha) g(\alpha)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 t) g(t)}{2} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (2 t) g(t)}{2} d t
$$

Hence

$$
u_{2}=\int_{0}^{t} \frac{\cos (2 \alpha) g(\alpha)}{2} d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right)}{2} \\
& u_{2}=\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right)}{2}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2}+\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \\
& +\left(-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2}+\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2} \tag{1}\\
& +\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2} \\
& +\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
\end{aligned}
$$

Verified OK.

10.12.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 496: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 t) \\
& y_{2}=\frac{\sin (2 t)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \frac{\sin (2 t)}{2} \\
\frac{d}{d t}(\cos (2 t)) & \frac{d}{d t}\left(\frac{\sin (2 t)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 t) & \frac{\sin (2 t)}{2} \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 t))(\cos (2 t))-\left(\frac{\sin (2 t)}{2}\right)(-2 \sin (2 t))
$$

Which simplifies to

$$
W=\cos (2 t)^{2}+\sin (2 t)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (2 t) g(t)}{2}}{1} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 t) g(t)}{2} d t
$$

Hence

$$
u_{1}=-\left(\int_{0}^{t} \frac{\sin (2 \alpha) g(\alpha)}{2} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 t) g(t)}{1} d t
$$

Which simplifies to

$$
u_{2}=\int \cos (2 t) g(t) d t
$$

Hence

$$
u_{2}=\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right)}{2} \\
& u_{2}=\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2}+\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right) \\
& +\left(-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2}+\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2} \tag{1}\\
& +\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{\left(\int_{0}^{t} \sin (2 \alpha) g(\alpha) d \alpha\right) \cos (2 t)}{2} \\
& +\frac{\left(\int_{0}^{t} \cos (2 \alpha) g(\alpha) d \alpha\right) \sin (2 t)}{2}
\end{aligned}
$$

Verified OK.

10.12.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=g(t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=g(t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (2 t) g(t) d t\right)}{2}+\frac{\sin (2 t)\left(\int \cos (2 t) g(t) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (2 t) g(t) d t\right)}{2}+\frac{\sin (2 t)\left(\int \cos (2 t) g(t) d t\right)}{2}
$$

- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{\cos (2 t)\left(\int \sin (2 t) g(t) d t\right)}{2}+\frac{\sin (2 t)\left(\int \cos (2 t) g(t) d t\right)}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve(diff(y(t),t$2)+4*y(t) = g(t),y(t), singsol=all)
```

$y(t)=c_{2} \sin (2 t)+c_{1} \cos (2 t)+\frac{\left(\int \cos (2 t) g(t) d t\right) \sin (2 t)}{2}-\frac{\left(\int \sin (2 t) g(t) d t\right) \cos (2 t)}{2}$
\checkmark Solution by Mathematica
Time used: 0.093 (sec). Leaf size: 67

```
DSolve[y''[t]+4*y[t] == g[t],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
y(t) \rightarrow & \cos (2 t) \int_{1}^{t}-\cos (K[1]) g(K[1]) \sin (K[1]) d K[1] \\
& +\sin (2 t) \int_{1}^{t} \frac{1}{2} \cos (2 K[2]) g(K[2]) d K[2]+c_{1} \cos (2 t)+c_{2} \sin (2 t)
\end{aligned}
$$

10.13 problem 13

10.13.1 Solving as second order euler ode ode 2822
10.13.2 Solving as second order integrable as is ode 2826
10.13.3 Solving as type second_order_integrable_as_is (not using ABC version)

2827
10.13.4 Solving using Kovacic algorithm 2829
10.13.5 Solving as exact linear second order ode ode 2836

Internal problem ID [695]
Internal file name [OUTPUT/695_Sunday_June_05_2022_01_47_07_AM_67149286/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler__ode", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

10.13.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=0, C=-2, f(t)=3 t^{2}-1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}-2 y=0
$$

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+0 r t^{r-1}-2 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+0 t^{r}-2 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{t}+c_{2} t^{2}
$$

Next, we find the particular solution to the ODE

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t} \\
& y_{2}=t^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t} & t^{2} \\
\frac{d}{d t}\left(\frac{1}{t}\right) & \frac{d}{d t}\left(t^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t} & t^{2} \\
-\frac{1}{t^{2}} & 2 t
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t}\right)(2 t)-\left(t^{2}\right)\left(-\frac{1}{t^{2}}\right)
$$

Which simplifies to

$$
W=3
$$

Which simplifies to

$$
W=3
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{t^{2}\left(3 t^{2}-1\right)}{3 t^{2}} d t
$$

Which simplifies to

$$
u_{1}=-\int\left(t^{2}-\frac{1}{3}\right) d t
$$

Hence

$$
u_{1}=-\frac{1}{3} t^{3}+\frac{1}{3} t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{3 t^{2}-1}{t}}{3 t^{2}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{3 t^{2}-1}{3 t^{3}} d t
$$

Hence

$$
u_{2}=\ln (t)+\frac{1}{6 t^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{-\frac{1}{3} t^{3}+\frac{1}{3} t}{t}+\left(\ln (t)+\frac{1}{6 t^{2}}\right) t^{2}
$$

Which simplifies to

$$
y_{p}(t)=t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}+\frac{c_{1}}{t}+c_{2} t^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}+\frac{c_{1}}{t}+c_{2} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}+\frac{c_{1}}{t}+c_{2} t^{2}
$$

Verified OK.

10.13.2 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \quad \int\left(t^{2} y^{\prime \prime}-2 y\right) d t=\int\left(3 t^{2}-1\right) d t \\
& y^{\prime} t^{2}-2 y t=t^{3}-t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{2}{t} \\
q(t) & =\frac{t^{3}+c_{1}-t}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\frac{t^{3}+c_{1}-t}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\left(\frac{t^{3}+c_{1}-t}{t^{4}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int \frac{t^{3}+c_{1}-t}{t^{4}} \mathrm{~d} t \\
\frac{y}{t^{2}} & =\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Verified OK.

10.13.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t^{2} y^{\prime \prime}-2 y=3 t^{2}-1
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(t^{2} y^{\prime \prime}-2 y\right) d t=\int\left(3 t^{2}-1\right) d t \\
& y^{\prime} t^{2}-2 y t=t^{3}-t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{2}{t} \\
q(t) & =\frac{t^{3}+c_{1}-t}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\frac{t^{3}+c_{1}-t}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\left(\frac{t^{3}+c_{1}-t}{t^{4}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int \frac{t^{3}+c_{1}-t}{t^{4}} \mathrm{~d} t \\
\frac{y}{t^{2}} & =\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Verified OK.

10.13.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=0 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{2}{t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=2 \\
& t=t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{2}{t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 498: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{2}{t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{2}{t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=2$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{2}{t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	2	-1

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	2	-1

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-1$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{t}+(-)(0) \\
& =-\frac{1}{t} \\
& =-\frac{1}{t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{t}\right)(0)+\left(\left(\frac{1}{t^{2}}\right)+\left(-\frac{1}{t}\right)^{2}-\left(\frac{2}{t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{1}{t} d t} \\
& =\frac{1}{t}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{1}{t}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\frac{1}{t} \int \frac{1}{\frac{1}{t^{2}}} d t \\
& =\frac{1}{t}\left(\frac{t^{3}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t}\right)+c_{2}\left(\frac{1}{t}\left(\frac{t^{3}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{t}+\frac{c_{2} t^{2}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t} \\
& y_{2}=\frac{t^{2}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t} & \frac{t^{2}}{3} \\
\frac{d}{d t}\left(\frac{1}{t}\right) & \frac{d}{d t}\left(\frac{t^{2}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t} & \frac{t^{2}}{3} \\
-\frac{1}{t^{2}} & \frac{2 t}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t}\right)\left(\frac{2 t}{3}\right)-\left(\frac{t^{2}}{3}\right)\left(-\frac{1}{t^{2}}\right)
$$

Which simplifies to

$$
W=1
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{t^{2}\left(3 t^{2}-1\right)}{3}}{t^{2}} d t
$$

Which simplifies to

$$
u_{1}=-\int\left(t^{2}-\frac{1}{3}\right) d t
$$

Hence

$$
u_{1}=-\frac{1}{3} t^{3}+\frac{1}{3} t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{3 t^{2}-1}{t}}{t^{2}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{3 t^{2}-1}{t^{3}} d t
$$

Hence

$$
u_{2}=3 \ln (t)+\frac{1}{2 t^{2}}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{-\frac{1}{3} t^{3}+\frac{1}{3} t}{t}+\frac{\left(3 \ln (t)+\frac{1}{2 t^{2}}\right) t^{2}}{3}
$$

Which simplifies to

$$
y_{p}(t)=t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{t}+\frac{c_{2} t^{2}}{3}\right)+\left(t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t}+\frac{c_{2} t^{2}}{3}+t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t}+\frac{c_{2} t^{2}}{3}+t^{2} \ln (t)-\frac{t^{2}}{3}+\frac{1}{2}
$$

Verified OK.

10.13.5 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =t^{2} \\
q(x) & =0 \\
r(x) & =-2 \\
s(x) & =3 t^{2}-1
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
2-(0)+(-2)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} t^{2}-2 y t=\int 3 t^{2}-1 d t
$$

We now have a first order ode to solve which is

$$
y^{\prime} t^{2}-2 y t=t^{3}+c_{1}-t
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{t^{3}+c_{1}-t}{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\frac{t^{3}+c_{1}-t}{t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\frac{t^{3}+c_{1}-t}{t^{2}}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\left(\frac{t^{3}+c_{1}-t}{t^{4}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int \frac{t^{3}+c_{1}-t}{t^{4}} \mathrm{~d} t \\
\frac{y}{t^{2}} & =\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}\left(\ln (t)-\frac{c_{1}}{3 t^{3}}+\frac{1}{2 t^{2}}\right)+c_{2} t^{2}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(t^2*diff($y(t), t \$ 2)-2 * y(t)=3 * t^{\wedge} 2-1, y(t)$, singsol=all)

$$
y(t)=t^{2} c_{2}+\frac{1}{2}+t^{2} \ln (t)+\frac{c_{1}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 31
DSolve[t^2*y''[t]-2*y[t] == 3*t^2-1,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow t^{2} \log (t)+\left(-\frac{1}{3}+c_{2}\right) t^{2}+\frac{c_{1}}{t}+\frac{1}{2}
$$

10.14 problem 14

10.14.1 Solving as second order change of variable on y method 1 ode . 2840
10.14.2 Solving as second order change of variable on y method 2 ode . 2847
10.14.3 Solving using Kovacic algorithm 2851

Internal problem ID [696]
Internal file name [OUTPUT/696_Sunday_June_05_2022_01_47_08_AM_14861358/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y_method_1", "second_order_change_oof_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t^{2} y^{\prime \prime}-t(2+t) y^{\prime}+(2+t) y=2 t^{3}
$$

10.14.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{-t^{2}-2 t}{t^{2}} \\
& q(t)=\frac{2+t}{t^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2+t}{t^{2}}-\frac{\left(\frac{-t^{2}-2 t}{t^{2}}\right)^{\prime}}{2}-\frac{\left(\frac{-t^{2}-2 t}{t^{2}}\right)^{2}}{4} \\
& =\frac{2+t}{t^{2}}-\frac{\left(\frac{-2 t-2}{t^{2}}-\frac{2\left(-t^{2}-2 t\right)}{t^{3}}\right)}{2}-\frac{\left(\frac{\left(-t^{2}-2 t\right)^{2}}{t^{4}}\right)}{4} \\
& =\frac{2+t}{t^{2}}-\left(\frac{-2 t-2}{2 t^{2}}-\frac{-t^{2}-2 t}{t^{3}}\right)-\frac{\left(-t^{2}-2 t\right)^{2}}{4 t^{4}} \\
& =-\frac{1}{4}
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable t then the transformation

$$
\begin{equation*}
y=v(t) z(t) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(t)$ is given by

$$
\begin{align*}
z(t) & =\mathrm{e}^{-\left(\int \frac{p(t)}{2} d t\right)} \\
& =e^{-\int \frac{-t^{2}-2 t}{t^{2}}} \\
& =t \mathrm{e}^{\frac{t}{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=v(t) t \mathrm{e}^{\frac{t}{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
-\mathrm{e}^{\frac{t}{2}}\left(-4 v^{\prime \prime}(t)+v(t)\right)=8
$$

Which is now solved for $v(t)$ Simplyfing the ode gives

$$
v^{\prime \prime}(t)-\frac{v(t)}{4}=2 \mathrm{e}^{-\frac{t}{2}}
$$

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(t)+B v^{\prime}(t)+C v(t)=f(t)
$$

Where $A=1, B=0, C=-\frac{1}{4}, f(t)=2 \mathrm{e}^{-\frac{t}{2}}$. Let the solution be

$$
v(t)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(t)+B v^{\prime}(t)+C v(t)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(t)+B v^{\prime}(t)+C v(t)=f(t)$. v_{h} is the solution to

$$
v^{\prime \prime}(t)-\frac{v(t)}{4}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(t)+B v^{\prime}(t)+C v(t)=0
$$

Where in the above $A=1, B=0, C=-\frac{1}{4}$. Let the solution be $v(t)=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\frac{\mathrm{e}^{\lambda t}}{4}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\frac{1}{4}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-\frac{1}{4}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-\frac{1}{4}\right)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =+\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& v(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& v(t)=c_{1} e^{\left(\frac{1}{2}\right) t}+c_{2} e^{\left(-\frac{1}{2}\right) t}
\end{aligned}
$$

Or

$$
v(t)=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{2}}, \mathrm{e}^{\frac{t}{2}}\right\}
$$

Since $\mathrm{e}^{-\frac{t}{2}}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
v_{p}=A_{1} t \mathrm{e}^{-\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution v_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-\frac{t}{2}}=2 \mathrm{e}^{-\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2\right]
$$

Substituting the above back in the above trial solution v_{p}, gives the particular solution

$$
v_{p}=-2 t \mathrm{e}^{-\frac{t}{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
v & =v_{h}+v_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}\right)+\left(-2 t \mathrm{e}^{-\frac{t}{2}}\right)
\end{aligned}
$$

Now that $v(t)$ is known, then

$$
\begin{align*}
y & =v(t) z(t) \\
& =\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}-2 t \mathrm{e}^{-\frac{t}{2}}\right)(z(t)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(t)=t \mathrm{e}^{\frac{t}{2}}
$$

Hence (7) becomes

$$
y=\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}-2 t \mathrm{e}^{-\frac{t}{2}}\right) t \mathrm{e}^{\frac{t}{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}-2 t \mathrm{e}^{-\frac{t}{2}}\right) t \mathrm{e}^{\frac{t}{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \mathrm{e}^{t} \\
& y_{2}=\mathrm{e}^{-\frac{t}{2}} t \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t \mathrm{e}^{t} & \mathrm{e}^{-\frac{t}{2}} t \mathrm{e}^{\frac{t}{2}} \\
\frac{d}{d t}\left(t \mathrm{e}^{t}\right) & \frac{d}{d t}\left(\mathrm{e}^{-\frac{t}{2}} t \mathrm{e}^{\frac{t}{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t \mathrm{e}^{t} & \mathrm{e}^{-\frac{t}{2}} t \mathrm{e}^{\frac{t}{2}} \\
t \mathrm{e}^{t}+\mathrm{e}^{t} & \mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{t}{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(t \mathrm{e}^{t}\right)\left(\mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{t}{2}}\right)-\left(\mathrm{e}^{-\frac{t}{2}} t \mathrm{e}^{\frac{t}{2}}\right)\left(t \mathrm{e}^{t}+\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=-\mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{3 t}{2}} t^{2}
$$

Which simplifies to

$$
W=-t^{2} \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{-\frac{t}{2}} t^{4} \mathrm{e}^{\frac{t}{2}}}{-t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{1}=-2 \mathrm{e}^{-t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 t^{4} \mathrm{e}^{t}}{-t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int(-2) d t
$$

Hence

$$
u_{2}=-2 t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 \mathrm{e}^{-t} \mathrm{e}^{t} t-2 t^{2} \mathrm{e}^{-\frac{t}{2}} \mathrm{e}^{\frac{t}{2}}
$$

Which simplifies to

$$
y_{p}(t)=-2 t^{2}-2 t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}}-2 t \mathrm{e}^{-\frac{t}{2}}\right) t \mathrm{e}^{\frac{t}{2}}\right)+\left(-2 t^{2}-2 t\right)
\end{aligned}
$$

Which simplifies to

$$
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t\right)-2 t^{2}-2 t
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t\right)-2 t^{2}-2 t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t\right)-2 t^{2}-2 t
$$

Verified OK.

10.14.2 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=-t^{2}-2 t, C=2+t, f(t)=2 t^{3}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{-t-2}{t} \\
& q(t)=\frac{2+t}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n(-t-2)}{t^{2}}+\frac{2+t}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\left(\frac{2}{t}+\frac{-t-2}{t}\right) v^{\prime}(t) & =0 \\
v^{\prime \prime}(t)-v^{\prime}(t) & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)-u(t)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{u} d u & =t+c_{1} \\
\ln (u) & =t+c_{1} \\
u & =\mathrm{e}^{t+c_{1}} \\
u & =c_{1} \mathrm{e}^{t}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =c_{1} \mathrm{e}^{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2}\right) t \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2}\right) t
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=2 t^{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t \mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t \mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t \mathrm{e}^{t} \\
1 & t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(t \mathrm{e}^{t}+\mathrm{e}^{t}\right)-\left(t \mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t^{2} \mathrm{e}^{t}
$$

Which simplifies to

$$
W=t^{2} \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 t^{4} \mathrm{e}^{t}}{t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int 2 d t
$$

Hence

$$
u_{1}=-2 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 t^{4}}{t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int 2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{2}=-2 \mathrm{e}^{-t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 t^{2}-2 \mathrm{e}^{-t} \mathrm{e}^{t} t
$$

Which simplifies to

$$
y_{p}(t)=-2 t^{2}-2 t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \mathrm{e}^{t}+c_{2}\right) t\right)+\left(-2 t^{2}-2 t\right) \\
& =-2 t^{2}-2 t+\left(c_{1} \mathrm{e}^{t}+c_{2}\right) t
\end{aligned}
$$

Which simplifies to

$$
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t-2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t-2\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{1} \mathrm{e}^{t}+c_{2}-2 t-2\right)
$$

Verified OK.

10.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-t^{2}-2 t \tag{3}\\
& C=2+t
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 499: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-t^{2}-2 t}{t^{2}} d t} \\
& =z_{1} e^{\frac{t}{2}+\ln (t)} \\
& =z_{1}\left(t \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-t^{2}-2 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t+2 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(t)+c_{2}\left(t\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\mathrm{ODE} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}+\left(-t^{2}-2 t\right) y^{\prime}+(2+t) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} t+c_{2} t \mathrm{e}^{t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t \mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t \mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t \mathrm{e}^{t} \\
1 & t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(t \mathrm{e}^{t}+\mathrm{e}^{t}\right)-\left(t \mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t^{2} \mathrm{e}^{t}
$$

Which simplifies to

$$
W=t^{2} \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 t^{4} \mathrm{e}^{t}}{t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int 2 d t
$$

Hence

$$
u_{1}=-2 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 t^{4}}{t^{4} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int 2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{2}=-2 \mathrm{e}^{-t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 t^{2}-2 \mathrm{e}^{-t} \mathrm{e}^{t} t
$$

Which simplifies to

$$
y_{p}(t)=-2 t^{2}-2 t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} t+c_{2} t \mathrm{e}^{t}\right)+\left(-2 t^{2}-2 t\right)
\end{aligned}
$$

Which simplifies to

$$
y=t\left(c_{1}+c_{2} \mathrm{e}^{t}\right)-2 t^{2}-2 t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{1}+c_{2} \mathrm{e}^{t}\right)-2 t^{2}-2 t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{1}+c_{2} \mathrm{e}^{t}\right)-2 t^{2}-2 t
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.281 (sec). Leaf size: 15

```
dsolve(t^2*diff(y(t),t$2)-t*(t+2)*diff(y(t),t)+(t+2)*y(t) = 2*t^3,y(t), singsol=all)
```

$$
y(t)=t\left(\mathrm{e}^{t} c_{1}+c_{2}-2 t\right)
$$

Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 20
DSolve $\left[t \wedge 2 * y^{\prime \prime}[t]-t *(t+2) * y\right.$ ' $[t]+(t+2) * y[t]==2 * t \wedge 3, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow t\left(-2 t+c_{2} e^{t}-2+c_{1}\right)
$$

10.15 problem 15

10.15.1 Solving as second order ode non constant coeff transformation on B ode
10.15.2 Solving using Kovacic algorithm 2863

Internal problem ID [697]
Internal file name [OUTPUT/697_Sunday_June_05_2022_01_47_10_AM_66662417/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t y^{\prime \prime}-(t+1) y^{\prime}+y=\mathrm{e}^{2 t} t^{2}
$$

10.15.1 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t \\
& B=-t-1 \\
& C=1 \\
& F=\mathrm{e}^{2 t} t^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(t)(0)+(-t-1)(-1)+(1)(-t-1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-t(t+1) v^{\prime \prime}+\left(t^{2}+1\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-t(t+1) u^{\prime}(t)+\left(t^{2}+1\right) u(t)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{\left(t^{2}+1\right) u}{t(t+1)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}+1}{t(t+1)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}+1}{t(t+1)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}+1}{t(t+1)} d t \\
\ln (u) & =t+\ln (t)-2 \ln (t+1)+c_{1} \\
u & =\mathrm{e}^{t+\ln (t)-2 \ln (t+1)+c_{1}} \\
& =c_{1} \mathrm{e}^{t+\ln (t)-2 \ln (t+1)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}} \mathrm{~d} t \\
& =\frac{c_{1} \mathrm{e}^{t}}{t+1}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(-t-1)\left(\frac{c_{1} \mathrm{e}^{t}}{t+1}+c_{2}\right) \\
& =-c_{1} \mathrm{e}^{t}-c_{2}(t+1)
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-t-1 \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-t-1 & \mathrm{e}^{t} \\
\frac{d}{d t}(-t-1) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-t-1 & \mathrm{e}^{t} \\
-1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(-t-1)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(-1)
$$

Which simplifies to

$$
W=-t \mathrm{e}^{t}
$$

Which simplifies to

$$
W=-t \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{t} \mathrm{e}^{2 t} t^{2}}{-t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{2 t} d t
$$

Hence

$$
u_{1}=\frac{\mathrm{e}^{2 t}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(-t-1) \mathrm{e}^{2 t} t^{2}}{-t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{t}(t+1) d t
$$

Hence

$$
u_{2}=t \mathrm{e}^{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{(-t-1) \mathrm{e}^{2 t}}{2}+\mathrm{e}^{2 t} t
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(-c_{1} \mathrm{e}^{t}-c_{2}(t+1)\right)+\left(\frac{\mathrm{e}^{2 t}(-1+t)}{2}\right) \\
& =-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Verified OK.

10.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t y^{\prime \prime}+(-t-1) y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t \\
& B=-t-1 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{t^{2}-2 t+3}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=t^{2}-2 t+3 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{t^{2}-2 t+3}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 500: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}-\frac{1}{2 t}+\frac{3}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving t^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{0} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $t^{v}=t^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 t}+\frac{1}{2 t^{2}}+\frac{1}{2 t^{3}}+\frac{1}{4 t^{4}}-\frac{1}{4 t^{5}}-\frac{3}{4 t^{6}}-\frac{3}{4 t^{7}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} t^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $t^{v-1}=t^{-1}=\frac{1}{t}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{t}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{t}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{t}$ in r will be the coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{t^{2}-2 t+3}{4 t^{2}} \\
& =Q+\frac{R}{4 t^{2}} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 t+3}{4 t^{2}}\right) \\
& =\frac{1}{4}+\frac{-2 t+3}{4 t^{2}}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term t in the remainder R is -2 . Dividing this by leading coefficient in t which is 4 gives $-\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{t^{2}-2 t+3}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 t}+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{1}{2 t} \\
& =\frac{-1+t}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2}-\frac{1}{2 t}\right)(0)+\left(\left(\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2}-\frac{1}{2 t}\right)^{2}-\left(\frac{t^{2}-2 t+3}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(\frac{1}{2}-\frac{1}{2 t}\right) d t} \\
& =\frac{\mathrm{e}^{\frac{t}{2}}}{\sqrt{t}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t-1}{t} d t} \\
& =z_{1} e^{\frac{t}{2}+\frac{\ln (t)}{2}} \\
& =z_{1}\left(\sqrt{t} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-t-1}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t+\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\mathrm{e}^{-t}(t+1)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(-\mathrm{e}^{-t}(t+1)\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t y^{\prime \prime}+(-t-1) y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}+(-t-1) c_{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=-t-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t-1 \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}(-t-1)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t-1 \\
\mathrm{e}^{t} & -1
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)(-1)-(-t-1)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(-t-1) \mathrm{e}^{2 t} t^{2}}{t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{t}(t+1) d t
$$

Hence

$$
u_{1}=t \mathrm{e}^{t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{t} \mathrm{e}^{2 t} t^{2}}{t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{2 t} d t
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{2 t}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{(-t-1) \mathrm{e}^{2 t}}{2}+\mathrm{e}^{2 t} t
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+(-t-1) c_{2}\right)+\left(\frac{\mathrm{e}^{2 t}(-1+t)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(t*diff(y(t),t$2)-(1+t)*diff(y(t),t)+y(t) = t^2*exp(2*t),y(t), singsol=all)
```

$$
y(t)=(t+1) c_{2}+\mathrm{e}^{t} c_{1}+\frac{(t-1) \mathrm{e}^{2 t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 31

```
DSolve[t*y''[t]-(1+t)*y'[t]+y[t] == t^2*Exp[2*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{2} e^{2 t}(t-1)+c_{1} e^{t}-c_{2}(t+1)
$$

10.16 problem 16

10.16.1 Solving as second order change of variable on y method 2 ode . 2873
10.16.2 Solving as second order ode non constant coeff transformation on B ode
10.16.3 Solving using Kovacic algorithm 2883

Internal problem ID [698]
Internal file name [OUTPUT/698_Sunday_June_05_2022_01_47_12_AM_63605988/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(-1+t)^{2} \mathrm{e}^{-t}
$$

10.16.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1-t, B=t, C=-1, f(t)=2(-1+t)^{2} \mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=0
$$

In normal form the ode

$$
\begin{equation*}
(1-t) y^{\prime \prime}+t y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{t}{-1+t} \\
& q(t)=\frac{1}{-1+t}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{n}{-1+t}+\frac{1}{-1+t}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) v^{\prime}(t)=0 \\
& v^{\prime \prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) v^{\prime}(t)=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) u(t)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-2 t+2\right)}{t(-1+t)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-2 t+2}{t(-1+t)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\ln (u) & =t-2 \ln (t)+\ln (-1+t)+c_{1} \\
u & =\mathrm{e}^{t-2 \ln (t)+\ln (-1+t)+c_{1}} \\
& =c_{1} \mathrm{e}^{t-2 \ln (t)+\ln (-1+t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t \\
& =c_{1} \mathrm{e}^{t}+c_{2} t
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(-1+t)^{2} \mathrm{e}^{-t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
t & \mathrm{e}^{t} \\
1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{t}(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int-2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{1}=-2 \mathrm{e}^{-t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 t(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-2 t \mathrm{e}^{-2 t} d t
$$

Hence

$$
u_{2}=\frac{(1+2 t) \mathrm{e}^{-2 t}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 t \mathrm{e}^{-t}+\frac{(1+2 t) \mathrm{e}^{-2 t} \mathrm{e}^{t}}{2}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t\right)+\left(\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)\right) \\
& =\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)+\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)+\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)+\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)+\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t
$$

Verified OK.

10.16.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=1-t \\
& B=t \\
& C=-1 \\
& F=2(-1+t)^{2} \mathrm{e}^{-t}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(1-t)(0)+(t)(1)+(-1)(t) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-t(-1+t) v^{\prime \prime}+\left(t^{2}-2 t+2\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-t^{2}+t\right) u^{\prime}(t)+\left(t^{2}-2 t+2\right) u(t)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-2 t+2\right)}{t(-1+t)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-2 t+2}{t(-1+t)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\ln (u) & =t-2 \ln (t)+\ln (-1+t)+c_{1} \\
u & =\mathrm{e}^{t-2 \ln (t)+\ln (-1+t)+c_{1}} \\
& =c_{1} \mathrm{e}^{t-2 \ln (t)+\ln (-1+t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1} \mathrm{e}^{t}(-1+t)}{t^{2}} \mathrm{~d} t \\
& =\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(t)\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) \\
& =c_{1} \mathrm{e}^{t}+c_{2} t
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{t}(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int-2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{1}=-2 \mathrm{e}^{-t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 t(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-2 t \mathrm{e}^{-2 t} d t
$$

Hence

$$
u_{2}=\frac{(1+2 t) \mathrm{e}^{-2 t}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 t \mathrm{e}^{-t}+\frac{(1+2 t) \mathrm{e}^{-2 t} \mathrm{e}^{t}}{2}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2} t\right)+\left(\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)\right) \\
& =-t \mathrm{e}^{-t}+\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}+c_{2} t
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-t \mathrm{e}^{-t}+\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}+c_{2} t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-t \mathrm{e}^{-t}+\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}+c_{2} t
$$

Verified OK.

10.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
(1-t) y^{\prime \prime}+t y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1-t \\
& B=t \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{t^{2}-4 t+6}{4(-1+t)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=t^{2}-4 t+6 \\
& t=4(-1+t)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{t^{2}-4 t+6}{4(-1+t)^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 501: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(-1+t)^{2}$. There is a pole at $t=1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}-\frac{1}{2(-1+t)}+\frac{3}{4(-1+t)^{2}}
$$

For the pole at $t=1$ let b be the coefficient of $\frac{1}{(-1+t)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving t^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{0} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $t^{v}=t^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 t}+\frac{1}{t^{3}}+\frac{11}{4 t^{4}}+\frac{21}{4 t^{5}}+\frac{15}{2 t^{6}}+\frac{6}{t^{7}}-\frac{117}{16 t^{8}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} t^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $t^{v-1}=t^{-1}=\frac{1}{t}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{t}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{t}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{t}$ in r will be the coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{t^{2}-4 t+6}{4 t^{2}-8 t+4} \\
& =Q+\frac{R}{4 t^{2}-8 t+4} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 t+5}{4 t^{2}-8 t+4}\right) \\
& =\frac{1}{4}+\frac{-2 t+5}{4 t^{2}-8 t+4}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term t in the remainder R is -2 . Dividing this by leading coefficient in t which is 4 gives $-\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{t^{2}-4 t+6}{4(-1+t)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(-1+t)}+\left(\frac{1}{2}\right) \\
& =-\frac{1}{2(-1+t)}+\frac{1}{2} \\
& =\frac{t-2}{2 t-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2(-1+t)^{2}}\right)+\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right)^{2}-\left(\frac{t^{2}-4 t+6}{4(-1+t)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right) d t} \\
& =\frac{\mathrm{e}^{\frac{t}{2}}}{\sqrt{-1+t}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t}{1-t} d t} \\
& =z_{1} e^{\frac{t}{2}+\frac{\ln (-1+t)}{2}} \\
& =z_{1}\left(\sqrt{-1+t} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{t}{1-t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t+\ln (-1+t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-t \mathrm{e}^{-t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(-t \mathrm{e}^{-t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}-c_{2} t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=-t
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}(-t)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t \\
\mathrm{e}^{t} & -1
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)(-1)-(-t)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 t(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int 2 t \mathrm{e}^{-2 t} d t
$$

Hence

$$
u_{1}=\frac{(1+2 t) \mathrm{e}^{-2 t}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{t}(-1+t)^{2} \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-2 \mathrm{e}^{-t} d t
$$

Hence

$$
u_{2}=2 \mathrm{e}^{-t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 t \mathrm{e}^{-t}+\frac{(1+2 t) \mathrm{e}^{-2 t} \mathrm{e}^{t}}{2}
$$

Which simplifies to

$$
y_{p}(t)=\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}-c_{2} t\right)+\left(\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}-c_{2} t+\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t}-c_{2} t+\mathrm{e}^{-t}\left(-t+\frac{1}{2}\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve((1-t)*diff(y(t),t$2)+t*diff(y(t),t)-y(t) = 2*(t-1)^2*exp(-t),y(t), singsol=all)
```

$$
y(t)=c_{2} t+\mathrm{e}^{t} c_{1}-t \mathrm{e}^{-t}+\frac{\mathrm{e}^{-t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 30

```
DSolve[(1-t)*y''[t]+t*y'[t]-y[t] == 2*(t-1)^2*Exp[-t],y[t],t,IncludeSingularSolutions -> Tru
```

$$
y(t) \rightarrow e^{-t}\left(\frac{1}{2}-t\right)+c_{1} e^{t}-c_{2} t
$$

10.17 problem 17

10.17.1 Solving as second order euler ode ode 2893
10.17.2 Solving as second order change of variable on x method 2 ode . 2897
10.17.3 Solving as second order change of variable on x method 1 ode . 2902
10.17.4 Solving as second order change of variable on y method 2 ode . 2907
10.17.5 Solving using Kovacic algorithm 2912

Internal problem ID [699]
Internal file name [OUTPUT/699_Sunday_June_05_2022_01_47_14_AM_49289387/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of__variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=\ln (x) x^{2}
$$

10.17.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$.

Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+4=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}+c_{2} \ln (x)\right)
$$

Verified OK.

10.17.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & -\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}\right)-\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right) \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int-\frac{(\ln (2)-2 \ln (x)) \ln (x)}{2 x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}+\frac{\ln (2) \ln (x)^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\ln (x)}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2))}{12} \\
& u_{2}=\frac{\ln (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2)) \sqrt{x^{4}}}{12}+\frac{\ln (x)^{2}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{\ln (x)^{3} x^{2}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{2} \ln \left(x^{4}\right)-2 c_{2} \ln (2)+c_{1}\right) \sqrt{x^{4}}}{2}+\frac{\ln (x)^{3} x^{2}}{6}
$$

Verified OK. $\{0<\mathrm{x}\}$

10.17.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{2}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{4}} \\
& y_{2}=-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{d}{d x}\left(\sqrt{x^{4}}\right) & \frac{d}{d x}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{4}} & -\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2} \\
\frac{2 x^{3}}{\sqrt{x^{4}}} & -\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}
\end{array}\right|
$$

Therefore
$W=\left(\sqrt{x^{4}}\right)\left(-\frac{2 \ln (2) x^{3}}{\sqrt{x^{4}}}+\frac{2 \sqrt{x^{4}}}{x}+\frac{\ln \left(x^{4}\right) x^{3}}{\sqrt{x^{4}}}\right)-\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)\left(\frac{2 x^{3}}{\sqrt{x^{4}}}\right)$
Which simplifies to

$$
W=2 x^{3}
$$

Which simplifies to

$$
W=2 x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right) \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int-\frac{(\ln (2)-2 \ln (x)) \ln (x)}{2 x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}+\frac{\ln (2) \ln (x)^{2}}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{4}} \ln (x) x^{2}}{2 x^{5}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\ln (x)}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2))}{12} \\
& u_{2}=\frac{\ln (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\ln (x)^{2}(4 \ln (x)-3 \ln (2)) \sqrt{x^{4}}}{12}+\frac{\ln (x)^{2}\left(-\ln (2) \sqrt{x^{4}}+\frac{\ln \left(x^{4}\right) \sqrt{x^{4}}}{2}\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right) \\
& =\frac{\ln (x)^{3} x^{2}}{6}+c_{1} x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1}\right)
$$

Verified OK. $\{0<\mathrm{x}\}$

10.17.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-3 x, C=4, f(x)=\ln (x) x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=\ln (x) x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{2}\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right) \\
& =\frac{\ln (x)^{3} x^{2}}{6}+\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(\frac{\ln (x)^{3}}{6}+c_{1} \ln (x)+c_{2}\right)
$$

Verified OK. $\{0<x\}$

10.17.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 502: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-3 y^{\prime} x+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{2}+c_{2} x^{2} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=\ln (x) x^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
\frac{d}{d x}\left(x^{2}\right) & \frac{d}{d x}\left(\ln (x) x^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2} & \ln (x) x^{2} \\
2 x & x+2 x \ln (x)
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2}\right)(x+2 x \ln (x))-\left(\ln (x) x^{2}\right)(2 x)
$$

Which simplifies to

$$
W=x^{3}
$$

Which simplifies to

$$
W=x^{3}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\ln (x)^{2} x^{4}}{x^{5}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)^{2}}{x} d x
$$

Hence

$$
u_{1}=-\frac{\ln (x)^{3}}{3}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{4} \ln (x)}{x^{5}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\ln (x)}{x} d x
$$

Hence

$$
u_{2}=\frac{\ln (x)^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\ln (x)^{3} x^{2}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2}+c_{2} x^{2} \ln (x)\right)+\left(\frac{\ln (x)^{3} x^{2}}{6}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)+\frac{\ln (x)^{3} x^{2}}{6}
$$

Verified OK. $\{0<\mathrm{x}\}$
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

$$
\begin{aligned}
& \text { dsolve }\left(\mathrm{x}^{\wedge} 2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-3 * \mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=\mathrm{x}^{\wedge} 2 * \ln (\mathrm{x}), \mathrm{y}(\mathrm{x})\right. \text {, singsol=all) } \\
& y(x)=x^{2}\left(c_{2}+\ln (x) c_{1}+\frac{\ln (x)^{3}}{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 27
DSolve $\left[x^{\wedge} 2 * y^{\prime \prime}\right.$ ' $[\mathrm{x}]-3 * x * y$ ' $[\mathrm{x}]+4 * y[\mathrm{x}]==\mathrm{x}^{\wedge} 2 * \log [\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{6} x^{2}\left(\log ^{3}(x)+12 c_{2} \log (x)+6 c_{1}\right)
$$

10.18 problem 20

10.18.1 Solving as second order change of variable on y method 1 ode . 2921
10.18.2 Solving as second order bessel ode ode 2930
10.18.3 Solving using Kovacic algorithm 2933

Internal problem ID [700]
Internal file name [OUTPUT/700_Sunday_June_05_2022_01_47_15_AM_75865028/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=g(x)
$$

10.18.1 Solving as second order change of variable on y method 1 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{x^{2}-\frac{1}{4}}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\frac{\left(\frac{1}{x}\right)^{\prime}}{2}-\frac{\left(\frac{1}{x}\right)^{2}}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\frac{\left(-\frac{1}{x^{2}}\right)}{2}-\frac{\left(\frac{1}{x^{2}}\right)}{4} \\
& =\frac{x^{2}-\frac{1}{4}}{x^{2}}-\left(-\frac{1}{2 x^{2}}\right)-\frac{1}{4 x^{2}} \\
& =1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{1}{x}} \\
& =\frac{1}{\sqrt{x}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{\sqrt{x}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
x^{\frac{3}{2}}\left(v^{\prime \prime}(x)+v(x)\right)=g(x)
$$

Which is now solved for $v(x)$ Simplyfing the ode gives

$$
v^{\prime \prime}(x)+v(x)=\frac{g(x)}{x^{\frac{3}{2}}}
$$

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\frac{g(x)}{x^{\frac{3}{2}}}$. Let the solution be

$$
v(x)=v_{h}+v_{p}
$$

Where v_{h} is the solution to the homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0$, and v_{p} is a particular solution to the non-homogeneous ODE $A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=f(x)$. v_{h} is the solution to

$$
v^{\prime \prime}(x)+v(x)=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
v(x)=e^{0}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Or

$$
v(x)=c_{1} \cos (x)+c_{2} \sin (x)
$$

Therefore the homogeneous solution v_{h} is

$$
v_{h}=c_{1} \cos (x)+c_{2} \sin (x)
$$

The particular solution v_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
v_{p}(x)=u_{1} v_{1}+u_{2} v_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and v_{1}, v_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& v_{1}=\cos (x) \\
& v_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{v_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{v_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $v^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}v_{1} & v_{2} \\ v_{1}^{\prime} & v_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x) g(x)}{x^{\frac{3}{2}}}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x) g(x)}{x^{\frac{3}{2}}}}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
v_{p}(x)=-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
v= & v_{h}+v_{p} \\
= & \left(c_{1} \cos (x)+c_{2} \sin (x)\right) \\
& +\left(-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)\right)
\end{aligned}
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{\sqrt{x}}
$$

Hence (7) becomes

$$
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\cos (x)}{\sqrt{x}} \\
& y_{2}=\frac{\sin (x)}{\sqrt{x}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
\frac{d}{d x}\left(\frac{\cos (x)}{\sqrt{x}}\right) & \frac{d}{d x}\left(\frac{\sin (x)}{\sqrt{x}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}} & \frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\cos (x)}{\sqrt{x}}\right)\left(\frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}\right)-\left(\frac{\sin (x)}{\sqrt{x}}\right)\left(-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}}\right)
$$

Which simplifies to

$$
W=\frac{\cos (x)^{2}+\sin (x)^{2}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)}{\sqrt{x}}+\frac{\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}\right) \\
& +\left(\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}} \tag{1}\\
& +\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1} \cos (x)+c_{2} \sin (x)-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}} \\
& +\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
\end{aligned}
$$

Verified OK.

10.18.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=g(x) \tag{1}
\end{equation*}
$$

Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE and y_{p} is a particular solution to the non-homogeneous ODE. Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =0 \\
\beta & =1 \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\cos (x)}{\sqrt{x}} \\
& y_{2}=\frac{\sin (x)}{\sqrt{x}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
\frac{d}{d x}\left(\frac{\cos (x)}{\sqrt{x}}\right) & \frac{d}{d x}\left(\frac{\sin (x)}{\sqrt{x}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}} & \frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\cos (x)}{\sqrt{x}}\right)\left(\frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}\right)-\left(\frac{\sin (x)}{\sqrt{x}}\right)\left(-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}}\right)
$$

Which simplifies to

$$
W=\frac{\cos (x)^{2}+\sin (x)^{2}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)}{\sqrt{x}}+\frac{\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}\right) \\
& +\left(\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}} \\
& +\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}} \tag{1}
\end{align*}
$$

Verification of solutions

$y=\frac{c_{1} \sqrt{2} \cos (x)}{\sqrt{\pi} \sqrt{x}}+\frac{c_{2} \sqrt{2} \sin (x)}{\sqrt{\pi} \sqrt{x}}+\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}$
Verified OK.

10.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=x^{2}-\frac{1}{4}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 503: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\cos (x)}{\sqrt{x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\cos (x)}{\sqrt{x}}\right)+c_{2}\left(\frac{\cos (x)}{\sqrt{x}}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1} \cos (x)}{\sqrt{x}}+\frac{c_{2} \sin (x)}{\sqrt{x}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{\cos (x)}{\sqrt{x}} \\
& y_{2}=\frac{\sin (x)}{\sqrt{x}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
\frac{d}{d x}\left(\frac{\cos (x)}{\sqrt{x}}\right) & \frac{d}{d x}\left(\frac{\sin (x)}{\sqrt{x}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{\cos (x)}{\sqrt{x}} & \frac{\sin (x)}{\sqrt{x}} \\
-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}} & \frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{\cos (x)}{\sqrt{x}}\right)\left(\frac{\cos (x)}{\sqrt{x}}-\frac{\sin (x)}{2 x^{\frac{3}{2}}}\right)-\left(\frac{\sin (x)}{\sqrt{x}}\right)\left(-\frac{\sin (x)}{\sqrt{x}}-\frac{\cos (x)}{2 x^{\frac{3}{2}}}\right)
$$

Which simplifies to

$$
W=\frac{\cos (x)^{2}+\sin (x)^{2}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{1}=-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{\cos (x) g(x)}{\sqrt{x}}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cos (x) g(x)}{x^{\frac{3}{2}}} d x
$$

Hence

$$
u_{2}=\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)}{\sqrt{x}}+\frac{\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Which simplifies to

$$
y_{p}(x)=\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cos (x)}{\sqrt{x}}+\frac{c_{2} \sin (x)}{\sqrt{x}}\right)+\left(\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}}+\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}}+\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (x)+c_{2} \sin (x)}{\sqrt{x}}+\frac{-\left(\int_{0}^{x} \frac{\sin (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \cos (x)+\left(\int_{0}^{x} \frac{\cos (\alpha) g(\alpha)}{\alpha^{\frac{3}{2}}} d \alpha\right) \sin (x)}{\sqrt{x}}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Group is reducible or imprimitive
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 44

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-25/100)*y(x) = g(x),y(x), singsol=all)
```

$$
y(x)=\frac{\sin (x) c_{2}+\cos (x) c_{1}+\left(\int \frac{\cos (x) g(x)}{x^{\frac{3}{2}}} d x\right) \sin (x)-\left(\int \frac{\sin (x) g(x)}{x^{\frac{3}{2}}} d x\right) \cos (x)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.203 (sec). Leaf size: 107
DSolve $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[x]+x * y\right.$ ' $[x]+\left(x^{\wedge} 2-25 / 100\right) * y[x]==g[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{-i x}\left(2 \int_{1}^{x} \frac{i e^{i K[1]} g(K[1])}{2 K[1]^{3 / 2}} d K[1]-i e^{2 i x} \int_{1}^{x} \frac{e^{-i K[2]} g(K[2])}{K[2]^{/ 2}} d K[2]-i c_{2} e^{2 i x}+2 c_{1}\right)}{2 \sqrt{x}}
$$

10.19 problem 29

10.19.1 Solving as second order euler ode ode 2942
10.19.2 Solving as linear second order ode solved by an integrating factor
ode . 2945 .
10.19.3 Solving as second order change of variable on x method 2 ode . 2946
10.19.4 Solving as second order change of variable on x method 1 ode . 2951
10.19.5 Solving as second order change of variable on y method 2 ode . 2955
10.19.6 Solving as second order ode non constant coeff transformation on B ode

2960
10.19.7 Solving using Kovacic algorithm 2964

Internal problem ID [701]
Internal file name [OUTPUT/701_Sunday_June_05_2022_01_47_17_AM_20232498/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler__ode", "second_order_change__of_variable_on_x_method_1", "second__order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2", "linear_second__order__ode__solved__by__an_integrating_factor", "second_order_ode__non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}
$$

10.19.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=-2 t, C=2, f(t)=4 t^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}-2 t r t^{r-1}+2 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}-2 r t^{r}+2 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)-2 r+2=0
$$

Or

$$
\begin{equation*}
r^{2}-3 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=c_{2} t^{2}+c_{1} t
$$

Next, we find the particular solution to the ODE

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
1 & 2 t
\end{array}\right|
$$

Therefore

$$
W=(t)(2 t)-\left(t^{2}\right)(1)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 t^{4}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 d t
$$

Hence

$$
u_{1}=-4 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 t^{3}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4}{t} d t
$$

Hence

$$
u_{2}=4 \ln (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-4 t^{2}+4 t^{2} \ln (t)+c_{2} t^{2}+c_{1} t
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-4 t^{2}+4 t^{2} \ln (t)+c_{2} t^{2}+c_{1} t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-4 t^{2}+4 t^{2} \ln (t)+c_{2} t^{2}+c_{1} t
$$

Verified OK.

10.19.2 Solving as linear second order ode solved by an integrating factor

 odeThe ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=-\frac{2}{t}$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{t} d x} \\
& =\frac{1}{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{4}{t} \\
\left(\frac{y}{t}\right)^{\prime \prime} & =\frac{4}{t}
\end{aligned}
$$

Integrating once gives

$$
\left(\frac{y}{t}\right)^{\prime}=4 \ln (t)+c_{1}
$$

Integrating again gives

$$
\left(\frac{y}{t}\right)=t\left(4 \ln (t)+c_{1}-4\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{t\left(4 \ln (t)+c_{1}-4\right)+c_{2}}{\frac{1}{t}}
$$

Or

$$
y=c_{1} t^{2}+4 t^{2} \ln (t)+c_{2} t-4 t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t^{2}+4 t^{2} \ln (t)+c_{2} t-4 t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} t^{2}+4 t^{2} \ln (t)+c_{2} t-4 t^{2}
$$

Verified OK.
10.19.3 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{t} d t\right)} d t \\
& =\int e^{2 \ln (t)} d t \\
& =\int t^{2} d t \\
& =\frac{t^{3}}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{2}{t^{2}}}{t^{4}} \\
& =\frac{2}{t^{6}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{t^{6}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{2}{t^{6}}=\frac{2}{9 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
$$

Simplifying gives

$$
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
9 r(r-1)+0+2=0
$$

Or

$$
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(t^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(t^{3}\right)^{\frac{2}{3}}}{3}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(t^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(t^{3}\right)^{\frac{2}{3}}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(t^{3}\right)^{\frac{1}{3}} \\
& y_{2}=\left(t^{3}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(t^{3}\right)^{\frac{1}{3}} & \left(t^{3}\right)^{\frac{2}{3}} \\
\frac{d}{d t}\left(\left(t^{3}\right)^{\frac{1}{3}}\right) & \frac{d}{d t}\left(\left(t^{3}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\left(t^{3}\right)^{\frac{1}{3}} & \left(t^{3}\right)^{\frac{2}{3}} \\
\frac{t^{2}}{\left(t^{3}\right)^{\frac{2}{3}}} & \frac{2 t^{2}}{\left(t^{3}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(t^{3}\right)^{\frac{1}{3}}\right)\left(\frac{2 t^{2}}{\left(t^{3}\right)^{\frac{1}{3}}}\right)-\left(\left(t^{3}\right)^{\frac{2}{3}}\right)\left(\frac{t^{2}}{\left(t^{3}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(t^{3}\right)^{\frac{2}{3}} t^{2}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{4\left(t^{3}\right)^{\frac{2}{3}}}{t^{2}} d t
$$

Hence

$$
u_{1}=-\frac{4\left(t^{3}\right)^{\frac{2}{3}}}{t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(t^{3}\right)^{\frac{1}{3}} t^{2}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4\left(t^{3}\right)^{\frac{1}{3}}}{t^{2}} d t
$$

Hence

$$
u_{2}=\frac{4\left(t^{3}\right)^{\frac{1}{3}} \ln (t)}{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(t^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(t^{3}\right)^{\frac{2}{3}}}{3}\right)+\left(-4 t^{2}+4 t^{2} \ln (t)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(t^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(t^{3}\right)^{\frac{2}{3}}}{3}-4 t^{2}+4 t^{2} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 3^{\frac{2}{3}}\left(t^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(t^{3}\right)^{\frac{2}{3}}}{3}-4 t^{2}+4 t^{2} \ln (t)
$$

Verified OK.

10.19.4 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=-2 t, C=2, f(t)=4 t^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{t^{2}} t^{3}}-\frac{2}{t} \frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c}}\left(\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}}{2} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=t^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right)
$$

Now the particular solution to this ODE is found

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(t^{3}\right)^{\frac{1}{3}} \\
& y_{2}=\left(t^{3}\right)^{\frac{2}{3}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(t^{3}\right)^{\frac{1}{3}} & \left(t^{3}\right)^{\frac{2}{3}} \\
\frac{d}{d t}\left(\left(t^{3}\right)^{\frac{1}{3}}\right) & \frac{d}{d t}\left(\left(t^{3}\right)^{\frac{2}{3}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(t^{3}\right)^{\frac{1}{3}} & \left(t^{3}\right)^{\frac{2}{3}} \\
\frac{t^{2}}{\left(t^{3}\right)^{\frac{2}{3}}} & \frac{2 t^{2}}{\left(t^{3}\right)^{\frac{1}{3}}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(t^{3}\right)^{\frac{1}{3}}\right)\left(\frac{2 t^{2}}{\left(t^{3}\right)^{\frac{1}{3}}}\right)-\left(\left(t^{3}\right)^{\frac{2}{3}}\right)\left(\frac{t^{2}}{\left(t^{3}\right)^{\frac{2}{3}}}\right)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4\left(t^{3}\right)^{\frac{2}{3}} t^{2}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{4\left(t^{3}\right)^{\frac{2}{3}}}{t^{2}} d t
$$

Hence

$$
u_{1}=-\frac{4\left(t^{3}\right)^{\frac{2}{3}}}{t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4\left(t^{3}\right)^{\frac{1}{3}} t^{2}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4\left(t^{3}\right)^{\frac{1}{3}}}{t^{2}} d t
$$

Hence

$$
u_{2}=\frac{4\left(t^{3}\right)^{\frac{1}{3}} \ln (t)}{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(t^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right)\right)+\left(-4 t^{2}+4 t^{2} \ln (t)\right) \\
& =-4 t^{2}+4 t^{2} \ln (t)+t^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (t)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (t)}{2}\right)\right)
\end{aligned}
$$

Which simplifies to

$$
y=i \sinh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{2}+\cosh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{1}+4 t^{2} \ln (t)-4 t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=i \sinh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{2}+\cosh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{1}+4 t^{2} \ln (t)-4 t^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=i \sinh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{2}+\cosh \left(\frac{\ln (t)}{2}\right) t^{\frac{3}{2}} c_{1}+4 t^{2} \ln (t)-4 t^{2}
$$

Verified OK.

10.19.5 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=-2 t, C=2, f(t)=4 t^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{2}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{2 n}{t^{2}}+\frac{2}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t} & =0 \\
v^{\prime \prime}(t)+\frac{2 v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{2 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{2 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{2}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{2}{t} d t \\
\ln (u) & =-2 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{2}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(-\frac{c_{1}}{t}+c_{2}\right) t^{2} \\
& =\left(c_{2} t-c_{1}\right) t
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=4 t^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
1 & 2 t
\end{array}\right|
$$

Therefore

$$
W=(t)(2 t)-\left(t^{2}\right)(1)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 t^{4}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 d t
$$

Hence

$$
u_{1}=-4 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 t^{3}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4}{t} d t
$$

Hence

$$
u_{2}=4 \ln (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{t}+c_{2}\right) t^{2}\right)+\left(-4 t^{2}+4 t^{2} \ln (t)\right) \\
& =-4 t^{2}+4 t^{2} \ln (t)+\left(-\frac{c_{1}}{t}+c_{2}\right) t^{2}
\end{aligned}
$$

Which simplifies to

$$
y=t\left(4 \ln (t) t+c_{2} t-c_{1}-4 t\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t\left(4 \ln (t) t+c_{2} t-c_{1}-4 t\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(4 \ln (t) t+c_{2} t-c_{1}-4 t\right)
$$

Verified OK.

10.19.6 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t^{2} \\
& B=-2 t \\
& C=2 \\
& F=4 t^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(t^{2}\right)(0)+(-2 t)(-2)+(2)(-2 t) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-2 t^{3} v^{\prime \prime}+(0) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-2 t^{3} u^{\prime}(t)=0
$$

Which is now solved for u. Integrating both sides gives

$$
\begin{aligned}
u(t) & =\int 0 \mathrm{~d} t \\
& =c_{1}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int c_{1} \mathrm{~d} t \\
& =c_{1} t+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(-2 t)\left(c_{1} t+c_{2}\right) \\
& =-2 t\left(c_{1} t+c_{2}\right)
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
1 & 2 t
\end{array}\right|
$$

Therefore

$$
W=(t)(2 t)-\left(t^{2}\right)(1)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 t^{4}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 d t
$$

Hence

$$
u_{1}=-4 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 t^{3}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4}{t} d t
$$

Hence

$$
u_{2}=4 \ln (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(-2 t\left(c_{1} t+c_{2}\right)\right)+\left(-4 t^{2}+4 t^{2} \ln (t)\right) \\
& =-2\left(-2 \ln (t) t+\left(c_{1}+2\right) t+c_{2}\right) t
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2\left(-2 \ln (t) t+\left(c_{1}+2\right) t+c_{2}\right) t \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-2\left(-2 \ln (t) t+\left(c_{1}+2\right) t+c_{2}\right) t
$$

Verified OK.

10.19.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=-2 t \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 504: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 t}{t^{2}} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\ln (t)} \\
& =z_{1}(t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=t
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{2 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(t)+c_{2}(t(t))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} t^{2}+c_{1} t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=t^{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(t^{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & t^{2} \\
1 & 2 t
\end{array}\right|
$$

Therefore

$$
W=(t)(2 t)-\left(t^{2}\right)(1)
$$

Which simplifies to

$$
W=t^{2}
$$

Which simplifies to

$$
W=t^{2}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{4 t^{4}}{t^{4}} d t
$$

Which simplifies to

$$
u_{1}=-\int 4 d t
$$

Hence

$$
u_{1}=-4 t
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{4 t^{3}}{t^{4}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{4}{t} d t
$$

Hence

$$
u_{2}=4 \ln (t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-4 t^{2}+4 t^{2} \ln (t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} t^{2}+c_{1} t\right)+\left(-4 t^{2}+4 t^{2} \ln (t)\right)
\end{aligned}
$$

Which simplifies to

$$
y=t\left(c_{2} t+c_{1}\right)-4 t^{2}+4 t^{2} \ln (t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=t\left(c_{2} t+c_{1}\right)-4 t^{2}+4 t^{2} \ln (t) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t\left(c_{2} t+c_{1}\right)-4 t^{2}+4 t^{2} \ln (t)
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry $[0,1]$
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve(t^2*diff(y(t),t$2)-2*t*diff(y(t),t)+2*y(t) = 4*t^2,y(t), singsol=all)
```

$$
y(t)=t\left(4 t \ln (t)+\left(c_{1}-4\right) t+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve[t^2*y' '[t]-2*t*y'[t]+2*y[t] ==4*t^2,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t\left(4 t \log (t)+\left(-4+c_{2}\right) t+c_{1}\right)
$$

10.20 problem 30

10.20.1 Solving as second order euler ode ode 2971
10.20.2 Solving as second order change of variable on x method 2 ode . 2974
10.20.3 Solving as second order change of variable on x method 1 ode . 2979
10.20.4 Solving as second order change of variable on y method 2 ode . 2984
10.20.5 Solving as second order integrable as is ode 2989
10.20.6 Solving as type second_order_integrable_as_is (not using ABC
version) . 2990
10.20.7 Solving using Kovacic algorithm 2992
10.20.8 Solving as exact linear second order ode ode 2999

Internal problem ID [702]
Internal file name [OUTPUT/702_Sunday_June_05_2022_01_47_18_AM_49530951/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 30.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable__as_is", "second_order_change_of_cvariable_on_x_method_1", "second_order_change_of_cariable_on_x_method_2", "second_order_change_of__variable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=t
$$

10.20.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=7 t, C=5, f(t)=t$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0
$$

This is Euler second order ODE. Let the solution be $y=t^{r}$, then $y^{\prime}=r t^{r-1}$ and $y^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these back into the given ODE gives

$$
t^{2}(r(r-1)) t^{r-2}+7 t r t^{r-1}+5 t^{r}=0
$$

Simplifying gives

$$
r(r-1) t^{r}+7 r t^{r}+5 t^{r}=0
$$

Since $t^{r} \neq 0$ then dividing throughout by t^{r} gives

$$
r(r-1)+7 r+5=0
$$

Or

$$
\begin{equation*}
r^{2}+6 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-5 \\
& r_{2}=-1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=t^{r_{1}}$ and $y_{2}=t^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{t^{5}}+\frac{c_{2}}{t}
$$

Next, we find the particular solution to the ODE

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t^{5}} \\
& y_{2}=\frac{1}{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{t} \\
\frac{d}{d t}\left(\frac{1}{t^{5}}\right) & \frac{d}{d t}\left(\frac{1}{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{t} \\
-\frac{5}{t^{6}} & -\frac{1}{t^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t^{5}}\right)\left(-\frac{1}{t^{2}}\right)-\left(\frac{1}{t}\right)\left(-\frac{5}{t^{6}}\right)
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{1}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t^{5}}{4} d t
$$

Hence

$$
u_{1}=-\frac{t^{6}}{24}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{t^{4}}}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{t}{4} d t
$$

Hence

$$
u_{2}=\frac{t^{2}}{8}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{t}{12}+\frac{c_{1}}{t^{5}}+\frac{c_{2}}{t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{12}+\frac{c_{1}}{t^{5}}+\frac{c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t}{12}+\frac{c_{1}}{t^{5}}+\frac{c_{2}}{t}
$$

Verified OK.

10.20.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(t) & =\frac{7}{t} \\
q(t) & =\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(t) d t\right)} d t \\
& =\int \mathrm{e}^{-\left(\int \frac{7}{t} d t\right)} d t \\
& =\int e^{-7 \ln (t)} d t \\
& =\int \frac{1}{t^{7}} d t \\
& =-\frac{1}{6 t^{6}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{\frac{5}{t^{2}}}{\frac{1}{t^{14}}} \\
& =5 t^{12} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+5 t^{12} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
5 t^{12}=\frac{5}{36 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{36 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
36\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
36 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
36 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
36 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
36 r^{2}-36 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{6} \\
& r_{2}=\frac{5}{6}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=c_{1} \tau^{\frac{1}{6}}+c_{2} \tau^{\frac{5}{6}}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} 6^{\frac{5}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}}{6}+\frac{c_{2} 6^{\frac{1}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}}{6}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{c_{1} 6^{\frac{5}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}}{6}+\frac{c_{2} 6^{\frac{1}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} \\
& y_{2}=\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} & \left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} \\
\frac{d}{d t}\left(\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}\right) & \frac{d}{d t}\left(\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} & \left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} \\
\frac{1}{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}} & \frac{5}{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}\right)\left(\frac{5}{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}\right)-\left(\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}\right)\left(\frac{1}{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}}\right)
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{6}}{4} d t
$$

Hence

$$
u_{1}=-\frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{6}}{4} d t
$$

Hence

$$
u_{2}=\frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}{24}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 6^{\frac{5}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}}{6}+\frac{c_{2} 6^{\frac{1}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}}{6}\right)+\left(\frac{t}{12}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} 6^{\frac{5}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}}{6}+\frac{c_{2} 6^{\frac{1}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}}{6}+\frac{t}{12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} 6^{\frac{5}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}}{6}+\frac{c_{2} 6^{\frac{1}{6}}\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}}{6}+\frac{t}{12}
$$

Verified OK.

10.20.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=7 t, C=5, f(t)=t$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{7}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(t)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(t)}{\tau^{\prime}(t)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}}} t^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(t)+p(t) \tau^{\prime}(t)}{\tau^{\prime}(t)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{t^{2}} t^{3}}}+\frac{7}{t} \frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}}}{c}\right)^{2}} \\
& =\frac{6 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{6 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{-\frac{3 \sqrt{5} c \tau}{5}}\left(c_{1} \cosh \left(\frac{2 \sqrt{5} c \tau}{5}\right)+i c_{2} \sinh \left(\frac{2 \sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d t \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{t^{2}}} d t}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{t^{2}}} t \ln (t)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{c_{1} \cosh (2 \ln (t))+i c_{2} \sinh (2 \ln (t))}{t^{3}}
$$

Now the particular solution to this ODE is found

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} \\
& y_{2}=\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} & \left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} \\
\frac{d}{d t}\left(\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}\right) & \frac{d}{d t}\left(\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{ll}
\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} & \left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} \\
\frac{1}{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}} & \frac{5}{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}
\end{array}\right|
$$

Therefore

$$
W=\left(\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}}\right)\left(\frac{5}{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}\right)-\left(\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}}\right)\left(\frac{1}{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}}\right)
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{6}}{4} d t
$$

Hence

$$
u_{1}=-\frac{\left(-\frac{1}{t^{6}}\right)^{\frac{5}{6}} t^{7}}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{6}}{4} d t
$$

Hence

$$
u_{2}=\frac{\left(-\frac{1}{t^{6}}\right)^{\frac{1}{6}} t^{7}}{24}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \cosh (2 \ln (t))+i c_{2} \sinh (2 \ln (t))}{t^{3}}\right)+\left(\frac{t}{12}\right) \\
& =\frac{t}{12}+\frac{c_{1} \cosh (2 \ln (t))+i c_{2} \sinh (2 \ln (t))}{t^{3}}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{t^{6}+\left(6 i c_{2}+6 c_{1}\right) t^{4}-6 i c_{2}+6 c_{1}}{12 t^{5}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{6}+\left(6 i c_{2}+6 c_{1}\right) t^{4}-6 i c_{2}+6 c_{1}}{12 t^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{6}+\left(6 i c_{2}+6 c_{1}\right) t^{4}-6 i c_{2}+6 c_{1}}{12 t^{5}}
$$

Verified OK.

10.20.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=t^{2}, B=7 t, C=5, f(t)=t$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0
$$

In normal form the ode

$$
\begin{equation*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=\frac{7}{t} \\
& q(t)=\frac{5}{t^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{7 n}{t^{2}}+\frac{5}{t^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{t} & =0 \\
v^{\prime \prime}(t)+\frac{5 v^{\prime}(t)}{t} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\frac{5 u(t)}{t}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{5 u}{t}
\end{aligned}
$$

Where $f(t)=-\frac{5}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{5}{t} d t \\
\ln (u) & =-5 \ln (t)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (t)+c_{1}} \\
& =\frac{c_{1}}{t^{5}}
\end{aligned}
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =-\frac{c_{1}}{4 t^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t} \\
& =\frac{4 c_{2} t^{4}-c_{1}}{4 t^{5}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t^{5}} \\
& y_{2}=\frac{1}{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{t} \\
\frac{d}{d t}\left(\frac{1}{t^{5}}\right) & \frac{d}{d t}\left(\frac{1}{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{t} \\
-\frac{5}{t^{6}} & -\frac{1}{t^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t^{5}}\right)\left(-\frac{1}{t^{2}}\right)-\left(\frac{1}{t}\right)\left(-\frac{5}{t^{6}}\right)
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Which simplifies to

$$
W=\frac{4}{t^{7}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{1}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t^{5}}{4} d t
$$

Hence

$$
u_{1}=-\frac{t^{6}}{24}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{t^{4}}}{\frac{4}{t^{5}}} d t
$$

Which simplifies to

$$
u_{2}=\int \frac{t}{4} d t
$$

Hence

$$
u_{2}=\frac{t^{2}}{8}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t}\right)+\left(\frac{t}{12}\right) \\
& =\frac{t}{12}+\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{t}{12}+\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{12}+\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t}{12}+\frac{-\frac{c_{1}}{4 t^{4}}+c_{2}}{t}
$$

Verified OK.

10.20.5 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y\right) d t=\int t d t \\
& y^{\prime} t^{2}+5 y t=\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{5}{t} \\
q(t) & =\frac{t^{2}+2 c_{1}}{2 t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{5 y}{t}=\frac{t^{2}+2 c_{1}}{2 t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{5}{t} d t} \\
& =t^{5}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{5} y\right) & =\left(t^{5}\right)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\mathrm{d}\left(t^{5} y\right) & =\left(\frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{5} y=\int \frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2} \mathrm{~d} t \\
& t^{5} y=\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{5}$ results in

$$
y=\frac{\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}}{t^{5}}+\frac{c_{2}}{t^{5}}
$$

which simplifies to

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Verified OK.

10.20.6 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=t
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y\right) d t=\int t d t \\
& y^{\prime} t^{2}+5 y t=\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{5}{t} \\
& q(t)=\frac{t^{2}+2 c_{1}}{2 t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{5 y}{t}=\frac{t^{2}+2 c_{1}}{2 t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{5}{t} d t} \\
& =t^{5}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{5} y\right) & =\left(t^{5}\right)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\mathrm{d}\left(t^{5} y\right) & =\left(\frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{5} y=\int \frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2} \mathrm{~d} t \\
& t^{5} y=\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{5}$ results in

$$
y=\frac{\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}}{t^{5}}+\frac{c_{2}}{t^{5}}
$$

which simplifies to

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Verified OK.

10.20.7 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t^{2} \\
& B=7 t \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{15}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 505: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{t^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 t^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 t}+(-)(0) \\
& =-\frac{3}{2 t} \\
& =-\frac{3}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 t}\right)(0)+\left(\left(\frac{3}{2 t^{2}}\right)+\left(-\frac{3}{2 t}\right)^{2}-\left(\frac{15}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int-\frac{3}{2 t} d t} \\
& =\frac{1}{t^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7 t}{t^{2}} d t} \\
& =z_{1} e^{-\frac{7 \ln (t)}{2}} \\
& =z_{1}\left(\frac{1}{t^{\frac{7}{2}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{t^{5}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7 t}{t^{2}} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-7 \ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{t^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{t^{5}}\right)+c_{2}\left(\frac{1}{t^{5}}\left(\frac{t^{4}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\frac{c_{1}}{t^{5}}+\frac{c_{2}}{4 t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\frac{1}{t^{5}} \\
& y_{2}=\frac{1}{4 t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{4 t} \\
\frac{d}{d t}\left(\frac{1}{t^{5}}\right) & \frac{d}{d t}\left(\frac{1}{4 t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\frac{1}{t^{5}} & \frac{1}{4 t} \\
-\frac{5}{t^{6}} & -\frac{1}{4 t^{2}}
\end{array}\right|
$$

Therefore

$$
W=\left(\frac{1}{t^{5}}\right)\left(-\frac{1}{4 t^{2}}\right)-\left(\frac{1}{4 t}\right)\left(-\frac{5}{t^{6}}\right)
$$

Which simplifies to

$$
W=\frac{1}{t^{7}}
$$

Which simplifies to

$$
W=\frac{1}{t^{7}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{1}{4}}{\frac{1}{t^{5}}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{t^{5}}{4} d t
$$

Hence

$$
u_{1}=-\frac{t^{6}}{24}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\frac{1}{t^{4}}}{\frac{1}{t^{5}}} d t
$$

Which simplifies to

$$
u_{2}=\int t d t
$$

Hence

$$
u_{2}=\frac{t^{2}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{t}{12}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{t^{5}}+\frac{c_{2}}{4 t}\right)+\left(\frac{t}{12}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{t^{5}}+\frac{c_{2}}{4 t}+\frac{t}{12} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{t^{5}}+\frac{c_{2}}{4 t}+\frac{t}{12}
$$

Verified OK.

10.20.8 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=t^{2} \\
& q(x)=7 t \\
& r(x)=5 \\
& s(x)=t
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =7
\end{aligned}
$$

Therefore (1) becomes

$$
2-(7)+(5)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime} t^{2}+5 y t=\int t d t
$$

We now have a first order ode to solve which is

$$
y^{\prime} t^{2}+5 y t=\frac{t^{2}}{2}+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{5}{t} \\
& q(t)=\frac{t^{2}+2 c_{1}}{2 t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{5 y}{t}=\frac{t^{2}+2 c_{1}}{2 t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{5}{t} d t} \\
& =t^{5}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{5} y\right) & =\left(t^{5}\right)\left(\frac{t^{2}+2 c_{1}}{2 t^{2}}\right) \\
\mathrm{d}\left(t^{5} y\right) & =\left(\frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t^{5} y=\int \frac{\left(t^{2}+2 c_{1}\right) t^{3}}{2} \mathrm{~d} t \\
& t^{5} y=\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t^{5}$ results in

$$
y=\frac{\frac{1}{12} t^{6}+\frac{1}{4} c_{1} t^{4}}{t^{5}}+\frac{c_{2}}{t^{5}}
$$

which simplifies to

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{6}+3 c_{1} t^{4}+12 c_{2}}{12 t^{5}}
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(t` 2*diff(y(t),t$2)+7*t*diff(y(t),t)+5*y(t) = t,y(t), singsol=all)
```

$$
y(t)=\frac{t^{6}+3 c_{1} t^{4}-4 c_{1}^{3}+12 c_{2}}{12 t^{5}}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 23
DSolve[t~2*y''[t]+7*t*y'[t]+5*y[t]==t,y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{c_{1}}{t^{5}}+\frac{t}{12}+\frac{c_{2}}{t}
$$

10.21 problem 31

10.21.1 Solving as second order ode non constant coeff transformation on B ode
10.21.2 Solving using Kovacic algorithm 3008

Internal problem ID [703]
Internal file name [OUTPUT/703_Sunday_June_05_2022_01_47_19_AM_67928080/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
t y^{\prime \prime}-(t+1) y^{\prime}+y=\mathrm{e}^{2 t} t^{2}
$$

10.21.1 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=t \\
& B=-t-1 \\
& C=1 \\
& F=\mathrm{e}^{2 t} t^{2}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(t)(0)+(-t-1)(-1)+(1)(-t-1) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-t(t+1) v^{\prime \prime}+\left(t^{2}+1\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
-t(t+1) u^{\prime}(t)+\left(t^{2}+1\right) u(t)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{\left(t^{2}+1\right) u}{t(t+1)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}+1}{t(t+1)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}+1}{t(t+1)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}+1}{t(t+1)} d t \\
\ln (u) & =t+\ln (t)-2 \ln (t+1)+c_{1} \\
u & =\mathrm{e}^{t+\ln (t)-2 \ln (t+1)+c_{1}} \\
& =c_{1} \mathrm{e}^{t+\ln (t)-2 \ln (t+1)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1} \mathrm{e}^{t} t}{(t+1)^{2}} \mathrm{~d} t \\
& =\frac{c_{1} \mathrm{e}^{t}}{t+1}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(-t-1)\left(\frac{c_{1} \mathrm{e}^{t}}{t+1}+c_{2}\right) \\
& =-c_{1} \mathrm{e}^{t}-c_{2}(t+1)
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=-t-1 \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
-t-1 & \mathrm{e}^{t} \\
\frac{d}{d t}(-t-1) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
-t-1 & \mathrm{e}^{t} \\
-1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(-t-1)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(-1)
$$

Which simplifies to

$$
W=-t \mathrm{e}^{t}
$$

Which simplifies to

$$
W=-t \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{t} \mathrm{e}^{2 t} t^{2}}{-t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{2 t} d t
$$

Hence

$$
u_{1}=\frac{\mathrm{e}^{2 t}}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{(-t-1) \mathrm{e}^{2 t} t^{2}}{-t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{t}(t+1) d t
$$

Hence

$$
u_{2}=t \mathrm{e}^{t}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{(-t-1) \mathrm{e}^{2 t}}{2}+\mathrm{e}^{2 t} t
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(-c_{1} \mathrm{e}^{t}-c_{2}(t+1)\right)+\left(\frac{\mathrm{e}^{2 t}(-1+t)}{2}\right) \\
& =-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Verified OK.

10.21.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
t y^{\prime \prime}+(-t-1) y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=t \\
& B=-t-1 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{t^{2}-2 t+3}{4 t^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=t^{2}-2 t+3 \\
& t=4 t^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{t^{2}-2 t+3}{4 t^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 506: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 t^{2}$. There is a pole at $t=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}-\frac{1}{2 t}+\frac{3}{4 t^{2}}
$$

For the pole at $t=0$ let b be the coefficient of $\frac{1}{t^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving t^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{0} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $t^{v}=t^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 t}+\frac{1}{2 t^{2}}+\frac{1}{2 t^{3}}+\frac{1}{4 t^{4}}-\frac{1}{4 t^{5}}-\frac{3}{4 t^{6}}-\frac{3}{4 t^{7}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} t^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $t^{v-1}=t^{-1}=\frac{1}{t}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{t}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{t}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{t}$ in r will be the coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{t^{2}-2 t+3}{4 t^{2}} \\
& =Q+\frac{R}{4 t^{2}} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 t+3}{4 t^{2}}\right) \\
& =\frac{1}{4}+\frac{-2 t+3}{4 t^{2}}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term t in the remainder R is -2 . Dividing this by leading coefficient in t which is 4 gives $-\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{t^{2}-2 t+3}{4 t^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 t}+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{1}{2 t} \\
& =\frac{-1+t}{2 t}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2}-\frac{1}{2 t}\right)(0)+\left(\left(\frac{1}{2 t^{2}}\right)+\left(\frac{1}{2}-\frac{1}{2 t}\right)^{2}-\left(\frac{t^{2}-2 t+3}{4 t^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(\frac{1}{2}-\frac{1}{2 t}\right) d t} \\
& =\frac{\mathrm{e}^{\frac{t}{2}}}{\sqrt{t}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t-1}{t} d t} \\
& =z_{1} e^{\frac{t}{2}+\frac{\ln (t)}{2}} \\
& =z_{1}\left(\sqrt{t} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-t-1}{t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t+\ln (t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-\mathrm{e}^{-t}(t+1)\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(-\mathrm{e}^{-t}(t+1)\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
t y^{\prime \prime}+(-t-1) y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}+(-t-1) c_{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=-t-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t-1 \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}(-t-1)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t-1 \\
\mathrm{e}^{t} & -1
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)(-1)-(-t-1)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{(-t-1) \mathrm{e}^{2 t} t^{2}}{t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{1}=-\int-\mathrm{e}^{t}(t+1) d t
$$

Hence

$$
u_{1}=t \mathrm{e}^{t}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{t} \mathrm{e}^{2 t} t^{2}}{t^{2} \mathrm{e}^{t}} d t
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{2 t} d t
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{2 t}}{2}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=\frac{(-t-1) \mathrm{e}^{2 t}}{2}+\mathrm{e}^{2 t} t
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+(-t-1) c_{2}\right)+\left(\frac{\mathrm{e}^{2 t}(-1+t)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t}-c_{2}(t+1)+\frac{\mathrm{e}^{2 t}(-1+t)}{2}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(t*diff(y(t),t$2)-(1+t)*diff(y(t),t)+y(t) = t^2*exp(2*t),y(t), singsol=all)
```

$$
y(t)=(t+1) c_{2}+\mathrm{e}^{t} c_{1}+\frac{(t-1) \mathrm{e}^{2 t}}{2}
$$

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 31

```
DSolve[t*y''[t]-(1+t)*y'[t]+y[t] ==t^2*Exp[2*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{2} e^{2 t}(t-1)+c_{1} e^{t}-c_{2}(t+1)
$$

10.22 problem 32

10.22.1 Solving as second order change of variable on y method 2 ode . 3018
10.22.2 Solving as second order ode non constant coeff transformation on B ode
10.22.3 Solving using Kovacic algorithm 3028

Internal problem ID [704]
Internal file name [OUTPUT/704_Sunday_June_05_2022_01_47_21_AM_33934857/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, section 3.6, Variation of Parameters. page 190
Problem number: 32 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(-1+t) \mathrm{e}^{-t}
$$

10.22.1 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1-t, B=t, C=-1, f(t)=2(-1+t) \mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. Solving for y_{h} from

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=0
$$

In normal form the ode

$$
\begin{equation*}
(1-t) y^{\prime \prime}+t y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(t)=-\frac{t}{-1+t} \\
& q(t)=\frac{1}{-1+t}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(t) t^{n}$ to (2) gives the following ode where the dependent variables is $v(t)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(t)+\left(\frac{2 n}{t}+p\right) v^{\prime}(t)+\left(\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q\right) v(t)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(t)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}+\frac{n p}{t}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(t)$ and $q(t)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{t^{2}}-\frac{n}{-1+t}+\frac{1}{-1+t}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) v^{\prime}(t)=0 \\
& v^{\prime \prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) v^{\prime}(t)=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(t)=v^{\prime}(t)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(t)+\left(\frac{2}{t}-\frac{t}{-1+t}\right) u(t)=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(t)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-2 t+2\right)}{t(-1+t)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-2 t+2}{t(-1+t)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\ln (u) & =t-2 \ln (t)+\ln (-1+t)+c_{1} \\
u & =\mathrm{e}^{t-2 \ln (t)+\ln (-1+t)+c_{1}} \\
& =c_{1} \mathrm{e}^{t-2 \ln (t)+\ln (-1+t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
$$

Now that $u(t)$ is known, then

$$
\begin{aligned}
v^{\prime}(t) & =u(t) \\
v(t) & =\int u(t) d t+c_{2} \\
& =\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(t) t^{n} \\
& =\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t \\
& =c_{1} \mathrm{e}^{t}+c_{2} t
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=2(-1+t) \mathrm{e}^{-t}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{t}(-1+t) \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2 \mathrm{e}^{-t}}{-1+t} d t
$$

Hence

$$
u_{1}=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{-t} t(-1+t)}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-\frac{2 t \mathrm{e}^{-2 t}}{-1+t} d t
$$

Hence

$$
u_{2}=\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \text { Integral }_{1}(2 t-2)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+\left(\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \text { Integral }_{1}(2 t-2)\right) \mathrm{e}^{t}
$$

Which simplifies to

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \text { Integral }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t\right)+\left(-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}\right) \\
& =-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \text { Integral }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}+\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) t
\end{aligned}
$$

Which simplifies to

$$
y=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
y=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}(1)
$$

Verification of solutions

$$
y=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2{\exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}, ~}_{\text {a }}
$$

Verified OK.

10.22.2 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(t)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=1-t \\
& B=t \\
& C=-1 \\
& F=2(-1+t) \mathrm{e}^{-t}
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(1-t)(0)+(t)(1)+(-1)(t) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
-t(-1+t) v^{\prime \prime}+\left(t^{2}-2 t+2\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
\left(-t^{2}+t\right) u^{\prime}(t)+\left(t^{2}-2 t+2\right) u(t)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-2 t+2\right)}{t(-1+t)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-2 t+2}{t(-1+t)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-2 t+2}{t(-1+t)} d t \\
\ln (u) & =t-2 \ln (t)+\ln (-1+t)+c_{1} \\
u & =\mathrm{e}^{t-2 \ln (t)+\ln (-1+t)+c_{1}} \\
& =c_{1} \mathrm{e}^{t-2 \ln (t)+\ln (-1+t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(-\frac{\mathrm{e}^{t}}{t^{2}}+\frac{\mathrm{e}^{t}}{t}\right)
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(t) & =\int \frac{c_{1} \mathrm{e}^{t}(-1+t)}{t^{2}} \mathrm{~d} t \\
& =\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t) & =B v \\
& =(t)\left(\frac{\mathrm{e}^{t} c_{1}}{t}+c_{2}\right) \\
& =c_{1} \mathrm{e}^{t}+c_{2} t
\end{aligned}
$$

And now the particular solution $y_{p}(t)$ will be found. The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=t \\
& y_{2}=\mathrm{e}^{t}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
\frac{d}{d t}(t) & \frac{d}{d t}\left(\mathrm{e}^{t}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
t & \mathrm{e}^{t} \\
1 & \mathrm{e}^{t}
\end{array}\right|
$$

Therefore

$$
W=(t)\left(\mathrm{e}^{t}\right)-\left(\mathrm{e}^{t}\right)(1)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \mathrm{e}^{t}(-1+t) \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int-\frac{2 \mathrm{e}^{-t}}{-1+t} d t
$$

Hence

$$
u_{1}=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{-t} t(-1+t)}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-\frac{2 t \mathrm{e}^{-2 t}}{-1+t} d t
$$

Hence

$$
u_{2}=\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \operatorname{Integral}_{1}(2 t-2)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+\left(\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \operatorname{Integral}_{1}(2 t-2)\right) \mathrm{e}^{t}
$$

Which simplifies to

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \text { Integral }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}
$$

Hence the complete solution is

$$
\begin{aligned}
y(t) & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+c_{2} t\right)+\left(-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}\right) \\
& =-2 \mathrm{e}^{-1} \operatorname{expIntegral}_{1}(-1+t) t+2 \operatorname{expIntegral}_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \text { Integral }_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}(1)
$$

Verification of solutions

$$
y=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+c_{1} \mathrm{e}^{t}+c_{2} t+\mathrm{e}^{-t}
$$

Verified OK.

10.22.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
(1-t) y^{\prime \prime}+t y^{\prime}-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1-t \\
& B=t \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{t^{2}-4 t+6}{4(-1+t)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=t^{2}-4 t+6 \\
& t=4(-1+t)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\left(\frac{t^{2}-4 t+6}{4(-1+t)^{2}}\right) z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 507: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(-1+t)^{2}$. There is a pole at $t=1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore

$$
L=[1,2]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{1}{4}-\frac{1}{2(-1+t)}+\frac{3}{4(-1+t)^{2}}
$$

For the pole at $t=1$ let b be the coefficient of $\frac{1}{(-1+t)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is $O_{r}(\infty)=0$ then

$$
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
$$

$[\sqrt{r}]_{\infty}$ is the sum of terms involving t^{i} for $0 \leq i \leq v$ in the Laurent series for \sqrt{r} at ∞. Therefore

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} t^{i} \\
& =\sum_{i=0}^{0} a_{i} t^{i} \tag{8}
\end{align*}
$$

Let a be the coefficient of $t^{v}=t^{0}$ in the above sum. The Laurent series of \sqrt{r} at ∞ is

$$
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 t}+\frac{1}{t^{3}}+\frac{11}{4 t^{4}}+\frac{21}{4 t^{5}}+\frac{15}{2 t^{6}}+\frac{6}{t^{7}}-\frac{117}{16 t^{8}}+\ldots \tag{9}
\end{equation*}
$$

Comparing Eq. (9) with Eq. (8) shows that

$$
a=\frac{1}{2}
$$

From Eq. (9) the sum up to $v=0$ gives

$$
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} t^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
$$

Now we need to find b, where b be the coefficient of $t^{v-1}=t^{-1}=\frac{1}{t}$ in r minus the coefficient of same term but in $\left([\sqrt{r}]_{\infty}\right)^{2}$ where $[\sqrt{r}]_{\infty}$ was found above in Eq (10). Hence

$$
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
$$

This shows that the coefficient of $\frac{1}{t}$ in the above is 0 . Now we need to find the coefficient of $\frac{1}{t}$ in r. How this is done depends on if $v=0$ or not. Since $v=0$ then starting from $r=\frac{s}{t}$ and doing long division in the form

$$
r=Q+\frac{R}{t}
$$

Where Q is the quotient and R is the remainder. Then the coefficient of $\frac{1}{t}$ in r will be the coefficient in R of the term in t of degree of t minus one, divided by the leading coefficient in t. Doing long division gives

$$
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{t^{2}-4 t+6}{4 t^{2}-8 t+4} \\
& =Q+\frac{R}{4 t^{2}-8 t+4} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 t+5}{4 t^{2}-8 t+4}\right) \\
& =\frac{1}{4}+\frac{-2 t+5}{4 t^{2}-8 t+4}
\end{aligned}
$$

Since the degree of t is 2 , then we see that the coefficient of the term t in the remainder R is -2 . Dividing this by leading coefficient in t which is 4 gives $-\frac{1}{2}$. Now b can be found.

$$
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{t^{2}-4 t+6}{4(-1+t)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
1	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{+}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{t-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

Substituting the above values in the above results in

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{t-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(-1+t)}+\left(\frac{1}{2}\right) \\
& =-\frac{1}{2(-1+t)}+\frac{1}{2} \\
& =\frac{t-2}{2 t-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(t)$ of degree $d=0$ to solve the ode. The polynomial $p(t)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(t)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2(-1+t)^{2}}\right)+\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right)^{2}-\left(\frac{t^{2}-4 t+6}{4(-1+t)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(t) & =p e^{\int \omega d t} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(-1+t)}+\frac{1}{2}\right) d t} \\
& =\frac{\mathrm{e}^{\frac{t}{2}}}{\sqrt{-1+t}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{t}{1-t} d t} \\
& =z_{1} e^{\frac{t}{2}+\frac{\ln (-1+t)}{2}} \\
& =z_{1}\left(\sqrt{-1+t} \mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{t}{1-t} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t+\ln (-1+t)}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(-t \mathrm{e}^{-t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(-t \mathrm{e}^{-t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
(1-t) y^{\prime \prime}+t y^{\prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}-c_{2} t
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=-t
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}(-t)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & -t \\
\mathrm{e}^{t} & -1
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)(-1)-(-t)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=t \mathrm{e}^{t}-\mathrm{e}^{t}
$$

Which simplifies to

$$
W=\mathrm{e}^{t}(-1+t)
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-2 \mathrm{e}^{-t} t(-1+t)}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{2 t \mathrm{e}^{-2 t}}{-1+t} d t
$$

Hence

$$
u_{1}=\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \text { Integral }_{1}(2 t-2)
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{2 \mathrm{e}^{t}(-1+t) \mathrm{e}^{-t}}{(1-t) \mathrm{e}^{t}(-1+t)} d t
$$

Which simplifies to

$$
u_{2}=\int-\frac{2 \mathrm{e}^{-t}}{-1+t} d t
$$

Hence

$$
u_{2}=2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+\left(\mathrm{e}^{-2 t}+2 \mathrm{e}^{-2} \exp \operatorname{Integral}_{1}(2 t-2)\right) \mathrm{e}^{t}
$$

Which simplifies to

$$
y_{p}(t)=-2 \mathrm{e}^{-1} \exp \text { Integral }_{1}(-1+t) t+2 \exp \text { Integral }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}-c_{2} t\right)+\left(-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \operatorname{expIntegral}_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=c_{1} \mathrm{e}^{t}-c_{2} t-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \exp ^{\operatorname{Integral}}{ }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}(1)
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t}-c_{2} t-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(-1+t) t+2 \exp \operatorname{Integral}_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{-t}
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
        A Liouvillian solution exists
        Reducible group (found an exponential solution)
        Reducible group (found another exponential solution)
    <- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 39

```
dsolve((1-t)*diff(y(t),t$2)+t*diff(y(t),t)-y(t) = 2*(t-1)*exp(-t),y(t), singsol=all)
```

$$
y(t)=-2 \mathrm{e}^{-1} \exp \operatorname{Integral}_{1}(t-1) t+2 \exp ^{(n t e g r a l}{ }_{1}(2 t-2) \mathrm{e}^{t-2}+\mathrm{e}^{t} c_{1}+c_{2} t+\mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.187 (sec). Leaf size: 47

```
DSolve[(1-t)*y''[t]+t*y'[t]-y[t] ==2*(t-1)*Exp[-t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow-2 e^{t-2} \operatorname{ExpIntegralEi}(2-2 t)+\frac{2 t \operatorname{ExpIntegralEi}(1-t)}{e}+e^{-t}+c_{1} e^{t}-c_{2} t
$$

11 Chapter 3, Second order linear equations, 3.7 Mechanical and Electrical Vibrations. page 203

$$
11.1 \text { problem } 28 \text {. } 3039
$$

11.2 problem 29 3049

11.1 problem 28

11.1.1 Solving as second order linear constant coeff ode 3039
11.1.2 Solving as second order ode can be made integrable ode 3041
11.1.3 Solving using Kovacic algorithm 3043
11.1.4 Maple step by step solution . 3047

Internal problem ID [705]
Internal file name [OUTPUT/705_Sunday_June_05_2022_01_47_23_AM_80288768/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Mechanical and Electrical Vibrations. page 203
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
u^{\prime \prime}+2 u=0
$$

11.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $u=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
u=e^{0}\left(c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t)\right)
$$

Or

$$
u=c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t) \tag{1}
\end{equation*}
$$

Figure 491: Slope field plot

Verification of solutions

$$
u=c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t)
$$

Verified OK.

11.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by u^{\prime} gives

$$
u^{\prime} u^{\prime \prime}+2 u^{\prime} u=0
$$

Integrating the above w.r.t t gives

$$
\begin{gathered}
\int\left(u^{\prime} u^{\prime \prime}+2 u^{\prime} u\right) d t=0 \\
\frac{u^{\prime 2}}{2}+u^{2}=c_{2}
\end{gathered}
$$

Which is now solved for u. Solving the given ode for u^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& u^{\prime}=\sqrt{-2 u^{2}+2 c_{1}} \tag{1}\\
& u^{\prime}=-\sqrt{-2 u^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-2 u^{2}+2 c_{1}}} d u & =\int d t \\
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2} & =t+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-2 u^{2}+2 c_{1}}} d u & =\int d t \\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2} & =t+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2} & =t+c_{2} \tag{1}\\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2} & =t+c_{3} \tag{2}
\end{align*}
$$

Figure 492: Slope field plot

Verification of solutions

$$
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2}=t+c_{2}
$$

Verified OK.

$$
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{\sqrt{-2 u^{2}+2 c_{1}}}\right)}{2}=t+c_{3}
$$

Verified OK.

11.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}+2 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=u e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-2 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then u is found using the inverse transformation

$$
u=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 508: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{2} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in u is found from

$$
u_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
u_{1} & =z_{1} \\
& =\cos (\sqrt{2} t)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\cos (\sqrt{2} t)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{u_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{1}{u_{1}^{2}} d t \\
& =\cos (\sqrt{2} t) \int \frac{1}{\cos (\sqrt{2} t)^{2}} d t \\
& =\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}(\cos (\sqrt{2} t))+c_{2}\left(\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=c_{1} \cos (\sqrt{2} t)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2} \tag{1}
\end{equation*}
$$

Figure 493: Slope field plot

Verification of solutions

$$
u=c_{1} \cos (\sqrt{2} t)+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}
$$

Verified OK.

11.1.4 Maple step by step solution

Let's solve

$$
u^{\prime \prime}+2 u=0
$$

- Highest derivative means the order of the ODE is 2
$u^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-8})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the ODE

$$
u_{1}(t)=\cos (\sqrt{2} t)
$$

- 2 nd solution of the ODE

$$
u_{2}(t)=\sin (\sqrt{2} t)
$$

- General solution of the ODE

$$
u=c_{1} u_{1}(t)+c_{2} u_{2}(t)
$$

- Substitute in solutions

$$
u=c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(u(t),t$2)+2*u(t) = 0,u(t), singsol=all)
```

$$
u(t)=c_{1} \sin (t \sqrt{2})+c_{2} \cos (t \sqrt{2})
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 28

```
DSolve[u''[t]+2*u[t] ==0,u[t],t,IncludeSingularSolutions -> True]
```

$$
u(t) \rightarrow c_{1} \cos (\sqrt{2} t)+c_{2} \sin (\sqrt{2} t)
$$

11.2 problem 29

11.2.1 Existence and uniqueness analysis 3049
11.2.2 Solving as second order linear constant coeff ode 3050
11.2.3 Solving using Kovacic algorithm 3053
11.2.4 Maple step by step solution . 3057

Internal problem ID [706]
Internal file name [OUTPUT/706_Sunday_June_05_2022_01_47_24_AM_3139852/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Mechanical and Electrical Vibrations. page 203
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
u^{\prime \prime}+\frac{u^{\prime}}{4}+2 u=0
$$

With initial conditions

$$
\left[u(0)=0, u^{\prime}(0)=2\right]
$$

11.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{4} \\
q(t) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}+\frac{u^{\prime}}{4}+2 u=0
$$

The domain of $p(t)=\frac{1}{4}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

11.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0
$$

Where in the above $A=1, B=\frac{1}{4}, C=2$. Let the solution be $u=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\frac{\lambda \mathrm{e}^{\lambda t}}{4}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\frac{1}{4} \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=\frac{1}{4}, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-\frac{1}{4}}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{\frac{1}{4}^{2}-(4)(1)(2)} \\
& =-\frac{1}{8} \pm \frac{i \sqrt{127}}{8}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{8}+\frac{i \sqrt{127}}{8} \\
& \lambda_{2}=-\frac{1}{8}-\frac{i \sqrt{127}}{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{8}+\frac{i \sqrt{127}}{8} \\
& \lambda_{2}=-\frac{1}{8}-\frac{i \sqrt{127}}{8}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{8}$ and $\beta=\frac{\sqrt{127}}{8}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
u=e^{-\frac{t}{8}}\left(c_{1} \cos \left(\frac{\sqrt{127} t}{8}\right)+c_{2} \sin \left(\frac{\sqrt{127} t}{8}\right)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{-\frac{t}{8}}\left(c_{1} \cos \left(\frac{\sqrt{127} t}{8}\right)+c_{2} \sin \left(\frac{\sqrt{127} t}{8}\right)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$u^{\prime}=-\frac{\mathrm{e}^{-\frac{t}{8}}\left(c_{1} \cos \left(\frac{\sqrt{127} t}{8}\right)+c_{2} \sin \left(\frac{\sqrt{127} t}{8}\right)\right)}{8}+\mathrm{e}^{-\frac{t}{8}}\left(-\frac{c_{1} \sqrt{127} \sin \left(\frac{\sqrt{127} t}{8}\right)}{8}+\frac{c_{2} \sqrt{127} \cos \left(\frac{\sqrt{127} t}{8}\right)}{8}\right)$
substituting $u^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-\frac{c_{1}}{8}+\frac{\sqrt{127} c_{2}}{8} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{16 \sqrt{127}}{127}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}
$$

Verified OK.

11.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}+\frac{u^{\prime}}{4}+2 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =\frac{1}{4} \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=u e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-127}{64} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-127 \\
& t=64
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{127 z(t)}{64} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then u is found using the inverse transformation

$$
u=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 510: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{127}{64}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{127} t}{8}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\frac{1}{2} \frac{1}{4} d t} \\
& =z_{1} e^{-\frac{t}{8}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{8}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{u_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{1}{4}} d t}{\left(u_{1}\right)^{2}} d t \\
& =u_{1} \int \frac{e^{-\frac{t}{4}}}{\left(u_{1}\right)^{2}} d t \\
& =u_{1}\left(\frac{8 \sqrt{127} \tan \left(\frac{\sqrt{127} t}{8}\right)}{127}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)\left(\frac{8 \sqrt{127} \tan \left(\frac{\sqrt{127} t}{8}\right)}{127}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
u=c_{1} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)+\frac{8 c_{2} \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)}{8}-\frac{c_{1} \mathrm{e}^{-\frac{t}{8}} \sqrt{127} \sin \left(\frac{\sqrt{127} t}{8}\right)}{8}-\frac{c_{2} \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}+c_{2} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)$
substituting $u^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-\frac{c_{1}}{8}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}
$$

Verified OK.

11.2.4 Maple step by step solution

Let's solve
$\left[u^{\prime \prime}+\frac{u^{\prime}}{4}+2 u=0, u(0)=0,\left.u^{\prime}\right|_{\{t=0\}}=2\right]$

- Highest derivative means the order of the ODE is 2
$u^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+\frac{1}{4} r+2=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{1}{4}\right) \pm\left(\sqrt{-\frac{127}{16}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{8}-\frac{\mathrm{I} \sqrt{127}}{8},-\frac{1}{8}+\frac{\mathrm{I} \sqrt{127}}{8}\right)$
- 1st solution of the ODE

$$
u_{1}(t)=\mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)
$$

- $\quad 2$ nd solution of the ODE
$u_{2}(t)=\mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)$
- General solution of the ODE
$u=c_{1} u_{1}(t)+c_{2} u_{2}(t)$
- \quad Substitute in solutions
$u=c_{1} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)+c_{2} \sin \left(\frac{\sqrt{127} t}{8}\right) \mathrm{e}^{-\frac{t}{8}}$
Check validity of solution $u=c_{1} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)+c_{2} \sin \left(\frac{\sqrt{127} t}{8}\right) \mathrm{e}^{-\frac{t}{8}}$
- Use initial condition $u(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{8}} \cos \left(\frac{\sqrt{127} t}{8}\right)}{8}-\frac{c_{1} \mathrm{e}^{-\frac{t}{8} \sqrt{127} \sin \left(\frac{\sqrt{127} t}{8}\right)}}{8}+\frac{c_{2} \sqrt{127} \cos \left(\frac{\sqrt{127} t}{8}\right) \mathrm{e}^{-\frac{t}{8}}}{8}-\frac{c_{2} \sin \left(\frac{\sqrt{187} t}{8}\right) \mathrm{e}^{-\frac{t}{8}}}{8}$
- Use the initial condition $\left.u^{\prime}\right|_{\{t=0\}}=2$
$2=-\frac{c_{1}}{8}+\frac{\sqrt{127} c_{2}}{8}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=\frac{16 \sqrt{127}}{127}\right\}$
- Substitute constant values into general solution and simplify
$u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{187} t}{8}\right)}{127}$
- \quad Solution to the IVP
$u=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve([diff(u(t),t$2)+1/4*diff (u(t),t)+2*u(t) = 0,u(0) = 0, D(u)(0) = 2],u(t), singsol=all)
```

$$
u(t)=\frac{16 \sqrt{127} \mathrm{e}^{-\frac{t}{8}} \sin \left(\frac{\sqrt{127} t}{8}\right)}{127}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 30
DSolve $\left[\left\{u^{\prime}{ }^{\prime}[t]+1 / 4 * u^{\prime}[t]+2 * u[t]==0,\left\{u[0]==0, u^{\prime}[0]==2\right\}\right\}, u[t], t\right.$, IncludeSingularSolutions $->$ I

$$
u(t) \rightarrow \frac{16 e^{-t / 8} \sin \left(\frac{\sqrt{127} t}{8}\right)}{\sqrt{127}}
$$

12 Chapter 3, Second order linear equations, 3.7Forced Vibrations. page 217
12.1 problem 21 3061
12.2 problem 22 3076
12.3 problem 23 3091
12.4 problem 24 3106

12.1 problem 21

12.1.1 Existence and uniqueness analysis 3061
12.1.2 Solving as second order linear constant coeff ode 3062
12.1.3 Solving using Kovacic algorithm 3067
12.1.4 Maple step by step solution . 3073

Internal problem ID [707]
Internal file name [OUTPUT/707_Sunday_June_05_2022_01_47_25_AM_44410193/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Forced Vibrations. page 217
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos \left(\frac{t}{4}\right)
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=0\right]
$$

12.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{8} \\
q(t) & =4 \\
F & =3 \cos \left(\frac{t}{4}\right)
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos \left(\frac{t}{4}\right)
$$

The domain of $p(t)=\frac{1}{8}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=3 \cos \left(\frac{t}{4}\right)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.1.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)
$$

Where $A=1, B=\frac{1}{8}, C=4, f(t)=3 \cos \left(\frac{t}{4}\right)$. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the non-homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0
$$

Where in the above $A=1, B=\frac{1}{8}, C=4$. Let the solution be $u=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\frac{\lambda \mathrm{e}^{\lambda t}}{8}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\frac{1}{8} \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=\frac{1}{8}, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-\frac{1}{8}}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{\frac{1}{8}^{2}-(4)(1)(4)} \\
& =-\frac{1}{16} \pm \frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{16}$ and $\beta=\frac{\sqrt{1023}}{16}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
u=e^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

Therefore the homogeneous solution u_{h} is

$$
u_{h}=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos \left(\frac{t}{4}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos \left(\frac{t}{4}\right), \sin \left(\frac{t}{4}\right)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos \left(\frac{t}{4}\right)+A_{2} \sin \left(\frac{t}{4}\right)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{63 A_{1} \cos \left(\frac{t}{4}\right)}{16}+\frac{63 A_{2} \sin \left(\frac{t}{4}\right)}{16}-\frac{A_{1} \sin \left(\frac{t}{4}\right)}{32}+\frac{A_{2} \cos \left(\frac{t}{4}\right)}{32}=3 \cos \left(\frac{t}{4}\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{12096}{15877}, A_{2}=\frac{96}{15877}\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
$$

Therefore the general solution is

$$
\begin{aligned}
u & =u_{h}+u_{p} \\
& =\left(\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)\right)+\left(\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{12096}{15877} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=-\frac{\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)}{16}+\mathrm{e}^{-\frac{t}{16}}\left(-\frac{c_{1} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}\right.
$$

substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+\frac{24}{15877} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{19658}{15877} \\
& c_{2}=\frac{19274 \sqrt{1023}}{16242171}
\end{aligned}
$$

Substituting these values back in above solution results in
$u=\frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$

Summary
The solution(s) found are the following

$$
\begin{aligned}
u= & \frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171} \\
& +\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
\end{aligned}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
u= & \frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171} \\
& +\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
\end{aligned}
$$

Verified OK.

12.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =\frac{1}{8} \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=u e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1023}{256} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1023 \\
& t=256
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{1023 z(t)}{256} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then u is found using the inverse transformation

$$
u=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 512: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1023}{256}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t} \\
& =z_{1} e^{-\frac{t}{16}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{16}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{u_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{1}{8}} d t}{\left(u_{1}\right)^{2}} d t \\
& =u_{1} \int \frac{e^{-\frac{t}{8}}}{\left(u_{1}\right)^{2}} d t \\
& =u_{1}\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the nonhomogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
u_{h}=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos \left(\frac{t}{4}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos \left(\frac{t}{4}\right), \sin \left(\frac{t}{4}\right)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \frac{16 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos \left(\frac{t}{4}\right)+A_{2} \sin \left(\frac{t}{4}\right)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{63 A_{1} \cos \left(\frac{t}{4}\right)}{16}+\frac{63 A_{2} \sin \left(\frac{t}{4}\right)}{16}-\frac{A_{1} \sin \left(\frac{t}{4}\right)}{32}+\frac{A_{2} \cos \left(\frac{t}{4}\right)}{32}=3 \cos \left(\frac{t}{4}\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{12096}{15877}, A_{2}=\frac{96}{15877}\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
$$

Therefore the general solution is

$$
\begin{aligned}
u= & u_{h}+u_{p} \\
= & \left(c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right) \\
& +\left(\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{12096}{15877} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+c_{2} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{10}}{1}\right.$
substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{24}{15877}+c_{2}-\frac{c_{1}}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{19658}{15877} \\
& c_{2}=\frac{9637}{127016}
\end{aligned}
$$

Substituting these values back in above solution results in
$u=\frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$
Summary
The solution(s) found are the following

$$
\begin{aligned}
u= & \frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171} \\
& +\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
\end{aligned}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
\begin{aligned}
u= & \frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171} \\
& +\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
\end{aligned}
$$

Verified OK.

12.1.4 Maple step by step solution

Let's solve

$$
\left[u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos \left(\frac{t}{4}\right), u(0)=2,\left.u^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$u^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+\frac{1}{8} r+4=0$
- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{1}{8}\right) \pm\left(\sqrt{-\frac{1023}{64}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{16}-\frac{\mathrm{I} \sqrt{1023}}{16},-\frac{1}{16}+\frac{\mathrm{I} \sqrt{1023}}{16}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$u_{1}(t)=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)$
- \quad 2nd solution of the homogeneous ODE
$u_{2}(t)=\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)$
- General solution of the ODE
$u=c_{1} u_{1}(t)+c_{2} u_{2}(t)+u_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+u_{p}(t)$
Find a particular solution $u_{p}(t)$ of the ODE
- Use variation of parameters to find u_{p} here $f(t)$ is the forcing function

$$
\left[u_{p}(t)=-u_{1}(t)\left(\int \frac{u_{2}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right)+u_{2}(t)\left(\int \frac{u_{1}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right), f(t)=3 \cos \left(\frac{t}{4}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(u_{1}(t), u_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) & \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \\
-\frac{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16} & -\frac{\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{\mathrm{e}^{-\frac{t}{16} \sqrt{1023} \cos \left(\frac{\sqrt{10}}{1}\right.}}{16}
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(u_{1}(t), u_{2}(t)\right)=\frac{\sqrt{1023} \mathrm{e}^{-\frac{t}{8}}}{16}
$$

- Substitute functions into equation for $u_{p}(t)$

$$
u_{p}(t)=-\frac{16 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023}\left(\cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos \left(\frac{t}{4}\right) \mathrm{e}^{\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) d t\right)-\sin \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos \left(\frac{t}{4}\right) \mathrm{e}^{\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) d t\right)\right)}{341}
$$

- Compute integrals

$$
u_{p}(t)=\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}
$$

- Substitute particular solution into general solution to ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$
Check validity of solution $u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$
- Use initial condition $u(0)=2$
$2=c_{1}+\frac{12096}{15877}$
- Compute derivative of the solution

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}}{16}-\frac{\mathrm{e}^{-\frac{t}{16} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)}}{16}+\frac{\mathrm{e}^{-\frac{t}{16}} c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{3024}{15}
$$

- Use the initial condition $\left.u^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+\frac{24}{15877}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{19658}{15877}, c_{2}=\frac{19274 \sqrt{1023}}{16242171}\right\}$
- Substitute constant values into general solution and simplify
$u=\frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$
- \quad Solution to the IVP
$u=\frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{19274 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16242171}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 46

```
dsolve([diff(u(t),t$2)+125/1000*diff(u(t),t)+4*u(t) = 3*\operatorname{cos}(t/4),u(0) = 2, D(u)(0) = 0],u(t)
```

$$
\begin{aligned}
u(t)= & \frac{19274 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16242171} \\
& +\frac{19658 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{15877}+\frac{96 \sin \left(\frac{t}{4}\right)}{15877}+\frac{12096 \cos \left(\frac{t}{4}\right)}{15877}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 71
DSolve $\left[\left\{u^{\prime}{ }^{\prime}[t]+125 / 1000 * u{ }^{\prime}[t]+4 * u[t]==3 * \operatorname{Cos}[t / 4],\left\{u[0]==0, u^{\prime}[0]==0\right\}\right\}, u[t], t\right.$, IncludeSingular
$u(t)$
$\rightarrow \frac{32\left(1023 \sin \left(\frac{t}{4}\right)-130 \sqrt{1023} e^{-t / 16} \sin \left(\frac{\sqrt{1023} t}{16}\right)+128898 \cos \left(\frac{t}{4}\right)-128898 e^{-t / 16} \cos \left(\frac{\sqrt{1023} t}{16}\right)\right)}{5414057}$

12.2 problem 22

12.2.1 Existence and uniqueness analysis 3076
12.2.2 Solving as second order linear constant coeff ode 3077
12.2.3 Solving using Kovacic algorithm 3081
12.2.4 Maple step by step solution . 3087

Internal problem ID [708]
Internal file name [OUTPUT/708_Sunday_June_05_2022_01_47_27_AM_67339897/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Forced Vibrations. page 217
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (2 t)
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=0\right]
$$

12.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{8} \\
q(t) & =4 \\
F & =3 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (2 t)
$$

The domain of $p(t)=\frac{1}{8}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=3 \cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.2.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)
$$

Where $A=1, B=\frac{1}{8}, C=4, f(t)=3 \cos (2 t)$. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the non-homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0
$$

Where in the above $A=1, B=\frac{1}{8}, C=4$. Let the solution be $u=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\frac{\lambda \mathrm{e}^{\lambda t}}{8}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\frac{1}{8} \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=\frac{1}{8}, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-\frac{1}{8}}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{\frac{1}{8}^{2}-(4)(1)(4)} \\
& =-\frac{1}{16} \pm \frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{16}$ and $\beta=\frac{\sqrt{1023}}{16}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
u=e^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

Therefore the homogeneous solution u_{h} is

$$
u_{h}=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-\frac{A_{1} \sin (2 t)}{4}+\frac{A_{2} \cos (2 t)}{4}=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=12\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=12 \sin (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
u & =u_{h}+u_{p} \\
& =\left(\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)\right)+(12 \sin (2 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)+12 \sin (2 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=-\frac{\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)}{16}+\mathrm{e}^{-\frac{t}{16}}\left(-\frac{c_{1} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}\right.
$$

substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+24 \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{382 \sqrt{1023}}{1023}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

Verified OK.

12.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =\frac{1}{8} \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=u e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1023}{256} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1023 \\
& t=256
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{1023 z(t)}{256} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then u is found using the inverse transformation

$$
u=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 514: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1023}{256}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{8} d t} \\
& =z_{1} e^{-\frac{t}{16}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{16}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{u_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{1}{8}} d t}{\left(u_{1}\right)^{2}} d t \\
& =u_{1} \int \frac{e^{-\frac{t}{8}}}{\left(u_{1}\right)^{2}} d t \\
& =u_{1}\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the nonhomogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
u_{h}=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \frac{16 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-\frac{A_{1} \sin (2 t)}{4}+\frac{A_{2} \cos (2 t)}{4}=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=12\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=12 \sin (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
u & =u_{h}+u_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right)+(12 \sin (2 t))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+12 \sin (2 t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives
$u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+c_{2} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{10}}{1}\right.$
substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=24-\frac{c_{1}}{16}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-\frac{191}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

Verified OK.

12.2.4 Maple step by step solution

Let's solve

$$
\left[u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (2 t), u(0)=2,\left.u^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
u^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+\frac{1}{8} r+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{1}{8}\right) \pm\left(\sqrt{-\frac{1023}{64}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{16}-\frac{\mathrm{I} \sqrt{1023}}{16},-\frac{1}{16}+\frac{\mathrm{I} \sqrt{1023}}{16}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$u_{1}(t)=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)$
- $\quad 2 n d$ solution of the homogeneous ODE
$u_{2}(t)=\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)$
- General solution of the ODE
$u=c_{1} u_{1}(t)+c_{2} u_{2}(t)+u_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+u_{p}(t)$
Find a particular solution $u_{p}(t)$ of the ODE
- Use variation of parameters to find u_{p} here $f(t)$ is the forcing function

$$
\left[u_{p}(t)=-u_{1}(t)\left(\int \frac{u_{2}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right)+u_{2}(t)\left(\int \frac{u_{1}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right), f(t)=3 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(u_{1}(t), u_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) & \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \\
-\frac{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16} & -\frac{\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{\mathrm{e}^{-\frac{t}{16} \sqrt{1023} \cos \left(\frac{\sqrt{10} 0}{1}\right.}}{16}
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(u_{1}(t), u_{2}(t)\right)=\frac{\sqrt{1023} \mathrm{e}^{-\frac{t}{8}}}{16}
$$

- Substitute functions into equation for $u_{p}(t)$
$u_{p}(t)=-\frac{16 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023}\left(\cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos (2 t) \frac{t}{\mathrm{e}^{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) d t\right)-\sin \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos (2 t) \mathrm{e}^{\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) d t\right)\right)}{341}$
- Compute integrals
$u_{p}(t)=12 \sin (2 t)$
- Substitute particular solution into general solution to ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)$
Check validity of solution $u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)$
- Use initial condition $u(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}}{16}-\frac{\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{\mathrm{e}^{-\frac{t}{16}} c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}+24 \mathrm{c}
$$

- Use the initial condition $\left.u^{\prime}\right|_{\{t=0\}}=0$

$$
0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+24
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=-\frac{382 \sqrt{1023}}{1023}\right\}
$$

- Substitute constant values into general solution and simplify

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

- \quad Solution to the IVP

$$
u=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 40

```
dsolve([diff(u(t),t$2)+125/1000*diff(u(t),t)+4*u(t) = 3*\operatorname{cos}(2*t),u(0) = 2, D(u)(0) = 0],u(t)
```

$$
u(t)=-\frac{382 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{1023}+2 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+12 \sin (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 39
DSolve[\{u''[t]+125/1000*u'[t]+4*u[t]==3*Cos[2*t],\{u[0]==0,u'[0]==0\}\},u[t],t,IncludeSingular

$$
u(t) \rightarrow 12 \sin (2 t)-128 \sqrt{\frac{3}{341}} e^{-t / 16} \sin \left(\frac{\sqrt{1023} t}{16}\right)
$$

12.3 problem 23

12.3.1 Existence and uniqueness analysis 3091
12.3.2 Solving as second order linear constant coeff ode 3092
12.3.3 Solving using Kovacic algorithm 3096
12.3.4 Maple step by step solution . 3102

Internal problem ID [709]
Internal file name [OUTPUT/709_Sunday_June_05_2022_01_47_29_AM_56108713/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Forced Vibrations. page 217
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (6 t)
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=0\right]
$$

12.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
u^{\prime \prime}+p(t) u^{\prime}+q(t) u=F
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{8} \\
q(t) & =4 \\
F & =3 \cos (6 t)
\end{aligned}
$$

Hence the ode is

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (6 t)
$$

The domain of $p(t)=\frac{1}{8}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=3 \cos (6 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

12.3.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)
$$

Where $A=1, B=\frac{1}{8}, C=4, f(t)=3 \cos (6 t)$. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the non-homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0
$$

Where in the above $A=1, B=\frac{1}{8}, C=4$. Let the solution be $u=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\frac{\lambda \mathrm{e}^{\lambda t}}{8}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\frac{1}{8} \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=\frac{1}{8}, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-\frac{1}{8}}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{\frac{1}{8}^{2}-(4)(1)(4)} \\
& =-\frac{1}{16} \pm \frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{16}+\frac{i \sqrt{1023}}{16} \\
& \lambda_{2}=-\frac{1}{16}-\frac{i \sqrt{1023}}{16}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-\frac{1}{16}$ and $\beta=\frac{\sqrt{1023}}{16}$. Therefore the final solution, when using Euler relation, can be written as

$$
u=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
u=e^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

Therefore the homogeneous solution u_{h} is

$$
u_{h}=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (6 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (6 t), \sin (6 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos (6 t)+A_{2} \sin (6 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-32 A_{1} \cos (6 t)-32 A_{2} \sin (6 t)-\frac{3 A_{1} \sin (6 t)}{4}+\frac{3 A_{2} \cos (6 t)}{4}=3 \cos (6 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1536}{16393}, A_{2}=\frac{36}{16393}\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
$$

Therefore the general solution is

$$
\begin{aligned}
u & =u_{h}+u_{p} \\
& =\left(\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)\right)+\left(-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
u=\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}-\frac{1536}{16393} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=-\frac{\mathrm{e}^{-\frac{t}{16}}\left(c_{1} \cos \left(\frac{\sqrt{1023} t}{16}\right)+c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)\right)}{16}+\mathrm{e}^{-\frac{t}{16}}\left(-\frac{c_{1} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}\right.
$$

substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+\frac{216}{16393} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{34322}{16393} \\
& c_{2}=\frac{2806 \sqrt{1023}}{1524549}
\end{aligned}
$$

Substituting these values back in above solution results in
$u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$

Summary
The solution(s) found are the following

$$
\begin{align*}
u= & \frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549} \tag{1}\\
& -\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions
$u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$
Verified OK.

12.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u & =0 \tag{1}\\
A u^{\prime \prime}+B u^{\prime}+C u & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =\frac{1}{8} \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=u e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1023}{256} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1023 \\
& t=256
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-\frac{1023 z(t)}{256} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then u is found using the inverse transformation

$$
u=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 516: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{1023}{256}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in u is found from

$$
\begin{aligned}
u_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{8}} d t \\
& =z_{1} e^{-\frac{t}{16}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{16}}\right)
\end{aligned}
$$

Which simplifies to

$$
u_{1}=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

The second solution u_{2} to the original ode is found using reduction of order

$$
u_{2}=u_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{u_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
u_{2} & =u_{1} \int \frac{e^{\int-\frac{1}{8}} d t}{\left(u_{1}\right)^{2}} d t \\
& =u_{1} \int \frac{e^{-\frac{t}{8}}}{\left(u_{1}\right)^{2}} d t \\
& =u_{1}\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
u & =c_{1} u_{1}+c_{2} u_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\frac{16 \sqrt{1023} \tan \left(\frac{\sqrt{1023} t}{16}\right)}{1023}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
u=u_{h}+u_{p}
$$

Where u_{h} is the solution to the homogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=0$, and u_{p} is a particular solution to the nonhomogeneous ODE $A u^{\prime \prime}(t)+B u^{\prime}(t)+C u(t)=f(t)$. u_{h} is the solution to

$$
u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
u_{h}=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (6 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (6 t), \sin (6 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right), \frac{16 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
u_{p}=A_{1} \cos (6 t)+A_{2} \sin (6 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution u_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-32 A_{1} \cos (6 t)-32 A_{2} \sin (6 t)-\frac{3 A_{1} \sin (6 t)}{4}+\frac{3 A_{2} \cos (6 t)}{4}=3 \cos (6 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1536}{16393}, A_{2}=\frac{36}{16393}\right]
$$

Substituting the above back in the above trial solution u_{p}, gives the particular solution

$$
u_{p}=-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
$$

Therefore the general solution is

$$
\begin{aligned}
u= & u_{h}+u_{p} \\
= & \left(c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}\right) \\
& +\left(-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\frac{16 c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $u=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}-\frac{1536}{16393} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{2} \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1023}+c_{2} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{10}}{1}\right.
$$

substituting $u^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{216}{16393}+c_{2}-\frac{c_{1}}{16} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{34322}{16393} \\
& c_{2}=\frac{15433}{131144}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
u= & \frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549} \tag{1}\\
& -\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$
Verified OK.

12.3.4 Maple step by step solution

Let's solve

$$
\left[u^{\prime \prime}+\frac{u^{\prime}}{8}+4 u=3 \cos (6 t), u(0)=2,\left.u^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
u^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+\frac{1}{8} r+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{\left(-\frac{1}{8}\right) \pm\left(\sqrt{-\frac{1023}{64}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{16}-\frac{\mathrm{I} \sqrt{1023}}{16},-\frac{1}{16}+\frac{\mathrm{I} \sqrt{1023}}{16}\right)$
- $\quad 1$ st solution of the homogeneous ODE

$$
u_{1}(t)=\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)
$$

- 2nd solution of the homogeneous ODE

$$
u_{2}(t)=\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right)
$$

- General solution of the ODE
$u=c_{1} u_{1}(t)+c_{2} u_{2}(t)+u_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)+u_{p}(t)$
Find a particular solution $u_{p}(t)$ of the ODE
- Use variation of parameters to find u_{p} here $f(t)$ is the forcing function

$$
\left[u_{p}(t)=-u_{1}(t)\left(\int \frac{u_{2}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right)+u_{2}(t)\left(\int \frac{u_{1}(t) f(t)}{W\left(u_{1}(t), u_{2}(t)\right)} d t\right), f(t)=3 \cos (6 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(u_{1}(t), u_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) & \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \\
-\frac{\mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{\mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{16} & -\frac{\left.\mathrm{e}^{-\frac{t}{16} \sin \left(\frac{\sqrt{1023} t}{16}\right.}\right)}{16}+\frac{\mathrm{e}^{-\frac{t}{16} \sqrt{1023} \cos \left(\frac{\sqrt{10}}{1}\right.}}{16}
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(u_{1}(t), u_{2}(t)\right)=\frac{\sqrt{1023} \mathrm{e}^{-\frac{t}{8}}}{16}
$$

- Substitute functions into equation for $u_{p}(t)$
$u_{p}(t)=-\frac{16 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023}\left(\cos \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos (6 t) \frac{t}{16} \sin \left(\frac{\sqrt{1023} t}{16}\right) d t\right)-\sin \left(\frac{\sqrt{1023} t}{16}\right)\left(\int \cos (6 t) \mathrm{e}^{\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right) d t\right)\right)}{341}$
- Compute integrals
$u_{p}(t)=-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$
- Substitute particular solution into general solution to ODE
$u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$
Check validity of solution $u=c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)+\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}$
- Use initial condition $u(0)=2$
$2=c_{1}-\frac{1536}{16393}$
- Compute derivative of the solution

$$
u^{\prime}=-\frac{c_{1} \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16}-\frac{c_{1} \mathrm{e}^{-\frac{t}{16} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}}{16}-\frac{\mathrm{e}^{-\frac{t}{16}} c_{2} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{16}+\frac{\mathrm{e}^{-\frac{t}{16} c_{2} \sqrt{1023} \cos \left(\frac{\sqrt{1023} t}{16}\right)}}{16}+\frac{9216}{16}
$$

- Use the initial condition $\left.u^{\prime}\right|_{\{t=0\}}=0$

$$
0=-\frac{c_{1}}{16}+\frac{\sqrt{1023} c_{2}}{16}+\frac{216}{16393}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{34322}{16393}, c_{2}=\frac{2806 \sqrt{1023}}{1524549}\right\}
$$

- Substitute constant values into general solution and simplify

$$
u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
$$

- \quad Solution to the IVP

$$
u=\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{2806 \mathrm{e}^{-\frac{t}{16}} \sin \left(\frac{\sqrt{1023} t}{16}\right) \sqrt{1023}}{1524549}-\frac{1536 \cos (6 t)}{16393}+\frac{36 \sin (6 t)}{16393}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


Solution by Maple

Time used: 0.031 (sec). Leaf size: 46

```
dsolve([diff(u(t),t$2)+125/1000*\operatorname{diff}(u(t),t)+4*u(t)=3*\operatorname{cos}(6*t),u(0)=2, D(u)(0) = 0],u(t)
```

$$
\begin{aligned}
u(t)= & \frac{2806 \mathrm{e}^{-\frac{t}{16}} \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)}{1524549} \\
& +\frac{34322 \mathrm{e}^{-\frac{t}{16}} \cos \left(\frac{\sqrt{1023} t}{16}\right)}{16393}+\frac{36 \sin (6 t)}{16393}-\frac{1536 \cos (6 t)}{16393}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 74

$$
\begin{aligned}
& \text { DSolve }\left[\left\{u^{\prime} '^{\prime}[t]+125 / 1000 * u u^{\prime}[t]+4 * u[t]==3 * \operatorname{Cos}[6 * t],\left\{u[0]==0, u^{\prime}[0]==0\right\}\right\}, u[t], t,\right. \text { IncludeSingular } \\
& u(t) \rightarrow \\
& \quad-\frac{4 e^{-t / 16}\left(-3069 e^{t / 16} \sin (6 t)+160 \sqrt{1023} \sin \left(\frac{\sqrt{1023} t}{16}\right)+130944 e^{t / 16} \cos (6 t)-130944 \cos \left(\frac{\sqrt{1023} t}{16}\right)\right)}{5590013}
\end{aligned}
$$

12.4 problem 24

Internal problem ID [710]
Internal file name [OUTPUT/710_Sunday_June_05_2022_01_47_31_AM_72098390/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 3, Second order linear equations, 3.7 Forced Vibrations. page 217
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[NONE]
Unable to solve or complete the solution.

$$
u^{\prime \prime}+u^{\prime}+\frac{u^{3}}{5}=\cos (t)
$$

With initial conditions

$$
\left[u(0)=2, u^{\prime}(0)=0\right]
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x, y) trying differential order: 2; missing variables
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating --- trying a change of variables $\{x$-> $y(x), y(x)$-> $x\}$ and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integratin trying 2nd order, integrating factors of the form $m u(x, y) /(y)^{\wedge} n$, only the singular cases trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$ trying differential order: 2; exact nonlinear trying 2nd order, integrating factor of the form mu(y) trying 2nd order, integrating factor of the form $m u(x, y)$
trying 2nd order, integrating factor of the form $m u(x, y) /(y)$ n, only the general case
trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
\rightarrow trying 2nd order, the S-function method
-> trying a change of variables $\{x \rightarrow y(x), y(x)$ $->x\}$ and re-entering methods for the S-
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables $\{x$-> $y(x), y(x)$-> $x\}$ and re-entering methods for $d y$
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables $\{x \rightarrow y(x), y(x)$-> $x\}$ and re-entering methods for $d y$
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables $\{x \rightarrow y(x), y(x)$-> $x\}$ and re-entering methods for $d y$
-> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form $m u(x, y) /(y) \wedge n$, only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating --- trying a change of variables $\{x \rightarrow y(x), y(x)$-> $x\}$ and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrat
--- Trying Lie symmetry methods, 2nd order ---
,, `-> Computing symmetries using: way \(=3\) , `-> Computing symmetries using: way $=5$
,, `-> Computing symmetries using: wă3 \(10 \overline{\overline{7}}\) formal`

X Solution by Maple
dsolve([diff(u(t),t\$2)+diff(u(t),t)+1/5*u(t)^3=cos(t),u(0)=2,D(u)(0)=0],u(t), singsol

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{u^{\prime}{ }^{\prime}[t]+u^{\prime}[t]+1 / 5 * u[t] \wedge 3==3 * \operatorname{Cos}[t],\left\{u[0]==0, u^{\prime}[0]==0\right\}\right\}, u[t], t\right.$, IncludeSingularSolutio

Not solved
13 Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
13.1 problem 1 3110
13.2 problem 2 3120
13.3 problem 4 3129
13.4 problem 5 3138
13.5 problem 6 3147
13.6 problem 7 3156
13.7 problem 9 3165
13.8 problem 10 3173
13.9 problem 11 3181
13.10problem 12 3190
13.11problem 13 3201
13.12 problem 15 3211
13.13problem 16 3221
13.14problem 17 3231
13.15problem 18 3241
13.16problem 21 3253
13.17 problem 23 3263
13.18problem 24 3273
13.19problem 25 3283
13.20problem 26 3293
13.21problem 27 3305
13.22problem 28 3316

13.1 problem 1

13.1.1 Maple step by step solution

3117
Internal problem ID [711]
Internal file name [OUTPUT/711_Sunday_June_05_2022_01_47_34_AM_92887022/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_ccoeff", "second__order_ode_can__be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime \prime}} y^{\prime \prime} \tag{744}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{745}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y^{\prime}(0) \\
& F_{2}=y(0) \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 502: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

13.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial $r=(-1,1)$
- 1 st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)-y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]-y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{24}+\frac{x^{2}}{2}+1\right)
$$

13.2 problem 2

13.2.1 Maple step by step solution

3127
Internal problem ID [712]
Internal file name [OUTPUT/712_Sunday_June_05_2022_01_47_35_AM_89001034/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{747}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{748}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+y x+2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+5 x\right) y^{\prime}+y\left(x^{2}+3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}+7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+14 x^{3}+33 x\right) y^{\prime}+y\left(x^{4}+12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=2 y^{\prime}(0) \\
& F_{2}=3 y(0) \\
& F_{3}=8 y^{\prime}(0) \\
& F_{4}=15 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\frac{1}{48} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\frac{1}{48} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\frac{1}{48} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

13.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y^{\prime} x+y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime} x-y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation
$(k+1)\left(a_{k+2}(k+2)-a_{k}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}}{k+2}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x),x$2)-x*diff (y (x),x)-y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]-x*y'[x]-y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{15}+\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{x^{4}}{8}+\frac{x^{2}}{2}+1\right)
$$

13.3 problem 4

13.3.1 Maple step by step solution 3136

Internal problem ID [713]
Internal file name [OUTPUT/713_Sunday_June_05_2022_01_47_36_AM_6480672/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
y^{\prime \prime}+k^{2} x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{750}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{751}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-k^{2} x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-k^{2} x\left(2 y+y^{\prime} x\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =k^{2}\left(x^{4} k^{2} y-4 y^{\prime} x-2 y\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\left(x^{4} k^{2}-6\right) y^{\prime}+8 x^{3} k^{2} y\right) k^{2} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left(-12 y^{\prime} x+y\left(x^{4} k^{2}-30\right)\right) k^{4} x^{2}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=-2 k^{2} y(0) \\
& F_{3}=-6 y^{\prime}(0) k^{2} \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{4} k^{2}}{12}\right) y(0)+\left(x-\frac{1}{20} k^{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-k^{2} x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} k^{2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} x^{n+2} k^{2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} k^{2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} k^{2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+a_{n-2} k^{2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-2} k^{2}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
a_{0} k^{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0} k^{2}}{12}
$$

For $n=3$ the recurrence equation gives

$$
a_{1} k^{2}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1} k^{2}}{20}
$$

For $n=4$ the recurrence equation gives

$$
a_{2} k^{2}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
a_{3} k^{2}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{12} a_{0} k^{2} x^{4}-\frac{1}{20} a_{1} k^{2} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{4} k^{2}}{12}\right) a_{0}+\left(x-\frac{1}{20} k^{2} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{4} k^{2}}{12}\right) c_{1}+\left(x-\frac{1}{20} k^{2} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{4} k^{2}}{12}\right) y(0)+\left(x-\frac{1}{20} k^{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{4} k^{2}}{12}\right) c_{1}+\left(x-\frac{1}{20} k^{2} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{4} k^{2}}{12}\right) y(0)+\left(x-\frac{1}{20} k^{2} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{4} k^{2}}{12}\right) c_{1}+\left(x-\frac{1}{20} k^{2} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

13.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-k^{2} x^{2} y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+k^{2} x^{2} y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion
$x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}$
- Shift index using $k->k-2$
$x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+k^{2} a_{k-2}\right) x^{k}\right)=0$
- The coefficients of each power of x must be 0
$\left[2 a_{2}=0,6 a_{3}=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+k^{2} a_{k-2}=0$
- \quad Shift index using $k->k+2$

$$
\left((k+2)^{2}+3 k+8\right) a_{k+4}+k^{2} a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k^{2} a_{k}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
Order:=6;
dsolve(diff (y(x),x$2)+k^2*x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{k^{2} x^{4}}{12}\right) y(0)+\left(x-\frac{1}{20} k^{2} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34
AsymptoticDSolveValue[y' $\left.\quad[\mathrm{x}]+\mathrm{k}^{\wedge} 2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{k^{2} x^{5}}{20}\right)+c_{1}\left(1-\frac{k^{2} x^{4}}{12}\right)
$$

13.4 problem 5

Internal problem ID [714]
Internal file name [OUTPUT/714_Sunday_June_05_2022_01_47_38_AM_69187182/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
(1-x) y^{\prime \prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{753}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{754}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{(x-1) y^{\prime}-y}{(x-1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{(-2 x+2) y^{\prime}+(x+1) y}{(x-1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{2}+4 x-5\right) y^{\prime}+(-4 x-2) y}{(x-1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-6 x^{2}-12 x+18\right) y^{\prime}+y\left(x^{2}+16 x+7\right)}{(x-1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0)-y(0) \\
& F_{2}=-y(0)-2 y^{\prime}(0) \\
& F_{3}=-2 y(0)-5 y^{\prime}(0) \\
& F_{4}=-7 y(0)-18 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}-\frac{7}{720} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}-\frac{1}{40} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(1-x) y^{\prime \prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(1-x)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-(n+1) a_{n+1} n x^{n}\right) \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(-(n+1) a_{n+1} n x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
-(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n+1}+n a_{n+1}-a_{n}}{(n+2)(n+1)} \\
& =-\frac{a_{n}}{(n+2)(n+1)}+\frac{\left(n^{2}+n\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
-2 a_{2}+6 a_{3}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{3}+12 a_{4}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{24}-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{4}+20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{0}}{60}-\frac{a_{1}}{24}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{5}+30 a_{6}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{0}}{720}-\frac{a_{1}}{40}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{6}+42 a_{7}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{11 a_{0}}{1680}-\frac{17 a_{1}}{1008}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}+\left(-\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) x^{3}+\left(-\frac{a_{0}}{24}-\frac{a_{1}}{12}\right) x^{4}+\left(-\frac{a_{0}}{60}-\frac{a_{1}}{24}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes
$y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}\right) a_{1}+O\left(x^{6}\right)$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}-\frac{7}{720} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}-\frac{1}{40} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}(2)\right.
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}-\frac{7}{720} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}-\frac{1}{40} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve((1-x)*diff (y ( }x\mathrm{ ), x$2)+y(x)=0,y(x),type='series', x=0);
y(x)=(1-\frac{1}{2}\mp@subsup{x}{}{2}-\frac{1}{6}\mp@subsup{x}{}{3}-\frac{1}{24}\mp@subsup{x}{}{4}-\frac{1}{60}\mp@subsup{x}{}{5})y(0)+(x-\frac{1}{6}\mp@subsup{x}{}{3}-\frac{1}{12}\mp@subsup{x}{}{4}-\frac{1}{24}\mp@subsup{x}{}{5})D(y)(0)+O(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue[(1-x)*y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{24}-\frac{x^{4}}{12}-\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{x^{5}}{60}-\frac{x^{4}}{24}-\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
$$

13.5 problem 6

Internal problem ID [715]
Internal file name [OUTPUT/715_Sunday_June_05_2022_01_47_39_AM_1741303/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{756}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{757}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y^{\prime} x-4 y}{x^{2}+2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-4 y^{\prime} x^{2}+4 y x-6 y^{\prime}}{\left(x^{2}+2\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{8 x^{3} y^{\prime}+4 x^{2} y+10 y^{\prime} x+32 y}{\left(x^{2}+2\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-12 x^{4}+48 x^{2}+84\right) y^{\prime}+\left(-48 x^{3}-216 x\right) y}{\left(x^{2}+2\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-12 x^{5}-648 x^{3}-828 x\right) y^{\prime}+\left(288 x^{4}+1032 x^{2}-768\right) y}{\left(x^{2}+2\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-\frac{3 y^{\prime}(0)}{2} \\
& F_{2}=4 y(0) \\
& F_{3}=\frac{21 y^{\prime}(0)}{4} \\
& F_{4}=-24 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{30} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
4 a_{2}+4 a_{0}=0
$$

$$
a_{2}=-a_{0}
$$

$n=1$ gives

$$
12 a_{3}+3 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{4}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+2(n+2) a_{n+2}(n+1)-n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-2 n+4\right)}{2(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{6}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}+40 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{160}
$$

For $n=4$ the recurrence equation gives

$$
12 a_{4}+60 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{30}
$$

For $n=5$ the recurrence equation gives

$$
19 a_{5}+84 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{19 a_{1}}{1920}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{4} a_{1} x^{3}+\frac{1}{6} a_{0} x^{4}+\frac{7}{160} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) a_{0}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{30} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{30} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((2+x^2)*diff(y(x),x$2)-x*diff(y(x),x)+4*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-x^{2}+\frac{1}{6} x^{4}\right) y(0)+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40
AsymptoticDSolveValue[(2+x^2)*y' ' $[x]-x * y$ ' $[x]+4 * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{7 x^{5}}{160}-\frac{x^{3}}{4}+x\right)+c_{1}\left(\frac{x^{4}}{6}-x^{2}+1\right)
$$

13.6 problem 7

13.6.1 Maple step by step solution

3163
Internal problem ID [716]
Internal file name [OUTPUT/716_Sunday_June_05_2022_01_47_41_AM_17236857/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{759}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{760}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+2 y x-3 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x^{3} y^{\prime}-2 x^{2} y+7 y^{\prime} x+8 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-12 x^{2}+15\right) y^{\prime}+2\left(x^{3}-9 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+18 x^{3}-57 x\right) y^{\prime}-2 y\left(x^{4}-15 x^{2}+24\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-3 y^{\prime}(0) \\
& F_{2}=8 y(0) \\
& F_{3}=15 y^{\prime}(0) \\
& F_{4}=-48 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-x^{2}+\frac{1}{3} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+7 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{48}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{2} a_{1} x^{3}+\frac{1}{3} a_{0} x^{4}+\frac{1}{8} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) a_{0}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-x^{2}+\frac{1}{3} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-x^{2}+\frac{1}{3} x^{4}-\frac{1}{15} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

13.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x-2 y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x+2 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+2)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation
$(k+2)\left(k a_{k+2}+a_{k}+a_{k+2}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+1}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x),x$2)+x*diff (y (x),x)+2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-x^{2}+\frac{1}{3} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40

AsymptoticDSolveValue $\left[\mathrm{y}^{\prime}\right.$ ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{8}-\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{x^{4}}{3}-x^{2}+1\right)
$$

13.7 problem 9

Internal problem ID [717]
Internal file name [OUTPUT/717_Sunday_June_05_2022_01_47_42_AM_81903652/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+1\right) y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{762}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{763}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{4 y^{\prime} x-6 y}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{6 y^{\prime} x^{2}-12 y x-2 y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =0 \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =0 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =0
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-6 y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=0 \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(-3 x^{2}+1\right) y(0)+\left(-\frac{1}{3} x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}-4 y^{\prime} x+6 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-4\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+6\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+6 a_{0}=0 \\
a_{2}=-3 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-4 n a_{n}+6 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-5 n+6\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
2 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
6 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-3 a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(-3 x^{2}+1\right) a_{0}+\left(-\frac{1}{3} x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(-3 x^{2}+1\right) c_{1}+\left(-\frac{1}{3} x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(-3 x^{2}+1\right) y(0)+\left(-\frac{1}{3} x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(-3 x^{2}+1\right) c_{1}+\left(-\frac{1}{3} x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(-3 x^{2}+1\right) y(0)+\left(-\frac{1}{3} x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(-3 x^{2}+1\right) c_{1}+\left(-\frac{1}{3} x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
Order:=6;
dsolve((1+x^2)*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=y(0)+D(y)(0) x-3 y(0) x^{2}-\frac{D(y)(0) x^{3}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 26

```
AsymptoticDSolveValue[(1+x^2)*y''[x]-4*x*y'[x]+6*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{3}}{3}\right)+c_{1}\left(1-3 x^{2}\right)
$$

13.8 problem 10

Internal problem ID [718]
Internal file name [OUTPUT/718_Sunday_June_05_2022_01_47_43_AM_81935409/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
\left(-x^{2}+4\right) y^{\prime \prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{765}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{766}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{2 y}{x^{2}-4} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{2 y^{\prime} x^{2}-4 y x-8 y^{\prime}}{\left(x^{2}-4\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{8\left(y^{\prime} x^{2}-2 y x-4 y^{\prime}\right) x}{\left(x^{2}-4\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{40\left(x^{2}+\frac{4}{5}\right)\left(-2 y x+\left(x^{2}-4\right) y^{\prime}\right)}{\left(x^{2}-4\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{240\left(x^{2}+\frac{12}{5}\right)\left(-2 y x+\left(x^{2}-4\right) y^{\prime}\right) x}{\left(x^{2}-4\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{y(0)}{2} \\
& F_{1}=-\frac{y^{\prime}(0)}{2} \\
& F_{2}=0 \\
& F_{3}=-\frac{y^{\prime}(0)}{2} \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{2}}{4}\right) y(0)+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+4\right) y^{\prime \prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+4\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
8 a_{2}+2 a_{0}=0 \\
a_{2}=-\frac{a_{0}}{4}
\end{gathered}
$$

$n=1$ gives

$$
24 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{12}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+4(n+2) a_{n+2}(n+1)+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n-2) a_{n}}{4 n+8} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
48 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
-4 a_{3}+80 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{240}
$$

For $n=4$ the recurrence equation gives

$$
-10 a_{4}+120 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
-18 a_{5}+168 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{2240}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{4} a_{0} x^{2}-\frac{1}{12} a_{1} x^{3}-\frac{1}{240} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{2}}{4}\right) a_{0}+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{2}}{4}\right) c_{1}+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{2}}{4}\right) y(0)+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{2}}{4}\right) c_{1}+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{2}}{4}\right) y(0)+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{2}}{4}\right) c_{1}+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 29

```
Order:=6;
dsolve((4-x^2)*diff (y (x),x$2)+2*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1-\frac{x^{2}}{4}\right) y(0)+\left(x-\frac{1}{12} x^{3}-\frac{1}{240} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35
AsymptoticDSolveValue $\left[\left(4-x^{\wedge} 2\right) * y\right.$ ' $\left.'[x]+2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(1-\frac{x^{2}}{4}\right)+c_{2}\left(-\frac{x^{5}}{240}-\frac{x^{3}}{12}+x\right)
$$

13.9 problem 11

Internal problem ID [719]
Internal file name [OUTPUT/719_Sunday_June_05_2022_01_47_44_AM_50694559/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
\left(-x^{2}+3\right) y^{\prime \prime}-3 y^{\prime} x-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{768}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{769}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{3 y^{\prime} x+y}{x^{2}-3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{11 y^{\prime} x^{2}+5 y x+12 y^{\prime}}{\left(x^{2}-3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-50 x^{3} y^{\prime}-26 x^{2} y-165 y^{\prime} x-27 y}{\left(x^{2}-3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(274 x^{4}+1821 x^{2}+576\right) y^{\prime}+\left(154 x^{3}+483 x\right) y}{\left(x^{2}-3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-1764 x^{5}-19656 x^{3}-18711 x\right) y^{\prime}+\left(-1044 x^{4}-6588 x^{2}-2025\right) y}{\left(x^{2}-3\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
F_{0} & =\frac{y(0)}{3} \\
F_{1} & =\frac{4 y^{\prime}(0)}{3} \\
F_{2} & =y(0) \\
F_{3} & =\frac{64 y^{\prime}(0)}{9} \\
F_{4} & =\frac{25 y(0)}{3}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}+\frac{5}{432} x^{6}\right) y(0)+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+3\right) y^{\prime \prime}-3 y^{\prime} x-y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+3\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-3\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-3 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
6 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{6}
\end{gathered}
$$

$n=1$ gives

$$
18 a_{3}-4 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{2 a_{1}}{9}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+3(n+2) a_{n+2}(n+1)-3 n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n+1) a_{n}}{3 n+6} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-9 a_{2}+36 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
-16 a_{3}+60 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{8 a_{1}}{135}
$$

For $n=4$ the recurrence equation gives

$$
-25 a_{4}+90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{5 a_{0}}{432}
$$

For $n=5$ the recurrence equation gives

$$
-36 a_{5}+126 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{16 a_{1}}{945}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{6} a_{0} x^{2}+\frac{2}{9} a_{1} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{8}{135} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y & =\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}+\frac{5}{432} x^{6}\right) y(0)+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
y & =\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}+\frac{5}{432} x^{6}\right) y(0)+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{6} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{2}{9} x^{3}+\frac{8}{135} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 34

```
Order:=6;
dsolve((3-x^2)*diff(y(x),x$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
    y(x)=(1+\frac{1}{6}\mp@subsup{x}{}{2}+\frac{1}{24}\mp@subsup{x}{}{4})y(0)+(x+\frac{2}{9}\mp@subsup{x}{}{3}+\frac{8}{135}\mp@subsup{x}{}{5})D(y)(0)+O(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 70
AsymptoticDSolveValue $\left[\left(3-x^{\wedge} 2\right) * y^{\prime \prime}[x]-3 * y '[x]-y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{13 x^{5}}{1080}+\frac{x^{4}}{36}+\frac{x^{3}}{18}+\frac{x^{2}}{6}+1\right)+c_{2}\left(\frac{49 x^{5}}{1080}+\frac{7 x^{4}}{72}+\frac{2 x^{3}}{9}+\frac{x^{2}}{2}+x\right)
$$

13.10 problem 12

13.10.1 Maple step by step solution 3197

Internal problem ID [720]
Internal file name [OUTPUT/720_Sunday_June_05_2022_01_47_45_AM_90164067/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{771}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{772}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{-y+y^{\prime} x}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{-y+y^{\prime} x}{x-1}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
F_{0} & =y(0) \\
F_{1} & =y(0) \\
F_{2} & =y(0) \\
F_{3} & =y(0) \\
F_{4} & =y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) y(0)+y^{\prime}(0) x+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(1-x)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-(n+1) a_{n+1} n x^{n}\right) \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=1}^{\infty} & \left(-(n+1) a_{n+1} n x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
-(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n+1}-n a_{n}+n a_{n+1}+a_{n}}{(n+2)(n+1)} \\
& =\frac{(-n+1) a_{n}}{(n+2)(n+1)}+\frac{\left(n^{2}+n\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
-2 a_{2}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{3}+12 a_{4}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{4}+20 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{120}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{5}+30 a_{6}+3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{6}+42 a_{7}+4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{0}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) a_{0}+a_{1} x+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+c_{2} x+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) y(0)+y^{\prime}(0) x+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+c_{2} x+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) y(0)+y^{\prime}(0) x+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+c_{2} x+O\left(x^{6}\right)
$$

Verified OK.

13.10.1 Maple step by step solution

Let's solve

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x-1}+\frac{x y^{\prime}}{x-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{y}{x-1}=0$

Check to see if $x_{0}=1$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{x}{x-1}, P_{3}(x)=\frac{1}{x-1}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$

$$
\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1
$$

- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$

$$
\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0
$$

- $\quad x=1$ is a regular singular point

Check to see if $x_{0}=1$ is a regular singular point $x_{0}=1$

- Multiply by denominators
$(x-1) y^{\prime \prime}-y^{\prime} x+y=0$
- Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}$
- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) u^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0 , giving the recursion relation

$$
(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+1+r}
$$

- \quad Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k}}{k+3}$
- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+D(y)(0) x+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41
AsymptoticDSolveValue[(1-x)*y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+1\right)+c_{2} x
$$

13.11 problem 13

13.11.1 Maple step by step solution 3208

Internal problem ID [721]
Internal file name [OUTPUT/721_Sunday_June_05_2022_01_47_46_AM_4048532/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
2 y^{\prime \prime}+y^{\prime} x+3 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{774}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{775}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y^{\prime} x}{2}-\frac{3 y}{2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{y^{\prime} x^{2}}{4}+\frac{3 y x}{4}-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-x^{3}+18 x\right) y^{\prime}}{8}+\frac{\left(-3 x^{2}+30\right) y}{8} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{4}-30 x^{2}+96\right) y^{\prime}}{16}+\frac{3 x y\left(x^{2}-22\right)}{16} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-x^{5}+44 x^{3}-348 x\right) y^{\prime}}{32}-\frac{3 y\left(x^{4}-36 x^{2}+140\right)}{32}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{3 y(0)}{2} \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=\frac{15 y(0)}{4} \\
& F_{3}=6 y^{\prime}(0) \\
& F_{4}=-\frac{105 y(0)}{8}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}-\frac{7}{384} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x}{2}-\frac{3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)}{2} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
4 a_{2}+3 a_{0}=0
$$

$$
a_{2}=-\frac{3 a_{0}}{4}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
2(n+2) a_{n+2}(n+1)+n a_{n}+3 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n+3)}{2(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
12 a_{3}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
24 a_{4}+5 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{5 a_{0}}{32}
$$

For $n=3$ the recurrence equation gives

$$
40 a_{5}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
60 a_{6}+7 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{0}}{384}
$$

For $n=5$ the recurrence equation gives

$$
84 a_{7}+8 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{210}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{3}{4} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{5}{32} a_{0} x^{4}+\frac{1}{20} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}-\frac{7}{384} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}-\frac{7}{384} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

13.11.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-\frac{y^{\prime} x}{2}-\frac{3 y}{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime} x}{2}+\frac{3 y}{2}=0
$$

- Multiply by denominators

$$
2 y^{\prime \prime}+y^{\prime} x+3 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(2 a_{k+2}(k+2)(k+1)+a_{k}(k+3)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(2 k^{2}+6 k+4\right) a_{k+2}+a_{k}(k+3)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}(k+3)}{2\left(k^{2}+3 k+2\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form could result into a too large expression - returning special functi
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(2*diff(y(x),x$2)+x*diff (y(x),x)+3*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{3}{4} x^{2}+\frac{5}{32} x^{4}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[2*y''[x]+x*y'[x]+3*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{20}-\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{5 x^{4}}{32}-\frac{3 x^{2}}{4}+1\right)
$$

13.12 problem 15

13.12.1 Existence and uniqueness analysis 3211
13.12.2 Maple step by step solution . 3219

Internal problem ID [722]
Internal file name [OUTPUT/722_Sunday_June_05_2022_01_47_48_AM_32860525/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 15 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

13.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{777}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{778}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+y x+2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+5 x\right) y^{\prime}+y\left(x^{2}+3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}+7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+14 x^{3}+33 x\right) y^{\prime}+y\left(x^{4}+12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=2$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=2 \\
& F_{1}=2 \\
& F_{2}=6 \\
& F_{3}=8 \\
& F_{4}=30
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x^{2}+x+2+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{15}+\frac{x^{6}}{24}+O\left(x^{6}\right) \\
& y=x^{2}+x+2+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{15}+\frac{x^{6}}{24}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}-a_{0}=0
$$

$$
a_{2}=\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=2+x^{2}+\frac{x^{4}}{4}+x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x^{2}+x+2+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{15}+\frac{x^{6}}{24}+O\left(x^{6}\right) \tag{1}\\
& y=2+x^{2}+\frac{x^{4}}{4}+x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x^{2}+x+2+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\frac{x^{5}}{15}+\frac{x^{6}}{24}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=2+x^{2}+\frac{x^{4}}{4}+x+\frac{x^{3}}{3}+\frac{x^{5}}{15}+O\left(x^{6}\right)
$$

Verified OK.

13.12.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=y^{\prime} x+y, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)-a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}}{k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(0) = 2, D(y)(0) = 1],y(x),type='series',x=0);
```

$$
y(x)=2+x+x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{15} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 30
AsymptoticDSolveValue[\{y' ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==2, \mathrm{y}$ ' $\left.\left.[0]==1\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow \frac{x^{5}}{15}+\frac{x^{4}}{4}+\frac{x^{3}}{3}+x^{2}+x+2
$$

13.13 problem 16

13.13.1 Existence and uniqueness analysis 3221

Internal problem ID [723]
Internal file name [OUTPUT/723_Sunday_June_05_2022_01_47_50_AM_35648494/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=3\right]
$$

With the expansion point for the power series method at $x=0$.

13.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{x}{x^{2}+2} \\
q(x) & =\frac{4}{x^{2}+2} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{x y^{\prime}}{x^{2}+2}+\frac{4 y}{x^{2}+2}=0
$$

The domain of $p(x)=-\frac{x}{x^{2}+2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{4}{x^{2}+2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{780}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{781}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y^{\prime} x-4 y}{x^{2}+2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-4 y^{\prime} x^{2}+4 y x-6 y^{\prime}}{\left(x^{2}+2\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{8 x^{3} y^{\prime}+4 x^{2} y+10 y^{\prime} x+32 y}{\left(x^{2}+2\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-12 x^{4}+48 x^{2}+84\right) y^{\prime}+\left(-48 x^{3}-216 x\right) y}{\left(x^{2}+2\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-12 x^{5}-648 x^{3}-828 x\right) y^{\prime}+\left(288 x^{4}+1032 x^{2}-768\right) y}{\left(x^{2}+2\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=-1$ and $y^{\prime}(0)=3$ gives

$$
\begin{aligned}
& F_{0}=2 \\
& F_{1}=-\frac{9}{2} \\
& F_{2}=-4 \\
& F_{3}=\frac{63}{4} \\
& F_{4}=24
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x^{2}+3 x-1-\frac{3 x^{3}}{4}-\frac{x^{4}}{6}+\frac{21 x^{5}}{160}+\frac{x^{6}}{30}+O\left(x^{6}\right) \\
& y=x^{2}+3 x-1-\frac{3 x^{3}}{4}-\frac{x^{4}}{6}+\frac{21 x^{5}}{160}+\frac{x^{6}}{30}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
4 a_{2}+4 a_{0}=0
$$

$$
a_{2}=-a_{0}
$$

$n=1$ gives

$$
12 a_{3}+3 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{4}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+2(n+2) a_{n+2}(n+1)-n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-2 n+4\right)}{2(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{6}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}+40 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{160}
$$

For $n=4$ the recurrence equation gives

$$
12 a_{4}+60 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{30}
$$

For $n=5$ the recurrence equation gives

$$
19 a_{5}+84 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{19 a_{1}}{1920}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{4} a_{1} x^{3}+\frac{1}{6} a_{0} x^{4}+\frac{7}{160} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) a_{0}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=-1+x^{2}-\frac{x^{4}}{6}+3 x-\frac{3 x^{3}}{4}+\frac{21 x^{5}}{160}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x^{2}+3 x-1-\frac{3 x^{3}}{4}-\frac{x^{4}}{6}+\frac{21 x^{5}}{160}+\frac{x^{6}}{30}+O\left(x^{6}\right) \tag{1}\\
& y=-1+x^{2}-\frac{x^{4}}{6}+3 x-\frac{3 x^{3}}{4}+\frac{21 x^{5}}{160}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x^{2}+3 x-1-\frac{3 x^{3}}{4}-\frac{x^{4}}{6}+\frac{21 x^{5}}{160}+\frac{x^{6}}{30}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-1+x^{2}-\frac{x^{4}}{6}+3 x-\frac{3 x^{3}}{4}+\frac{21 x^{5}}{160}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([(2+x^2)*diff (y(x),x$2)-x*diff (y (x),x)+4*y(x)=0,y(0) = -1, D(y)(0) = 3],y(x),type='se
```

$$
y(x)=-1+3 x+x^{2}-\frac{3}{4} x^{3}-\frac{1}{6} x^{4}+\frac{21}{160} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32
AsymptoticDSolveValue $\left[\left\{\left(2+x^{\wedge} 2\right) * y{ }^{\prime} '[x]-x * y '[x]+4 * y[x]==0,\left\{y[0]==-1, y^{\prime}[0]==3\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{21 x^{5}}{160}-\frac{x^{4}}{6}-\frac{3 x^{3}}{4}+x^{2}+3 x-1
$$

13.14 problem 17

13.14.1 Existence and uniqueness analysis 3231
13.14.2 Maple step by step solution . 3239

Internal problem ID [724]
Internal file name [OUTPUT/724_Sunday_June_05_2022_01_47_52_AM_6286473/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

With initial conditions

$$
\left[y(0)=4, y^{\prime}(0)=-1\right]
$$

With the expansion point for the power series method at $x=0$.

13.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{783}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{784}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+2 y x-3 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x^{3} y^{\prime}-2 x^{2} y+7 y^{\prime} x+8 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-12 x^{2}+15\right) y^{\prime}+2\left(x^{3}-9 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+18 x^{3}-57 x\right) y^{\prime}-2 y\left(x^{4}-15 x^{2}+24\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=4$ and $y^{\prime}(0)=-1$ gives

$$
\begin{aligned}
& F_{0}=-8 \\
& F_{1}=3 \\
& F_{2}=32 \\
& F_{3}=-15 \\
& F_{4}=-192
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=-4 x^{2}-x+4+\frac{x^{3}}{2}+\frac{4 x^{4}}{3}-\frac{x^{5}}{8}-\frac{4 x^{6}}{15}+O\left(x^{6}\right) \\
& y=-4 x^{2}-x+4+\frac{x^{3}}{2}+\frac{4 x^{4}}{3}-\frac{x^{5}}{8}-\frac{4 x^{6}}{15}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+7 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{48}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{2} a_{1} x^{3}+\frac{1}{3} a_{0} x^{4}+\frac{1}{8} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) a_{0}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=4-4 x^{2}+\frac{4 x^{4}}{3}-x+\frac{x^{3}}{2}-\frac{x^{5}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-4 x^{2}-x+4+\frac{x^{3}}{2}+\frac{4 x^{4}}{3}-\frac{x^{5}}{8}-\frac{4 x^{6}}{15}+O\left(x^{6}\right) \tag{1}\\
& y=4-4 x^{2}+\frac{4 x^{4}}{3}-x+\frac{x^{3}}{2}-\frac{x^{5}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-4 x^{2}-x+4+\frac{x^{3}}{2}+\frac{4 x^{4}}{3}-\frac{x^{5}}{8}-\frac{4 x^{6}}{15}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=4-4 x^{2}+\frac{4 x^{4}}{3}-x+\frac{x^{3}}{2}-\frac{x^{5}}{8}+O\left(x^{6}\right)
$$

Verified OK.

13.14.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime} x-2 y, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+2)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation

$$
(k+2)\left(k a_{k+2}+a_{k}+a_{k+2}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+1}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 20

```
Order:=6;
dsolve([diff (y (x),x$2)+x*diff (y(x),x)+2*y(x)=0,y(0) = 4, D(y)(0) = -1],y(x),type='series', x=
\[
y(x)=4-x-4 x^{2}+\frac{1}{2} x^{3}+\frac{4}{3} x^{4}-\frac{1}{8} x^{5}+\mathrm{O}\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34
AsymptoticDSolveValue[\{y''[x]+x*y'[x]+2*y[x]==0,\{y[0]==4,y'[0]==-1\}\},y[x],\{x,0,5\}]

$$
y(x) \rightarrow-\frac{x^{5}}{8}+\frac{4 x^{4}}{3}+\frac{x^{3}}{2}-4 x^{2}-x+4
$$

13.15 problem 18

13.15.1 Existence and uniqueness analysis 3241
13.15.2 Maple step by step solution . 3249

Internal problem ID [725]
Internal file name [OUTPUT/725_Sunday_June_05_2022_01_47_54_AM_53815552/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change__of_variable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

With initial conditions

$$
\left[y(0)=-3, y^{\prime}(0)=2\right]
$$

With the expansion point for the power series method at $x=0$.

13.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{1-x} \\
q(x) & =-\frac{1}{1-x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{x y^{\prime}}{1-x}-\frac{y}{1-x}=0
$$

The domain of $p(x)=\frac{x}{1-x}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{1}{1-x}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{786}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{787}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{-y+y^{\prime} x}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{-y+y^{\prime} x}{x-1} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{-y+y^{\prime} x}{x-1}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=-3$ and $y^{\prime}(0)=2$ gives

$$
\begin{gathered}
F_{0}=-3 \\
F_{1}=-3 \\
F_{2}=-3 \\
F_{3}=-3 \\
F_{4}=-3
\end{gathered}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=-3+2 x-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

$$
y=-3+2 x-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(1-x) y^{\prime \prime}+y^{\prime} x-y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(1-x)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-(n+1) a_{n+1} n x^{n}\right) \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=1}^{\infty} & \left(-(n+1) a_{n+1} n x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
-(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n+1}-n a_{n}+n a_{n+1}+a_{n}}{(n+2)(n+1)} \\
& =\frac{(-n+1) a_{n}}{(n+2)(n+1)}+\frac{\left(n^{2}+n\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
-2 a_{2}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{3}+12 a_{4}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{4}+20 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{120}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{5}+30 a_{6}+3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{6}+42 a_{7}+4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{0}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) a_{0}+a_{1} x+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+c_{2} x+O\left(x^{6}\right) \\
y=-3-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}+2 x+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=-3+2 x-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}-\frac{x^{6}}{240}+O\left(x^{6}\right) \tag{1}\\
& y=-3-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}+2 x+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-3+2 x-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}-\frac{x^{6}}{240}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-3-\frac{3 x^{2}}{2}-\frac{x^{3}}{2}-\frac{x^{4}}{8}-\frac{x^{5}}{40}+2 x+O\left(x^{6}\right)
$$

Verified OK.

13.15.2 Maple step by step solution

Let's solve

$$
\left[(1-x) y^{\prime \prime}+y^{\prime} x-y=0, y(0)=-3,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x-1}+\frac{x y^{\prime}}{x-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{y}{x-1}=0$
Check to see if $x_{0}=1$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{x}{x-1}, P_{3}(x)=\frac{1}{x-1}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$
$\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1$
- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$
$\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0$
- $x=1$ is a regular singular point

Check to see if $x_{0}=1$ is a regular singular point

$$
x_{0}=1
$$

- Multiply by denominators
$(x-1) y^{\prime \prime}-y^{\prime} x+y=0$
- \quad Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
$$

- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}}{k+1+r}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}}{k+1}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}}{k+3}
$$

- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([(1-x)*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(0) = -3, D(y)(0) = 2],y(x),type='series
```

$$
y(x)=-3+2 x-\frac{3}{2} x^{2}-\frac{1}{2} x^{3}-\frac{1}{8} x^{4}-\frac{1}{40} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36
AsymptoticDSolveValue $\left[\left\{(1-\mathrm{x}) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==-3, \mathrm{y}\right.\right.$ ' $\left.\left.[0]==2\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow-\frac{x^{5}}{40}-\frac{x^{4}}{8}-\frac{x^{3}}{2}-\frac{3 x^{2}}{2}+2 x-3
$$

13.16 problem 21

13.16.1 Maple step by step solution

3260
Internal problem ID [726]
Internal file name [OUTPUT/726_Sunday_June_05_2022_01_47_56_AM_30999466/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime} x+\lambda y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{789}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{790}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =2 y^{\prime} x-\lambda y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(4 x^{2}-\lambda+2\right) y^{\prime}-2 y \lambda x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(8 x^{3}-4 \lambda x+12 x\right) y^{\prime}-4 \lambda\left(x^{2}-\frac{\lambda}{4}+1\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\lambda^{2}+\left(-12 x^{2}-8\right) \lambda+16 x^{4}+48 x^{2}+12\right) y^{\prime}-8\left(x^{2}-\frac{\lambda}{2}+\frac{5}{2}\right) x \lambda y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(6 x \lambda^{2}+\left(-32 x^{3}-60 x\right) \lambda+32 x^{5}+160 x^{3}+120 x\right) y^{\prime}-16\left(\frac{\lambda^{2}}{16}+\left(-\frac{3 x^{2}}{4}-\frac{3}{4}\right) \lambda+x^{4}+\frac{9 x^{2}}{2}+2\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \lambda \\
& F_{1}=-y^{\prime}(0) \lambda+2 y^{\prime}(0) \\
& F_{2}=y(0) \lambda^{2}-4 y(0) \lambda \\
& F_{3}=y^{\prime}(0) \lambda^{2}-8 y^{\prime}(0) \lambda+12 y^{\prime}(0) \\
& F_{4}=-y(0) \lambda^{3}+12 y(0) \lambda^{2}-32 y(0) \lambda
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \lambda x^{2}+\frac{1}{24} x^{4} \lambda^{2}-\frac{1}{6} x^{4} \lambda-\frac{1}{720} x^{6} \lambda^{3}+\frac{1}{60} x^{6} \lambda^{2}-\frac{2}{45} x^{6} \lambda\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3} \lambda+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} \lambda^{2}-\frac{1}{15} x^{5} \lambda+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\lambda\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} \lambda a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} \lambda a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\lambda a_{0}+2 a_{2}=0
$$

$$
a_{2}=-\frac{\lambda a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-2 n a_{n}+\lambda a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(\lambda-2 n)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
\lambda a_{1}-2 a_{1}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{1}{6} \lambda a_{1}+\frac{1}{3} a_{1}
$$

For $n=2$ the recurrence equation gives

$$
\lambda a_{2}-4 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{1}{24} \lambda^{2} a_{0}-\frac{1}{6} \lambda a_{0}
$$

For $n=3$ the recurrence equation gives

$$
\lambda a_{3}-6 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{1}{120} \lambda^{2} a_{1}-\frac{1}{15} \lambda a_{1}+\frac{1}{10} a_{1}
$$

For $n=4$ the recurrence equation gives

$$
\lambda a_{4}-8 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{1}{720} \lambda^{3} a_{0}+\frac{1}{60} \lambda^{2} a_{0}-\frac{2}{45} \lambda a_{0}
$$

For $n=5$ the recurrence equation gives

$$
\lambda a_{5}-10 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{1}{5040} \lambda^{3} a_{1}+\frac{1}{280} \lambda^{2} a_{1}-\frac{23}{1260} \lambda a_{1}+\frac{1}{42} a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x-\frac{\lambda a_{0} x^{2}}{2}+\left(-\frac{1}{6} \lambda a_{1}+\frac{1}{3} a_{1}\right) x^{3} \\
& +\left(\frac{1}{24} \lambda^{2} a_{0}-\frac{1}{6} \lambda a_{0}\right) x^{4}+\left(\frac{1}{120} \lambda^{2} a_{1}-\frac{1}{15} \lambda a_{1}+\frac{1}{10} a_{1}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1-\frac{\lambda x^{2}}{2}+\left(\frac{1}{24} \lambda^{2}-\frac{1}{6} \lambda\right) x^{4}\right) a_{0} \tag{3}\\
& +\left(x+\left(-\frac{\lambda}{6}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{120} \lambda^{2}-\frac{1}{15} \lambda+\frac{1}{10}\right) x^{5}\right) a_{1}+O\left(x^{6}\right)
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1-\frac{\lambda x^{2}}{2}+\left(\frac{1}{24} \lambda^{2}-\frac{1}{6} \lambda\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\lambda}{6}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{120} \lambda^{2}-\frac{1}{15} \lambda+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} \lambda x^{2}+\frac{1}{24} x^{4} \lambda^{2}-\frac{1}{6} x^{4} \lambda-\frac{1}{720} x^{6} \lambda^{3}+\frac{1}{60} x^{6} \lambda^{2}-\frac{2}{45} x^{6} \lambda\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3} \lambda+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} \lambda^{2}-\frac{1}{15} x^{5} \lambda+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{\lambda x^{2}}{2}+\left(\frac{1}{24} \lambda^{2}-\frac{1}{6} \lambda\right) x^{4}\right) c_{1} \tag{2}\\
& +\left(x+\left(-\frac{\lambda}{6}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{120} \lambda^{2}-\frac{1}{15} \lambda+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \lambda x^{2}+\frac{1}{24} x^{4} \lambda^{2}-\frac{1}{6} x^{4} \lambda-\frac{1}{720} x^{6} \lambda^{3}+\frac{1}{60} x^{6} \lambda^{2}-\frac{2}{45} x^{6} \lambda\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3} \lambda+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} \lambda^{2}-\frac{1}{15} x^{5} \lambda+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1-\frac{\lambda x^{2}}{2}+\left(\frac{1}{24} \lambda^{2}-\frac{1}{6} \lambda\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\lambda}{6}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{120} \lambda^{2}-\frac{1}{15} \lambda+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

13.16.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=2 y^{\prime} x-\lambda y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-2 y^{\prime} x+\lambda y=0
$$

- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions
$\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(2 k-\lambda)\right) x^{k}=0$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-2\left(k-\frac{\lambda}{2}\right) a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{(2 k-\lambda) a_{k}}{k^{2}+3 k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 63

```
Order:=6;
dsolve(diff(y(x),x$2)-2*x*diff(y(x),x)+lambda*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{\lambda x^{2}}{2}+\frac{\lambda(\lambda-4) x^{4}}{24}\right) y(0) \\
& +\left(x-\frac{(\lambda-2) x^{3}}{6}+\frac{(\lambda-2)(-6+\lambda) x^{5}}{120}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 80

AsymptoticDSolveValue[y''[x]-2*x*y'[x]+$$
Lambda]*y[x]==0,y[x],\{x,0,5\}]
\[
y(x) \rightarrow c_{2}\left(\frac{\lambda^{2} x^{5}}{120}-\frac{\lambda x^{5}}{15}+\frac{x^{5}}{10}-\frac{\lambda x^{3}}{6}+\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{\lambda^{2} x^{4}}{24}-\frac{\lambda x^{4}}{6}-\frac{\lambda x^{2}}{2}+1\right)
$$

13.17 problem 23

13.17.1 Existence and uniqueness analysis 3263
13.17.2 Maple step by step solution . 3271

Internal problem ID [727]
Internal file name [OUTPUT/727_Sunday_June_05_2022_01_47_57_AM_94347532/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

13.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =-1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{792}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{793}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+y x+2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+5 x\right) y^{\prime}+y\left(x^{2}+3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}+7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+14 x^{3}+33 x\right) y^{\prime}+y\left(x^{4}+12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
F_{0} & =1 \\
F_{1} & =0 \\
F_{2} & =3 \\
F_{3} & =0 \\
F_{4} & =15
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right) \\
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}-a_{0}=0
$$

$$
a_{2}=\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right) \tag{1}\\
& y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+\frac{x^{6}}{48}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+O\left(x^{6}\right)
$$

Verified OK.

13.17.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=y^{\prime} x+y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y^{\prime} x-y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

\square

Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)-a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}}{k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)-x*diff(y(x),x)-y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);
```

$$
y(x)=1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue $\left[\left\{y^{\prime} '[x]-x * y '[x]-y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{x^{4}}{8}+\frac{x^{2}}{2}+1
$$

13.18 problem 24

13.18.1 Existence and uniqueness analysis 3273

Internal problem ID [728]
Internal file name [OUTPUT/728_Sunday_June_05_2022_01_47_59_AM_5624398/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

13.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{x}{x^{2}+2} \\
q(x) & =\frac{4}{x^{2}+2} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{x y^{\prime}}{x^{2}+2}+\frac{4 y}{x^{2}+2}=0
$$

The domain of $p(x)=-\frac{x}{x^{2}+2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{4}{x^{2}+2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{795}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{796}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y^{\prime} x-4 y}{x^{2}+2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-4 y^{\prime} x^{2}+4 y x-6 y^{\prime}}{\left(x^{2}+2\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{8 x^{3} y^{\prime}+4 x^{2} y+10 y^{\prime} x+32 y}{\left(x^{2}+2\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-12 x^{4}+48 x^{2}+84\right) y^{\prime}+\left(-48 x^{3}-216 x\right) y}{\left(x^{2}+2\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-12 x^{5}-648 x^{3}-828 x\right) y^{\prime}+\left(288 x^{4}+1032 x^{2}-768\right) y}{\left(x^{2}+2\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-2 \\
& F_{1}=0 \\
& F_{2}=4 \\
& F_{3}=0 \\
& F_{4}=-24
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+O\left(x^{6}\right)
$$

$$
y=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
4 a_{2}+4 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

$n=1$ gives

$$
12 a_{3}+3 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{4}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+2(n+2) a_{n+2}(n+1)-n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-2 n+4\right)}{2(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{6}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}+40 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{160}
$$

For $n=4$ the recurrence equation gives

$$
12 a_{4}+60 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{30}
$$

For $n=5$ the recurrence equation gives

$$
19 a_{5}+84 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{19 a_{1}}{1920}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{4} a_{1} x^{3}+\frac{1}{6} a_{0} x^{4}+\frac{7}{160} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) a_{0}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1-x^{2}+\frac{x^{4}}{6}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+O\left(x^{6}\right) \tag{1}\\
& y=1-x^{2}+\frac{x^{4}}{6}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1-x^{2}+\frac{x^{4}}{6}-\frac{x^{6}}{30}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1-x^{2}+\frac{x^{4}}{6}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([(2+x~2)*diff (y (x),x$2)-x*diff (y (x),x)+4*y (x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='ser
```

$$
y(x)=1-x^{2}+\frac{1}{6} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17
AsymptoticDSolveValue $\left[\left\{\left(2+x^{\wedge} 2\right) * y{ }^{\prime} '[x]-x * y '[x]+4 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{x^{4}}{6}-x^{2}+1
$$

13.19 problem 25

13.19.1 Existence and uniqueness analysis 3283
13.19.2 Maple step by step solution . 3291

Internal problem ID [729]
Internal file name [OUTPUT/729_Sunday_June_05_2022_01_48_01_AM_21971426/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 25.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

13.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{798}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{799}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+2 y x-3 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x^{3} y^{\prime}-2 x^{2} y+7 y^{\prime} x+8 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-12 x^{2}+15\right) y^{\prime}+2\left(x^{3}-9 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+18 x^{3}-57 x\right) y^{\prime}-2 y\left(x^{4}-15 x^{2}+24\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-3 \\
& F_{2}=0 \\
& F_{3}=15 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right) \\
& y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{8}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+7 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{48}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{2} a_{1} x^{3}+\frac{1}{3} a_{0} x^{4}+\frac{1}{8} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) a_{0}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-x^{2}+\frac{1}{3} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right) \tag{1}\\
& y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x-\frac{x^{3}}{2}+\frac{x^{5}}{8}+O\left(x^{6}\right)
$$

Verified OK.

13.19.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime} x-2 y, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+2 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

\square

Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+2)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation

$$
(k+2)\left(k a_{k+2}+a_{k}+a_{k+2}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+1}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)+x*diff (y (x),x)+2*y(x)=0,y(0) = 0, D(y) (0) = 1],y(x),type='series',x=0
```

$$
y(x)=x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue [\{y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==0, \mathrm{y}$ ' $[0]==1\}\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{x^{5}}{8}-\frac{x^{3}}{2}+x
$$

13.20 problem 26

13.20.1 Existence and uniqueness analysis 3293
13.20.2 Maple step by step solution . 3301

Internal problem ID [730]
Internal file name [OUTPUT/730_Sunday_June_05_2022_01_48_03_AM_91788621/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(-x^{2}+4\right) y^{\prime \prime}+y^{\prime} x+2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

13.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{-x^{2}+4} \\
q(x) & =\frac{2}{-x^{2}+4} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{x y^{\prime}}{-x^{2}+4}+\frac{2 y}{-x^{2}+4}=0
$$

The domain of $p(x)=\frac{x}{-x^{2}+4}$ is

$$
\{-\infty \leq x<-2,-2<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2}{-x^{2}+4}$ is

$$
\{-\infty \leq x<-2,-2<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{801}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{802}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{2 y+y^{\prime} x}{x^{2}-4} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{2 y^{\prime} x^{2}-2 y x-12 y^{\prime}}{\left(x^{2}-4\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-4 x^{3} y^{\prime}+10 x^{2} y+28 y^{\prime} x-16 y}{\left(x^{2}-4\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(18 x^{4}-120 x^{2}-48\right) y^{\prime}+\left(-48 x^{3}+72 x\right) y}{\left(x^{2}-4\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-102 x^{5}+576 x^{3}+1008 x\right) y^{\prime}+\left(276 x^{4}-168 x^{2}-384\right) y}{\left(x^{2}-4\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-\frac{3}{4} \\
& F_{2}=0 \\
& F_{3}=-\frac{3}{16} \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right) \\
& y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+4\right) y^{\prime \prime}+y^{\prime} x+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+4\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
8 a_{2}+2 a_{0}=0 \\
a_{2}=-\frac{a_{0}}{4}
\end{gathered}
$$

$n=1$ gives

$$
24 a_{3}+3 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{8}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+4(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}-2 n-2\right)}{4(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
2 a_{2}+48 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{96}
$$

For $n=3$ the recurrence equation gives

$$
-a_{3}+80 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{640}
$$

For $n=4$ the recurrence equation gives

$$
-6 a_{4}+120 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{1920}
$$

For $n=5$ the recurrence equation gives

$$
-13 a_{5}+168 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{13 a_{1}}{107520}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{4} a_{0} x^{2}-\frac{1}{8} a_{1} x^{3}+\frac{1}{96} a_{0} x^{4}-\frac{1}{640} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{4} x^{2}+\frac{1}{96} x^{4}\right) a_{0}+\left(x-\frac{1}{8} x^{3}-\frac{1}{640} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{4} x^{2}+\frac{1}{96} x^{4}\right) c_{1}+\left(x-\frac{1}{8} x^{3}-\frac{1}{640} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right) \tag{1}\\
& y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x-\frac{x^{3}}{8}-\frac{x^{5}}{640}+O\left(x^{6}\right)
$$

Verified OK.

13.20.2 Maple step by step solution

Let's solve

$$
\left[\left(-x^{2}+4\right) y^{\prime \prime}+y^{\prime} x+2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{x y^{\prime}}{x^{2}-4}+\frac{2 y}{x^{2}-4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{x y^{\prime}}{x^{2}-4}-\frac{2 y}{x^{2}-4}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{x}{x^{2}-4}, P_{3}(x)=-\frac{2}{x^{2}-4}\right]
$$

- $(2+x) \cdot P_{2}(x)$ is analytic at $x=-2$

$$
\left.\left((2+x) \cdot P_{2}(x)\right)\right|_{x=-2}=-\frac{1}{2}
$$

- $(2+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-2$

$$
\left.\left((2+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-2}=0
$$

- $x=-2$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-2
$$

- Multiply by denominators

$$
y^{\prime \prime}\left(x^{2}-4\right)-y^{\prime} x-2 y=0
$$

- \quad Change variables using $x=u-2$ so that the regular singular point is at $u=0$ $\left(u^{2}-4 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u+2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(-3+2 r) u^{-1+r}+\left(\sum _ { k = 0 } ^ { \infty } \left(-2 a_{k+1}(k+1+r)(2 k-1+2 r)+a_{k}\left(k^{2}+2 k r+r^{2}-2 k-2 r-\right.\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(-3+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{3}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
-4\left(k-\frac{1}{2}+r\right)(k+1+r) a_{k+1}+\left(k^{2}+(2 r-2) k+r^{2}-2 r-2\right) a_{k}=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{\left(k^{2}+2 k r+r^{2}-2 k-2 r-2\right) a_{k}}{2(2 k-1+2 r)(k+1+r)}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{\left(k^{2}-2 k-2\right) a_{k}}{2(2 k-1)(k+1)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{\left(k^{2}-2 k-2\right) a_{k}}{2(2 k-1)(k+1)}\right]
$$

- \quad Revert the change of variables $u=2+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(2+x)^{k}, a_{k+1}=\frac{\left(k^{2}-2 k-2\right) a_{k}}{2(2 k-1)(k+1)}\right]
$$

- Recursion relation for $r=\frac{3}{2}$

$$
a_{k+1}=\frac{\left(k^{2}+k-\frac{11}{4}\right) a_{k}}{2(2 k+2)\left(k+\frac{5}{2}\right)}
$$

- \quad Solution for $r=\frac{3}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3}{2}}, a_{k+1}=\frac{\left(k^{2}+k-\frac{11}{4}\right) a_{k}}{2(2 k+2)\left(k+\frac{5}{2}\right)}\right]
$$

- \quad Revert the change of variables $u=2+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(2+x)^{k+\frac{3}{2}}, a_{k+1}=\frac{\left(k^{2}+k-\frac{11}{4}\right) a_{k}}{2(2 k+2)\left(k+\frac{5}{2}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(2+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(2+x)^{k+\frac{3}{2}}\right), a_{k+1}=\frac{\left(k^{2}-2 k-2\right) a_{k}}{2(2 k-1)(k+1)}, b_{k+1}=\frac{\left(k^{2}+k-\frac{11}{4}\right) b_{k}}{2(2 k+2)\left(k+\frac{5}{2}\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
    <- special function solution successful
    -> Trying to convert hypergeometric functions to elementary form...
    <- elementary form could result into a too large expression - returning special functi
    <- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([(4-x^2)*diff (y(x),x$2)+x*diff(y(x),x)+2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='ser
```

$$
y(x)=x-\frac{1}{8} x^{3}-\frac{1}{640} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{(4-x~2)*y' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $\left.\left.[\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0,\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==1\right\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow-\frac{x^{5}}{640}-\frac{x^{3}}{8}+x
$$

13.21 problem 27

13.21.1 Existence and uniqueness analysis 3305
13.21.2 Maple step by step solution . 3313

Internal problem ID [731]
Internal file name [OUTPUT/731_Sunday_June_05_2022_01_48_05_AM_12870666/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}+x^{2} y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

13.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =x^{2} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+x^{2} y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{804}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{805}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-\left(2 y+y^{\prime} x\right) x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y x^{4}-4 y^{\prime} x-2 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} x^{4}+8 y x^{3}-6 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =12 x^{3} y^{\prime}-x^{2} y\left(x^{4}-30\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=-2 \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=1-\frac{x^{4}}{12}+O\left(x^{6}\right) \\
& y=1-\frac{x^{4}}{12}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} x^{n+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{12} a_{0} x^{4}-\frac{1}{20} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{4}}{12}\right) a_{0}+\left(x-\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1-\frac{x^{4}}{12}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1-\frac{x^{4}}{12}+O\left(x^{6}\right) \tag{1}\\
& y=1-\frac{x^{4}}{12}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1-\frac{x^{4}}{12}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1-\frac{x^{4}}{12}+O\left(x^{6}\right)
$$

Verified OK.

13.21.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-x^{2} y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+x^{2} y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion
$x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}$
- Shift index using $k->k-2$
$x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-2}\right) x^{k}\right)=0$
- \quad The coefficients of each power of x must be 0

$$
\left[2 a_{2}=0,6 a_{3}=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- \quad Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-2}=0
$$

- \quad Shift index using $k->k+2$

$$
\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

Solution by Maple
Time used: 0.282 (sec). Leaf size: 12

```
Order:=6;
dsolve([diff(y(x),x$2)+x^2*y(x)=0,y(0) = 1, D(y) (0) = 0],y(x),type='series',x=0);
```

$$
y(x)=1-\frac{1}{12} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 12

$$
y(x) \rightarrow 1-\frac{x^{4}}{12}
$$

13.22 problem 28

13.22.1 Existence and uniqueness analysis 3316
13.22.2 Maple step by step solution . 3324

Internal problem ID [732]
Internal file name [OUTPUT/732_Sunday_June_05_2022_01_48_08_AM_85496591/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.2, Series Solutions Near an Ordinary Point, Part I. page 263
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
    _with_symmetry_[0,F(x)]`]]
```

$$
(1-x) y^{\prime \prime}+y^{\prime} x-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

13.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x}{1-x} \\
q(x) & =-\frac{2}{1-x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{x y^{\prime}}{1-x}-\frac{2 y}{1-x}=0
$$

The domain of $p(x)=\frac{x}{1-x}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{2}{1-x}$ is

$$
\{x<1 \vee 1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{807}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{808}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{y^{\prime} x-2 y}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{(x-1) y^{\prime}-2 y}{x-1} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left((x-1) y^{\prime}-2 y\right)(-2+x)}{(x-1)^{2}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{2}-4 x+5\right)\left((x-1) y^{\prime}-2 y\right)}{(x-1)^{3}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(x^{3}-6 x^{2}+15 x-16\right)\left((x-1) y^{\prime}-2 y\right)}{(x-1)^{4}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
F_{0} & =0 \\
F_{1} & =1 \\
F_{2} & =2 \\
F_{3} & =5 \\
F_{4} & =16
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+\frac{x^{6}}{45}+O\left(x^{6}\right)
$$

$$
y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+\frac{x^{6}}{45}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
(1-x) y^{\prime \prime}+y^{\prime} x-2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(1-x)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-n x^{n-1} a_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-(n+1) a_{n+1} n x^{n}\right) \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=1}^{\infty} & \left(-(n+1) a_{n+1} n x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
-(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n+1}-n a_{n}+n a_{n+1}+2 a_{n}}{(n+2)(n+1)} \\
& =\frac{(-n+2) a_{n}}{(n+2)(n+1)}+\frac{\left(n^{2}+n\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
-2 a_{2}+6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{3}+\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{3}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{6}+\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{4}+20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{12}+\frac{a_{1}}{24}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{5}+30 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{2 a_{0}}{45}+\frac{a_{1}}{45}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{6}+42 a_{7}+3 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{13 a_{0}}{504}+\frac{13 a_{1}}{1008}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}+\left(\frac{a_{0}}{3}+\frac{a_{1}}{6}\right) x^{3}+\left(\frac{a_{0}}{6}+\frac{a_{1}}{12}\right) x^{4}+\left(\frac{a_{0}}{12}+\frac{a_{1}}{24}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x^{2}+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{12} x^{5}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+x^{2}+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{12} x^{5}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+\frac{x^{6}}{45}+O\left(x^{6}\right) \tag{1}\\
& y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+\frac{x^{6}}{45}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x+\frac{x^{3}}{6}+\frac{x^{4}}{12}+\frac{x^{5}}{24}+O\left(x^{6}\right)
$$

Verified OK.

13.22.2 Maple step by step solution

Let's solve

$$
\left[(1-x) y^{\prime \prime}+y^{\prime} x-2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y}{x-1}+\frac{x y^{\prime}}{x-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{2 y}{x-1}=0$
Check to see if $x_{0}=1$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{x}{x-1}, P_{3}(x)=\frac{2}{x-1}\right]
$$

- $(x-1) \cdot P_{2}(x)$ is analytic at $x=1$
$\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1$
- $(x-1)^{2} \cdot P_{3}(x)$ is analytic at $x=1$
$\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0$
- $x=1$ is a regular singular point

Check to see if $x_{0}=1$ is a regular singular point
$x_{0}=1$

- Multiply by denominators
$(x-1) y^{\prime \prime}-y^{\prime} x+2 y=0$
- \quad Change variables using $x=u+1$ so that the regular singular point is at $u=0$ $u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}$
- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}$
- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-2)\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-2)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r-2)}{(k+1+r)(k+r-1)}$
- Recursion relation for $r=0$; series terminates at $k=2$
$a_{k+1}=\frac{a_{k}(k-2)}{(k+1)(k-1)}$
- Series not valid for $r=0$, division by 0 in the recursion relation at $k=1$
$a_{k+1}=\frac{a_{k}(k-2)}{(k+1)(k-1)}$
- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k} k}{(k+3)(k+1)}$
- \quad Solution for $r=2$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k} k}{(k+3)(k+1)}\right]
$$

- \quad Revert the change of variables $u=x-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+1}=\frac{a_{k} k}{(k+3)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
Order:=6;
dsolve([(1-x)*\operatorname{diff}(y(x),x$2)+x*\operatorname{diff}(y(x),x)-2*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='serie
```

$$
y(x)=x+\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 26
AsymptoticDSolveValue[\{(1-x)*y''[x]+x*y'[x]-2*y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],\{x,0,5\}]

$$
y(x) \rightarrow \frac{x^{5}}{24}+\frac{x^{4}}{12}+\frac{x^{3}}{6}+x
$$

14 Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269

14.1 problem 1 3329
14.2 problem 2 3339
14.3 problem 3 3350
14.4 problem 4 3363
14.5 problem 5. case $x_{0}=0$ 3374
14.6 problem 5. case $x_{0}=4$ 3384
14.7 problem 6. case $x_{0}=0$ 3395
14.8 problem 6. case $x_{0}=4$ only 3407
14.9 problem 6. case $x_{0}=-4$ 3420
14.10problem 7. case $x_{0}=0$ 3433
14.11 problem 7 . case $x_{0}=2$ 3445
14.12problem 8 3459
14.13problem 10 3470
14.14problem 16 3482
14.15problem 17 3491
14.16problem 19 3500
14.17problem 22 3508

14.1 problem 1

14.1.1 Existence and uniqueness analysis 3329
14.1.2 Maple step by step solution . 3337

Internal problem ID [733]
Internal file name [OUTPUT/733_Sunday_June_05_2022_01_48_10_AM_75056564/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+y^{\prime} x+y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

14.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x+y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{810}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{811}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+y x-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x^{3} y^{\prime}-x^{2} y+5 y^{\prime} x+3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+14 x^{3}-33 x\right) y^{\prime}-y\left(x^{4}-12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-1 \\
& F_{1}=0 \\
& F_{2}=3 \\
& F_{3}=0 \\
& F_{4}=-15
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}-\frac{x^{6}}{48}+O\left(x^{6}\right) \\
& y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}-\frac{x^{6}}{48}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(-\frac{1}{2} x^{2}+1+\frac{1}{8} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(-\frac{1}{2} x^{2}+1+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}-\frac{x^{6}}{48}+O\left(x^{6}\right) \tag{1}\\
& y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}-\frac{x^{6}}{48}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-\frac{x^{2}}{2}+1+\frac{x^{4}}{8}+O\left(x^{6}\right)
$$

Verified OK.

14.1.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime} x-y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)+a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)+x*diff(y(x),x)+y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);
```

$$
y(x)=1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue $\left[\left\{\mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==1, \mathrm{y}\right.\right.$ ' $\left.\left.[0]==0\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow \frac{x^{4}}{8}-\frac{x^{2}}{2}+1
$$

14.2 problem 2

14.2.1 Existence and uniqueness analysis 3339

Internal problem ID [734]
Internal file name [OUTPUT/734_Sunday_June_05_2022_01_48_12_AM_11361222/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

14.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\sin (x) \\
q(x) & =\cos (x) \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0
$$

The domain of $p(x)=\sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{813}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{814}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\sin (x) y^{\prime}-\cos (x) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(\sin (x)^{2}-2 \cos (x)\right) y^{\prime}+y \sin (x)(\cos (x)+1) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(\cos (x)^{2}+5 \cos (x)+2\right) \sin (x) y^{\prime}+\left(\cos (x)^{3}+4 \cos (x)^{2}-1\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\cos (x)^{4}+9 \cos (x)^{3}+15 \cos (x)^{2}-5 \cos (x)-8\right) y^{\prime}-\cos (x) \sin (x) y\left(\cos (x)^{2}+8 \cos (x)+10\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\sin (x)\left(\cos (x)^{4}+14 \cos (x)^{3}+50 \cos (x)^{2}+35 \cos (x)-13\right) y^{\prime}-y\left(\cos (x)^{5}+13 \cos (x)^{4}+39 \cos \right.
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 \\
& F_{2}=0 \\
& F_{3}=12 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right) \\
& y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\sin (x)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\cos (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Expanding $\sin (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}
\end{aligned}
$$

Expanding $\cos (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\cos (x) & =-\frac{1}{2} x^{2}+1+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \\
& =-\frac{1}{2} x^{2}+1+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \\
& +\left(-\frac{1}{2} x^{2}+1+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the second term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{3}}{6} \\
& \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\frac{x^{5}}{120} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{7}}{5040} \\
& \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(-\frac{1}{2} x^{2}+1+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the third term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{3}}{6} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \\
& +\frac{x^{5}}{120} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{7}}{5040} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+-\frac{x^{2}}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& +1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{4}}{24} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{6}}{720} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+2} a_{n}}{6}\right) \\
& \quad+\left(\sum_{n=1}^{\infty} \frac{n x^{n+4} a_{n}}{120}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+6} a_{n}}{5040}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{2}\right) \tag{2}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+4} a_{n}}{24}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+6} a_{n}}{720}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+2} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{(n-2) a_{n-2} x^{n}}{6}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n x^{n+4} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{(n-4) a_{n-4} x^{n}}{120} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+6} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{(n-6) a_{n-6} x^{n}}{5040}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{2}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+4} a_{n}}{24} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n}}{24} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+6} a_{n}}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n}}{720}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=3}^{\infty}\left(-\frac{(n-2) a_{n-2} x^{n}}{6}\right) \\
& \quad+\left(\sum_{n=5}^{\infty} \frac{(n-4) a_{n-4} x^{n}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{(n-6) a_{n-6} x^{n}}{5040}\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{2}\right) \tag{3}\\
& \quad+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n}}{24}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n}}{720}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

$n=2$ gives

$$
12 a_{4}+3 a_{2}-\frac{a_{0}}{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=\frac{a_{0}}{6}
$$

$n=3$ gives

$$
20 a_{5}+4 a_{3}-\frac{2 a_{1}}{3}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{5}=\frac{a_{1}}{10}
$$

$n=4$ gives

$$
30 a_{6}+5 a_{4}-\frac{5 a_{2}}{6}+\frac{a_{0}}{24}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=-\frac{31 a_{0}}{720}
$$

$n=5$ gives

$$
42 a_{7}+6 a_{5}-a_{3}+\frac{a_{1}}{20}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{7}=-\frac{59 a_{1}}{2520}
$$

For $7 \leq n$, the recurrence equation is

$$
\begin{gather*}
(n+2) a_{n+2}(n+1)+n a_{n}-\frac{(n-2) a_{n-2}}{6}+\frac{(n-4) a_{n-4}}{120} \tag{4}\\
-\frac{(n-6) a_{n-6}}{5040}-\frac{a_{n-2}}{2}+a_{n}+\frac{a_{n-4}}{24}-\frac{a_{n-6}}{720}=0
\end{gather*}
$$

Solving for a_{n+2}, gives

$$
a_{n+2}=-\frac{5040 a_{n}-a_{n-6}+42 a_{n-4}-840 a_{n-2}}{5040(n+2)}
$$

$$
\begin{equation*}
=-\frac{a_{n}}{n+2}+\frac{a_{n-6}}{5040 n+10080}-\frac{a_{n-4}}{120(n+2)}+\frac{a_{n-2}}{6 n+12} \tag{5}
\end{equation*}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{6} a_{0} x^{4}+\frac{1}{10} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{4}\right) a_{0}+\left(-\frac{1}{3} x^{3}+x+\frac{1}{10} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{4}\right) c_{1}+\left(-\frac{1}{3} x^{3}+x+\frac{1}{10} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right) \tag{1}\\
& y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-\frac{x^{3}}{3}+x+\frac{x^{5}}{10}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
One independent solution has integrals. Trying a hypergeometric solution free of integral
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
No hypergeometric solution was found.
<- linear_1 successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff (y(x),x$2)+\operatorname{sin}(x)*\operatorname{diff}(y(x),x)+\operatorname{cos}(x)*y(x)=0,y(0)=0,D(y)(0)=1],y(x),type='s
```

$$
y(x)=x-\frac{1}{3} x^{3}+\frac{1}{10} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{y'' [x] $+\operatorname{Sin}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==0, \mathrm{y}$ ' $[0]==1\}\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{x^{5}}{10}-\frac{x^{3}}{3}+x
$$

14.3 problem 3

14.3.1 Existence and uniqueness analysis 3350

Internal problem ID [735]
Internal file name [OUTPUT/735_Sunday_June_05_2022_01_48_14_AM_17099555/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+(x+1) y^{\prime}+3 \ln (x) y=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=0\right]
$$

With the expansion point for the power series method at $x=1$.

14.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{x+1}{x^{2}} \\
q(x) & =\frac{3 \ln (x)}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{(x+1) y^{\prime}}{x^{2}}+\frac{3 \ln (x) y}{x^{2}}=0
$$

The domain of $p(x)=\frac{x+1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{3 \ln (x)}{x^{2}}$ is

$$
\{0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
(t+1)^{2}\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(2+t)\left(\frac{d}{d t} y(t)\right)+3 \ln (t+1) y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{816}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{817}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{t\left(\frac{d}{d t} y(t)\right)+3 \ln (t+1) y(t)+2 \frac{d}{d t} y(t)}{(t+1)^{2}} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{\left(-3(t+1)^{2}\left(\frac{d}{d t} y(t)\right)+(9 t+12) y(t)\right) \ln (t+1)+\left(2 t^{2}+8 t+7\right)\left(\frac{d}{d t} y(t)\right)-3(t+1) y(t)}{(t+1)^{4}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{9(t+1)^{2} y(t) \ln (t+1)^{2}+\left(18(t+1)^{2}\left(t+\frac{4}{3}\right)\left(\frac{d}{d t} y(t)\right)+\left(-33 t^{2}-90 t-60\right) y(t)\right) \ln (t+1)+(-12 t}{(t+1)^{6}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{9(t+1)^{2}\left((t+1)^{2}\left(\frac{d}{d t} y(t)\right)+(-10 t-12) y(t)\right) \ln (t+1)^{2}+\left(\left(-105 t^{4}-492 t^{3}-855 t^{2}-654 t-186\right.\right.}{F^{2}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{-27 y(t)(t+1)^{4} \ln (t+1)^{3}-135(t+1)^{2}\left(\left(t+\frac{6}{5}\right)(t+1)^{2}\left(\frac{d}{d t} y(t)\right)-\frac{17\left(t^{2}+\frac{206}{85} t+\frac{124}{85}\right) y(t)}{3}\right) \ln (t+1)^{2}+}{}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=2$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-6 \\
& F_{2}=42 \\
& F_{3}=-294 \\
& F_{4}=2376
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y(t)=-t^{3}+2+\frac{7 t^{4}}{4}-\frac{49 t^{5}}{20}+\frac{33 t^{6}}{10}+O\left(t^{6}\right) \\
& y(t)=-t^{3}+2+\frac{7 t^{4}}{4}-\frac{49 t^{5}}{20}+\frac{33 t^{6}}{10}+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(t^{2}+2 t+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(2+t)\left(\frac{d}{d t} y(t)\right)+3 \ln (t+1) y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(t^{2}+2 t+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(2+t)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+3 \ln (t+1)\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Expanding $3 \ln (t+1)$ as Taylor series around $t=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
3 \ln (t+1) & =3 t-\frac{3}{2} t^{2}+t^{3}-\frac{3}{4} t^{4}+\frac{3}{5} t^{5}-\frac{1}{2} t^{6}+\ldots \\
& =3 t-\frac{3}{2} t^{2}+t^{3}-\frac{3}{4} t^{4}+\frac{3}{5} t^{5}-\frac{1}{2} t^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(t^{2}+2 t+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(2+t)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right) \\
& +\left(3 t-\frac{3}{2} t^{2}+t^{3}-\frac{3}{4} t^{4}+\frac{3}{5} t^{5}-\frac{1}{2} t^{6}\right)\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0
\end{aligned}
$$

Expanding the third term in (1) gives

$$
\begin{aligned}
& \left(t^{2}+2 t+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+(2+t)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right) \\
& +3 t \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)-\frac{3 t^{2}}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)+t^{3} \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)-\frac{3 t^{4}}{4} \\
& \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)+\frac{3 t^{5}}{5} \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)-\frac{t^{6}}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1)\right) \\
& +\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} t^{n-1}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right) \tag{2}\\
& +\left(\sum_{n=0}^{\infty} 3 t^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 t^{n+2} a_{n}}{2}\right)+\left(\sum_{n=0}^{\infty} t^{n+3} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{3 t^{n+4} a_{n}}{4}\right)+\left(\sum_{n=0}^{\infty} \frac{3 t^{n+5} a_{n}}{5}\right)+\sum_{n=0}^{\infty}\left(-\frac{t^{n+6} a_{n}}{2}\right)=0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} 2 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 2(1+n) a_{1+n} n t^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=1}^{\infty} 2 n a_{n} t^{n-1} & =\sum_{n=0}^{\infty} 2(1+n) a_{1+n} t^{n} \\
\sum_{n=0}^{\infty} 3 t^{1+n} a_{n} & =\sum_{n=1}^{\infty} 3 a_{n-1} t^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{3 t^{n+2} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{3 a_{n-2} t^{n}}{2}\right) \\
\sum_{n=0}^{\infty} t^{n+3} a_{n} & =\sum_{n=3}^{\infty} a_{n-3} t^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{3 t^{n+4} a_{n}}{4}\right) & =\sum_{n=4}^{\infty}\left(-\frac{3 a_{n-4} t^{n}}{4}\right) \\
\sum_{n=0}^{\infty} \frac{3 t^{n+5} a_{n}}{5} & =\sum_{n=5}^{\infty} \frac{3 a_{n-5} t^{n}}{5} \\
\sum_{n=0}^{\infty}\left(-\frac{t^{n+6} a_{n}}{2}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} t^{n}}{2}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 2(1+n) a_{1+n} n t^{n}\right) \\
& +\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n}\right)+\left(\sum_{n=0}^{\infty} 2(1+n) a_{1+n} t^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} t^{n}\right)+\sum_{n=2}^{\infty}\left(-\frac{3 a_{n-2} t^{n}}{2}\right)+\left(\sum_{n=3}^{\infty} a_{n-3} t^{n}\right) \\
& \quad+\sum_{n=4}^{\infty}\left(-\frac{3 a_{n-4} t^{n}}{4}\right)+\left(\sum_{n=5}^{\infty} \frac{3 a_{n-5} t^{n}}{5}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} t^{n}}{2}\right)=0
\end{align*}
$$

$n=0$ gives

$$
2 a_{2}+2 a_{1}=0
$$

$$
a_{2}=-a_{1}
$$

$n=1$ gives

$$
8 a_{2}+6 a_{3}+a_{1}+3 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{2}+\frac{7 a_{1}}{6}
$$

$n=2$ gives

$$
4 a_{2}+18 a_{3}+12 a_{4}+3 a_{1}-\frac{3 a_{0}}{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=\frac{7 a_{0}}{8}-\frac{5 a_{1}}{3}
$$

$n=3$ gives

$$
9 a_{3}+32 a_{4}+20 a_{5}+3 a_{2}-\frac{3 a_{1}}{2}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{5}=-\frac{49 a_{0}}{40}+\frac{71 a_{1}}{30}
$$

$n=4$ gives

$$
16 a_{4}+50 a_{5}+30 a_{6}+3 a_{3}-\frac{3 a_{2}}{2}+a_{1}-\frac{3 a_{0}}{4}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=\frac{33 a_{0}}{20}-\frac{293 a_{1}}{90}
$$

$n=5$ gives

$$
25 a_{5}+72 a_{6}+42 a_{7}+3 a_{4}-\frac{3 a_{3}}{2}+a_{2}-\frac{3 a_{1}}{4}+\frac{3 a_{0}}{5}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{7}=-\frac{1843 a_{0}}{840}+\frac{1378 a_{1}}{315}
$$

For $6 \leq n$, the recurrence equation is

$$
\begin{align*}
& n a_{n}(n-1)+2(1+n) a_{1+n} n+(n+2) a_{n+2}(1+n)+2(1+n) a_{1+n} \tag{4}\\
& \quad+n a_{n}+3 a_{n-1}-\frac{3 a_{n-2}}{2}+a_{n-3}-\frac{3 a_{n-4}}{4}+\frac{3 a_{n-5}}{5}-\frac{a_{n-6}}{2}=0
\end{align*}
$$

Solving for a_{n+2}, gives

$$
\begin{aligned}
& a_{n+2}= \\
& - \\
& (5)= \\
& \\
& \\
& \\
& \quad-\frac{20 n^{2} a_{n}+40 n^{2} a_{1+n}+80 n a_{1+n}+40 a_{1+n}-10 a_{n-6}+12 a_{n-5}-15 a_{n-4}+20 a_{n-3}-30 a_{n-2}+60 a_{n-1}}{20(n+2)(1+n)} \\
& \\
& \quad+\frac{n^{2} a_{n}}{4(n+2)(1+n)}-\frac{\left(40 n^{2}+80 n+40\right) a_{1+n}}{20(n+2)(1+n)}+\frac{a_{n-6}}{2(n+2)(1+n)}-\frac{3 a_{n-5}}{5(n+2)(1+n)} \\
&
\end{aligned}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t-a_{1} t^{2}+\left(-\frac{a_{0}}{2}+\frac{7 a_{1}}{6}\right) t^{3}+\left(\frac{7 a_{0}}{8}-\frac{5 a_{1}}{3}\right) t^{4}+\left(-\frac{49 a_{0}}{40}+\frac{71 a_{1}}{30}\right) t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-\frac{1}{2} t^{3}+\frac{7}{8} t^{4}-\frac{49}{40} t^{5}\right) a_{0}+\left(t-t^{2}+\frac{7}{6} t^{3}-\frac{5}{3} t^{4}+\frac{71}{30} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(1-\frac{1}{2} t^{3}+\frac{7}{8} t^{4}-\frac{49}{40} t^{5}\right) c_{1}+\left(t-t^{2}+\frac{7}{6} t^{3}-\frac{5}{3} t^{4}+\frac{71}{30} t^{5}\right) c_{2}+O\left(t^{6}\right) \\
y(t)=-t^{3}+2+\frac{7 t^{4}}{4}-\frac{49 t^{5}}{20}+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
y=-(x-1)^{3}+2+\frac{7(x-1)^{4}}{4}-\frac{49(x-1)^{5}}{20}+\frac{33(x-1)^{6}}{10}+O\left((x-1)^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-(x-1)^{3}+2+\frac{7(x-1)^{4}}{4}-\frac{49(x-1)^{5}}{20}+\frac{33(x-1)^{6}}{10}+O\left((x-1)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-(x-1)^{3}+2+\frac{7(x-1)^{4}}{4}-\frac{49(x-1)^{5}}{20}+\frac{33(x-1)^{6}}{10}+O\left((x-1)^{6}\right)
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
-> trying a symmetry pattern 336 fo $_{1}$ the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
Trying Lie symmetry methods, 2nd order ---
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
Order:=6;
dsolve([x^2*diff (y(x),x$2)+(1+x)*\operatorname{diff}(y(x),x)+3*\operatorname{ln}(x)*y(x)=0,y(1)=2,D(y)(1)=0],y(x),typ
```

$$
y(x)=2-(x-1)^{3}+\frac{7}{4}(x-1)^{4}-\frac{49}{20}(x-1)^{5}+\mathrm{O}\left((x-1)^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 30
AsymptoticDSolveValue $\left[\left\{x^{\wedge} 2 * y{ }^{\prime} '[x]+(1+x) * y '[x]+3 * \log [x] * y[x]==0,\{y[1]==2, y\right.\right.$ ' $\left.[1]==0\}\right\}, y[x],\{x, 1$

$$
y(x) \rightarrow-\frac{49}{20}(x-1)^{5}+\frac{7}{4}(x-1)^{4}-(x-1)^{3}+2
$$

14.4 problem 4

14.4.1 Existence and uniqueness analysis 3363

Internal problem ID [736]
Internal file name [OUTPUT/736_Sunday_June_05_2022_01_48_18_AM_81415202/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x^{2}+\sin (x) y=0
$$

With initial conditions

$$
\left[y(0)=a_{0}, y^{\prime}(0)=a_{1}\right]
$$

With the expansion point for the power series method at $x=0$.

14.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x^{2} \\
q(x) & =\sin (x) \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x^{2}+\sin (x) y=0
$$

The domain of $p(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\sin (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{819}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{820}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x^{2}-\sin (x) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{4}-2 x-\sin (x)\right) y^{\prime}+y\left(\sin (x) x^{2}-\cos (x)\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{6}+6 x^{3}+2 \sin (x) x^{2}-2 \cos (x)-2\right) y^{\prime}-y\left(-\sin (x)^{2}+\left(x^{4}-4 x-1\right) \sin (x)-x^{2} \cos (x)\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\sin (x)^{2}+\left(-3 x^{4}+8 x+3\right) \sin (x)+x^{2}\left(x^{6}-12 x^{3}+5 \cos (x)+20\right)\right) y^{\prime}+\left(-2 \sin (x)^{2} x^{2}+\left(x^{6}-1\right.\right. \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-3 \sin (x)^{2} x^{2}+\left(4 x^{6}-30 x^{3}-9 x^{2}+6 \cos (x)+14\right) \sin (x)+\left(-9 x^{4}+24 x+4\right) \cos (x)-x^{10}+20\right.
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-a_{0} \\
& F_{2}=-4 a_{1} \\
& F_{3}=a_{0} \\
& F_{4}=4 a_{1}+16 a_{0}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x a_{1}+a_{0}-\frac{a_{0} x^{3}}{6}-\frac{a_{1} x^{4}}{6}+\frac{a_{0} x^{5}}{120}+\frac{x^{6} a_{0}}{45}+\frac{x^{6} a_{1}}{180}+O\left(x^{6}\right) \\
& y=x a_{1}+a_{0}-\frac{a_{0} x^{3}}{6}-\frac{a_{1} x^{4}}{6}+\frac{a_{0} x^{5}}{120}+\frac{x^{6} a_{0}}{45}+\frac{x^{6} a_{1}}{180}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}-\sin (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Expanding $\sin (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2} \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the third term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& -\frac{x^{3}}{6} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{5}}{120} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{7}}{5040} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right) \tag{2}\\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n x^{1+n} a_{n} & =\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right) \tag{3}\\
& +\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right)=0
\end{align*}
$$

$n=1$ gives

$$
6 a_{3}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{6}
$$

$n=2$ gives

$$
12 a_{4}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=-\frac{a_{1}}{6}
$$

$n=3$ gives

$$
20 a_{5}+3 a_{2}-\frac{a_{0}}{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{5}=\frac{a_{0}}{120}
$$

$n=4$ gives

$$
30 a_{6}+4 a_{3}-\frac{a_{1}}{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=\frac{a_{0}}{45}+\frac{a_{1}}{180}
$$

$n=5$ gives

$$
42 a_{7}+5 a_{4}-\frac{a_{2}}{6}+\frac{a_{0}}{120}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{7}=-\frac{a_{0}}{5040}+\frac{5 a_{1}}{252}
$$

For $7 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+(n-1) a_{n-1}+a_{n-1}-\frac{a_{n-3}}{6}+\frac{a_{n-5}}{120}-\frac{a_{n-7}}{5040}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives
$a_{n+2}=-\frac{5040 n a_{n-1}-a_{n-7}+42 a_{n-5}-840 a_{n-3}}{5040(n+2)(1+n)}$
(5) $=\frac{a_{n-7}}{5040(n+2)(1+n)}-\frac{a_{n-5}}{120(n+2)(1+n)}+\frac{a_{n-3}}{6(n+2)(1+n)}-\frac{n a_{n-1}}{(n+2)(1+n)}$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{6} a_{1} x^{4}+\frac{1}{120} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right) \\
y=a_{0}-\frac{a_{0} x^{3}}{6}+\frac{a_{0} x^{5}}{120}+x a_{1}-\frac{a_{1} x^{4}}{6}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x a_{1}+a_{0}-\frac{a_{0} x^{3}}{6}-\frac{a_{1} x^{4}}{6}+\frac{a_{0} x^{5}}{120}+\frac{x^{6} a_{0}}{45}+\frac{x^{6} a_{1}}{180}+O\left(x^{6}\right) \tag{1}\\
& y=a_{0}-\frac{a_{0} x^{3}}{6}+\frac{a_{0} x^{5}}{120}+x a_{1}-\frac{a_{1} x^{4}}{6}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x a_{1}+a_{0}-\frac{a_{0} x^{3}}{6}-\frac{a_{1} x^{4}}{6}+\frac{a_{0} x^{5}}{120}+\frac{x^{6} a_{0}}{45}+\frac{x^{6} a_{1}}{180}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=a_{0}-\frac{a_{0} x^{3}}{6}+\frac{a_{0} x^{5}}{120}+x a_{1}-\frac{a_{1} x^{4}}{6}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$ ([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius \rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
-, --> Computing symmetries using: way $=5^{`}[0, u]$
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve([diff (y(x),x$2)+x^2*diff (y(x),x)+\operatorname{sin}(x)*y(x)=0,y(0)= a__ 0, D(y)(0) = a__ 1],y(x),type
```

$$
y(x)=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{6} a_{1} x^{4}+\frac{1}{120} a_{0} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32
AsymptoticDSolveValue $\left[\left\{y^{\prime}{ }^{\prime}[x]+x^{\wedge} 2 * y '[x]+\operatorname{Sin}[x] * y[x]==0,\left\{y[0]==a 0, y^{\prime}[0]==a 1\right\}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow \frac{\mathrm{a} 0 x^{5}}{120}-\frac{\mathrm{a} 0 x^{3}}{6}+\mathrm{a} 0-\frac{\mathrm{a} 1 x^{4}}{6}+\mathrm{a} 1 x
$$

14.5 problem 5. case $x_{0}=0$

14.5.1 Maple step by step solution

Internal problem ID [737]
Internal file name [OUTPUT/737_Sunday_June_05_2022_01_48_21_AM_72114671/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 5. case $x_{0}=0$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+4 y^{\prime}+6 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{822}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{823}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-4 y^{\prime}-6 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(-6 x+16) y^{\prime}+(24 x-6) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =(48 x-76) y^{\prime}+36\left(x^{2}-\frac{8}{3} x+\frac{2}{3}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(36 x^{2}-288 x+376\right) y^{\prime}-288\left(x^{2}-\frac{11}{6} x+\frac{1}{3}\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-432 x^{2}+1752 x-1888\right) y^{\prime}-216\left(x^{3}-8 x^{2}+\frac{118}{9} x-\frac{22}{9}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-4 y^{\prime}(0) \\
& F_{1}=16 y^{\prime}(0)-6 y(0) \\
& F_{2}=-76 y^{\prime}(0)+24 y(0) \\
& F_{3}=376 y^{\prime}(0)-96 y(0) \\
& F_{4}=-1888 y^{\prime}(0)+528 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}+\frac{11}{15} x^{6}\right) y(0) \\
& +\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}-\frac{118}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-4\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-6\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 6 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} 4 n a_{n} x^{n-1} & =\sum_{n=0}^{\infty} 4(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty} 6 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 6 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty} 4(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 6 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+4 a_{1}=0 \\
a_{2}=-2 a_{1}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+4(1+n) a_{1+n}+6 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{2\left(2 n a_{1+n}+2 a_{1+n}+3 a_{n-1}\right)}{(n+2)(1+n)} \\
& =-\frac{2(2 n+2) a_{1+n}}{(n+2)(1+n)}-\frac{6 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+8 a_{2}+6 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{8 a_{1}}{3}-a_{0}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+12 a_{3}+6 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{19 a_{1}}{6}+a_{0}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+16 a_{4}+6 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{47 a_{1}}{15}-\frac{4 a_{0}}{5}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+20 a_{5}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{118 a_{1}}{45}+\frac{11 a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+24 a_{6}+6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{1229 a_{1}}{630}-\frac{59 a_{0}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-2 a_{1} x^{2}+\left(\frac{8 a_{1}}{3}-a_{0}\right) x^{3}+\left(-\frac{19 a_{1}}{6}+a_{0}\right) x^{4}+\left(\frac{47 a_{1}}{15}-\frac{4 a_{0}}{5}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}\right) a_{0}+\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}\right) c_{1}+\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}+\frac{11}{15} x^{6}\right) y(0) \tag{1}\\
& +\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}-\frac{118}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}\right) c_{1}+\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}+\frac{11}{15} x^{6}\right) y(0) \\
& +\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}-\frac{118}{45} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}\right) c_{1}+\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-4 y^{\prime}-6 y x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+4 y^{\prime}+6 y x=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert y^{\prime} to series expansion

$$
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
$$

- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}+4 a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+4 a_{k+1}(k+1)+6 a_{k-1}\right) x^{k}\right)=0
$$

- Each term must be 0
$2 a_{2}+4 a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+4 a_{k+1} k+6 a_{k-1}+4 a_{k+1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+4 a_{k+2}(k+1)+6 a_{k}+4 a_{k+2}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{2\left(2 k a_{k+2}+3 a_{k}+4 a_{k+2}\right)}{k^{2}+5 k+6}, 2 a_{2}+4 a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
Order:=6;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+4*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+6*x*y(x)=0,y(x),type='series',x=0)
```

$y(x)=\left(1-x^{3}+x^{4}-\frac{4}{5} x^{5}\right) y(0)+\left(x-2 x^{2}+\frac{8}{3} x^{3}-\frac{19}{6} x^{4}+\frac{47}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 55
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+4 * y$ ' $[\mathrm{x}]+6 * x * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(-\frac{4 x^{5}}{5}+x^{4}-x^{3}+1\right)+c_{2}\left(\frac{47 x^{5}}{15}-\frac{19 x^{4}}{6}+\frac{8 x^{3}}{3}-2 x^{2}+x\right)
$$

14.6 problem 5. case $x_{0}=4$

14.6.1 Maple step by step solution

Internal problem ID [738]
Internal file name [OUTPUT/738_Sunday_June_05_2022_01_48_23_AM_64748739/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 5. case $x_{0}=4$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+4 y^{\prime}+6 y x=0
$$

With the expansion point for the power series method at $x=4$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-4
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)+6 y(t)(t+4)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{825}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{826}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-6 y(t) t-24 y(t)-4 \frac{d}{d t} y(t) \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =(-6 t-8)\left(\frac{d}{d t} y(t)\right)+(24 t+90) y(t) \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =(48 t+116)\left(\frac{d}{d t} y(t)\right)+36 y(t)\left(t^{2}+\frac{16}{3} t+6\right) \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\left(36 t^{2}-200\right)\left(\frac{d}{d t} y(t)\right)-288\left(t^{2}+\frac{37}{6} t+9\right) y(t) \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\left(-432 t^{2}-1704 t-1792\right)\left(\frac{d}{d t} y(t)\right)-216\left(t^{3}+4 t^{2}-\frac{26}{9} t-14\right) y(t)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-24 y(0)-4 y^{\prime}(0) \\
& F_{1}=-8 y^{\prime}(0)+90 y(0) \\
& F_{2}=116 y^{\prime}(0)+216 y(0) \\
& F_{3}=-200 y^{\prime}(0)-2592 y(0) \\
& F_{4}=-1792 y^{\prime}(0)+3024 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-12 t^{2}+15 t^{3}+9 t^{4}-\frac{108}{5} t^{5}+\frac{21}{5} t^{6}\right) y(0) \\
& +\left(t-2 t^{2}-\frac{4}{3} t^{3}+\frac{29}{6} t^{4}-\frac{5}{3} t^{5}-\frac{112}{45} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=-6\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) t-24\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)-4\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} t^{n-1}\right)+\left(\sum_{n=0}^{\infty} 6 t^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 24 a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n} \\
\sum_{n=1}^{\infty} 4 n a_{n} t^{n-1} & =\sum_{n=0}^{\infty} 4(1+n) a_{1+n} t^{n} \\
\sum_{n=0}^{\infty} 6 t^{1+n} a_{n} & =\sum_{n=1}^{\infty} 6 a_{n-1} t^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n}\right)+\left(\sum_{n=0}^{\infty} 4(1+n) a_{1+n} t^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 6 a_{n-1} t^{n}\right)+\left(\sum_{n=0}^{\infty} 24 a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+4 a_{1}+24 a_{0}=0 \\
a_{2}=-12 a_{0}-2 a_{1}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+4(1+n) a_{1+n}+6 a_{n-1}+24 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{2\left(2 n a_{1+n}+12 a_{n}+2 a_{1+n}+3 a_{n-1}\right)}{(n+2)(1+n)} \\
& =-\frac{24 a_{n}}{(n+2)(1+n)}-\frac{2(2 n+2) a_{1+n}}{(n+2)(1+n)}-\frac{6 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+8 a_{2}+6 a_{0}+24 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=15 a_{0}-\frac{4 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+12 a_{3}+6 a_{1}+24 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=9 a_{0}+\frac{29 a_{1}}{6}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+16 a_{4}+6 a_{2}+24 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{108 a_{0}}{5}-\frac{5 a_{1}}{3}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+20 a_{5}+6 a_{3}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{21 a_{0}}{5}-\frac{112 a_{1}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+24 a_{6}+6 a_{4}+24 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{303 a_{0}}{35}+\frac{1061 a_{1}}{630}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\left(-12 a_{0}-2 a_{1}\right) t^{2}+\left(15 a_{0}-\frac{4 a_{1}}{3}\right) t^{3} \\
& +\left(9 a_{0}+\frac{29 a_{1}}{6}\right) t^{4}+\left(-\frac{108 a_{0}}{5}-\frac{5 a_{1}}{3}\right) t^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-12 t^{2}+15 t^{3}+9 t^{4}-\frac{108}{5} t^{5}\right) a_{0}+\left(t-2 t^{2}-\frac{4}{3} t^{3}+\frac{29}{6} t^{4}-\frac{5}{3} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
y(t)=\left(1-12 t^{2}+15 t^{3}+9 t^{4}-\frac{108}{5} t^{5}\right) c_{1}+\left(t-2 t^{2}-\frac{4}{3} t^{3}+\frac{29}{6} t^{4}-\frac{5}{3} t^{5}\right) c_{2}+O\left(t^{6}\right)
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-4$ results in

$$
\begin{aligned}
y= & \left(1-12(x-4)^{2}+15(x-4)^{3}+9(x-4)^{4}-\frac{108(x-4)^{5}}{5}+\frac{21(x-4)^{6}}{5}\right) y(4) \\
& +\left(x-4-2(x-4)^{2}-\frac{4(x-4)^{3}}{3}+\frac{29(x-4)^{4}}{6}-\frac{5(x-4)^{5}}{3}-\frac{112(x-4)^{6}}{45}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \left(1-12(x-4)^{2}+15(x-4)^{3}+9(x-4)^{4}-\frac{108(x-4)^{5}}{5}+\frac{21(x-4)^{6}}{5}\right) y(4) \\
& +\left(x-4-2(x-4)^{2}-\frac{4(x-4)^{3}}{3}+\frac{29(x-4)^{4}}{6}-\frac{5(x-4)^{5}}{3}-\frac{112(x-4)^{6}}{45}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-12(x-4)^{2}+15(x-4)^{3}+9(x-4)^{4}-\frac{108(x-4)^{5}}{5}+\frac{21(x-4)^{6}}{5}\right) y(4) \\
& +\left(x-4-2(x-4)^{2}-\frac{4(x-4)^{3}}{3}+\frac{29(x-4)^{4}}{6}-\frac{5(x-4)^{5}}{3}-\frac{112(x-4)^{6}}{45}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Verified OK.

14.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+6 y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert y^{\prime} to series expansion

$$
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
$$

- Shift index using $k->k+1$

$$
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions

$$
2 a_{2}+4 a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+4 a_{k+1}(k+1)+6 a_{k-1}\right) x^{k}\right)=0
$$

- Each term must be 0
$2 a_{2}+4 a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+4 a_{k+1} k+6 a_{k-1}+4 a_{k+1}=0
$$

- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+4 a_{k+2}(k+1)+6 a_{k}+4 a_{k+2}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{2\left(2 k a_{k+2}+3 a_{k}+4 a_{k+2}\right)}{k^{2}+5 k+6}, 2 a_{2}+4 a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

```
Order:=6;
dsolve(diff(y(x),x$2)+4*diff(y(x),x)+6*x*y(x)=0,y(x),type='series', x=4);
```

$$
\begin{aligned}
y(x)= & \left(1-12(x-4)^{2}+15(x-4)^{3}+9(x-4)^{4}-\frac{108(x-4)^{5}}{5}\right) y(4) \\
& +\left(x-4-2(x-4)^{2}-\frac{4(x-4)^{3}}{3}+\frac{29(x-4)^{4}}{6}-\frac{5(x-4)^{5}}{3}\right) D(y)(4)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 79
AsymptoticDSolveValue $\left[\mathrm{y}^{\prime \prime}\right.$ ' $[\mathrm{x}]+4 * \mathrm{y}$ ' $\left.[\mathrm{x}]+6 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 4,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{108}{5}(x-4)^{5}+9(x-4)^{4}+15(x-4)^{3}-12(x-4)^{2}+1\right) \\
& +c_{2}\left(-\frac{5}{3}(x-4)^{5}+\frac{29}{6}(x-4)^{4}-\frac{4}{3}(x-4)^{3}-2(x-4)^{2}+x-4\right)
\end{aligned}
$$

14.7 problem 6. case $x_{0}=0$

14.7.1 Maple step by step solution

3403
Internal problem ID [739]
Internal file name [OUTPUT/739_Sunday_June_05_2022_01_48_24_AM_30076032/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 6. case $x_{0}=0$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{828}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{829}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y^{\prime} x+4 y}{x^{2}-2 x-3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(-2 x^{2}+8 x+15\right) y^{\prime}+(12 x-8) y}{\left(x^{2}-2 x-3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(18 x^{3}-64 x^{2}-67 x+60\right) y^{\prime}-28 y\left(x^{2}-\frac{6}{7} x+\frac{32}{7}\right)}{\left(x^{2}-2 x-3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-100 x^{4}+400 x^{3}+20 x^{2}-120 x+945\right) y^{\prime}+40\left(x^{3}+2 x^{2}+\frac{65}{2} x-27\right) y}{\left(x^{2}-2 x-3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(540 x^{5}-2400 x^{4}+2880 x^{3}-6480 x^{2}-11085 x+11160\right) y^{\prime}+200 y\left(x^{4}-10 x^{3}-\frac{461}{10} x^{2}+\frac{411}{5} x-\frac{408}{5}\right)}{\left(x^{2}-2 x-3\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=\frac{4 y(0)}{3} \\
& F_{1}=-\frac{8 y(0)}{9}+\frac{5 y^{\prime}(0)}{3} \\
& F_{2}=\frac{128 y(0)}{27}-\frac{20 y^{\prime}(0)}{9} \\
& F_{3}=-\frac{40 y(0)}{3}+\frac{35 y^{\prime}(0)}{3} \\
& F_{4}=\frac{5440 y(0)}{81}-\frac{1240 y^{\prime}(0)}{27}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}+\frac{68}{729} x^{6}\right) y(0) \\
& +\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}-\frac{31}{486} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-2 x-3\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-2 n x^{n-1} a_{n}(n-1)\right) \tag{2}\\
& \quad+\sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the
power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(-2 n x^{n-1} a_{n}(n-1)\right)=\sum_{n=1}^{\infty}\left(-2(n+1) a_{n+1} n x^{n}\right) \\
& \sum_{n=2}^{\infty}\left(-3 n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=1}^{\infty}\left(-2(n+1) a_{n+1} n x^{n}\right) \tag{3}\\
& \quad+\sum_{n=0}^{\infty}\left(-3(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-6 a_{2}+4 a_{0}=0 \\
a_{2}=\frac{2 a_{0}}{3}
\end{gathered}
$$

$n=1$ gives

$$
-4 a_{2}-18 a_{3}+5 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{4 a_{0}}{27}+\frac{5 a_{1}}{18}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-2(n+1) a_{n+1} n-3(n+2) a_{n+2}(n+1)+n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n}-2 n^{2} a_{n+1}-2 n a_{n+1}+4 a_{n}}{3(n+2)(n+1)} \\
& =\frac{\left(n^{2}+4\right) a_{n}}{3(n+2)(n+1)}+\frac{\left(-2 n^{2}-2 n\right) a_{n+1}}{3(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
8 a_{2}-12 a_{3}-36 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{16 a_{0}}{81}-\frac{5 a_{1}}{54}
$$

For $n=3$ the recurrence equation gives

$$
13 a_{3}-24 a_{4}-60 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{0}}{9}+\frac{7 a_{1}}{72}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{4}-40 a_{5}-90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{68 a_{0}}{729}-\frac{31 a_{1}}{486}
$$

For $n=5$ the recurrence equation gives

$$
29 a_{5}-60 a_{6}-126 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{2143 a_{0}}{30618}+\frac{4307 a_{1}}{81648}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{2 a_{0} x^{2}}{3}+\left(-\frac{4 a_{0}}{27}+\frac{5 a_{1}}{18}\right) x^{3}+\left(\frac{16 a_{0}}{81}-\frac{5 a_{1}}{54}\right) x^{4}+\left(-\frac{a_{0}}{9}+\frac{7 a_{1}}{72}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}\right) a_{0}+\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}\right) c_{1}+\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}+\frac{68}{729} x^{6}\right) y(0) \tag{1}\\
& +\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}-\frac{31}{486} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}\right) c_{1}+\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}\right) c_{2}+O\left(x^{\beta \gtrless 2}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}+\frac{68}{729} x^{6}\right) y(0) \\
& +\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}-\frac{31}{486} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}\right) c_{1}+\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.7.1 Maple step by step solution

Let's solve
$\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x^{2}-2 x-3}-\frac{x y^{\prime}}{x^{2}-2 x-3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-2 x-3}+\frac{4 y}{x^{2}-2 x-3}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{x}{x^{2}-2 x-3}, P_{3}(x)=\frac{4}{x^{2}-2 x-3}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{4}$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-4 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-3+4 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(4 k+1+4 r)+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)\right) u^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-3+4 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{3}{4}\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
-4\left(k+\frac{1}{4}+r\right)(k+1+r) a_{k+1}+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r+r^{2}+4\right)}{(4 k+1+4 r)(k+1+r)}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]
$$

- \quad Recursion relation for $r=\frac{3}{4}$

$$
a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}
$$

- \quad Solution for $r=\frac{3}{4}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{3}{4}}\right), a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 49

```
Order:=6;
dsolve((x^2-2*x-3)*diff(y(x),x$2)+x*diff (y(x),x)+4*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(1+\frac{2}{3} x^{2}-\frac{4}{27} x^{3}+\frac{16}{81} x^{4}-\frac{1}{9} x^{5}\right) y(0) \\
& +\left(x+\frac{5}{18} x^{3}-\frac{5}{54} x^{4}+\frac{7}{72} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-2 * x-3\right) * y^{\prime} \cdot[x]+x * y '[x]+4 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{7 x^{5}}{72}-\frac{5 x^{4}}{54}+\frac{5 x^{3}}{18}+x\right)+c_{1}\left(-\frac{x^{5}}{9}+\frac{16 x^{4}}{81}-\frac{4 x^{3}}{27}+\frac{2 x^{2}}{3}+1\right)
$$

14.8 problem 6. case $x_{0}=4$ only

14.8.1 Maple step by step solution

3415
Internal problem ID [740]
Internal file name [OUTPUT/740_Sunday_June_05_2022_01_48_25_AM_34591398/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 6. case $x_{0}=4$ only.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

With the expansion point for the power series method at $x=4$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-4
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left((t+4)^{2}-2 t-11\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(\frac{d}{d t} y(t)\right)(t+4)+4 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{831}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{832}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{t\left(\frac{d}{d t} y(t)\right)+4 \frac{d}{d t} y(t)+4 y(t)}{t^{2}+6 t+5} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{\left(-2 t^{2}-8 t+15\right)\left(\frac{d}{d t} y(t)\right)+(12 t+40) y(t)}{\left(t^{2}+6 t+5\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{\left(18 t^{3}+152 t^{2}+285 t-80\right)\left(\frac{d}{d t} y(t)\right)-28\left(t^{2}+\frac{50}{7} t+\frac{120}{7}\right) y(t)}{\left(t^{2}+6 t+5\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(-100 t^{4}-1200 t^{3}-4780 t^{2}-6360 t+785\right)\left(\frac{d}{d t} y(t)\right)+40\left(t^{3}+14 t^{2}+\frac{193}{2} t+199\right) y(t)}{\left(t^{2}+6 t+5\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(540 t^{5}+8400 t^{4}+50880 t^{3}+143280 t^{2}+152115 t-13980\right)\left(\frac{d}{d t} y(t)\right)+200\left(t^{4}+6 t^{3}-\frac{701}{10} t^{2}-\frac{2553}{5} t-1\right.}{\left(t^{2}+6 t+5\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and
$y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{4 y(0)}{5}-\frac{4 y^{\prime}(0)}{5} \\
& F_{1}=\frac{8 y(0)}{5}+\frac{3 y^{\prime}(0)}{5} \\
& F_{2}=-\frac{96 y(0)}{25}-\frac{16 y^{\prime}(0)}{25} \\
& F_{3}=\frac{1592 y(0)}{125}+\frac{157 y^{\prime}(0)}{125} \\
& F_{4}=-\frac{34976 y(0)}{625}-\frac{2796 y^{\prime}(0)}{625}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-\frac{2}{5} t^{2}+\frac{4}{15} t^{3}-\frac{4}{25} t^{4}+\frac{199}{1875} t^{5}-\frac{2186}{28125} t^{6}\right) y(0) \\
& +\left(t-\frac{2}{5} t^{2}+\frac{1}{10} t^{3}-\frac{2}{75} t^{4}+\frac{157}{15000} t^{5}-\frac{233}{37500} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{2}+6 t+5\right)+\left(\frac{d}{d t} y(t)\right)(t+4)+4 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(t^{2}+6 t+5\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)(t+4)+4\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 6 n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} 5 n(n-1) a_{n} t^{n-2}\right) \tag{2}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} t^{n-1}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} t^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} 6 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 6(n+1) a_{n+1} n t^{n} \\
\sum_{n=2}^{\infty} 5 n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty} 5(n+2) a_{n+2}(n+1) t^{n} \\
\sum_{n=1}^{\infty} 4 n a_{n} t^{n-1} & =\sum_{n=0}^{\infty} 4(n+1) a_{n+1} t^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=1}^{\infty} 6(n+1) a_{n+1} n t^{n}\right)+\left(\sum_{n=0}^{\infty} 5(n+2) a_{n+2}(n+1) t^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} 4(n+1) a_{n+1} t^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
10 a_{2}+4 a_{1}+4 a_{0}=0 \\
a_{2}=-\frac{2 a_{0}}{5}-\frac{2 a_{1}}{5}
\end{gathered}
$$

$n=1$ gives

$$
20 a_{2}+30 a_{3}+5 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{4 a_{0}}{15}+\frac{a_{1}}{10}
$$

For $2 \leq n$, the recurrence equation is
$n a_{n}(n-1)+6(n+1) a_{n+1} n+5(n+2) a_{n+2}(n+1)+n a_{n}+4(n+1) a_{n+1}+4 a_{n}=0$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}+6 n^{2} a_{n+1}+10 n a_{n+1}+4 a_{n}+4 a_{n+1}}{5(n+2)(n+1)} \\
& =-\frac{\left(n^{2}+4\right) a_{n}}{5(n+2)(n+1)}-\frac{\left(6 n^{2}+10 n+4\right) a_{n+1}}{5(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
8 a_{2}+48 a_{3}+60 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{4 a_{0}}{25}-\frac{2 a_{1}}{75}
$$

For $n=3$ the recurrence equation gives

$$
13 a_{3}+88 a_{4}+100 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{199 a_{0}}{1875}+\frac{157 a_{1}}{15000}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{4}+140 a_{5}+150 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{2186 a_{0}}{28125}-\frac{233 a_{1}}{37500}
$$

For $n=5$ the recurrence equation gives

$$
29 a_{5}+204 a_{6}+210 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{39931 a_{0}}{656250}+\frac{72299 a_{1}}{15750000}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\left(-\frac{2 a_{0}}{5}-\frac{2 a_{1}}{5}\right) t^{2}+\left(\frac{4 a_{0}}{15}+\frac{a_{1}}{10}\right) t^{3} \\
& +\left(-\frac{4 a_{0}}{25}-\frac{2 a_{1}}{75}\right) t^{4}+\left(\frac{199 a_{0}}{1875}+\frac{157 a_{1}}{15000}\right) t^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y(t)= & \left(1-\frac{2}{5} t^{2}+\frac{4}{15} t^{3}-\frac{4}{25} t^{4}+\frac{199}{1875} t^{5}\right) a_{0} \tag{3}\\
& +\left(t-\frac{2}{5} t^{2}+\frac{1}{10} t^{3}-\frac{2}{75} t^{4}+\frac{157}{15000} t^{5}\right) a_{1}+O\left(t^{6}\right)
\end{align*}
$$

At $t=0$ the solution above becomes
$y(t)=\left(1-\frac{2}{5} t^{2}+\frac{4}{15} t^{3}-\frac{4}{25} t^{4}+\frac{199}{1875} t^{5}\right) c_{1}+\left(t-\frac{2}{5} t^{2}+\frac{1}{10} t^{3}-\frac{2}{75} t^{4}+\frac{157}{15000} t^{5}\right) c_{2}+O\left(t^{6}\right)$
Replacing t in the above with the original independent variable $x s$ using $t=x-4$ results in

$$
\begin{aligned}
y= & \left(1-\frac{2(x-4)^{2}}{5}+\frac{4(x-4)^{3}}{15}-\frac{4(x-4)^{4}}{25}+\frac{199(x-4)^{5}}{1875}-\frac{2186(x-4)^{6}}{28125}\right) y(4) \\
& +\left(x-4-\frac{2(x-4)^{2}}{5}+\frac{(x-4)^{3}}{10}-\frac{2(x-4)^{4}}{75}+\frac{157(x-4)^{5}}{15000}-\frac{233(x-4)^{6}}{37500}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \left(1-\frac{2(x-4)^{2}}{5}+\frac{4(x-4)^{3}}{15}-\frac{4(x-4)^{4}}{25}+\frac{199(x-4)^{5}}{1875}-\frac{2186(x-4)^{6}}{28125}\right) y(4) \\
& +\left(x-4-\frac{2(x-4)^{2}}{5}+\frac{(x-4)^{3}}{10}-\frac{2(x-4)^{4}}{75}+\frac{157(x-4)^{5}}{15000}-\frac{233(x-4)^{6}}{37500}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{2(x-4)^{2}}{5}+\frac{4(x-4)^{3}}{15}-\frac{4(x-4)^{4}}{25}+\frac{199(x-4)^{5}}{1875}-\frac{2186(x-4)^{6}}{28125}\right) y(4) \\
& +\left(x-4-\frac{2(x-4)^{2}}{5}+\frac{(x-4)^{3}}{10}-\frac{2(x-4)^{4}}{75}+\frac{157(x-4)^{5}}{15000}-\frac{233(x-4)^{6}}{37500}\right) y^{\prime}(4) \\
& +O\left((x-4)^{6}\right)
\end{aligned}
$$

Verified OK.

14.8.1 Maple step by step solution

Let's solve

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x^{2}-2 x-3}-\frac{x y^{\prime}}{x^{2}-2 x-3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-2 x-3}+\frac{4 y}{x^{2}-2 x-3}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{x}{x^{2}-2 x-3}, P_{3}(x)=\frac{4}{x^{2}-2 x-3}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{4}
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

- Change variables using $x=u-1$ so that the regular singular point is at $u=0$

$$
\left(u^{2}-4 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0
$$

- \quad Assume series solution for $y(u)$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
$$

Rewrite ODE with series expansions

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-3+4 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(4 k+1+4 r)+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)\right) u^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-3+4 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{3}{4}\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
-4\left(k+\frac{1}{4}+r\right)(k+1+r) a_{k+1}+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r+r^{2}+4\right)}{(4 k+1+4 r)(k+1+r)}$
- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]
$$

- Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]
$$

- \quad Recursion relation for $r=\frac{3}{4}$

$$
a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{6}\right)}{(4 k+4)\left(k+\frac{1}{4}\right)}
$$

- \quad Solution for $r=\frac{3}{4}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{6}\right)}{(4 k+4)\left(k+\frac{+}{4}\right)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{6}\right)}{(4 k+4)\left(k+\frac{1}{4}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{3}{4}}\right), a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{13}\right)}{(4 k+4)\left(k+\frac{6}{4}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 54

$$
\begin{aligned}
& \text { Order: }=6 \text {; } \\
& \text { dsolve }\left(\left(x^{\wedge} 2-2 * x-3\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+4 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}) \text {,type='series ' , } \mathrm{x}=4\right) ; \\
& y(x)= \\
& \\
& \quad\left(1-\frac{2(x-4)^{2}}{5}+\frac{4(x-4)^{3}}{15}-\frac{4(x-4)^{4}}{25}+\frac{199(x-4)^{5}}{1875}\right) y(4) \\
& \quad+\left(x-4-\frac{2(x-4)^{2}}{5}+\frac{(x-4)^{3}}{10}-\frac{2(x-4)^{4}}{75}+\frac{157(x-4)^{5}}{15000}\right) D(y)(4)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87
AsymptoticDSolveValue[($\left.\left.x^{\sim} 2-2 * x-3\right) * y{ }^{\prime}{ }^{\prime}[x]+x * y '[x]+4 * y[x]==0, y[x],\{x, 4,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{199(x-4)^{5}}{1875}-\frac{4}{25}(x-4)^{4}+\frac{4}{15}(x-4)^{3}-\frac{2}{5}(x-4)^{2}+1\right) \\
& +c_{2}\left(\frac{157(x-4)^{5}}{15000}-\frac{2}{75}(x-4)^{4}+\frac{1}{10}(x-4)^{3}-\frac{2}{5}(x-4)^{2}+x-4\right)
\end{aligned}
$$

14.9 problem 6. case $x_{0}=-4$

14.9.1 Maple step by step solution

3428
Internal problem ID [741]
Internal file name [OUTPUT/741_Sunday_June_05_2022_01_48_27_AM_34703844/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 6. case $x_{0}=-4$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

With the expansion point for the power series method at $x=-4$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x+4
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left((t-4)^{2}-2 t+5\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(\frac{d}{d t} y(t)\right)(t-4)+4 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{834}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{835}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{t\left(\frac{d}{d t} y(t)\right)-4 \frac{d}{d t} y(t)+4 y(t)}{t^{2}-10 t+21} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{\left(-2 t^{2}+24 t-49\right)\left(\frac{d}{d t} y(t)\right)+(12 t-56) y(t)}{(t-3)^{2}(t-7)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{\left(18 t^{3}-280 t^{2}+1309 t-1848\right)\left(\frac{d}{d t} y(t)\right)-28\left(t^{2}-\frac{62}{7} t+24\right) y(t)}{(t-3)^{3}(t-7)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(-100 t^{4}+2000 t^{3}-14380 t^{2}+44520 t-49455\right)\left(\frac{d}{d t} y(t)\right)+40 y(t)\left(t^{3}-10 t^{2}+\frac{129}{2} t-189\right)}{(t-3)^{4}(t-7)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(540 t^{5}-13200 t^{4}+127680 t^{3}-617040 t^{2}+1484595 t-1399860\right)\left(\frac{d}{d t} y(t)\right)+200\left(t^{4}-26 t^{3}+\frac{1699}{10} t^{2}-\right.}{(t-3)^{5}(t-7)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and
$y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{4 y(0)}{21}+\frac{4 y^{\prime}(0)}{21} \\
& F_{1}=-\frac{8 y(0)}{63}-\frac{y^{\prime}(0)}{9} \\
& F_{2}=-\frac{32 y(0)}{441}-\frac{88 y^{\prime}(0)}{441} \\
& F_{3}=-\frac{40 y(0)}{1029}-\frac{785 y^{\prime}(0)}{3087} \\
& F_{4}=-\frac{800 y(0)}{64827}-\frac{22220 y^{\prime}(0)}{64827}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-\frac{2}{21} t^{2}-\frac{4}{189} t^{3}-\frac{4}{1323} t^{4}-\frac{1}{3087} t^{5}-\frac{10}{583443} t^{6}\right) y(0) \\
& +\left(t+\frac{2}{21} t^{2}-\frac{1}{54} t^{3}-\frac{11}{1323} t^{4}-\frac{157}{74088} t^{5}-\frac{1111}{2333772} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{2}-10 t+21\right)+\left(\frac{d}{d t} y(t)\right)(t-4)+4 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(t^{2}-10 t+21\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)(t-4)+4\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-10 n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} 21 n(n-1) a_{n} t^{n-2}\right) \tag{2}\\
& \quad+\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right)+\sum_{n=1}^{\infty}\left(-4 n a_{n} t^{n-1}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} t^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-10 n t^{n-1} a_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-10(n+1) a_{n+1} n t^{n}\right) \\
\sum_{n=2}^{\infty} 21 n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty} 21(n+2) a_{n+2}(n+1) t^{n} \\
\sum_{n=1}^{\infty}\left(-4 n a_{n} t^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-4(n+1) a_{n+1} t^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\sum_{n=1}^{\infty}\left(-10(n+1) a_{n+1} n t^{n}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 21(n+2) a_{n+2}(n+1) t^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} t^{n}\right) \tag{3}\\
& \quad+\sum_{n=0}^{\infty}\left(-4(n+1) a_{n+1} t^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
42 a_{2}-4 a_{1}+4 a_{0}=0 \\
a_{2}=-\frac{2 a_{0}}{21}+\frac{2 a_{1}}{21}
\end{gathered}
$$

$n=1$ gives

$$
-28 a_{2}+126 a_{3}+5 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{4 a_{0}}{189}-\frac{a_{1}}{54}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-10(n+1) a_{n+1} n+21(n+2) a_{n+2}(n+1)+n a_{n}-4(n+1) a_{n+1}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}-10 n^{2} a_{n+1}-14 n a_{n+1}+4 a_{n}-4 a_{n+1}}{21(n+2)(n+1)} \\
& =-\frac{\left(n^{2}+4\right) a_{n}}{21(n+2)(n+1)}-\frac{\left(-10 n^{2}-14 n-4\right) a_{n+1}}{21(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
8 a_{2}-72 a_{3}+252 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{4 a_{0}}{1323}-\frac{11 a_{1}}{1323}
$$

For $n=3$ the recurrence equation gives

$$
13 a_{3}-136 a_{4}+420 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{0}}{3087}-\frac{157 a_{1}}{74088}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{4}-220 a_{5}+630 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{10 a_{0}}{583443}-\frac{1111 a_{1}}{2333772}
$$

For $n=5$ the recurrence equation gives

$$
29 a_{5}-324 a_{6}+882 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{83 a_{0}}{19059138}-\frac{48121 a_{1}}{457419312}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\left(-\frac{2 a_{0}}{21}+\frac{2 a_{1}}{21}\right) t^{2}+\left(-\frac{4 a_{0}}{189}-\frac{a_{1}}{54}\right) t^{3} \\
& +\left(-\frac{4 a_{0}}{1323}-\frac{11 a_{1}}{1323}\right) t^{4}+\left(-\frac{a_{0}}{3087}-\frac{157 a_{1}}{74088}\right) t^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y(t)= & \left(1-\frac{2}{21} t^{2}-\frac{4}{189} t^{3}-\frac{4}{1323} t^{4}-\frac{1}{3087} t^{5}\right) a_{0} \tag{3}\\
& +\left(t+\frac{2}{21} t^{2}-\frac{1}{54} t^{3}-\frac{11}{1323} t^{4}-\frac{157}{74088} t^{5}\right) a_{1}+O\left(t^{6}\right)
\end{align*}
$$

At $t=0$ the solution above becomes

$$
\begin{aligned}
y(t)= & \left(1-\frac{2}{21} t^{2}-\frac{4}{189} t^{3}-\frac{4}{1323} t^{4}-\frac{1}{3087} t^{5}\right) c_{1} \\
& +\left(t+\frac{2}{21} t^{2}-\frac{1}{54} t^{3}-\frac{11}{1323} t^{4}-\frac{157}{74088} t^{5}\right) c_{2}+O\left(t^{6}\right)
\end{aligned}
$$

Replacing t in the above with the original independent variable $x s$ using $t=x+4$ results in

$$
\begin{aligned}
y= & \left(1-\frac{2(x+4)^{2}}{21}-\frac{4(x+4)^{3}}{189}-\frac{4(x+4)^{4}}{1323}-\frac{(x+4)^{5}}{3087}-\frac{10(x+4)^{6}}{583443}\right) y(-4) \\
& +\left(x+4+\frac{2(x+4)^{2}}{21}-\frac{(x+4)^{3}}{54}-\frac{11(x+4)^{4}}{1323}-\frac{157(x+4)^{5}}{74088}-\frac{1111(x+4)^{6}}{2333772}\right) y^{\prime}(-4) \\
& +O\left((x+4)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{2(x+4)^{2}}{21}-\frac{4(x+4)^{3}}{189}-\frac{4(x+4)^{4}}{1323}-\frac{(x+4)^{5}}{3087}-\frac{10(x+4)^{6}}{583443}\right) y(-4) \\
& +\left(x+4+\frac{2(x+4)^{2}}{21}-\frac{(x+4)^{3}}{54}-\frac{11(x+4)^{4}}{1323}-\frac{157(x+4)^{5}}{74088}\right. \tag{1}\\
& \left.-\frac{1111(x+4)^{6}}{2333772}\right) y^{\prime}(-4)+O\left((x+4)^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{2(x+4)^{2}}{21}-\frac{4(x+4)^{3}}{189}-\frac{4(x+4)^{4}}{1323}-\frac{(x+4)^{5}}{3087}-\frac{10(x+4)^{6}}{583443}\right) y(-4) \\
& +\left(x+4+\frac{2(x+4)^{2}}{21}-\frac{(x+4)^{3}}{54}-\frac{11(x+4)^{4}}{1323}-\frac{157(x+4)^{5}}{74088}-\frac{1111(x+4)^{6}}{2333772}\right) y^{\prime}(-4) \\
& +O\left((x+4)^{6}\right)
\end{aligned}
$$

Verified OK.

14.9.1 Maple step by step solution

Let's solve

$$
\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x^{2}-2 x-3}-\frac{x y^{\prime}}{x^{2}-2 x-3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-2 x-3}+\frac{4 y}{x^{2}-2 x-3}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{x}{x^{2}-2 x-3}, P_{3}(x)=\frac{4}{x^{2}-2 x-3}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{4}$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-2 x-3\right) y^{\prime \prime}+y^{\prime} x+4 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-4 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-3+4 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(4 k+1+4 r)+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)\right) u^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-3+4 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{3}{4}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$-4\left(k+\frac{1}{4}+r\right)(k+1+r) a_{k+1}+a_{k}\left(k^{2}+2 k r+r^{2}+4\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}\left(k^{2}+2 k r+r^{2}+4\right)}{(4 k+1+4 r)(k+1+r)}$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}\right]$
- Recursion relation for $r=\frac{3}{4}$
$a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}$
- \quad Solution for $r=\frac{3}{4}$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]$
- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{3}{4}}, a_{k+1}=\frac{a_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{3}{4}}\right), a_{k+1}=\frac{a_{k}\left(k^{2}+4\right)}{(4 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k^{2}+\frac{3}{2} k+\frac{73}{16}\right)}{(4 k+4)\left(k+\frac{7}{4}\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        <- heuristic approach successful
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 54

```
Order:=6;
dsolve((x^2-2*x-3)*diff(y(x),x$2)+x*diff (y (x),x)+4*y(x)=0,y(x),type='series',x=-4);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{2(x+4)^{2}}{21}-\frac{4(x+4)^{3}}{189}-\frac{4(x+4)^{4}}{1323}-\frac{(x+4)^{5}}{3087}\right) y(-4) \\
& +\left(x+4+\frac{2(x+4)^{2}}{21}-\frac{(x+4)^{3}}{54}-\frac{11(x+4)^{4}}{1323}-\frac{157(x+4)^{5}}{74088}\right) D(y)(-4)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87
AsymptoticDSolveValue[($\left.x^{\wedge} 2-2 * x-3\right) * y$ ' $[x]+x * y$ ' $\left.[x]+4 * y[x]==0, y[x],\{x,-4,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{(x+4)^{5}}{3087}-\frac{4(x+4)^{4}}{1323}-\frac{4}{189}(x+4)^{3}-\frac{2}{21}(x+4)^{2}+1\right) \\
& +c_{2}\left(-\frac{157(x+4)^{5}}{74088}-\frac{11(x+4)^{4}}{1323}-\frac{1}{54}(x+4)^{3}+\frac{2}{21}(x+4)^{2}+x+4\right)
\end{aligned}
$$

14.10 problem 7. case $x_{0}=0$

14.10.1 Maple step by step solution

Internal problem ID [742]
Internal file name [OUTPUT/742_Sunday_June_05_2022_01_48_29_AM_48339428/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 7. case $x_{0}=0$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{837}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{838}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{4 y^{\prime} x+y}{x^{3}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(7 x^{3}+16 x^{2}-5\right) y^{\prime}+3\left(x+\frac{4}{3}\right) x y}{\left(x^{3}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-18 x^{5}-88 x^{4}-64 x^{3}+54 x^{2}+56 x\right) y^{\prime}-12\left(x^{4}+\frac{9}{4} x^{3}+\frac{4}{3} x^{2}-\frac{1}{2} x-\frac{3}{4}\right) y}{\left(x^{3}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(60 x^{7}+485 x^{6}+720 x^{5}-218 x^{4}-1034 x^{3}-432 x^{2}+114 x+65\right) y^{\prime}+60\left(x^{6}+3 x^{5}+\frac{10}{3} x^{4}-\frac{8}{15} x^{3}-\right.}{\left(x^{3}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-240 x^{9}-2970 x^{8}-6780 x^{7}-688 x^{6}+13052 x^{5}+12168 x^{4}-424 x^{3}-4554 x^{2}-1212 x+120\right) y^{\prime}-}{\left(x^{3}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-5 y^{\prime}(0) \\
& F_{2}=9 y(0) \\
& F_{3}=6 y(0)+65 y^{\prime}(0) \\
& F_{4}=-153 y(0)+120 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}-\frac{17}{80} x^{6}\right) y(0)+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}+\frac{1}{6} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{3}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+4\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1)=\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n} \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

$n=1$ gives

$$
6 a_{3}+5 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{5 a_{1}}{6}
$$

$n=2$ gives

$$
12 a_{4}+9 a_{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
12 a_{4}-\frac{9 a_{0}}{2}=0
$$

Or

$$
a_{4}=\frac{3 a_{0}}{8}
$$

For $3 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n-1) a_{n-1}(n-2)+(n+2) a_{n+2}(1+n)+4 n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{aligned}
a_{n+2} & =-\frac{n^{2} a_{n-1}+4 n a_{n}-3 n a_{n-1}+a_{n}+2 a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{(4 n+1) a_{n}}{(n+2)(1+n)}-\frac{\left(n^{2}-3 n+2\right) a_{n-1}}{(n+2)(1+n)}
\end{aligned}
$$

For $n=3$ the recurrence equation gives

$$
2 a_{2}+20 a_{5}+13 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{20}+\frac{13 a_{1}}{24}
$$

For $n=4$ the recurrence equation gives

$$
6 a_{3}+30 a_{6}+17 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{1}}{6}-\frac{17 a_{0}}{80}
$$

For $n=5$ the recurrence equation gives

$$
12 a_{4}+42 a_{7}+21 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{37 a_{0}}{280}-\frac{13 a_{1}}{48}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}-\frac{5 a_{1} x^{3}}{6}+\frac{3 a_{0} x^{4}}{8}+\left(\frac{a_{0}}{20}+\frac{13 a_{1}}{24}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}\right) a_{0}+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}\right) c_{1}+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}-\frac{17}{80} x^{6}\right) y(0)+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}+\frac{1}{6} x^{6}\right) y^{\prime}(0)+O \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}\right) c_{1}+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions
$y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}-\frac{17}{80} x^{6}\right) y(0)+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}+\frac{1}{6} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)$
Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}\right) c_{1}+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

14.10.1 Maple step by step solution

Let's solve

$$
\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 x y^{\prime}}{x^{3}+1}-\frac{y}{x^{3}+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{4 x y^{\prime}}{x^{3}+1}+\frac{y}{x^{3}+1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{4 x}{x^{3}+1}, P_{3}(x)=\frac{1}{x^{3}+1}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-\frac{4}{3}$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{3}-3 u^{2}+3 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(4 u-4)\left(\frac{d}{d u} y(u)\right)+y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-7+3 r) u^{-1+r}+\left(a_{1}(1+r)(-4+3 r)-a_{0}\left(3 r^{2}-7 r-1\right)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(3 k-\right.\right.
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r(-7+3 r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{0, \frac{7}{3}\right\}
$$

- Each term must be 0

$$
a_{1}(1+r)(-4+3 r)-a_{0}\left(3 r^{2}-7 r-1\right)=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(-3 a_{k}+a_{k-1}+3 a_{k+1}\right) k^{2}+\left(\left(-6 a_{k}+2 a_{k-1}+6 a_{k+1}\right) r+7 a_{k}-3 a_{k-1}-a_{k+1}\right) k+\left(-3 a_{k}+a_{k-1}\right.
$$

- \quad Shift index using $k->k+1$

$$
\left(-3 a_{k+1}+a_{k}+3 a_{k+2}\right)(k+1)^{2}+\left(\left(-6 a_{k+1}+2 a_{k}+6 a_{k+2}\right) r+7 a_{k+1}-3 a_{k}-a_{k+2}\right)(k+1)+(-
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+2 k r a_{k}-6 k r a_{k+1}+r^{2} a_{k}-3 r^{2} a_{k+1}-k a_{k}+k a_{k+1}-r a_{k}+r a_{k+1}+5 a_{k+1}}{3 k^{2}+6 k r+3 r^{2}+5 k+5 r-2}
$$

- Recursion relation for $r=0$

$$
a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}=0\right]
$$

- \quad Recursion relation for $r=\frac{7}{3}$
$a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}$
- \quad Solution for $r=\frac{7}{3}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{7}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}, 10 a_{1}+a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{7}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}, 10 a_{1}+a_{0}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{7}{3}}\right), a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
Order:=6;
dsolve((1+x`3)*diff(y(x),x$2)+4*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}+\frac{1}{20} x^{5}\right) y(0)+\left(x-\frac{5}{6} x^{3}+\frac{13}{24} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49
AsymptoticDSolveValue $\left[\left(1+x^{\wedge} 3\right) * y\right.$ ' $\left.'[x]+4 * x * y '[x]+y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{13 x^{5}}{24}-\frac{5 x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{5}}{20}+\frac{3 x^{4}}{8}-\frac{x^{2}}{2}+1\right)
$$

14.11 problem 7. case $x_{0}=2$

14.11.1 Maple step by step solution

3454
Internal problem ID [743]
Internal file name [OUTPUT/743_Sunday_June_05_2022_01_48_32_AM_81422129/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 7. case $x_{0}=2$.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=2$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=-2+x
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left((2+t)^{3}+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+4(2+t)\left(\frac{d}{d t} y(t)\right)+y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{840}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{841}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{4 t\left(\frac{d}{d t} y(t)\right)+8 \frac{d}{d t} y(t)+y(t)}{t^{3}+6 t^{2}+12 t+9} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{\left(7 t^{3}+58 t^{2}+148 t+115\right)\left(\frac{d}{d t} y(t)\right)+3\left(t+\frac{10}{3}\right)(2+t) y(t)}{(t+3)^{2}\left(t^{2}+3 t+3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{\left(-18 t^{5}-268 t^{4}-1488 t^{3}-3882 t^{2}-4752 t-2168\right)\left(\frac{d}{d t} y(t)\right)-12\left(t^{4}+\frac{41}{4} t^{3}+\frac{233}{6} t^{2}+\frac{383}{6} t+\frac{451}{12}\right) y(t}{(t+3)^{3}\left(t^{2}+3 t+3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(60 t^{7}+1325 t^{6}+11580 t^{5}+52882 t^{4}+137222 t^{3}+202452 t^{2}+156602 t+48565\right)\left(\frac{d}{d t} y(t)\right)+60\left(t^{6}+1\right.}{(t+3)^{4}\left(t^{2}+3 t+3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(-240 t^{9}-7290 t^{8}-88860 t^{7}-589528 t^{6}-2379124 t^{5}-6091072 t^{4}-9900360 t^{3}-9820346 t^{2}-5354\right.}{(t+}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and
$y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{y(0)}{9}-\frac{8 y^{\prime}(0)}{9} \\
& F_{1}=\frac{20 y(0)}{81}+\frac{115 y^{\prime}(0)}{81} \\
& F_{2}=-\frac{451 y(0)}{729}-\frac{2168 y^{\prime}(0)}{729} \\
& F_{3}=\frac{11510 y(0)}{6561}+\frac{48565 y^{\prime}(0)}{6561} \\
& F_{4}=-\frac{322189 y(0)}{59049}-\frac{1206632 y^{\prime}(0)}{59049}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-\frac{1}{18} t^{2}+\frac{10}{243} t^{3}-\frac{451}{17496} t^{4}+\frac{1151}{78732} t^{5}-\frac{322189}{42515280} t^{6}\right) y(0) \\
& +\left(t-\frac{4}{9} t^{2}+\frac{115}{486} t^{3}-\frac{271}{2187} t^{4}+\frac{9713}{157464} t^{5}-\frac{150829}{5314410} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{3}+6 t^{2}+12 t+9\right)+(8+4 t)\left(\frac{d}{d t} y(t)\right)+y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(t^{3}+6 t^{2}+12 t+9\right)+(8+4 t)\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n t^{1+n} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} 6 t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 12 n t^{n-1} a_{n}(n-1)\right) \tag{2}\\
& +\left(\sum_{n=2}^{\infty} 9 n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} 8 n a_{n} t^{n-1}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& =0
\end{align*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n t^{1+n} a_{n}(n-1) & =\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) t^{n} \\
\sum_{n=2}^{\infty} 12 n t^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty} 12(1+n) a_{1+n} n t^{n} \\
\sum_{n=2}^{\infty} 9 n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty} 9(n+2) a_{n+2}(1+n) t^{n} \\
\sum_{n=1}^{\infty} 8 n a_{n} t^{n-1} & =\sum_{n=0}^{\infty} 8(1+n) a_{1+n} t^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) t^{n}\right)+\left(\sum_{n=2}^{\infty} 6 t^{n} a_{n} n(n-1)\right) \\
& +\left(\sum_{n=1}^{\infty} 12(1+n) a_{1+n} n t^{n}\right)+\left(\sum_{n=0}^{\infty} 9(n+2) a_{n+2}(1+n) t^{n}\right) \tag{3}\\
& +\left(\sum_{n=0}^{\infty} 8(1+n) a_{1+n} t^{n}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
18 a_{2}+8 a_{1}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{18}-\frac{4 a_{1}}{9}
$$

$n=1$ gives

$$
40 a_{2}+54 a_{3}+5 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{10 a_{0}}{243}+\frac{115 a_{1}}{486}
$$

$n=2$ gives

$$
21 a_{2}+96 a_{3}+108 a_{4}=0
$$

Which after substituting earlier equations, simplifies to

$$
\frac{451 a_{0}}{162}+\frac{1084 a_{1}}{81}+108 a_{4}=0
$$

Or

$$
a_{4}=-\frac{451 a_{0}}{17496}-\frac{271 a_{1}}{2187}
$$

For $3 \leq n$, the recurrence equation is

$$
\begin{align*}
& (n-1) a_{n-1}(n-2)+6 n a_{n}(n-1)+12(1+n) a_{1+n} n \tag{4}\\
& \quad+9(n+2) a_{n+2}(1+n)+8(1+n) a_{1+n}+4 n a_{n}+a_{n}=0
\end{align*}
$$

Solving for a_{n+2}, gives
$a_{n+2}=-\frac{6 n^{2} a_{n}+12 n^{2} a_{1+n}+n^{2} a_{n-1}-2 n a_{n}+20 n a_{1+n}-3 n a_{n-1}+a_{n}+8 a_{1+n}+2 a_{n-1}}{9(n+2)(1+n)}$
(5)

$$
=-\frac{\left(6 n^{2}-2 n+1\right) a_{n}}{9(n+2)(1+n)}-\frac{\left(12 n^{2}+20 n+8\right) a_{1+n}}{9(n+2)(1+n)}-\frac{\left(n^{2}-3 n+2\right) a_{n-1}}{9(n+2)(1+n)}
$$

For $n=3$ the recurrence equation gives

$$
2 a_{2}+49 a_{3}+176 a_{4}+180 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{1151 a_{0}}{78732}+\frac{9713 a_{1}}{157464}
$$

For $n=4$ the recurrence equation gives

$$
6 a_{3}+89 a_{4}+280 a_{5}+270 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{322189 a_{0}}{42515280}-\frac{150829 a_{1}}{5314410}
$$

For $n=5$ the recurrence equation gives

$$
12 a_{4}+141 a_{5}+408 a_{6}+378 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{4747261 a_{0}}{1339231320}+\frac{30958471 a_{1}}{2678462640}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y(t)= & a_{0}+a_{1} t+\left(-\frac{a_{0}}{18}-\frac{4 a_{1}}{9}\right) t^{2}+\left(\frac{10 a_{0}}{243}+\frac{115 a_{1}}{486}\right) t^{3} \\
& +\left(-\frac{451 a_{0}}{17496}-\frac{271 a_{1}}{2187}\right) t^{4}+\left(\frac{1151 a_{0}}{78732}+\frac{9713 a_{1}}{157464}\right) t^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y(t)= & \left(1-\frac{1}{18} t^{2}+\frac{10}{243} t^{3}-\frac{451}{17496} t^{4}+\frac{1151}{78732} t^{5}\right) a_{0} \tag{3}\\
& +\left(t-\frac{4}{9} t^{2}+\frac{115}{486} t^{3}-\frac{271}{2187} t^{4}+\frac{9713}{157464} t^{5}\right) a_{1}+O\left(t^{6}\right)
\end{align*}
$$

At $t=0$ the solution above becomes

$$
\begin{aligned}
y(t)= & \left(1-\frac{1}{18} t^{2}+\frac{10}{243} t^{3}-\frac{451}{17496} t^{4}+\frac{1151}{78732} t^{5}\right) c_{1} \\
& +\left(t-\frac{4}{9} t^{2}+\frac{115}{486} t^{3}-\frac{271}{2187} t^{4}+\frac{9713}{157464} t^{5}\right) c_{2}+O\left(t^{6}\right)
\end{aligned}
$$

Replacing t in the above with the original independent variable $x s$ using $t=-2+x$ results in

$$
\begin{aligned}
& y=\left(1-\frac{(-2+x)^{2}}{18}+\frac{10(-2+x)^{3}}{243}-\frac{451(-2+x)^{4}}{17496}+\frac{1151(-2+x)^{5}}{78732}\right. \\
&\left.\quad-\frac{322189(-2+x)^{6}}{42515280}\right) y(2)+\left(-2+x-\frac{4(-2+x)^{2}}{9}+\frac{115(-2+x)^{3}}{486}\right. \\
&\left.-\frac{271(-2+x)^{4}}{2187}+\frac{9713(-2+x)^{5}}{157464}-\frac{150829(-2+x)^{6}}{5314410}\right) y^{\prime}(2)+O\left((-2+x)^{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& y=\left(1-\frac{(-2+x)^{2}}{18}+\frac{10(-2+x)^{3}}{243}-\frac{451(-2+x)^{4}}{17496}+\frac{1151(-2+x)^{5}}{78732}\right. \\
&\left.\quad-\frac{322189(-2+x)^{6}}{42515280}\right) y(2)+\left(-2+x-\frac{4(-2+x)^{2}}{9}+\frac{\left.115(-2+x)^{3}\right)}{486}\right. \\
&\left.-\frac{271(-2+x)^{4}}{2187}+\frac{9713(-2+x)^{5}}{157464}-\frac{150829(-2+x)^{6}}{5314410}\right) y^{\prime}(2)+O\left((-2+x)^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& y=\left(1-\frac{(-2+x)^{2}}{18}+\frac{10(-2+x)^{3}}{243}-\frac{451(-2+x)^{4}}{17496}+\frac{1151(-2+x)^{5}}{78732}\right. \\
&\left.\quad-\frac{322189(-2+x)^{6}}{42515280}\right) y(2)+\left(-2+x-\frac{4(-2+x)^{2}}{9}+\frac{115(-2+x)^{3}}{486}\right. \\
&\left.-\frac{271(-2+x)^{4}}{2187}+\frac{9713(-2+x)^{5}}{157464}-\frac{150829(-2+x)^{6}}{5314410}\right) y^{\prime}(2)+O\left((-2+x)^{6}\right)
\end{aligned}
$$

Verified OK.

14.11.1 Maple step by step solution

Let's solve
$\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 x y^{\prime}}{x^{3}+1}-\frac{y}{x^{3}+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{4 x y^{\prime}}{x^{3}+1}+\frac{y}{x^{3}+1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{4 x}{x^{3}+1}, P_{3}(x)=\frac{1}{x^{3}+1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-\frac{4}{3}$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{3}+1\right) y^{\prime \prime}+4 y^{\prime} x+y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{3}-3 u^{2}+3 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(4 u-4)\left(\frac{d}{d u} y(u)\right)+y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .3$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-7+3 r) u^{-1+r}+\left(a_{1}(1+r)(-4+3 r)-a_{0}\left(3 r^{2}-7 r-1\right)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(a_{k+1}(k+1+r)(3 k-\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(-7+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{7}{3}\right\}$
- \quad Each term must be 0

$$
a_{1}(1+r)(-4+3 r)-a_{0}\left(3 r^{2}-7 r-1\right)=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(-3 a_{k}+a_{k-1}+3 a_{k+1}\right) k^{2}+\left(\left(-6 a_{k}+2 a_{k-1}+6 a_{k+1}\right) r+7 a_{k}-3 a_{k-1}-a_{k+1}\right) k+\left(-3 a_{k}+a_{k-1}\right.
$$

- \quad Shift index using $k->k+1$

$$
\left(-3 a_{k+1}+a_{k}+3 a_{k+2}\right)(k+1)^{2}+\left(\left(-6 a_{k+1}+2 a_{k}+6 a_{k+2}\right) r+7 a_{k+1}-3 a_{k}-a_{k+2}\right)(k+1)+(-
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+2 k r a_{k}-6 k r a_{k+1}+r^{2} a_{k}-3 r^{2} a_{k+1}-k a_{k}+k a_{k+1}-r a_{k}+r a_{k+1}+5 a_{k+1}}{3 k^{2}+6 k r+3 r^{2}+5 k+5 r-2}$
- \quad Recursion relation for $r=0$

$$
a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}=0\right]$
- \quad Recursion relation for $r=\frac{7}{3}$

$$
a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}
$$

- \quad Solution for $r=\frac{7}{3}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{7}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}, 10 a_{1}+a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{7}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}+\frac{11}{3} k a_{k}-13 k a_{k+1}+\frac{28}{9} a_{k}-9 a_{k+1}}{3 k^{2}+19 k+26}, 10 a_{1}+a_{0}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{7}{3}}\right), a_{k+2}=-\frac{k^{2} a_{k}-3 k^{2} a_{k+1}-k a_{k}+k a_{k+1}+5 a_{k+1}}{3 k^{2}+5 k-2},-4 a_{1}+a_{0}\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 54

```
Order:=6;
dsolve((1+x^3)*diff(y(x),x$2)+4*x*diff(y(x),x)+y(x)=0,y(x),type='series',x=2);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{(-2+x)^{2}}{18}+\frac{10(-2+x)^{3}}{243}-\frac{451(-2+x)^{4}}{17496}+\frac{1151(-2+x)^{5}}{78732}\right) y(2) \\
& +\left(-2+x-\frac{4(-2+x)^{2}}{9}+\frac{115(-2+x)^{3}}{486}-\frac{271(-2+x)^{4}}{2187}\right. \\
& \left.+\frac{9713(-2+x)^{5}}{157464}\right) D(y)(2)+O\left(x^{6}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 87
AsymptoticDSolveValue $\left[\left(1+x^{\wedge} 3\right) * y\right.$ ' $'[x]+4 * x * y$ ' $\left.[x]+y[x]==0, y[x],\{x, 2,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1151(x-2)^{5}}{78732}-\frac{451(x-2)^{4}}{17496}+\frac{10}{243}(x-2)^{3}-\frac{1}{18}(x-2)^{2}+1\right) \\
& +c_{2}\left(\frac{9713(x-2)^{5}}{157464}-\frac{271(x-2)^{4}}{2187}+\frac{115}{486}(x-2)^{3}-\frac{4}{9}(x-2)^{2}+x-2\right)
\end{aligned}
$$

14.12 problem 8

14.12.1 Maple step by step solution

Internal problem ID [744]
Internal file name [OUTPUT/744_Sunday_June_05_2022_01_48_34_AM_11668954/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x y^{\prime \prime}+y=0
$$

With the expansion point for the power series method at $x=1$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(t+1)+y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{843}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{844}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y(t)}{t+1} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{(-t-1)\left(\frac{d}{d t} y(t)\right)+y(t)}{(t+1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{(2 t+2)\left(\frac{d}{d t} y(t)\right)+y(t)(-1+t)}{(t+1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(t^{2}-4 t-5\right)\left(\frac{d}{d t} y(t)\right)+(-4 t+2) y(t)}{(t+1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(-6 t^{2}+12 t+18\right)\left(\frac{d}{d t} y(t)\right)-y(t)\left(t^{2}-16 t+7\right)}{(t+1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0)+y(0) \\
& F_{2}=-y(0)+2 y^{\prime}(0) \\
& F_{3}=2 y(0)-5 y^{\prime}(0) \\
& F_{4}=-7 y(0)+18 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y(t)= & \left(1-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{24} t^{4}+\frac{1}{60} t^{5}-\frac{7}{720} t^{6}\right) y(0) \\
& +\left(t-\frac{1}{6} t^{3}+\frac{1}{12} t^{4}-\frac{1}{24} t^{5}+\frac{1}{40} t^{6}\right) y^{\prime}(0)+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)(t+1)+y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)(t+1)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n t^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n t^{n-1} a_{n}(n-1)=\sum_{n=1}^{\infty}(n+1) a_{n+1} n t^{n} \\
& \sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty}(n+1) a_{n+1} n t^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1} n+(n+2) a_{n+2}(n+1)+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n+1}+n a_{n+1}+a_{n}}{(n+2)(n+1)} \\
& =-\frac{a_{n}}{(n+2)(n+1)}-\frac{\left(n^{2}+n\right) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}+6 a_{3}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
6 a_{3}+12 a_{4}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{24}+\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
12 a_{4}+20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{60}-\frac{a_{1}}{24}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{5}+30 a_{6}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{0}}{720}+\frac{a_{1}}{40}
$$

For $n=5$ the recurrence equation gives

$$
30 a_{6}+42 a_{7}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{11 a_{0}}{1680}-\frac{17 a_{1}}{1008}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t-\frac{a_{0} t^{2}}{2}+\left(\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) t^{3}+\left(-\frac{a_{0}}{24}+\frac{a_{1}}{12}\right) t^{4}+\left(\frac{a_{0}}{60}-\frac{a_{1}}{24}\right) t^{5}+\ldots
$$

Collecting terms, the solution becomes
$y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{24} t^{4}+\frac{1}{60} t^{5}\right) a_{0}+\left(t-\frac{1}{6} t^{3}+\frac{1}{12} t^{4}-\frac{1}{24} t^{5}\right) a_{1}+O\left(t^{6}\right)$

At $t=0$ the solution above becomes

$$
y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}-\frac{1}{24} t^{4}+\frac{1}{60} t^{5}\right) c_{1}+\left(t-\frac{1}{6} t^{3}+\frac{1}{12} t^{4}-\frac{1}{24} t^{5}\right) c_{2}+O\left(t^{6}\right)
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
\begin{aligned}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{4}}{24}+\frac{(x-1)^{5}}{60}-\frac{7(x-1)^{6}}{720}\right) y(1) \\
& +\left(x-1-\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}-\frac{(x-1)^{5}}{24}+\frac{(x-1)^{6}}{40}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{4}}{24}+\frac{(x-1)^{5}}{60}-\frac{7(x-1)^{6}}{720}\right) y(1) \tag{1}\\
& +\left(x-1-\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}-\frac{(x-1)^{5}}{24}+\frac{(x-1)^{6}}{40}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{4}}{24}+\frac{(x-1)^{5}}{60}-\frac{7(x-1)^{6}}{720}\right) y(1) \\
& +\left(x-1-\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}-\frac{(x-1)^{5}}{24}+\frac{(x-1)^{6}}{40}\right) y^{\prime}(1)+O\left((x-1)^{6}\right)
\end{aligned}
$$

Verified OK.

14.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=0, P_{3}(x)=\frac{1}{x}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)+a_{k}\right) x^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(-1+r)=0
$$

- Values of r that satisfy the indicial equation
$r \in\{0,1\}$
- Each term in the series must be 0 , giving the recursion relation

$$
a_{k+1}(k+1+r)(k+r)+a_{k}=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{(k+1+r)(k+r)}$
- Recursion relation for $r=0$
$a_{k+1}=-\frac{a_{k}}{(k+1) k}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{(k+1) k}\right]
$$

- Recursion relation for $r=1$

$$
a_{k+1}=-\frac{a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a_{k}}{(k+2)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=-\frac{a_{k}}{(k+1) k}, b_{k+1}=-\frac{b_{k}}{(k+2)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=1);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{4}}{24}+\frac{(x-1)^{5}}{60}\right) y(1) \\
& +\left(x-1-\frac{(x-1)^{3}}{6}+\frac{(x-1)^{4}}{12}-\frac{(x-1)^{5}}{24}\right) D(y)(1)+O\left(x^{6}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 78

```
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,1,5}]
```

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{1}{60}(x-1)^{5}-\frac{1}{24}(x-1)^{4}+\frac{1}{6}(x-1)^{3}-\frac{1}{2}(x-1)^{2}+1\right) \\
& +c_{2}\left(-\frac{1}{24}(x-1)^{5}+\frac{1}{12}(x-1)^{4}-\frac{1}{6}(x-1)^{3}+x-1\right)
\end{aligned}
$$

14.13 problem 10

14.13.1 Maple step by step solution 3478

Internal problem ID [745]
Internal file name [OUTPUT/745_Sunday_June_05_2022_01_48_36_AM_47024459/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change__of_variable_on__x_method_1", "second_order_change__of_variable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_ [0, F(x)]`]]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+\alpha^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{846}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{847}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{\alpha^{2} y-y^{\prime} x}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(\left(\alpha^{2}+2\right) x^{2}-\alpha^{2}+1\right) y^{\prime}-3 y \alpha^{2} x}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-6 \alpha^{2} x^{3}+6 \alpha^{2} x-6 x^{3}-9 x\right) y^{\prime}+\left(\left(\alpha^{2}+11\right) x^{2}-\alpha^{2}+4\right) \alpha^{2} y}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\left(\alpha^{4}+35 \alpha^{2}+24\right) x^{4}+\left(-2 \alpha^{4}-25 \alpha^{2}+72\right) x^{2}+\alpha^{4}-10 \alpha^{2}+9\right) y^{\prime}-10\left(\left(\alpha^{2}+5\right) x^{2}-\alpha^{2}+\frac{11}{2}\right) x \alpha}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{15\left(\left(\left(\alpha^{4}+15 \alpha^{2}+8\right) x^{4}+\left(-2 \alpha^{4}-2 \alpha^{2}+40\right) x^{2}+\alpha^{4}-13 \alpha^{2}+15\right) x y^{\prime}-\frac{\left(\left(\alpha^{4}+85 \alpha^{2}+274\right) x^{4}+\left(-2 \alpha^{4}-65\right.\right.}{1}\right.}{\left(x^{2}-1\right)^{6}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \alpha^{2} \\
& F_{1}=-y^{\prime}(0) \alpha^{2}+y^{\prime}(0) \\
& F_{2}=y(0) \alpha^{4}-4 y(0) \alpha^{2} \\
& F_{3}=y^{\prime}(0) \alpha^{4}-10 y^{\prime}(0) \alpha^{2}+9 y^{\prime}(0) \\
& F_{4}=-y(0) \alpha^{6}+20 y(0) \alpha^{4}-64 y(0) \alpha^{2}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \alpha^{2} x^{2}+\frac{1}{24} \alpha^{4} x^{4}-\frac{1}{6} \alpha^{2} x^{4}-\frac{1}{720} x^{6} \alpha^{6}+\frac{1}{36} x^{6} \alpha^{4}-\frac{4}{45} x^{6} \alpha^{2}\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} \alpha^{4} x^{5}-\frac{1}{12} \alpha^{2} x^{5}+\frac{3}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+\alpha^{2} y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\alpha^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} \alpha^{2} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} \alpha^{2} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
a_{0} \alpha^{2}+2 a_{2}=0 \\
a_{2}=-\frac{a_{0} \alpha^{2}}{2}
\end{gathered}
$$

$n=1$ gives

$$
a_{1} \alpha^{2}-a_{1}+6 a_{3}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{1}{6} a_{1} \alpha^{2}+\frac{1}{6} a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-n a_{n}+a_{n} \alpha^{2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(\alpha^{2}-n^{2}\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
a_{2} \alpha^{2}-4 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{1}{24} \alpha^{4} a_{0}-\frac{1}{6} a_{0} \alpha^{2}
$$

For $n=3$ the recurrence equation gives

$$
a_{3} \alpha^{2}-9 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{1}{120} \alpha^{4} a_{1}-\frac{1}{12} a_{1} \alpha^{2}+\frac{3}{40} a_{1}
$$

For $n=4$ the recurrence equation gives

$$
a_{4} \alpha^{2}-16 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{1}{720} \alpha^{6} a_{0}+\frac{1}{36} \alpha^{4} a_{0}-\frac{4}{45} a_{0} \alpha^{2}
$$

For $n=5$ the recurrence equation gives

$$
a_{5} \alpha^{2}-25 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{1}{5040} \alpha^{6} a_{1}+\frac{1}{144} \alpha^{4} a_{1}-\frac{37}{720} a_{1} \alpha^{2}+\frac{5}{112} a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x-\frac{a_{0} \alpha^{2} x^{2}}{2}+\left(-\frac{1}{6} a_{1} \alpha^{2}+\frac{1}{6} a_{1}\right) x^{3} \\
& +\left(\frac{1}{24} \alpha^{4} a_{0}-\frac{1}{6} a_{0} \alpha^{2}\right) x^{4}+\left(\frac{1}{120} \alpha^{4} a_{1}-\frac{1}{12} a_{1} \alpha^{2}+\frac{3}{40} a_{1}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1-\frac{\alpha^{2} x^{2}}{2}+\left(\frac{1}{24} \alpha^{4}-\frac{1}{6} \alpha^{2}\right) x^{4}\right) a_{0} \tag{3}\\
& +\left(x+\left(-\frac{\alpha^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} \alpha^{4}-\frac{1}{12} \alpha^{2}+\frac{3}{40}\right) x^{5}\right) a_{1}+O\left(x^{6}\right)
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1-\frac{\alpha^{2} x^{2}}{2}+\left(\frac{1}{24} \alpha^{4}-\frac{1}{6} \alpha^{2}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\alpha^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} \alpha^{4}-\frac{1}{12} \alpha^{2}+\frac{3}{40}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} \alpha^{2} x^{2}+\frac{1}{24} \alpha^{4} x^{4}-\frac{1}{6} \alpha^{2} x^{4}-\frac{1}{720} x^{6} \alpha^{6}+\frac{1}{36} x^{6} \alpha^{4}-\frac{4}{45} x^{6} \alpha^{2}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} \alpha^{4} x^{5}-\frac{1}{12} \alpha^{2} x^{5}+\frac{3}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{\alpha^{2} x^{2}}{2}+\left(\frac{1}{24} \alpha^{4}-\frac{1}{6} \alpha^{2}\right) x^{4}\right) c_{1} \tag{2}\\
& +\left(x+\left(-\frac{\alpha^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} \alpha^{4}-\frac{1}{12} \alpha^{2}+\frac{3}{40}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \alpha^{2} x^{2}+\frac{1}{24} \alpha^{4} x^{4}-\frac{1}{6} \alpha^{2} x^{4}-\frac{1}{720} x^{6} \alpha^{6}+\frac{1}{36} x^{6} \alpha^{4}-\frac{4}{45} x^{6} \alpha^{2}\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} \alpha^{4} x^{5}-\frac{1}{12} \alpha^{2} x^{5}+\frac{3}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1-\frac{\alpha^{2} x^{2}}{2}+\left(\frac{1}{24} \alpha^{4}-\frac{1}{6} \alpha^{2}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\alpha^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} \alpha^{4}-\frac{1}{12} \alpha^{2}+\frac{3}{40}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

14.13.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-y^{\prime} x+\alpha^{2} y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{\alpha^{2} y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{\alpha^{2} y}{x^{2}-1}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{\alpha^{2}}{x^{2}-1}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+y^{\prime} x-\alpha^{2} y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)-\alpha^{2} y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{1+k}(1+k+r)(1+2 k+2 r)-a_{k}(\alpha+k+r)(\alpha-k-r)\right) u^{k+r}\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{1}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
-2\left(\frac{1}{2}+k+r\right)(1+k+r) a_{1+k}+a_{k}(\alpha+k+r)(k+r-\alpha)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{1+k}=-\frac{a_{k}(\alpha+k+r)(\alpha-k-r)}{(1+2 k+2 r)(1+k+r)}
$$

- Recursion relation for $r=0$
$a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}\right]
$$

- Recursion relation for $r=\frac{1}{2}$

$$
a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+\frac{1}{2}}, a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+\frac{1}{2}}\right), a_{k+1}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(k+1)}, b_{k+1}=-\frac{b_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 71

```
Order:=6;
dsolve((1-x^2)*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)-\textrm{x}*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+\mathrm{ +alpha^2*y (x)=0,y (x),type='series', x=0);
\[
\begin{aligned}
y(x)= & \left(1-\frac{\alpha^{2} x^{2}}{2}+\frac{\alpha^{2}\left(\alpha^{2}-4\right) x^{4}}{24}\right) y(0) \\
& +\left(x-\frac{\left(\alpha^{2}-1\right) x^{3}}{6}+\frac{\left(\alpha^{4}-10 \alpha^{2}+9\right) x^{5}}{120}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 88
AsymptoticDSolveValue[(1-x^2)*y' ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+\backslash[\mathrm{Alpha}] \wedge 2 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$
$y(x) \rightarrow c_{2}\left(\frac{\alpha^{4} x^{5}}{120}-\frac{\alpha^{2} x^{5}}{12}+\frac{3 x^{5}}{40}-\frac{\alpha^{2} x^{3}}{6}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{\alpha^{4} x^{4}}{24}-\frac{\alpha^{2} x^{4}}{6}-\frac{\alpha^{2} x^{2}}{2}+1\right)$

14.14 problem 16

14.14.1 Solving as series ode . 3482
14.14.2 Maple step by step solution . 3489

Internal problem ID [746]
Internal file name [OUTPUT/746_Sunday_June_05_2022_01_48_37_AM_93764472/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.

14.14.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y(0) \\
& F_{2}=y(0) \\
& F_{3}=y(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-1 \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
a_{1}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{1}=a_{0}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{120}
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}-a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{0} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 503: Slope field plot
Verification of solutions

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

14.14.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 37
AsymptoticDSolveValue[y'[x]-y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)
$$

14.15 problem 17

14.15.1 Solving as series ode . 3491
14.15.2 Maple step by step solution . 3498

Internal problem ID [747]
Internal file name [OUTPUT/747_Sunday_June_05_2022_01_48_38_AM_46508026/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
-y x+y^{\prime}=0
$$

With the expansion point for the power series method at $x=0$.

14.15.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =y\left(x^{2}+1\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =y x\left(x^{2}+3\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =y\left(x^{4}+6 x^{2}+3\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =y x\left(x^{4}+10 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=y(0) \\
& F_{2}=0 \\
& F_{3}=3 y(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
-y x+y^{\prime} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-x \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(1+n) a_{1+n}-a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{1+n}, gives

$$
\begin{equation*}
a_{1+n}=\frac{a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=0
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{48}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+\frac{1}{2} a_{0} x^{2}+\frac{1}{8} a_{0} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 504: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

14.15.2 Maple step by step solution

Let's solve

$$
-y x+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
Order:=6;
dsolve(diff(y(x),x)-x*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 22
AsymptoticDSolveValue[y'[x]-x*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{x^{4}}{8}+\frac{x^{2}}{2}+1\right)
$$

14.16 problem 19

14.16.1 Solving as series ode . 3500
14.16.2 Maple step by step solution . 3507

Internal problem ID [748]
Internal file name [OUTPUT/748_Sunday_June_05_2022_01_48_39_AM_74598292/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
(1-x) y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.

14.16.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-\frac{y}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{2 y}{(x-1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{6 y}{(x-1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{24 y}{(x-1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{120 y}{(x-1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=2 y(0) \\
& F_{2}=6 y(0) \\
& F_{3}=24 y(0) \\
& F_{4}=120 y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{y}{x-1} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{1}{x-1} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(x-1) y^{\prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(x-1)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)=\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
-a_{1}+a_{0} & =0 \\
a_{1} & =a_{0}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}-(n+1) a_{n+1}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=a_{n} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{1}-2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=a_{0}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{2}-3 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=a_{0}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{3}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=a_{0}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{4}-5 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=a_{0}
$$

For $n=5$ the recurrence equation gives

$$
6 a_{5}-6 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=a_{0}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0} x^{5}+a_{0} x^{4}+a_{0} x^{3}+a_{0} x^{2}+a_{0} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 505: Slope field plot

Verification of solutions

$$
y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

14.16.2 Maple step by step solution

Let's solve

$$
(x-1) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left((x-1) y^{\prime}+y\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
y(x-1)=c_{1}
$$

- \quad Solve for y

$$
y=\frac{c_{1}}{x-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
Order:=6;
dsolve((1-x)*diff(y(x),x)=y(x),y(x),type='series',x=0);
```

$$
y(x)=\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 21
AsymptoticDSolveValue[(1-x)*y'[x]==y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)
$$

14.17 problem 22

14.17.1 Maple step by step solution

3516
Internal problem ID [749]
Internal file name [OUTPUT/749_Sunday_June_05_2022_01_48_40_AM_29896868/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 5.3, Series Solutions Near an Ordinary Point, Part II. page 269
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\alpha(\alpha+1) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{852}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{853}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{\alpha^{2} y+\alpha y-2 y^{\prime} x}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(\alpha^{2} x^{2}+\alpha x^{2}-\alpha^{2}+6 x^{2}-\alpha+2\right) y^{\prime}-4 y \alpha x(\alpha+1)}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{8(x+1)(x-1)\left(x\left(\left(\alpha^{2}+\alpha+3\right) x^{2}-\alpha^{2}-\alpha+3\right) y^{\prime}-\frac{(\alpha+1)\left(\left(\alpha^{2}+\alpha+18\right) x^{2}-\alpha^{2}-\alpha+6\right) \alpha y}{8}\right)}{\left(x^{2}-1\right)^{4}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\left(\left(\alpha^{4}+2 \alpha^{3}+59 \alpha^{2}+58 \alpha+120\right) x^{4}+\left(-2 \alpha^{4}-4 \alpha^{3}-46 \alpha^{2}-44 \alpha+240\right) x^{2}+\alpha^{4}+2 \alpha^{3}-13 \alpha^{2}-\right.\right.}{\left(x^{2}-1\right)^{5}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{18\left(\left(40+\left(x^{4}-2 x^{2}+1\right) \alpha^{4}+2\left(x^{4}-2 x^{2}+1\right) \alpha^{3}+\left(-\frac{26}{3} x^{2}-17+\frac{77}{3} x^{4}\right) \alpha^{2}+2\left(-9-\frac{10}{3} x^{2}+\frac{37}{3} x\right.\right.\right.}{}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \alpha(\alpha+1) \\
& F_{1}=-y^{\prime}(0) \alpha^{2}-y^{\prime}(0) \alpha+2 y^{\prime}(0) \\
& F_{2}=y(0) \alpha^{4}+2 y(0) \alpha^{3}-5 y(0) \alpha^{2}-6 y(0) \alpha \\
& F_{3}=y^{\prime}(0) \alpha^{4}+2 y^{\prime}(0) \alpha^{3}-13 y^{\prime}(0) \alpha^{2}-14 y^{\prime}(0) \alpha+24 y^{\prime}(0) \\
& F_{4}=-y(0) \alpha^{6}-3 y(0) \alpha^{5}+23 y(0) \alpha^{4}+51 y(0) \alpha^{3}-94 y(0) \alpha^{2}-120 y(0) \alpha
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \alpha^{2} x^{2}-\frac{1}{2} \alpha x^{2}+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
& \left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} \alpha^{4} x^{5}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} \alpha^{2} x^{5}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(\alpha^{2}+\alpha\right) y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+\left(\alpha^{2}+\alpha\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& +\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(\alpha^{2}+\alpha\right) a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(\alpha^{2}+\alpha\right) a_{n} x^{n}\right)=0
\end{gather*}
$$

$n=0$ gives

$$
\begin{aligned}
& 2 a_{2}+a_{0} \alpha(\alpha+1)=0 \\
& a_{2}=-\frac{1}{2} a_{0} \alpha^{2}-\frac{1}{2} a_{0} \alpha
\end{aligned}
$$

$n=1$ gives

$$
6 a_{3}-2 a_{1}+a_{1} \alpha(\alpha+1)=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{1}{6} a_{1} \alpha^{2}-\frac{1}{6} a_{1} \alpha+\frac{1}{3} a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-2 n a_{n}+a_{n} \alpha(\alpha+1)=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(\alpha^{2}-n^{2}+\alpha-n\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{2}+12 a_{4}+a_{2} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5}{24} a_{0} \alpha^{2}-\frac{1}{4} a_{0} \alpha+\frac{1}{24} a_{0} \alpha^{4}+\frac{1}{12} a_{0} \alpha^{3}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{3}+20 a_{5}+a_{3} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{13}{120} a_{1} \alpha^{2}-\frac{7}{60} a_{1} \alpha+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} \alpha^{4}+\frac{1}{60} a_{1} \alpha^{3}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{4}+30 a_{6}+a_{4} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{47}{360} a_{0} \alpha^{2}-\frac{1}{6} a_{0} \alpha+\frac{23}{720} a_{0} \alpha^{4}+\frac{17}{240} a_{0} \alpha^{3}-\frac{1}{720} a_{0} \alpha^{6}-\frac{1}{240} a_{0} \alpha^{5}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{5}+42 a_{7}+a_{5} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{5}{63} a_{1} \alpha^{2}-\frac{37}{420} a_{1} \alpha+\frac{1}{7} a_{1}+\frac{41}{5040} a_{1} \alpha^{4}+\frac{29}{1680} a_{1} \alpha^{3}-\frac{1}{5040} a_{1} \alpha^{6}-\frac{1}{1680} a_{1} \alpha^{5}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{1}{2} a_{0} \alpha^{2}-\frac{1}{2} a_{0} \alpha\right) x^{2}+\left(-\frac{1}{6} a_{1} \alpha^{2}-\frac{1}{6} a_{1} \alpha+\frac{1}{3} a_{1}\right) x^{3} \\
& +\left(-\frac{5}{24} a_{0} \alpha^{2}-\frac{1}{4} a_{0} \alpha+\frac{1}{24} a_{0} \alpha^{4}+\frac{1}{12} a_{0} \alpha^{3}\right) x^{4} \\
& +\left(-\frac{13}{120} a_{1} \alpha^{2}-\frac{7}{60} a_{1} \alpha+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} \alpha^{4}+\frac{1}{60} a_{1} \alpha^{3}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) a_{0}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=\left(1-\frac{1}{2} \alpha^{2} x^{2}-\frac{1}{2} \alpha x^{2}+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
&\left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0)+\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3}\left(x^{3}\right)\right. \\
&\left.+\frac{1}{120} \alpha^{4} x^{5}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} \alpha^{2} x^{5}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
& y=\left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1} \\
&+\left(x+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right)(2) \\
& c_{2} \\
&+O\left(x^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} \alpha^{2} x^{2}-\frac{1}{2} \alpha x^{2}+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
& \left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} \alpha^{4} x^{5}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} \alpha^{2} x^{5}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

14.17.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+\left(\alpha^{2}+\alpha\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{\alpha(\alpha+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{\alpha(\alpha+1) y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{\alpha(\alpha+1)}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators

$$
\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x-\alpha(\alpha+1) y=0
$$

- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$

$$
\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-\alpha^{2}-\alpha\right) y(u)=0
$$

- \quad Assume series solution for $y(u)$

$$
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
$$

Rewrite ODE with series expansions

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1$.. 2

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}-a_{k}(r+1+k+\alpha)(-r-k+\alpha)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-2 r^{2}=0
$$

- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0, giving the recursion relation

$$
-2 a_{k+1}(k+1)^{2}+a_{k}(1+k+\alpha)(k-\alpha)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}
$$

- \quad Recursion relation for $r=0$

$$
a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 101

```
Order:=6;
dsolve((1-x^2)*diff (y(x),x$2)-2*x*diff (y(x),x)+alpha*(alpha+1)*y(x)=0,y(x),type='series', x=0
y(x)=(1-\frac{\alpha(1+\alpha)\mp@subsup{x}{}{2}}{2}+\frac{\alpha(\mp@subsup{\alpha}{}{3}+2\mp@subsup{\alpha}{}{2}-5\alpha-6)\mp@subsup{x}{}{4}}{24})y(0)
\[
+\left(x-\frac{\left(\alpha^{2}+\alpha-2\right) x^{3}}{6}+\frac{\left(\alpha^{4}+2 \alpha^{3}-13 \alpha^{2}-14 \alpha+24\right) x^{5}}{120}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 127
AsymptoticDSolveValue $\left[\left(1-x^{\wedge} 2\right) * y\right.$ ' $\quad[\mathrm{x}]-2 * x * y$ ' $[\mathrm{x}]+\backslash[$ Alpha $\left.] *(\backslash[A 1 \mathrm{pha}]+1) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{1}{60}\left(-\alpha^{2}-\alpha\right) x^{5}-\frac{1}{120}\left(-\alpha^{2}-\alpha\right)\left(\alpha^{2}+\alpha\right) x^{5}-\frac{1}{10}\left(\alpha^{2}+\alpha\right) x^{5}+\frac{x^{5}}{5}\right. \\
& \left.-\frac{1}{6}\left(\alpha^{2}+\alpha\right) x^{3}+\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{1}{24}\left(\alpha^{2}+\alpha\right)^{2} x^{4}-\frac{1}{4}\left(\alpha^{2}+\alpha\right) x^{4}-\frac{1}{2}\left(\alpha^{2}+\alpha\right) x^{2}+1\right)
\end{aligned}
$$

15 Chapter 7.5, Homogeneous Linear Systems with Constant Coefficients. page 407

15.1 problem 30 . 3521

15.1 problem 30

15.1.1 Solution using Matrix exponential method 3521
15.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3522

Internal problem ID [750]
Internal file name [OUTPUT/750_Sunday_June_05_2022_01_48_42_AM_80033784/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.5, Homogeneous Linear Systems with Constant Coefficients. page 407
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{x_{1}(t)}{10}+\frac{3 x_{2}(t)}{40} \\
x_{2}^{\prime}(t) & =\frac{x_{1}(t)}{10}-\frac{x_{2}(t)}{5}
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=-17, x_{2}(0)=-21\right]
$$

15.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{10} & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{t}{4}}}{4}+\frac{3 \mathrm{e}^{-\frac{t}{20}}}{4} & \frac{3 \mathrm{e}^{-\frac{t}{20}}}{8}-\frac{3 \mathrm{e}^{-\frac{t}{4}}}{8} \\
\frac{\mathrm{e}^{-\frac{t}{20}}}{2}-\frac{\mathrm{e}^{-\frac{t}{4}}}{2} & \frac{3 \mathrm{e}^{-\frac{t}{4}}}{4}+\frac{\mathrm{e}^{-\frac{t}{20}}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-\frac{t}{4}}}{4}+\frac{3 \mathrm{e}^{-\frac{t}{20}}}{4} & \frac{3 \mathrm{e}^{-\frac{t}{20}}}{8}-\frac{3 \mathrm{e}^{-\frac{t}{4}}}{8} \\
\frac{\mathrm{e}^{-\frac{t}{20}}}{2}-\frac{\mathrm{e}^{-\frac{t}{4}}}{2} & \frac{3 \mathrm{e}^{-\frac{t}{4}}}{4}+\frac{\mathrm{e}^{-\frac{t}{20}}}{4}
\end{array}\right]\left[\begin{array}{c}
-17 \\
-21
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{29 \mathrm{e}^{-\frac{t}{4}}}{8}-\frac{165 \mathrm{e}^{-\frac{t}{20}}}{8} \\
-\frac{55 \mathrm{e}^{-\frac{t}{20}}}{4}-\frac{29 \mathrm{e}^{-\frac{t}{4}}}{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{10} & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{10} & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{10}-\lambda & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\frac{3}{10} \lambda+\frac{1}{80}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{4} \\
& \lambda_{2}=-\frac{1}{20}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{4}$	1	real eigenvalue
$-\frac{1}{20}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{4}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{1}{10} & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}
\end{array}\right]-\left(-\frac{1}{4}\right)\right. {\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
\frac{3}{20} & \frac{3}{40} \\
\frac{1}{10} & \frac{1}{20}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{20} & \frac{3}{40} & 0 \\
\frac{1}{10} & \frac{1}{20} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{20} & \frac{3}{40} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{20} & \frac{3}{40} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{20}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{1}{10} & \frac{3}{40} \\
\frac{1}{10} & -\frac{1}{5}
\end{array}\right]-\left(-\frac{1}{20}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{20} & \frac{3}{40} \\
\frac{1}{10} & -\frac{3}{20}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{1}{20} & \frac{3}{40} & 0 \\
\frac{1}{10} & -\frac{3}{20} & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{20} & \frac{3}{40} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{20} & \frac{3}{40} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{4}$	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
$-\frac{1}{20}$	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{1}{4}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-\frac{t}{4}} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-\frac{t}{4}}
\end{aligned}
$$

Since eigenvalue $-\frac{1}{20}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\frac{t}{20}} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right] e^{-\frac{t}{20}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-\frac{t}{4}}}{2} \\
\mathrm{e}^{-\frac{t}{4}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-\frac{t}{20}}}{2} \\
\mathrm{e}^{-\frac{t}{20}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-\frac{t}{4}}}{2}+\frac{3 c_{2} \mathrm{e}^{-\frac{t}{20}}}{2} \\
c_{1} \mathrm{e}^{-\frac{t}{4}}+c_{2} \mathrm{e}^{-\frac{t}{20}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=-17 \tag{1}\\
x_{2}(0)=-21
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
-17 \\
-21
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}}{2}+\frac{3 c_{2}}{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=-\frac{29}{4} \\
c_{2}=-\frac{55}{4}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{29 \mathrm{e}^{-\frac{t}{4}}}{8}-\frac{165 \mathrm{e}^{-\frac{t}{20}}}{8} \\
-\frac{55 \mathrm{e}^{-\frac{t}{20}}}{4}-\frac{29 \mathrm{e}^{-\frac{t}{4}}}{4}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 506: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 34
dsolve $\left(\left[\operatorname{diff}\left(x_{-} 1(t), t\right)=-1 / 10 * x_{-} 1(t)+3 / 40 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=1 / 10 * x_{-} 1(t)-1 / 5 * x_{-}\right.\right.$

$$
\begin{aligned}
& x_{1}(t)=-\frac{165 \mathrm{e}^{-\frac{t}{20}}}{8}+\frac{29 \mathrm{e}^{-\frac{t}{4}}}{8} \\
& x_{2}(t)=-\frac{55 \mathrm{e}^{-\frac{t}{20}}}{4}-\frac{29 \mathrm{e}^{-\frac{t}{4}}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 52
DSolve $\left[\left\{x 1^{\prime}[t]==-1 / 10 * x 1[t]+3 / 40 * x 2[t], x 2{ }^{\prime}[t]==1 / 10 * x 1[t]-1 / 5 * x 2[t]\right\},\{x 1[0]==-17, x 2[0]==-21\}\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{8} e^{-t / 4}\left(29-165 e^{t / 5}\right) \\
& \mathrm{x} 2(t) \rightarrow-\frac{1}{4} e^{-t / 4}\left(55 e^{t / 5}+29\right)
\end{aligned}
$$

16 Chapter 7.6, Complex Eigenvalues. page 417
16.1 problem 1 3530
16.2 problem 2 3539
16.3 problem 3 3547
16.4 problem 4 3555
16.5 problem 5 3564
16.6 problem 6 3573
16.7 problem 7 3582
16.8 problem 8 3595
16.9 problem 9 3608
16.10problem 10 3615
16.11problem 11 3622
16.12problem 12 3630
16.13problem 23 3638
16.14problem 24 3650
16.15problem 25 3662

16.1 problem 1

16.1.1 Solution using Matrix exponential method 3530
16.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3531
16.1.3 Maple step by step solution

Internal problem ID [751]
Internal file name [OUTPUT/751_Sunday_June_05_2022_01_48_43_AM_43130140/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

16.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) c_{1}-\mathrm{e}^{t} \sin (2 t) c_{2} \\
2 \mathrm{e}^{t} \sin (2 t) c_{1}+\mathrm{e}^{t}(\cos (2 t)-\sin (2 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-c_{2}+c_{1}\right) \sin (2 t)+c_{1} \cos (2 t)\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(2 c_{1}-c_{2}\right) \sin (2 t)+\mathrm{e}^{t} \cos (2 t) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+2 i & -2 \\
4 & -2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
4 & -2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
4 & -2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $1+2 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(1+2 i) t}+\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(1-2 i) t} \\
c_{1} \mathrm{e}^{(1+2 i) t}+c_{2} \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 507: Phase plot

16.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
\underset{\rightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow}(t)=A \cdot x \xrightarrow{\rightarrow}(t
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[1+2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x^{\rightarrow}{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{t}\left(\left(c_{1}-c_{2}\right) \cos (2 t)-\sin (2 t)\left(c_{1}+c_{2}\right)\right)}{2} \\
\mathrm{e}^{t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\mathrm{e}^{t}\left(\left(c_{1}-c_{2}\right) \cos (2 t)-\sin (2 t)\left(c_{1}+c_{2}\right)\right)}{2}, x_{2}(t)=\mathrm{e}^{t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 56

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& x_{2}(t)=-\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \cos (2 t)-c_{1} \sin (2 t)-c_{2} \sin (2 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 58
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==3 * \mathrm{x} 1[\mathrm{t}]-2 * \mathrm{x} 2[\mathrm{t}], \mathrm{x} 2 \mathrm{~A}^{\prime}[\mathrm{t}]==4 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t}\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(c_{1} \cos (2 t)+\left(c_{1}-c_{2}\right) \sin (2 t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(c_{2} \cos (2 t)+\left(2 c_{1}-c_{2}\right) \sin (2 t)\right)
\end{aligned}
$$

16.2 problem 2

16.2.1 Solution using Matrix exponential method 3539
16.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3540
16.2.3 Maple step by step solution . 3544

Internal problem ID [752]
Internal file name [OUTPUT/752_Sunday_June_05_2022_01_48_44_AM_37520237/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-x_{2}(t)
\end{aligned}
$$

16.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & -2 \mathrm{e}^{-t} \sin (2 t) \\
\frac{\mathrm{e}^{-t} \sin (2 t)}{2} & \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & -2 \mathrm{e}^{-t} \sin (2 t) \\
\frac{\mathrm{e}^{-t} \sin (2 t)}{2} & \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \cos (2 t) c_{1}-2 \mathrm{e}^{-t} \sin (2 t) c_{2} \\
\frac{\mathrm{e}^{-t} \sin (2 t) c_{1}}{2}+\mathrm{e}^{-t} \cos (2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(\cos (2 t) c_{1}-2 \sin (2 t) c_{2}\right) \\
\frac{\mathrm{e}^{-t}\left(\sin (2 t) c_{1}+2 \cos (2 t) c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -4 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-2 i$	1	complex eigenvalue
$-1+2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]-(-1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & -4 \\
1 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & -4 & 0 \\
1 & 2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{i R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 \mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 \mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 \mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]-(-1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & -4 \\
1 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & -4 & 0 \\
1 & -2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{i R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 \mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 \mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 \mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+2 i$	1	1	No	$\left[\begin{array}{c}2 i \\ 1\end{array}\right]$
$-1-2 i$	1	1	No	$\left[\begin{array}{c}-2 i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 i \mathrm{e}^{(-1+2 i) t} \\
\mathrm{e}^{(-1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 i \mathrm{e}^{(-1-2 i) t} \\
\mathrm{e}^{(-1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 i\left(c_{2} \mathrm{e}^{(-1-2 i) t}-c_{1} \mathrm{e}^{(-1+2 i) t}\right) \\
c_{1} \mathrm{e}^{(-1+2 i) t}+c_{2} \mathrm{e}^{(-1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 508: Phase plot

16.2.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)\right]
$$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \longrightarrow^{\prime}(t)=\left[\begin{array}{cc}-1 & -4 \\ 1 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}-1 & -4 \\ 1 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as
$x \longrightarrow^{\prime}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[-1-2 \mathrm{I},\left[\begin{array}{c}
-2 \mathrm{I} \\
1
\end{array}\right]\right],\left[-1+2 \mathrm{I},\left[\begin{array}{c}
2 \mathrm{I} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-2 \mathrm{I},\left[\begin{array}{c}
-2 \mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(-1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}-2 \mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{-t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}-2 \mathrm{I} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-2 \mathrm{I}(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x{\underset{1}{1}}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right], x{ }_{2}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-2 \cos (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}{ }_{1}(t)+c_{2} x \longrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
\underset{ }{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-2 \cos (2 t) \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 \mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
\mathrm{e}^{-t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-2 \mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right), x_{2}(t)=\mathrm{e}^{-t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve([diff(x__1(t),t)=-1*x__1(t)-4*x__2(t),\operatorname{diff}(\mp@subsup{x}{___}{\prime2}(t),t)=1*\mp@subsup{x}{___}{\prime}1(t)-1*x__2(t)],singsol=al
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{-t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 55
DSolve $\left[\left\{x 1^{\prime}[t]==-1 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(c_{1} \cos (2 t)-2 c_{2} \sin (2 t)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(2 c_{2} \cos (2 t)+c_{1} \sin (2 t)\right)
\end{aligned}
$$

16.3 problem 3

16.3.1 Solution using Matrix exponential method 3547
16.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3548
16.3.3 Maple step by step solution . 3552

Internal problem ID [753]
Internal file name [OUTPUT/753_Sunday_June_05_2022_01_48_46_AM_75742661/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

16.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t)) c_{1}-5 \sin (t) c_{2} \\
\sin (t) c_{1}+(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t}+(2-i) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 509: Phase plot

16.3.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)\right]
$$

- Define vector

$$
\overrightarrow{x^{\rightarrow}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right]$
- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x^{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}2-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{x}}_{1}(t)=\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right], \underline{x}_{2}(t)=\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \hookrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=\left[\begin{array}{c}
c_{2}(-\cos (t)-2 \sin (t))+c_{1}(2 \cos (t)-\sin (t)) \\
-c_{2} \sin (t)+c_{1} \cos (t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\cos (t)\left(2 c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+2 c_{2}\right) \\
-c_{2} \sin (t)+c_{1} \cos (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\cos (t)\left(2 c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+2 c_{2}\right), x_{2}(t)=-c_{2} \sin (t)+c_{1} \cos (t)\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 38

```
dsolve([diff(x__1(t),t)=2*x__1(t)-5*x__2(t),\operatorname{diff}(\mp@subsup{x}{___}{\prime2}(t),t)=1*x__1(t)-2*x__2(t)],}\mathrm{ singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \sin (t)+c_{2} \cos (t) \\
& x_{2}(t)=-\frac{c_{1} \cos (t)}{5}+\frac{c_{2} \sin (t)}{5}+\frac{2 c_{1} \sin (t)}{5}+\frac{2 c_{2} \cos (t)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 41
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-5 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1}(2 \sin (t)+\cos (t))-5 c_{2} \sin (t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (t)+\left(c_{1}-2 c_{2}\right) \sin (t)
\end{aligned}
$$

16.4 problem 4

16.4.1 Solution using Matrix exponential method 3555
16.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3556
16.4.3 Maple step by step solution . 3561

Internal problem ID [754]
Internal file name [OUTPUT/754_Sunday_June_05_2022_01_48_47_AM_27946383/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-\frac{5 x_{2}(t)}{2} \\
x_{2}^{\prime}(t) & =\frac{9 x_{1}(t)}{5}-x_{2}(t)
\end{aligned}
$$

16.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right)+\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right) & -\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right)-\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) & -\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right)
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) & -\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) c_{1}-\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right) c_{2}}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2} \sin \left(\frac{3 t}{2}\right) c_{1}}}{5}+\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{1}-\frac{5 c_{2}}{3}\right) \sin \left(\frac{3 t}{2}\right)+c_{1} \cos \left(\frac{3 t}{2}\right)\right) \mathrm{e}^{\frac{t}{2}} \\
\frac{\mathrm{e}^{\frac{t}{2}}\left(6 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)}{5}+\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{rr}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -\frac{5}{2} \\
\frac{9}{5} & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda+\frac{5}{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3 i}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3 i}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}-\frac{3 i}{2}$	1	complex eigenvalue
$\frac{1}{2}+\frac{3 i}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}-\frac{3 i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\left(\frac{1}{2}-\frac{3 i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} \\
\frac{9}{5} & -\frac{3}{2}+\frac{3 i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} & 0 \\
\frac{9}{5} & -\frac{3}{2}+\frac{3 i}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\left(-\frac{3}{5}+\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{5}{6}-\frac{5 i}{6}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 i}{6}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{6}-\frac{5 i}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{6}-\frac{5 i}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
5-5 i \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{2}+\frac{3 i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\left(\frac{1}{2}+\frac{3 i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} \\
\frac{9}{5} & -\frac{3}{2}-\frac{3 i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} & 0 \\
\frac{9}{5} & -\frac{3}{2}-\frac{3 i}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{3}{5}-\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{5}{6}+\frac{5 i}{6}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{6}+\frac{5 i}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{6}+\frac{5 i}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
5+5 i \\
6
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $\frac{1}{2}+\frac{3 i}{2}$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 i}{6}\right) \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}+\left(\frac{5}{6}-\frac{5 i}{6}\right) c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t} \\
c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}+c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 510: Phase plot

16.4.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=2 x_{1}(t)-\frac{5 x_{2}(t)}{2}, x_{2}^{\prime}(t)=\frac{9 x_{1}(t)}{5}-x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{rr}2 & -\frac{5}{2} \\ \frac{9}{5} & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{rr}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{2}-\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}+\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{\frac{t}{2}} \cdot\left(\cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\right) \cdot\left[\begin{array}{c}\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\ 1\end{array}\right]$
- Simplify expression
$\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right)\left(\cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\right) \\ \cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\end{array}\right]$
- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
\frac{5 \cos \left(\frac{3 t}{2}\right)}{6}-\frac{5 \sin \left(\frac{3 t}{2}\right)}{6} \\
\cos \left(\frac{3 t}{2}\right)
\end{array}\right]+c_{2} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{5 \sin \left(\frac{3 t}{2}\right)}{6}-\frac{5 \cos \left(\frac{3 t}{2}\right)}{6} \\
-\sin \left(\frac{3 t}{2}\right)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{5\left(\left(c_{1}-c_{2}\right) \cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\left(c_{1}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{6} \\
\mathrm{e}^{\frac{t}{2}\left(c_{1} \cos \left(\frac{3 t}{2}\right)-c_{2} \sin \left(\frac{3 t}{2}\right)\right)}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{5\left(\left(c_{1}-c_{2}\right) \cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\left(c_{1}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{6}, x_{2}(t)=\mathrm{e}^{\frac{t}{2}}\left(c_{1} \cos \left(\frac{3 t}{2}\right)-c_{2} \sin \left(\frac{3 t}{2}\right)\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 58

$$
\begin{aligned}
& \text { dsolve }\left[\operatorname{diff}\left(\mathrm{x}_{--} 1(\mathrm{t}), \mathrm{t}\right)=2 * \mathrm{x}_{-_} 1(\mathrm{t})-5 / 2 * \mathrm{x}_{--} 2(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{-} 2(\mathrm{t}), \mathrm{t}\right)=9 / 5 * \mathrm{x}_{--} 1(\mathrm{t})-1 * \mathrm{x} _2(\mathrm{t})\right] \text {, singsol } \\
& x_{1}(t)=\mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{3 t}{2}\right) c_{1}+\cos \left(\frac{3 t}{2}\right) c_{2}\right) \\
& x_{2}(t)=\frac{3 \mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{3 t}{2}\right) c_{1}+\sin \left(\frac{3 t}{2}\right) c_{2}-\cos \left(\frac{3 t}{2}\right) c_{1}+\cos \left(\frac{3 t}{2}\right) c_{2}\right)}{5}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 84
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-5 / 2 * x 2[t], x 2{ }^{\prime}[t]==9 / 5 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingular

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{t / 2}\left(3 c_{1} \cos \left(\frac{3 t}{2}\right)+\left(3 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{5} e^{t / 2}\left(5 c_{2} \cos \left(\frac{3 t}{2}\right)+\left(6 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)\right)
\end{aligned}
$$

16.5 problem 5

16.5.1 Solution using Matrix exponential method 3564
16.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3565
16.5.3 Maple step by step solution 3570

Internal problem ID [755]
Internal file name [OUTPUT/755_Sunday_June_05_2022_01_48_49_AM_29534035/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =5 x_{1}(t)-3 x_{2}(t)
\end{aligned}
$$

16.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t} \sin (t) & -\mathrm{e}^{-t} \sin (t) \\
5 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)-2 \mathrm{e}^{-t} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -\mathrm{e}^{-t} \sin (t) \\
5 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -\mathrm{e}^{-t} \sin (t) \\
5 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) c_{1}-\mathrm{e}^{-t} \sin (t) c_{2} \\
5 \mathrm{e}^{-t} \sin (t) c_{1}+\mathrm{e}^{-t}(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(2 c_{1}-c_{2}\right) \sin (t)+c_{1} \cos (t)\right) \mathrm{e}^{-t} \\
\left(\left(5 c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)\right) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
5 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i$	1	complex eigenvalue
$-1+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -1 \\
5 & -3
\end{array}\right]-(-1-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2+i & -1 \\
5 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -1 & 0 \\
5 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-2+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{2}{5}-\frac{i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{5}-\frac{i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{5}-\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -1 \\
5 & -3
\end{array}\right]-(-1+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-i & -1 \\
5 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -1 & 0 \\
5 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-2-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{2}{5}+\frac{i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{5}+\frac{i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{5}+\frac{i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{\mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $-1+i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{i}{5}\right) \mathrm{e}^{(-1+i) t} \\
\mathrm{e}^{(-1+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{i}{5}\right) \mathrm{e}^{(-1-i) t} \\
\mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{2}{5}+\frac{i}{5}\right) c_{1} \mathrm{e}^{(-1+i) t}+\left(\frac{2}{5}-\frac{i}{5}\right) c_{2} \mathrm{e}^{(-1-i) t} \\
c_{1} \mathrm{e}^{(-1+i) t}+c_{2} \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 511: Phase plot

16.5.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=5 x_{1}(t)-3 x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right] \cdot x \underline{\longrightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & -1 \\
5 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
x \underline{\underline{\longrightarrow}}^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1-\mathrm{I},\left[\begin{array}{c}
\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I},\left[\begin{array}{c}
\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I},\left[\begin{array}{c}
\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I}) t} \cdot\left[\begin{array}{c}
\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
\frac{2}{5}-\frac{\mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\left(\frac{2}{5}-\frac{\mathrm{I}}{5}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x{\underset{\longrightarrow}{1}}(t)=\mathrm{e}^{-t} .\left[\begin{array}{c}
\frac{2 \cos (t)}{5}-\frac{\sin (t)}{5} \\
\cos (t)
\end{array}\right], x{\underset{2}{2}}_{2}(t)=\mathrm{e}^{-t} .\left[\begin{array}{c}
-\frac{2 \sin (t)}{5}-\frac{\cos (t)}{5} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{2 \cos (t)}{5}-\frac{\sin (t)}{5} \\
\cos (t)
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{2 \sin (t)}{5}-\frac{\cos (t)}{5} \\
-\sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2\left(\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t)-\frac{\sin (t)\left(c_{1}+2 c_{2}\right)}{2}\right) \mathrm{e}^{-t}}{5} \\
\mathrm{e}^{-t}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{2\left(\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t)-\frac{\sin (t)\left(c_{1}+2 c_{2}\right)}{2}\right) \mathrm{e}^{-t}}{5}, x_{2}(t)=\mathrm{e}^{-t}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 48

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=-\mathrm{e}^{-t}\left(c_{1} \cos (t)-2 c_{2} \cos (t)-2 c_{1} \sin (t)-c_{2} \sin (t)\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 56
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-1 * x 2[t], x 22^{\prime}[t]==5 * x 1[t]-3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(c_{1} \cos (t)+\left(2 c_{1}-c_{2}\right) \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(c_{2} \cos (t)+\left(5 c_{1}-2 c_{2}\right) \sin (t)\right)
\end{aligned}
$$

16.6 problem 6

16.6.1 Solution using Matrix exponential method 3573
16.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3574
16.6.3 Maple step by step solution . 3579

Internal problem ID [756]
Internal file name [OUTPUT/756_Sunday_June_05_2022_01_48_51_AM_70838050/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t) & =-5 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

16.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (3 t)+\frac{\sin (3 t)}{3} & \frac{2 \sin (3 t)}{3} \\
-\frac{5 \sin (3 t)}{3} & \cos (3 t)-\frac{\sin (3 t)}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (3 t)+\frac{\sin (3 t)}{3} & \frac{2 \sin (3 t)}{3} \\
-\frac{5 \sin (3 t)}{3} & \cos (3 t)-\frac{\sin (3 t)}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\cos (3 t)+\frac{\sin (3 t)}{3}\right) c_{1}+\frac{2 \sin (3 t) c_{2}}{3} \\
-\frac{5 \sin (3 t) c_{1}}{3}+\left(\cos (3 t)-\frac{\sin (3 t)}{3}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\sin (3 t)\left(c_{1}+2 c_{2}\right)}{3}+c_{1} \cos (3 t) \\
\frac{\left(-5 c_{1}-c_{2}\right) \sin (3 t)}{3}+c_{2} \cos (3 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
-5 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-3 i$	1	complex eigenvalue
$3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]-(-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1+3 i & 2 \\
-5 & -1+3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+3 i & 2 & 0 \\
-5 & -1+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}-\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1+3 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+3 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{5}+\frac{3 i}{5}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+3 i \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]-(3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1-3 i & 2 \\
-5 & -1-3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
1-3 i & 2 & 0 \\
-5 & -1-3 i & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\left(\frac{1}{2}+\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1-3 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-3 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{5}-\frac{3 i}{5}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 i}{5}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 I}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-3 i \\
5
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$3 i$	1	1	No	$\left[\begin{array}{c}-\frac{1}{5}-\frac{3 i}{5} \\ 1\end{array}\right]$
-3i	1	1	No	$\left[\begin{array}{c}-\frac{1}{5}+\frac{3 i}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{3 i t} \\
\mathrm{e}^{3 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 i}{5}\right) \mathrm{e}^{-3 i t} \\
\mathrm{e}^{-3 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{5}-\frac{3 i}{5}\right) c_{1} \mathrm{e}^{3 i t}+\left(-\frac{1}{5}+\frac{3 i}{5}\right) c_{2} \mathrm{e}^{-3 i t} \\
c_{1} \mathrm{e}^{3 i t}+c_{2} \mathrm{e}^{-3 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 512: Phase plot

16.6.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t), x_{2}^{\prime}(t)=-5 x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow}(t)=A \cdot x \rightarrow(t
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{II} t} \cdot\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
-\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right)(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{1}^{\rightarrow}(t)=\left[\begin{array}{c}
-\frac{\cos (3 t)}{5}+\frac{3 \sin (3 t)}{5} \\
\cos (3 t)
\end{array}\right], x{ }_{2}(t)=\left[\begin{array}{c}
\frac{\sin (3 t)}{5}+\frac{3 \cos (3 t)}{5} \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=\left[\begin{array}{c}
c_{2}\left(\frac{\sin (3 t)}{5}+\frac{3 \cos (3 t)}{5}\right)+c_{1}\left(-\frac{\cos (3 t)}{5}+\frac{3 \sin (3 t)}{5}\right) \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-c_{1}+3 c_{2}\right) \cos (3 t)}{5}+\frac{3\left(c_{1}+\frac{c_{2}}{3}\right) \sin (3 t)}{5} \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-c_{1}+3 c_{2}\right) \cos (3 t)}{5}+\frac{3\left(c_{1}+\frac{c_{2}}{3}\right) \sin (3 t)}{5}, x_{2}(t)=-c_{2} \sin (3 t)+c_{1} \cos (3 t)\right\}
$$

\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

```
dsolve([diff(x__1(t),t)=1*x__1(t)+2*x__2(t), diff(x__2(t),t)=-5*x__1(t) -1*x__2(t)], singsol=al
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \sin (3 t)+c_{2} \cos (3 t) \\
& x_{2}(t)=\frac{3 c_{1} \cos (3 t)}{2}-\frac{3 c_{2} \sin (3 t)}{2}-\frac{c_{1} \sin (3 t)}{2}-\frac{c_{2} \cos (3 t)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 54
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+2 * x 2[t], x 2{ }^{\prime}[t]==-5 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} \cos (3 t)+\frac{1}{3}\left(c_{1}+2 c_{2}\right) \sin (3 t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (3 t)-\frac{1}{3}\left(5 c_{1}+c_{2}\right) \sin (3 t)
\end{aligned}
$$

16.7 problem 7

16.7.1 Solution using Matrix exponential method 3582
16.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3583
16.7.3 Maple step by step solution . 3591

Internal problem ID [757]
Internal file name [OUTPUT/757_Sunday_June_05_2022_01_48_52_AM_27514033/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)-2 x_{3}(t) \\
x_{3}^{\prime}(t) & =3 x_{1}(t)+2 x_{2}(t)+x_{3}(t)
\end{aligned}
$$

16.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
\frac{3 \mathrm{e}^{t} \cos (2 t)}{2}+\mathrm{e}^{t} \sin (2 t)-\frac{3 \mathrm{e}^{t}}{2} & \mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
-\mathrm{e}^{t} \cos (2 t)+\frac{3 \mathrm{e}^{t} \sin (2 t)}{2}+\mathrm{e}^{t} & \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
\frac{\mathrm{e}^{t}(-3+3 \cos (2 t)+2 \sin (2 t))}{2} & \mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
-\frac{\mathrm{e}^{t}(-2+2 \cos (2 t)-3 \sin (2 t))}{2} & \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
\frac{\mathrm{e}^{t}(-3+3 \cos (2 t)+2 \sin (2 t))}{2} & \mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
-\frac{\mathrm{e}^{t}(-2+2 \cos (2 t)-3 \sin (2 t))}{2} & \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\frac{\mathrm{e}^{t}(-3+3 \cos (2 t)+2 \sin (2 t)) c_{1}}{2}+\mathrm{e}^{t} \cos (2 t) c_{2}-\mathrm{e}^{t} \sin (2 t) c_{3} \\
-\frac{\mathrm{e}^{t}(-2+2 \cos (2 t)-3 \sin (2 t)) c_{1}}{2}+\mathrm{e}^{t} \sin (2 t) c_{2}+\mathrm{e}^{t} \cos (2 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\frac{3 \mathrm{e}^{t}\left(\left(c_{1}+\frac{2 c_{2}}{3}\right) \cos (2 t)+\frac{2\left(c_{1}-c_{3}\right) \sin (2 t)}{3}-c_{1}\right)}{2} \\
-\left(\left(c_{1}-c_{3}\right) \cos (2 t)+\left(-\frac{\left.\left.3 c_{1}-c_{2}\right) \sin (2 t)-c_{1}\right) \mathrm{e}^{t}}{2}\right.\right.
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & 1-\lambda & -2 \\
3 & 2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+7 \lambda-5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=1+2 i \\
& \lambda_{3}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
2 & 0 & -2 & 0 \\
3 & 2 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 \\
3 & 2 & 0 & 0
\end{array}\right]} \\
R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 3 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
2 & 0 & -2 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-\frac{3 t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-\frac{3 t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
t \\
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]-(1-2 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc|c}
2 i & 0 & 0 & 0 \\
2 & 2 i & -2 & 0 \\
3 & 2 & 2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 i & 0 & 0 & 0 \\
0 & 2 i & -2 & 0 \\
3 & 2 & 2 i & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 i R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 i & 0 & 0 & 0 \\
0 & 2 i & -2 & 0 \\
0 & 2 & 2 i & 0
\end{array}\right] \\
R_{3}=i R_{2}+R_{3} \Longrightarrow
\end{array} \begin{array}{ccc|c}
2 i & 0 & 0 & 0 \\
0 & 2 i & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 i & 0 & 0 \\
0 & 2 i & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]-(1+2 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 i & 0 & 0 & 0 \\
2 & -2 i & -2 & 0 \\
3 & 2 & -2 i & 0
\end{array}\right]} \\
& R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 i & 0 & 0 & 0 \\
0 & -2 i & -2 & 0 \\
3 & 2 & -2 i & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{3 i R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 i & 0 & 0 & 0 \\
0 & -2 i & -2 & 0 \\
0 & 2 & -2 i & 0
\end{array}\right] \\
& R_{3}=-i R_{2}+R_{3} \Longrightarrow\left[\begin{array}{ccc|c}
-2 i & 0 & 0 & 0 \\
0 & -2 i & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 i & 0 & 0 \\
0 & -2 i & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$1+2 i$	1	1	No	$\left[\begin{array}{c}1 \\ -\frac{3}{2} \\ 1\end{array}\right]$
$1-2 i$	1	1	No	$\left[\begin{array}{c}0 \\ i \\ 1\end{array}\right]$
		1	No	$\left[\begin{array}{c}0 \\ -i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\frac{3 \mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
i \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-i \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{t} \\
-\frac{3 c_{1} \mathrm{e}^{t}}{2}+i c_{2} \mathrm{e}^{(1+2 i) t}-i c_{3} \mathrm{e}^{(1-2 i) t} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{(1+2 i) t}+c_{3} \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

16.7.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)-2 x_{3}(t), x_{3}^{\prime}(t)=3 x_{1}(t)+2 x_{2}(t)+x_{3}(t)\right]$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[1,\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]\right],\left[1-2 \mathrm{I},\left[\begin{array}{c}
0 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[1+2 \mathrm{I},\left[\begin{array}{l}
0 \\
\mathrm{I} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-2 \mathrm{I},\left[\begin{array}{c}
0 \\
-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}
0 \\
-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
0 \\
-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\mathrm{I}(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{2}^{\rightarrow}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\sin (2 t) \\
\cos (2 t)
\end{array}\right], x_{3}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\cos (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x_{\square}^{\rightarrow}=c_{1} x \rightarrow c_{2} x \rightarrow{ }_{2}(t)+c_{3} x \rightarrow{ }_{3}(t)
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\sin (2 t) \\
\cos (2 t)
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\cos (2 t) \\
-\sin (2 t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{t} \\
-\frac{\mathrm{e}^{t}\left(2 c_{3} \cos (2 t)+2 c_{2} \sin (2 t)+3 c_{1}\right)}{2} \\
\mathrm{e}^{t}\left(c_{1}+c_{2} \cos (2 t)-c_{3} \sin (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=c_{1} \mathrm{e}^{t}, x_{2}(t)=-\frac{\mathrm{e}^{t}\left(2 c_{3} \cos (2 t)+2 c_{2} \sin (2 t)+3 c_{1}\right)}{2}, x_{3}(t)=\mathrm{e}^{t}\left(c_{1}+c_{2} \cos (2 t)-c_{3} \sin (2 t)\right)\right\}
$$

\checkmark Solution by Maple

Time used: 0.109 (sec). Leaf size: 73
dsolve([diff $\left(x_{--} 1(t), t\right)=1 * x_{-} 1(t)+0 * x_{--} 2(t)+0 * x_{-} 3(t), \operatorname{diff}\left(x_{-_} 2(t), t\right)=2 * x_{--} 1(t)+1 * x_{--} 2(t)-2 *$

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=\frac{\mathrm{e}^{t}\left(2 c_{1} \cos (2 t)-3 c_{3} \cos (2 t)+2 c_{2} \sin (2 t)-3 c_{3}\right)}{2} \\
& x_{3}(t)=-\frac{\mathrm{e}^{t}\left(2 c_{2} \cos (2 t)-2 c_{1} \sin (2 t)+3 c_{3} \sin (2 t)-2 c_{3}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 95
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+0 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==2 * x 1[t]+1 * x 2[t]-2 * x 3[t], x 3 '[t]==3 * x 1[t]+2 * x 2\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{t} \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{t}\left(\left(3 c_{1}+2 c_{2}\right) \cos (2 t)+2\left(c_{1}-c_{3}\right) \sin (2 t)-3 c_{1}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{t}\left(-2\left(c_{1}-c_{3}\right) \cos (2 t)+\left(3 c_{1}+2 c_{2}\right) \sin (2 t)+2 c_{1}\right)
\end{aligned}
$$

16.8 problem 8

16.8.1 Solution using Matrix exponential method 3595
16.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3596
16.8.3 Maple step by step solution . 3604

Internal problem ID [758]
Internal file name [OUTPUT/758_Sunday_June_05_2022_01_48_54_AM_69288655/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-3 x_{1}(t)+2 x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-x_{2}(t) \\
x_{3}^{\prime}(t) & =-2 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

16.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3} & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \mathrm{e}^{-2 t}}{3} & \frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+2 \sqrt{2} \\
\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6}-\frac{2 \mathrm{e}^{-2 t}}{3} & \frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3} & -\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\sqrt{2} \\
-\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-2 t}}{3}-\frac{5 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6} & -\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{\mathrm{e}^{-2 t}}{3} & \frac{4 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\sqrt{2}
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3} & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \mathrm{e}^{-2 t}}{3} & \frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+2 \\
\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6}-\frac{2 \mathrm{e}^{-2 t}}{3} & \frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3} & -\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+ \\
-\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-2 t}}{3}-\frac{5 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6} & -\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{\mathrm{e}^{-2 t}}{3} & \frac{4 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+
\end{array}\right. \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}\right) c_{1}+\left(-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{2 \mathrm{e}^{-2 t}}{3}\right) c_{2}+\left(\begin{array}{l}
2 \mathrm{e} \\
\left(\frac{2 \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6}-\frac{2 \mathrm{e}^{-2 t}}{3}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}\right) c_{2}+\left(-\frac{2 \mathrm{e}}{3}\right) \\
\left(-\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-2 t}}{3}-\frac{5 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{6}\right) c_{1}+\left(-\frac{2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}-\frac{\mathrm{e}^{-2 t}}{3}\right) c_{2}+
\end{array}(-4\right.
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}\left(c_{1}+2 c_{2}+2 c_{3}\right) \cos (\sqrt{2} t)}{3}-\frac{2 \mathrm{e}^{-t}\left(c_{1}+\frac{c_{2}}{2}-c_{3}\right) \sqrt{2} \sin (\sqrt{2} t)}{3}+\frac{2 \mathrm{e}^{-2 t}\left(c_{1}-c_{2}-c_{3}\right)}{3} \\
\frac{2 \mathrm{e}^{-t}\left(c_{1}+\frac{c_{2}}{2}-c_{3}\right) \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \mathrm{e}^{-t}\left(c_{1}+2 c_{2}+2 c_{3}\right) \sin (\sqrt{2} t)}{6}-\frac{2 \mathrm{e}^{-2 t}\left(c_{1}-c_{2}-c_{3}\right)}{3} \\
-\frac{\mathrm{e}^{-t}\left(c_{1}-c_{2}-4 c_{3}\right) \cos (\sqrt{2} t)}{3}-\frac{5\left(c_{1}+\frac{4 c_{2}}{5}-\frac{2 c_{3}}{5}\right) \mathrm{e}^{-t} \sqrt{2} \sin (\sqrt{2} t)}{6}+\frac{\mathrm{e}^{-2 t}\left(c_{1}-c_{2}-c_{3}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3-\lambda & 0 & 2 \\
1 & -1-\lambda & 0 \\
-2 & -1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+4 \lambda^{2}+7 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{2} \\
& \lambda_{2}=-1-i \sqrt{2} \\
& \lambda_{3}=-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1+i \sqrt{2}$	1	complex eigenvalue
-2	1	real eigenvalue
$-1-i \sqrt{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]-(-2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 \\
-2 & -1 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
-2 & -1 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & -1 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1-i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]-(-1-i \sqrt{2})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-2+i \sqrt{2} & 0 & 2 & 0 \\
1 & i \sqrt{2} & 0 & 0 \\
-2 & -1 & 1+i \sqrt{2} & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-\frac{R_{1}}{-2+i \sqrt{2}} \Longrightarrow\left[\begin{array}{ccc|c}
-2+i \sqrt{2} & 0 & 2 & 0 \\
0 & i \sqrt{2} & -\frac{2}{-2+i \sqrt{2}} & 0 \\
-2 & -1 & 1+i \sqrt{2} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{1}}{-2+i \sqrt{2}} \Longrightarrow\left[\begin{array}{ccc|c}
-2+i \sqrt{2} & 0 & 2 & 0 \\
0 & i \sqrt{2} & -\frac{2}{-2+i \sqrt{2}} & 0 \\
0 & -1 & -\frac{\sqrt{2}}{2 i+\sqrt{2}} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{i \sqrt{2} R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2+i \sqrt{2} & 0 & 2 & 0 \\
0 & i \sqrt{2} & -\frac{2}{-2+i \sqrt{2}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2+i \sqrt{2} & 0 & 2 \\
0 & i \sqrt{2} & -\frac{2}{-2+i \sqrt{2}} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{-2+i \sqrt{2}}, v_{2}=-\frac{t}{1+i \sqrt{2}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{-2+\mathrm{I} \sqrt{2}} \\
-\frac{t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{-2+i \sqrt{2}} \\
-\frac{t}{1+i \sqrt{2}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{-2+\mathrm{I} \sqrt{2}} \\
-\frac{t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{-2+i \sqrt{2}} \\
-\frac{1}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{-2+\mathrm{I} \sqrt{2}} \\
-\frac{t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{-2+i \sqrt{2}} \\
-\frac{1}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{-2+\mathrm{I} \sqrt{2}} \\
-\frac{t}{1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{-2+i \sqrt{2}} \\
-\frac{1}{1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-1+i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]-(-1+i \sqrt{2})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{array} \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2-i \sqrt{2} & 0 & 2 & 0 \\
1 & -i \sqrt{2} & 0 & 0 \\
-2 & -1 & 1-i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{-2-i \sqrt{2}} \Longrightarrow\left[\begin{array}{ccc|c}
-2-i \sqrt{2} & 0 & 2 & 0 \\
0 & -i \sqrt{2} & \frac{2}{2+i \sqrt{2}} & 0 \\
-2 & -1 & 1-i \sqrt{2} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{1}}{-2-i \sqrt{2}} \Longrightarrow\left[\begin{array}{ccc|c}
-2-i \sqrt{2} & 0 & 2 & 0 \\
0 & -i \sqrt{2} & \frac{2}{2+i \sqrt{2}} & 0 \\
0 & -1 & \frac{\sqrt{2}}{2 i-\sqrt{2}} & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{i \sqrt{2} R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2-i \sqrt{2} & 0 & 2 & 0 \\
0 & -i \sqrt{2} & \frac{2}{2+i \sqrt{2}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2-i \sqrt{2} & 0 & 2 \\
0 & -i \sqrt{2} & \frac{2}{2+i \sqrt{2}} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{2+i \sqrt{2}}, v_{2}=\frac{t}{-1+i \sqrt{2}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{2+\mathrm{I} \sqrt{2}} \\
\frac{t}{-1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{2+i \sqrt{2}} \\
\frac{t}{-1+i \sqrt{2}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{2+\mathrm{I} \sqrt{2}} \\
\frac{t}{-1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{2+i \sqrt{2}} \\
\frac{1}{-1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{2+\mathrm{I} \sqrt{2}} \\
\frac{t}{-1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{2+i \sqrt{2}} \\
\frac{1}{-1+i \sqrt{2}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{2+\mathrm{I} \sqrt{2}} \\
\frac{t}{-1+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{2+i \sqrt{2}} \\
\frac{1}{-1+i \sqrt{2}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{2+i \sqrt{2}} \\ \frac{i(-2+i \sqrt{2}) \sqrt{2}}{6} \\ 1\end{array}\right]$
$-1-i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{2-i \sqrt{2}} \\ -\frac{i(-2-i \sqrt{2}) \sqrt{2}}{6} \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{(-1+i \sqrt{2}) t}}{2+i \sqrt{2}} \\
\frac{i \mathrm{e}^{(-1+i \sqrt{2}) t}(-2+i \sqrt{2}) \sqrt{2}}{6} \\
\mathrm{e}^{(-1+i \sqrt{2}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{(-1-i \sqrt{2}) t}}{2-i \sqrt{2}} \\
-\frac{i \mathrm{e}^{(-1-i \sqrt{2}) t}(-2-i \sqrt{2}) \sqrt{2}}{6} \\
\mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
2 \mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{(2+i \sqrt{2}) c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t}}{3}+\frac{c_{1}(2-i \sqrt{2}) \mathrm{e}^{(-1+i \sqrt{2}) t}}{3}+2 c_{3} \mathrm{e}^{-2 t} \\
\frac{(-1+i \sqrt{2}) c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t}}{3}+\frac{c_{1}(-1-i \sqrt{2}) \mathrm{e}^{(-1+i \sqrt{2}) t}}{3}-2 c_{3} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{(-1+i \sqrt{2}) t}+c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t}+c_{3} \mathrm{e}^{-2 t}
\end{array}\right]
$$

16.8.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-3 x_{1}(t)+2 x_{3}(t), x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t), x_{3}^{\prime}(t)=-2 x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]\right],\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{2}{2-\mathrm{I} \sqrt{2}} \\
-\frac{\mathrm{I}}{6}(-2-\mathrm{I} \sqrt{2}) \sqrt{2} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{2}{2+\mathrm{I} \sqrt{2}} \\
\frac{\mathrm{I}}{6}(-2+\mathrm{I} \sqrt{2}) \sqrt{2} \\
1
\end{array}\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{2}{2-\mathrm{I} \sqrt{2}} \\
-\frac{\mathrm{I}}{6}(-2-\mathrm{I} \sqrt{2}) \sqrt{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I} \sqrt{2}) t} \cdot\left[\begin{array}{c}
\frac{2}{2-\mathrm{I} \sqrt{2}} \\
-\frac{\mathrm{I}}{6}(-2-\mathrm{I} \sqrt{2}) \sqrt{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)) \cdot\left[\begin{array}{c}
\frac{2}{2-\mathrm{I} \sqrt{2}} \\
-\frac{\mathrm{I}}{6}(-2-\mathrm{I} \sqrt{2}) \sqrt{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{2(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t))}{2-\mathrm{I} \sqrt{2}} \\
-\frac{\mathrm{I}}{6}(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t))(-2-\mathrm{I} \sqrt{2}) \sqrt{2} \\
\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{2}^{\rightarrow}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{2 \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{3} \\
\frac{\sqrt{2}(-\cos (\sqrt{2} t) \sqrt{2}+2 \sin (\sqrt{2} t))}{6} \\
\cos (\sqrt{2} t)
\end{array}\right], x \xrightarrow[3]{\rightarrow}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} t) \sqrt{2}}{3}-\frac{2 \sin (\sqrt{2} t)}{3} \\
-\frac{\sqrt{2}(-2 \cos (\sqrt{2} t)-\sqrt{2} \sin (\sqrt{2} t))}{6} \\
-\sin (\sqrt{2} t)
\end{array}\right.\right.
$$

- General solution to the system of ODEs
$x^{\rightarrow}=c_{1} x^{\rightarrow} 1+c_{2} x \xrightarrow{\rightarrow}(t)+c_{3} x{ }_{3}(t)$
- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{2 \cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{3} \\
\frac{\sqrt{2}(-\cos (\sqrt{2} t) \sqrt{2}+2 \sin (\sqrt{2} t))}{6} \\
\cos (\sqrt{2} t)
\end{array}\right]+c_{3} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{2} t) \sqrt{2}}{3}-\frac{2 \sin (1}{3} \\
-\frac{\sqrt{2}(-2 \cos (\sqrt{2} t)-\sqrt{2} \sin }{6} \\
-\sin (\sqrt{2} t)
\end{array}\right.
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2\left(\frac{c_{3} \sqrt{2}}{2}+c_{2}\right) \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t}\left(\sqrt{2} c_{2}-2 c_{3}\right) \sin (\sqrt{2} t)}{3}+2 c_{1} \mathrm{e}^{-2 t} \\
-\frac{\mathrm{e}^{-t}\left(-c_{3} \sqrt{2}+c_{2}\right) \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t}\left(\sqrt{2} c_{2}+c_{3}\right) \sin (\sqrt{2} t)}{3}-2 c_{1} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t} \cos (\sqrt{2} t)-c_{3} \mathrm{e}^{-t} \sin (\sqrt{2} t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{2\left(\frac{c_{3} \sqrt{2}}{2}+c_{2}\right) \mathrm{e}^{-t} \cos (\sqrt{2} t)}{3}+\frac{\mathrm{e}^{-t}\left(\sqrt{2} c_{2}-2 c_{3}\right) \sin (\sqrt{2} t)}{3}+2 c_{1} \mathrm{e}^{-2 t}, x_{2}(t)=-\frac{\mathrm{e}^{-t}\left(-c_{3} \sqrt{2}+c_{2}\right) \cos (\sqrt{2} t)}{3}+\right.
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 146

```
dsolve([diff(x__1 (t),t)=-3*\mp@subsup{x}{_-}{\prime}1(t)+0*\mp@subsup{x}{__-}{\prime2}(t)+2*\mp@subsup{x}{__-}{\prime}3(t),\operatorname{diff}(\mp@subsup{x}{_-_}{}2(t),t)=1*\mp@subsup{x}{_-}{\prime}1(t)-1*\mp@subsup{x}{_-_}{}2(t)-0
```

$$
\begin{aligned}
x_{1}(t)= & c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)+c_{3} \mathrm{e}^{-t} \cos (\sqrt{2} t) \\
x_{2}(t)= & -c_{1} \mathrm{e}^{-2 t}-\frac{c_{2} \mathrm{e}^{-t} \sqrt{2} \cos (\sqrt{2} t)}{2}+\frac{c_{3} \mathrm{e}^{-t} \sqrt{2} \sin (\sqrt{2} t)}{2} \\
x_{3}(t)= & \frac{c_{1} \mathrm{e}^{-2 t}}{2}+c_{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)+\frac{c_{2} \mathrm{e}^{-t} \sqrt{2} \cos (\sqrt{2} t)}{2} \\
& +c_{3} \mathrm{e}^{-t} \cos (\sqrt{2} t)-\frac{c_{3} \mathrm{e}^{-t} \sqrt{2} \sin (\sqrt{2} t)}{2}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 235
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-3 * \mathrm{x} 1[\mathrm{t}]+0 * \mathrm{x} 2[\mathrm{t}]+2 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]-0 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3{ }^{\prime}[\mathrm{t}]==-2 * \mathrm{x} 1[\mathrm{t}]-1 *\right.\right.$

$$
\begin{array}{r}
\begin{array}{r}
\mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{-2 t}\left(\left(c_{1}+2\left(c_{2}+c_{3}\right)\right) e^{t} \cos (\sqrt{2} t)-\sqrt{2}\left(2 c_{1}+c_{2}-2 c_{3}\right) e^{t} \sin (\sqrt{2} t)\right. \\
\\
\left.+2\left(c_{1}-c_{2}-c_{3}\right)\right)
\end{array} \\
\begin{array}{r}
\mathrm{x} 2(t) \rightarrow \frac{1}{6} e^{-2 t}\left(2\left(2 c_{1}+c_{2}-2 c_{3}\right) e^{t} \cos (\sqrt{2} t)+\sqrt{2}\left(c_{1}+2\left(c_{2}+c_{3}\right)\right) e^{t} \sin (\sqrt{2} t)\right. \\
\\
\left.+4\left(-c_{1}+c_{2}+c_{3}\right)\right)
\end{array} \\
\begin{array}{r}
\mathrm{x} 3(t) \rightarrow \frac{1}{6} e^{-2 t}\left(-2\left(c_{1}-c_{2}-4 c_{3}\right) e^{t} \cos (\sqrt{2} t)-\sqrt{2}\left(5 c_{1}+4 c_{2}-2 c_{3}\right) e^{t} \sin (\sqrt{2} t)\right. \\
\left.+2\left(c_{1}-c_{2}-c_{3}\right)\right)
\end{array}
\end{array}
$$

16.9 problem 9

16.9.1 Solution using Matrix exponential method 3608
16.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3609

Internal problem ID [759]
Internal file name [OUTPUT/759_Sunday_June_05_2022_01_48_57_AM_24403091/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-3 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=1, x_{2}(0)=1\right]
$$

16.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t} \sin (t) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)-2 \mathrm{e}^{-t} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t))-5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t)+\mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right] \\
& =\left[\begin{array}{c}
(-3 \sin (t)+\cos (t)) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}(-\sin (t)+\cos (t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -5 \\
1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i$	1	complex eigenvalue
$-1+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-(-1-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-(-1+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i$	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-1-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{(-1+i) t} \\
\mathrm{e}^{(-1+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{(-1-i) t} \\
\mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{(-1+i) t}+(2-i) c_{2} \mathrm{e}^{(-1-i) t} \\
c_{1} \mathrm{e}^{(-1+i) t}+c_{2} \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=1 \tag{1}\\
x_{2}(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1}+(2-i) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{1}{2}+\frac{i}{2} \\
c_{2}=\frac{1}{2}-\frac{i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{(-1+i) t}+\left(\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{(-1-i) t} \\
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(-1+i) t}+\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 513: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 35

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{--} 1(\mathrm{t}), \mathrm{t}\right)=\mathrm{x}_{--} 1(\mathrm{t})-5 * \mathrm{x}_{--} 2(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{-_} 2(\mathrm{t}), \mathrm{t}\right)=\mathrm{x}_{-_} 1(\mathrm{t})-3 * \mathrm{x}_{-_} 2(\mathrm{t}), \mathrm{x}_{--} 1(0)=\right.\right. \\
& x_{1}(t)=\mathrm{e}^{-t}(-3 \sin (t)+\cos (t)) \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}(5 \cos (t)-5 \sin (t))}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 34

```
DSolve[{x1'[t]==1*x1[t]-5*x2[t],x2'[t]==1*x1[t]-3*x2[t]},{x1[0]==1,x2[0]==1},{x1[t],x2[t]},t
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}(\cos (t)-3 \sin (t)) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}(\cos (t)-\sin (t))
\end{aligned}
$$

16.10 problem 10

16.10.1 Solution using Matrix exponential method 3615
16.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3616

Internal problem ID [760]
Internal file name [OUTPUT/760_Sunday_June_05_2022_01_48_59_AM_20065990/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-3 x_{1}(t)+2 x_{2}(t) \\
& x_{2}^{\prime}(t)=-x_{1}(t)-x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=1, x_{2}(0)=-2\right]
$$

16.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (t)-\mathrm{e}^{-2 t} \sin (t) & 2 \mathrm{e}^{-2 t} \sin (t) \\
-\mathrm{e}^{-2 t} \sin (t) & \mathrm{e}^{-2 t} \cos (t)+\mathrm{e}^{-2 t} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t}(-\sin (t)+\cos (t)) & 2 \mathrm{e}^{-2 t} \sin (t) \\
-\mathrm{e}^{-2 t} \sin (t) & \mathrm{e}^{-2 t}(\cos (t)+\sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t}(-\sin (t)+\cos (t)) & 2 \mathrm{e}^{-2 t} \sin (t) \\
-\mathrm{e}^{-2 t} \sin (t) & \mathrm{e}^{-2 t}(\cos (t)+\sin (t))
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(-\sin (t)+\cos (t))-4 \mathrm{e}^{-2 t} \sin (t) \\
-\mathrm{e}^{-2 t} \sin (t)-2 \mathrm{e}^{-2 t}(\cos (t)+\sin (t))
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(-5 \sin (t)+\cos (t)) \\
\mathrm{e}^{-2 t}(-3 \sin (t)-2 \cos (t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 2 \\
-1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-2+i$	1	complex eigenvalue
$-2-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right]-(-2-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1+i & 2 \\
-1 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & 2 & 0 \\
-1 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-3 & 2 \\
-1 & -1
\end{array}\right]-(-2+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & 2 & 0 \\
-1 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-2+i$	1	1	No	$\left[\begin{array}{c}1-i \\ 1\end{array}\right]$
$-2-i$	1	1	No	$\left[\begin{array}{c}1+i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(1-i) \mathrm{e}^{(-2+i) t} \\
\mathrm{e}^{(-2+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(1+i) \mathrm{e}^{(-2-i) t} \\
\mathrm{e}^{(-2-i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(1-i) c_{1} \mathrm{e}^{(-2+i) t}+(1+i) c_{2} \mathrm{e}^{(-2-i) t} \\
c_{1} \mathrm{e}^{(-2+i) t}+c_{2} \mathrm{e}^{(-2-i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=1 \tag{1}\\
x_{2}(0)=-2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
(1-i) c_{1}+(1+i) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1+\frac{3 i}{2} \\
c_{2}=-1-\frac{3 i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{5 i}{2}\right) \mathrm{e}^{(-2+i) t}+\left(\frac{1}{2}-\frac{5 i}{2}\right) \mathrm{e}^{(-2-i) t} \\
\left(-1+\frac{3 i}{2}\right) \mathrm{e}^{(-2+i) t}+\left(-1-\frac{3 i}{2}\right) \mathrm{e}^{(-2-i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 514: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{--} 1(\mathrm{t}), \mathrm{t}\right)=-3 * \mathrm{x}_{-1} 1(\mathrm{t})+2 * \mathrm{x}_{-} 2(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{--} 2(\mathrm{t}), \mathrm{t}\right)=-\mathrm{x}_{--} 1(\mathrm{t})-\mathrm{x}_{-} 2(\mathrm{t}), \mathrm{x}_{-1} 1(0)\right.\right. \\
& \qquad \begin{aligned}
x_{1}(t) & =\mathrm{e}^{-2 t}(-5 \sin (t)+\cos (t)) \\
x_{2}(t) & =\frac{\mathrm{e}^{-2 t}(-6 \sin (t)-4 \cos (t))}{2}
\end{aligned}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 27

```
DSolve[{x1'[t]==-3*x1[t]+2*x2[t],x2'[t]==-1*x1[t]-1*x2[t]},{x1[0]==1, x2[0]==1},{x1[t],x2[t]}
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-2 t}(\sin (t)+\cos (t)) \\
& \mathrm{x} 2(t) \rightarrow e^{-2 t} \cos (t)
\end{aligned}
$$

16.11 problem 11

16.11.1 Solution using Matrix exponential method 3622
16.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3623
16.11.3 Maple step by step solution

Internal problem ID [761]
Internal file name [OUTPUT/761_Sunday_June_05_2022_01_49_01_AM_57682055/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=\frac{3 x_{1}(t)}{4}-2 x_{2}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t)-\frac{5 x_{2}(t)}{4}
\end{aligned}
$$

16.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{4}} \cos (t)+\mathrm{e}^{-\frac{t}{4}} \sin (t) & -2 \mathrm{e}^{-\frac{t}{4}} \sin (t) \\
\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}} \cos (t)-\mathrm{e}^{-\frac{t}{4}} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{4}}(\cos (t)+\sin (t)) & -2 \mathrm{e}^{-\frac{t}{4}} \sin (t) \\
\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}}(-\sin (t)+\cos (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{4}}(\cos (t)+\sin (t)) & -2 \mathrm{e}^{-\frac{t}{4}} \sin (t) \\
\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}}(-\sin (t)+\cos (t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}(\cos (t)+\sin (t)) c_{1}-2 \mathrm{e}^{-\frac{t}{4}} \sin (t) c_{2} \\
\mathrm{e}^{-\frac{t}{4}} \sin (t) c_{1}+\mathrm{e}^{-\frac{t}{4}}(-\sin (t)+\cos (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{1}-2 c_{2}\right) \sin (t)+c_{1} \cos (t)\right) \mathrm{e}^{-\frac{t}{4}} \\
\left(\left(-c_{2}+c_{1}\right) \sin (t)+c_{2} \cos (t)\right) \mathrm{e}^{-\frac{t}{4}}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\frac{3}{4}-\lambda & -2 \\
1 & -\frac{5}{4}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\frac{1}{2} \lambda+\frac{17}{16}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{4}+i \\
\lambda_{2} & =-\frac{1}{4}-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{4}-i$	1	complex eigenvalue
$-\frac{1}{4}+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{4}-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]-\left(-\frac{1}{4}-i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1+i & -2 \\
1 & -1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+i & -2 & 0 \\
1 & -1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1+i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{4}+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]-\left(-\frac{1}{4}+i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1-i & -2 \\
1 & -1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-i & -2 & 0 \\
1 & -1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1-i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{4}+i$	1	1	No	$\left[\begin{array}{c}1+i \\ 1\end{array}\right]$
$-\frac{1}{4}-i$	1	1	No	$\left[\begin{array}{c}1-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(1+i) \mathrm{e}^{\left(-\frac{1}{4}+i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}+i\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(1-i) \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}-i\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(1+i) c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}+(1-i) c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 515: Phase plot

16.11.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=\frac{3 x_{1}(t)}{4}-2 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-\frac{5 x_{2}(t)}{4}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
\frac{3}{4} & -2 \\
1 & -\frac{5}{4}
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x_{\underline{\rightarrow}}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{c}
1-\mathrm{I} \\
1
\end{array}\right]\right],\left[-\frac{1}{4}+\mathrm{I},\left[\begin{array}{c}
1+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{c}
1-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{\left(-\frac{1}{4}-\mathrm{I}\right) t} \cdot\left[\begin{array}{c}1-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{t}{4}} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
1-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
(1-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{\rightarrow}}^{\rightarrow}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
-\sin (t)+\cos (t) \\
\cos (t)
\end{array}\right], x{ }_{2}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
-\cos (t)-\sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \longrightarrow_{2}(t)
$$

- \quad Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
-\sin (t)+\cos (t) \\
\cos (t)
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
-\cos (t)-\sin (t) \\
-\sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}\left(\cos (t)\left(c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+c_{2}\right)\right) \\
\mathrm{e}^{-\frac{t}{4}}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(\cos (t)\left(c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+c_{2}\right)\right), x_{2}(t)=\mathrm{e}^{-\frac{t}{4}}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve([diff (x__1(t),t)=3/4*x__1(t)-2*x__ 2(t), diff (x__2(t),t)=1*x__1(t)-5/4*x__ 2(t)],singsol
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{-\frac{t}{4}}\left(c_{1} \sin (t)+c_{2} \sin (t)-c_{1} \cos (t)+c_{2} \cos (t)\right)}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 56
DSolve $\left[\left\{x 1^{\prime}[t]==3 / 4 * x 1[t]-2 * x 2[t], x 2^{\prime}[t]==1 * x 1[t]-5 / 4 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingular

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t / 4}\left(c_{1} \cos (t)+\left(c_{1}-2 c_{2}\right) \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 4}\left(c_{2} \cos (t)+\left(c_{1}-c_{2}\right) \sin (t)\right)
\end{aligned}
$$

16.12 problem 12

16.12.1 Solution using Matrix exponential method 3630
16.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3631
16.12.3 Maple step by step solution . 3635

Internal problem ID [762]
Internal file name [OUTPUT/762_Sunday_June_05_2022_01_49_02_AM_3546516/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{4 x_{1}(t)}{5}+2 x_{2}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)+\frac{6 x_{2}(t)}{5}
\end{aligned}
$$

16.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{5}} \cos (t)-\mathrm{e}^{\frac{t}{5}} \sin (t) & 2 \mathrm{e}^{\frac{t}{5}} \sin (t) \\
-\mathrm{e}^{\frac{t}{5}} \sin (t) & \mathrm{e}^{\frac{t}{5}} \cos (t)+\mathrm{e}^{\frac{t}{5}} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{5}}(-\sin (t)+\cos (t)) & 2 \mathrm{e}^{\frac{t}{5}} \sin (t) \\
-\mathrm{e}^{\frac{t}{5}} \sin (t) & \mathrm{e}^{\frac{t}{5}}(\cos (t)+\sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{5}}(-\sin (t)+\cos (t)) & 2 \mathrm{e}^{\frac{t}{5}} \sin (t) \\
-\mathrm{e}^{\frac{t}{5}} \sin (t) & \mathrm{e}^{\frac{t}{5}}(\cos (t)+\sin (t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{5}}(-\sin (t)+\cos (t)) c_{1}+2 \mathrm{e}^{\frac{t}{5}} \sin (t) c_{2} \\
-\mathrm{e}^{\frac{t}{5}} \sin (t) c_{1}+\mathrm{e}^{\frac{t}{5}}(\cos (t)+\sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-c_{1}+2 c_{2}\right) \sin (t)+c_{1} \cos (t)\right) \mathrm{e}^{\frac{t}{5}} \\
-\left(\left(-c_{2}+c_{1}\right) \sin (t)-c_{2} \cos (t)\right) \mathrm{e}^{\frac{t}{5}}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]-\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{4}{5}-\lambda & 2 \\
-1 & \frac{6}{5}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\frac{2}{5} \lambda+\frac{26}{25}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{5}+i \\
& \lambda_{2}=\frac{1}{5}-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{5}-i$	1	complex eigenvalue
$\frac{1}{5}+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{5}-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]-\left(\frac{1}{5}-i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+i & 2 \\
-1 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & 2 & 0 \\
-1 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{5}+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{rr}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]-\left(\frac{1}{5}+i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1-i & 2 \\
-1 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & 2 & 0 \\
-1 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{5}+i$	1	1	No	$\left[\begin{array}{c}1-i \\ 1\end{array}\right]$
$\frac{1}{5}-i$	1	1	No	$\left[\begin{array}{c}1+i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(1-i) \mathrm{e}^{\left(\frac{1}{5}+i\right) t} \\
\mathrm{e}^{\left(\frac{1}{5}+i\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(1+i) \mathrm{e}^{\left(\frac{1}{5}-i\right) t} \\
\mathrm{e}^{\left(\frac{1}{5}-i\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(1-i) c_{1} \mathrm{e}^{\left(\frac{1}{5}+i\right) t}+(1+i) c_{2} \mathrm{e}^{\left(\frac{1}{5}-i\right) t} \\
c_{1} \mathrm{e}^{\left(\frac{1}{5}+i\right) t}+c_{2} \mathrm{e}^{\left(\frac{1}{5}-i\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 516: Phase plot

16.12.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{4 x_{1}(t)}{5}+2 x_{2}(t), x_{2}^{\prime}(t)=-x_{1}(t)+\frac{6 x_{2}(t)}{5}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{rr}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right] \cdot \underline{\longrightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{4}{5} & 2 \\
-1 & \frac{6}{5}
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x_{\underline{\rightarrow}}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{5}-\mathrm{I},\left[\begin{array}{c}
1+\mathrm{I} \\
1
\end{array}\right]\right],\left[\frac{1}{5}+\mathrm{I},\left[\begin{array}{c}
1-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{5}-\mathrm{I},\left[\begin{array}{c}
1+\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{\left(\frac{1}{5}-\mathrm{I}\right) t} \cdot\left[\begin{array}{c}1+\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{\frac{t}{5}} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
1+\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
(1+\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{1}}^{\rightarrow}(t)=\mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
\cos (t)+\sin (t) \\
\cos (t)
\end{array}\right], x_{2}^{\rightarrow}(t)=\mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
-\sin (t)+\cos (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}(t)+c_{2} x \rightarrow{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
\cos (t)+\sin (t) \\
\cos (t)
\end{array}\right]+c_{2} \mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
-\sin (t)+\cos (t) \\
-\sin (t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\cos (t)\left(c_{1}+c_{2}\right)+\left(c_{1}-c_{2}\right) \sin (t)\right) \mathrm{e}^{\frac{t}{5}} \\
\mathrm{e}^{\frac{t}{5}}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left(\cos (t)\left(c_{1}+c_{2}\right)+\left(c_{1}-c_{2}\right) \sin (t)\right) \mathrm{e}^{\frac{t}{5}}, x_{2}(t)=\mathrm{e}^{\frac{t}{5}}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve([diff(x__1(t),t)=-4/5*x__1(t)+2*x__2(t), diff (x__2 (t),t)=-1*x__1 (t)+6/5*x__ 2(t)],sings
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{\frac{t}{5}}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{\frac{t}{5}}\left(c_{1} \sin (t)-c_{2} \sin (t)+c_{1} \cos (t)+c_{2} \cos (t)\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 56

```
DSolve[{x1'[t]==-4/5*x1[t]+2*x2[t], x2'[t]==-1*x1[t]+6/5*x2[t]},{x1[t], x2[t]},t,IncludeSingul
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t / 5}\left(c_{1} \cos (t)-\left(c_{1}-2 c_{2}\right) \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t / 5}\left(c_{2}(\sin (t)+\cos (t))-c_{1} \sin (t)\right)
\end{aligned}
$$

16.13 problem 23

16.13.1 Solution using Matrix exponential method 3638
16.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3639
16.13.3 Maple step by step solution . 3646

Internal problem ID [763]
Internal file name [OUTPUT/763_Sunday_June_05_2022_01_49_04_AM_12891500/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{x_{1}(t)}{4}+x_{2}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)-\frac{x_{2}(t)}{4} \\
x_{3}^{\prime}(t) & =-\frac{x_{3}(t)}{4}
\end{aligned}
$$

16.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-\frac{t}{4}} \cos (t) & \mathrm{e}^{-\frac{t}{4}} \sin (t) & 0 \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}} \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{-\frac{t}{4}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-\frac{t}{4}} \cos (t) & \mathrm{e}^{-\frac{t}{4}} \sin (t) & 0 \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}} \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{-\frac{t}{4}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}} \cos (t) c_{1}+\mathrm{e}^{-\frac{t}{4}} \sin (t) c_{2} \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) c_{1}+\mathrm{e}^{-\frac{t}{4}} \cos (t) c_{2} \\
\mathrm{e}^{-\frac{t}{4}} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}\left(\cos (t) c_{1}+\sin (t) c_{2}\right) \\
\mathrm{e}^{-\frac{t}{4}}\left(-\sin (t) c_{1}+\cos (t) c_{2}\right) \\
\mathrm{e}^{-\frac{t}{4}} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{1}{4}-\lambda & 1 & 0 \\
-1 & -\frac{1}{4}-\lambda & 0 \\
0 & 0 & -\frac{1}{4}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+\frac{3}{4} \lambda^{2}+\frac{19}{16} \lambda+\frac{17}{64}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{4}+i \\
\lambda_{2} & =-\frac{1}{4}-i \\
\lambda_{3} & =-\frac{1}{4}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{4}-i$	1	complex eigenvalue
$-\frac{1}{4}$	1	real eigenvalue
$-\frac{1}{4}+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{4}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\left.\begin{array}{r}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]-\left(-\frac{1}{4}\right)\right.
\end{array} \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{4}-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\left.\begin{array}{r}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]-\left(-\frac{1}{4}-i\right)\right.
\end{array} \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
-1 & i & 0 & 0 \\
0 & 0 & i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{lll|l}
i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
i & 1 & 0 \\
0 & 0 & i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-\frac{1}{4}+i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{r}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]-\left(-\frac{1}{4}+i\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
-1 & -i & 0 & 0 \\
0 & 0 & -i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-i & 1 & 0 \\
0 & 0 & -i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{4}+i$	1	1	No	$\left[\begin{array}{c}-i \\ 1 \\ 0\end{array}\right]$
$-\frac{1}{4}-i$	1	1	No	$\left[\begin{array}{l}i \\ 1 \\ 0\end{array}\right]$
$-\frac{1}{4}$	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{1}{4}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-\frac{t}{4}} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-\frac{t}{4}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{\left(-\frac{1}{4}+i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}+i\right) t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-\frac{t}{4}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}-c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t}\right) \\
c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
c_{3} \mathrm{e}^{-\frac{t}{4}}
\end{array}\right]
$$

16.13.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{x_{1}(t)}{4}+x_{2}(t), x_{2}^{\prime}(t)=-x_{1}(t)-\frac{x_{2}(t)}{4}, x_{3}^{\prime}(t)=-\frac{x_{3}(t)}{4}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right] \cdot \underline{x}^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & -\frac{1}{4}
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{4},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right],\left[-\frac{1}{4}+\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{1}{4},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}^{\rightarrow}=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{4}-\mathrm{I}\right) t} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{t}{4}} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t) \\
0
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{\rightarrow}}_{2}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
0
\end{array}\right], x \xrightarrow[3]{3}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t) \\
0
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \rightarrow 1+c_{2} x \vec{\longrightarrow}_{2}(t)+c_{3} x \vec{\hookrightarrow}_{3}(t)
$$

- Substitute solutions into the general solution

$$
x_{\underline{~}}=c_{1} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
0
\end{array}\right]+c_{3} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t) \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)+c_{3} \cos (t)\right) \\
\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \cos (t)-c_{3} \sin (t)\right) \\
c_{1} \mathrm{e}^{-\frac{t}{4}}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)+c_{3} \cos (t)\right), x_{2}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \cos (t)-c_{3} \sin (t)\right), x_{3}(t)=c_{1} \mathrm{e}^{-\frac{t}{4}}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 47

```
dsolve([diff(x__1(t),t)=-1/4*x__1 (t)+1*x__2(t)+0*x__ 3(t), diff (x__2(t),t)=-1*x___ 1(t) -1/4*x_
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=-\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)-c_{1} \cos (t)\right) \\
& x_{3}(t)=c_{3} \mathrm{e}^{-\frac{t}{4}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 110
DSolve $\left[\left\{x 1^{\prime}[t]==-1 / 4 * x 1[t]+1 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-1 * x 1[t]-1 / 4 * x 2[t]+0 * x 3[t], x 3^{\prime}[t]==0 * x 1[t\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t / 4}\left(c_{1} \cos (t)+c_{2} \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 4}\left(c_{2} \cos (t)-c_{1} \sin (t)\right) \\
& \mathrm{x} 3(t) \rightarrow c_{3} e^{-t / 4} \\
& \mathrm{x} 1(t) \rightarrow e^{-t / 4}\left(c_{1} \cos (t)+c_{2} \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 4}\left(c_{2} \cos (t)-c_{1} \sin (t)\right) \\
& \mathrm{x} 3(t) \rightarrow 0
\end{aligned}
$$

16.14 problem 24

16.14.1 Solution using Matrix exponential method 3650
16.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3651
16.14.3 Maple step by step solution . 3658

Internal problem ID [764]
Internal file name [OUTPUT/764_Sunday_June_05_2022_01_49_05_AM_58372908/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{x_{1}(t)}{4}+x_{2}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)-\frac{x_{2}(t)}{4} \\
x_{3}^{\prime}(t) & =\frac{x_{3}(t)}{10}
\end{aligned}
$$

16.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-\frac{t}{4}} \cos (t) & \mathrm{e}^{-\frac{t}{4}} \sin (t) & 0 \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}} \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{\frac{t}{10}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-\frac{t}{4}} \cos (t) & \mathrm{e}^{-\frac{t}{4}} \sin (t) & 0 \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) & \mathrm{e}^{-\frac{t}{4}} \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{\frac{t}{10}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}} \cos (t) c_{1}+\mathrm{e}^{-\frac{t}{4}} \sin (t) c_{2} \\
-\mathrm{e}^{-\frac{t}{4}} \sin (t) c_{1}+\mathrm{e}^{-\frac{t}{4}} \cos (t) c_{2} \\
\mathrm{e}^{\frac{t}{10}} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}\left(\cos (t) c_{1}+\sin (t) c_{2}\right) \\
\mathrm{e}^{-\frac{t}{4}}\left(-\sin (t) c_{1}+\cos (t) c_{2}\right) \\
\mathrm{e}^{\frac{t}{10}} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{1}{4}-\lambda & 1 & 0 \\
-1 & -\frac{1}{4}-\lambda & 0 \\
0 & 0 & \frac{1}{10}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+\frac{2}{5} \lambda^{2}+\frac{81}{80} \lambda-\frac{17}{160}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{4}+i \\
& \lambda_{2}=-\frac{1}{4}-i \\
& \lambda_{3}=\frac{1}{10}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{4}-i$	1	complex eigenvalue
$-\frac{1}{4}+i$	1	complex eigenvalue
$\frac{1}{10}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{10}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]-\left(\frac{1}{10}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-\frac{7}{20} & 1 & 0 & 0 \\
-1 & -\frac{7}{20} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{20 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-\frac{7}{20} & 1 & 0 & 0 \\
0 & -\frac{449}{140} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\frac{7}{20} & 1 & 0 \\
0 & -\frac{449}{140} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{4}-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]-\left(-\frac{1}{4}-i\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
-1 & i & 0 & 0 \\
0 & 0 & \frac{7}{20}+i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{7}{20}+i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
0 & 0 & \frac{7}{20}+i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
i & 1 & 0 \\
0 & 0 & \frac{7}{20}+i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
i \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-\frac{1}{4}+i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]-\left(-\frac{1}{4}+i\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
-1 & -i & 0 & 0 \\
0 & 0 & \frac{7}{20}-i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{7}{20}-i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & \frac{7}{20}-i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-i & 1 & 0 \\
0 & 0 & \frac{7}{20}-i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{4}+i$	1	1	No	$\left[\begin{array}{c}-i \\ 1 \\ 0\end{array}\right]$
$-\frac{1}{4}-i$	1	1	No	$\left[\begin{array}{l}i \\ 1 \\ 0\end{array}\right]$
$\frac{1}{10}$	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{1}{10}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\frac{t}{10}} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{\frac{t}{10}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{\left(-\frac{1}{4}+i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}+i\right) t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
\mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{\frac{t}{10}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t}-c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}\right) \\
c_{1} \mathrm{e}^{\left(-\frac{1}{4}+i\right) t}+c_{2} \mathrm{e}^{\left(-\frac{1}{4}-i\right) t} \\
c_{3} \mathrm{e}^{\frac{t}{10}}
\end{array}\right]
$$

16.14.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{x_{1}(t)}{4}+x_{2}(t), x_{2}^{\prime}(t)=-x_{1}(t)-\frac{x_{2}(t)}{4}, x_{3}^{\prime}(t)=\frac{x_{3}(t)}{10}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-\frac{1}{4} & 1 & 0 \\
-1 & -\frac{1}{4} & 0 \\
0 & 0 & \frac{1}{10}
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\frac{1}{10},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right],\left[-\frac{1}{4}+\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{1}{10},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{1}=\mathrm{e}^{\frac{t}{10}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{4}-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{4}-\mathrm{I}\right) t} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{t}{4}} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t) \\
0
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{\rightarrow}}_{2}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
0
\end{array}\right], x \xrightarrow[3]{3}(t)=\mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t) \\
0
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \rightarrow{ }_{-}+c_{2} x \rightarrow 2(t)+c_{3} x \rightarrow{ }_{3}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{\frac{t}{10}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
0
\end{array}\right]+c_{3} \mathrm{e}^{-\frac{t}{4}} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t) \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)+c_{3} \cos (t)\right) \\
\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \cos (t)-c_{3} \sin (t)\right) \\
c_{1} \frac{t}{\mathrm{e}^{10}}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)+c_{3} \cos (t)\right), x_{2}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \cos (t)-c_{3} \sin (t)\right), x_{3}(t)=c_{1} \mathrm{e}^{\frac{t}{10}}\right\}
$$

Solution by Maple
Time used: 0.0 (sec). Leaf size: 47

```
dsolve([diff(x__1 (t),t)=-1/4*x__1(t)+1*x__ 2(t)+0*x__ 3(t), diff (x__ 2(t),t)=-1*x__ 1(t)-1/4*x_
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-\frac{t}{4}}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=-\mathrm{e}^{-\frac{t}{4}}\left(c_{2} \sin (t)-c_{1} \cos (t)\right) \\
& x_{3}(t)=c_{3} \mathrm{e}^{\frac{t}{10}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 110
DSolve $\left[\left\{x 1^{\prime}[t]==-1 / 4 * x 1[t]+1 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-1 * x 1[t]-1 / 4 * x 2[t]+0 * x 3[t], x 3^{\prime}[t]==0 * x 1[t\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t / 4}\left(c_{1} \cos (t)+c_{2} \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 4}\left(c_{2} \cos (t)-c_{1} \sin (t)\right) \\
& \mathrm{x} 3(t) \rightarrow c_{3} e^{t / 10} \\
& \mathrm{x} 1(t) \rightarrow e^{-t / 4}\left(c_{1} \cos (t)+c_{2} \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 4}\left(c_{2} \cos (t)-c_{1} \sin (t)\right) \\
& \mathrm{x} 3(t) \rightarrow 0
\end{aligned}
$$

16.15 problem 25

16.15.1 Solution using Matrix exponential method 3662
16.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3663
16.15.3 Maple step by step solution

Internal problem ID [765]
Internal file name [OUTPUT/765_Sunday_June_05_2022_01_49_07_AM_11650177/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.6, Complex Eigenvalues. page 417
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{x_{1}(t)}{2}-\frac{x_{2}(t)}{8} \\
x_{2}^{\prime}(t) & =2 x_{1}(t)-\frac{x_{2}(t)}{2}
\end{aligned}
$$

16.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right)}}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}}{4} \\
\mathrm{e}^{-\frac{t}{2}}\left(4 \sin \left(\frac{t}{2}\right) c_{1}+\cos \left(\frac{t}{2}\right) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

16.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2}-\lambda & -\frac{1}{8} \\
2 & -\frac{1}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+\frac{1}{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}+\frac{i}{2}$	1	complex eigenvalue
$-\frac{1}{2}-\frac{i}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}-\frac{i}{2}\right)\right. & {\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
\frac{i}{2} & -\frac{1}{8} \\
2 & \frac{i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{i}{2} & -\frac{1}{8} & 0 \\
2 & \frac{i}{2} & 0
\end{array}\right]} \\
R_{2}=4 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
\frac{i}{2} & -\frac{1}{8} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{i}{2} & -\frac{1}{8} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{i t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{i}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}+\frac{i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{i}{2} & -\frac{1}{8} \\
2 & -\frac{i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{i}{2} & -\frac{1}{8} & 0 \\
2 & -\frac{i}{2} & 0
\end{array}\right]} \\
R_{2}=-4 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{i}{2} & -\frac{1}{8} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{i}{2} & -\frac{1}{8} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{i t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{i}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
4
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}+\frac{i}{2}$	1	1	No	$\left[\begin{array}{c}\frac{i}{4} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{i}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{i}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{i e^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{i e^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{i\left(c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}-c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}\right)}{4} \\
c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 517: Phase plot

16.15.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{x_{1}(t)}{2}-\frac{x_{2}(t)}{8}, x_{2}^{\prime}(t)=2 x_{1}(t)-\frac{x_{2}(t)}{2}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
\begin{equation*}
x_{\longrightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\longrightarrow} \tag{t}
\end{equation*}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{2}-\frac{I}{2},\left[\begin{array}{c}
-\frac{I}{4} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I}}{2},\left[\begin{array}{c}
\frac{I}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{I}{2},\left[\begin{array}{c}
-\frac{I}{4} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-\frac{t}{2}} \cdot\left(\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)\right) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4}\left(\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)\right) \\
\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{1}^{\rightarrow}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\sin \left(\frac{t}{2}\right)}{4} \\
\cos \left(\frac{t}{2}\right)
\end{array}\right], x{\underset{2}{2}}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{t}{2}\right)}{4} \\
-\sin \left(\frac{t}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \longrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\sin \left(\frac{t}{2}\right)}{4} \\
\cos \left(\frac{t}{2}\right)
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{t}{2}\right)}{4} \\
-\sin \left(\frac{t}{2}\right)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \sin \left(\frac{t}{2}\right)+c_{2} \cos \left(\frac{t}{2}\right)\right)}{4} \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \sin \left(\frac{t}{2}\right)+c_{2} \cos \left(\frac{t}{2}\right)\right)}{4}, x_{2}(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{1} \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve([diff(x__1(t),t)=-1/2*x__1(t)-1/8*x__2(t), diff (x__ 2(t),t)=2*x__1(t)-1/2*x__ 2(t)],sing
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{2} \cos \left(\frac{t}{2}\right)+c_{1} \sin \left(\frac{t}{2}\right)\right) \\
& x_{2}(t)=-4 \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{t}{2}\right) c_{1}-\sin \left(\frac{t}{2}\right) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 68
DSolve $\left[\left\{x 1^{\prime}[t]==-1 / 2 * x 1[t]-1 / 8 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]-1 / 2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-t / 2}\left(4 c_{1} \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 2}\left(c_{2} \cos \left(\frac{t}{2}\right)+4 c_{1} \sin \left(\frac{t}{2}\right)\right)
\end{aligned}
$$

17 Chapter 7.8, Repeated Eigenvalues. page 436
17.1 problem 1 3672
17.2 problem 2 3682
17.3 problem 3 3691
17.4 problem 4 3701
17.5 problem 5 3711
17.6 problem 6 3723
17.7 problem 7 3735
17.8 problem 8 3743
17.9 problem 9 3751
17.10problem 10 3759
17.11problem 11 3767
17.12problem 12 3780

17.1 problem 1

17.1.1 Solution using Matrix exponential method 3672
17.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3673
17.1.3 Maple step by step solution . 3678

Internal problem ID [766]
Internal file name [OUTPUT/766_Sunday_June_05_2022_01_49_09_AM_14401963/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=3 x_{1}(t)-4 x_{2}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)
\end{aligned}
$$

17.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t}(1+2 t) & -4 t \mathrm{e}^{t} \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(1+2 t) & -4 t \mathrm{e}^{t} \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(1+2 t) c_{1}-4 t \mathrm{e}^{t} c_{2} \\
t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(2 t c_{1}-4 c_{2} t+c_{1}\right) \\
\mathrm{e}^{t}\left(t c_{1}-2 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -4 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -4 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	2	1	Yes	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 518: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
2 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(2 t+3) \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t}(2 t+3) \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((2 t+3) c_{2}+2 c_{1}\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 519: Phase plot

17.1.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=3 x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)\right]$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1
$x_{\longrightarrow}^{\rightarrow}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}(t)+c_{2} x^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}+c_{2}\right) \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}+c_{2}\right), x_{2}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve([diff(x__1(t),t)=3*x__1(t)-4*x__2(t), diff (x__ 2(t),t)=1*x__1 (t)-1*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 41
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(2 c_{1} t-4 c_{2} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(\left(c_{1}-2 c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

17.2 problem 2

17.2.1 Solution using Matrix exponential method 3682
17.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3683
17.2.3 Maple step by step solution . 3688

Internal problem ID [767]
Internal file name [OUTPUT/767_Sunday_June_05_2022_01_49_10_AM_87296969/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =8 x_{1}(t)-4 x_{2}(t)
\end{aligned}
$$

17.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(4 t+1) c_{1}-2 t c_{2} \\
8 t c_{1}+(1-4 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(4 c_{1}-2 c_{2}\right) t+c_{1} \\
\left(8 c_{1}-4 c_{2}\right) t+c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
8 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -2 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 520: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
\frac{7}{4}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
\frac{7}{4}
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
\frac{t}{2}+1 \\
t+\frac{7}{4}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{t}{2}+1 \\
t+\frac{7}{4}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} c_{1}+\frac{1}{2} c_{2} t+c_{2} \\
c_{1}+c_{2} t+\frac{7}{4} c_{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 521: Phase plot

17.2.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=4 x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=8 x_{1}(t)-4 x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{-1}^{\rightarrow}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
x_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x \rightarrow=\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1}}{2}, x_{2}(t)=c_{1}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
dsolve ([diff $\left.\left(x_{-} 1(t), t\right)=4 * x_{-} 1(t)-2 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=8 * x_{-} 1(t)-4 * x_{-} 2(t)\right]$, singsol $=a l l$

$$
\begin{aligned}
& x_{1}(t)=c_{1} t+c_{2} \\
& x_{2}(t)=-\frac{1}{2} c_{1}+2 c_{1} t+2 c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 34
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]-2 * x 2[t], x 2{ }^{\prime}[t]==8 * x 1[t]-4 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow 4 c_{1} t-2 c_{2} t+c_{1} \\
& \mathrm{x} 2(t) \rightarrow 8 c_{1} t-4 c_{2} t+c_{2}
\end{aligned}
$$

17.3 problem 3

17.3.1 Solution using Matrix exponential method 3691
17.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3692
17.3.3 Maple step by step solution . 3697

Internal problem ID [768]
Internal file name [OUTPUT/768_Sunday_June_05_2022_01_49_11_AM_71145901/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{3 x_{1}(t)}{2}+x_{2}(t) \\
x_{2}^{\prime}(t) & =-\frac{x_{1}(t)}{4}-\frac{x_{2}(t)}{2}
\end{aligned}
$$

17.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(-\frac{t}{2}+1\right) & t \mathrm{e}^{-t} \\
-\frac{t \mathrm{e}^{-t}}{4} & \mathrm{e}^{-t}\left(\frac{t}{2}+1\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(-\frac{t}{2}+1\right) & t \mathrm{e}^{-t} \\
-\frac{t \mathrm{e}^{-t}}{4} & \mathrm{e}^{-t}\left(\frac{t}{2}+1\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-\frac{t}{2}+1\right) c_{1}+t \mathrm{e}^{-t} c_{2} \\
-\frac{t \mathrm{e}^{-t} c_{1}}{4}+\mathrm{e}^{-t}\left(\frac{t}{2}+1\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-\frac{1}{2} t c_{1}+c_{1}+c_{2} t\right) \\
-\frac{\left((-2 t-4) c_{2}+t c_{1}\right) \mathrm{e}^{-t}}{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{3}{2}-\lambda & 1 \\
-\frac{1}{4} & -\frac{1}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{4} & \frac{1}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	1	Yes	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 522: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2} & 1 \\
-\frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
2 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
2(-1+t) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(2 t-2) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2\left((-1+t) c_{2}+c_{1}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 523: Phase plot

17.3.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{3 x_{1}(t)}{2}+x_{2}(t), x_{2}^{\prime}(t)=-\frac{x_{1}(t)}{4}-\frac{x_{2}(t)}{2}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow}(t)=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue -1
$x_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an
$x \longrightarrow_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{\underset{2}{ }}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x \xrightarrow{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue - 1

$$
\left(\left[\begin{array}{cc}
-\frac{3}{2} & 1 \\
-\frac{1}{4} & -\frac{1}{2}
\end{array}\right]-(-1) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue - 1

$$
x_{2}(t)=\mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \longrightarrow_{1}(t)+c_{2} x \xrightarrow[Z]{2}_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-4 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2\left((t-2) c_{2}+c_{1}\right) \mathrm{e}^{-t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=2\left((t-2) c_{2}+c_{1}\right) \mathrm{e}^{-t}, x_{2}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
dsolve([diff $\left.\left(x_{-} 1(t), t\right)=-3 / 2 * x_{-} 1(t)+1 * x_{-} 2(t), \operatorname{diff}\left(x_{_} \quad 2(t), t\right)=-1 / 4 * x_{-} 1(t)-1 / 2 * x_{-} 2(t)\right]$, sin

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}\left(c_{2} t+c_{1}+2 c_{2}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 54
DSolve $\left[\left\{x 1^{\prime}[t]==-3 / 2 * x 1[t]+1 * x 2[t], x 2{ }^{\prime}[t]==-1 / 4 * x 1[t]-1 / 2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{-t}\left(2 c_{2} t-c_{1}(t-2)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{4} e^{-t}\left(c_{1}(-t)+2 c_{2} t+4 c_{2}\right)
\end{aligned}
$$

17.4 problem 4

17.4.1 Solution using Matrix exponential method 3701
17.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3702
17.4.3 Maple step by step solution . 3707

Internal problem ID [769]
Internal file name [OUTPUT/769_Sunday_June_05_2022_01_49_12_AM_14655444/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-3 x_{1}(t)+\frac{5 x_{2}(t)}{2} \\
x_{2}^{\prime}(t) & =-\frac{5 x_{1}(t)}{2}+2 x_{2}(t)
\end{aligned}
$$

17.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}}\left(1-\frac{5 t}{2}\right) & \frac{5 t \mathrm{e}^{-\frac{t}{2}}}{2} \\
-\frac{5 t \mathrm{e}^{-\frac{t}{2}}}{2} & \mathrm{e}^{-\frac{t}{2}}\left(1+\frac{5 t}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}}\left(1-\frac{5 t}{2}\right) & \frac{5 t \mathrm{e}^{-\frac{t}{2}}}{2} \\
-\frac{5 t \mathrm{e}^{-\frac{t}{2}}}{2} & \mathrm{e}^{-\frac{t}{2}}\left(1+\frac{5 t}{2}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}}\left(1-\frac{5 t}{2}\right) c_{1}+\frac{5 t \mathrm{e}^{-\frac{t}{2} c_{2}}}{2} \\
-\frac{5 t \mathrm{e}^{-\frac{t}{2} c_{1}}}{2}+\mathrm{e}^{-\frac{t}{2}}\left(1+\frac{5 t}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left((2-5 t) c_{1}+5 c_{2} t\right) \mathrm{e}^{-\frac{t}{2}}}{2} \\
\frac{\left((5 t+2) c_{2}-5 t c_{1}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & \frac{5}{2} \\
-\frac{5}{2} & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+\frac{1}{4}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-\frac{1}{2}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{rr}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]-\left(-\frac{1}{2}\right)\right. & \left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{rr|r}
-\frac{5}{2} & \frac{5}{2} & 0 \\
-\frac{5}{2} & \frac{5}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{5}{2} & \frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{5}{2} & \frac{5}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}$	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue $-\frac{1}{2}$ is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 524: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{rr}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]-\left(-\frac{1}{2}\right)\right. {\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) } \\
& {\left[\begin{array}{ll}
-\frac{5}{2} & \frac{5}{2} \\
-\frac{5}{2} & \frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{3}{5} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue $-\frac{1}{2}$. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{-\frac{t}{2}} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
\frac{3}{5} \\
1
\end{array}\right]\right) \mathrm{e}^{-\frac{t}{2}} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}(5 t+3)}}{5} \\
\mathrm{e}^{-\frac{t}{2}}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}}\left(t+\frac{3}{5}\right) \\
\mathrm{e}^{-\frac{t}{2}}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}}\left(c_{1}+c_{2} t+\frac{3}{5} c_{2}\right) \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 525: Phase plot

17.4.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-3 x_{1}(t)+\frac{5 x_{2}(t)}{2}, x_{2}^{\prime}(t)=-\frac{5 x_{1}(t)}{2}+2 x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x^{\prime}(t)=\left[\begin{array}{cc}-3 & \frac{5}{2} \\ -\frac{5}{2} & 2\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right] \cdot \underline{\longrightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{1}{2},\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2},\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-\frac{1}{2},\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue $-\frac{1}{2}$

$$
x_{1}^{\rightarrow}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-\frac{1}{2}$ is the eigenvalue, an $x^{\rightarrow} 2(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x \xrightarrow{\rightarrow} 2(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x_{-}^{\overrightarrow{-}}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $-\frac{1}{2}$

$$
\left(\left[\begin{array}{ll}
-3 & \frac{5}{2} \\
-\frac{5}{2} & 2
\end{array}\right]--\frac{1}{2} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{2}{5} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $-\frac{1}{2}$

$$
{\underset{\longrightarrow}{2}}_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{2}{5} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \overrightarrow{-}_{1}(t)+c_{2} x \vec{\longrightarrow}_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{2}{5} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}}\left(c_{1}+c_{2} t-\frac{2}{5} c_{2}\right) \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{1}+c_{2} t-\frac{2}{5} c_{2}\right), x_{2}(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{_-} 1(\mathrm{t}), \mathrm{t}\right)=-3 * \mathrm{x}_{-} 1(\mathrm{t})+5 / 2 * \mathrm{x}_{_-} 2(\mathrm{t}), \text { diff }\left(\mathrm{x}_{_-} 2(\mathrm{t}), \mathrm{t}\right)=-5 / 2 * \mathrm{x}_{-} 1(\mathrm{t})+2 * \mathrm{x}_{_-} 2(\mathrm{t})\right],\right. \text { sings } \\
& x_{1}(t)=\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{-\frac{t}{2}}\left(5 c_{2} t+5 c_{1}+2 c_{2}\right)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 59
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]+5 / 2 * x 2[t], x 2{ }^{\prime}[t]==-5 / 2 * x 1[t]+2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingul

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{-t / 2}\left(c_{1}(2-5 t)+5 c_{2} t\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{-t / 2}\left(-5 c_{1} t+5 c_{2} t+2 c_{2}\right)
\end{aligned}
$$

17.5 problem 5

17.5.1 Solution using Matrix exponential method 3711
17.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3712
17.5.3 Maple step by step solution . 3719

Internal problem ID [770]
Internal file name [OUTPUT/770_Sunday_June_05_2022_01_49_14_AM_32078012/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)+x_{3}(t)
\end{aligned}
$$

17.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{(6 t+4) \mathrm{e}^{2 t}}{9}-\frac{4 \mathrm{e}^{-t}}{9} & \frac{(3 t+5) \mathrm{e}^{2 t}}{9}+\frac{4 \mathrm{e}^{-t}}{9} & \frac{\mathrm{e}^{2 t}(3 t-4)}{9}+\frac{4 \mathrm{e}^{-t}}{9} \\
\frac{(-6 t+2) \mathrm{e}^{2 t}}{9}-\frac{2 \mathrm{e}^{-t}}{9} & \frac{(-3 t-2) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9} & \frac{(-3 t+7) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}
\end{array} \begin{array}{cc}
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{(6 t+4) \mathrm{e}^{2 t}}{9}-\frac{4 \mathrm{e}^{-t}}{9} & \frac{(3 t+5) \mathrm{e}^{2 t}}{9}+\frac{4 \mathrm{e}^{-t}}{9} \\
\frac{(-6 t+2) \mathrm{e}^{2 t}}{9}-\frac{2 \mathrm{e}^{-t}(3 t-4)}{9}+\frac{4 \mathrm{e}^{-t}}{9} \\
\frac{(-3 t-2) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9} & \frac{(-3 t+7) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{2 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{3} \\
\left(\frac{(6 t+4) \mathrm{e}^{2 t}}{9}-\frac{4 \mathrm{e}^{-t}}{9}\right) c_{1}+\left(\frac{(3 t+5) \mathrm{e}^{2 t}}{9}+\frac{4 \mathrm{e}^{-t}}{9}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}(3 t-4)}{9}+\frac{4 \mathrm{e}^{-t}}{9}\right) c_{3} \\
\frac{\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{2\left(c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}\right) \mathrm{e}^{2 t}}{3} \\
\left.(-6 t+2) \mathrm{e}^{2 t}-\frac{2 \mathrm{e}^{-t}}{9}\right) c_{1}+\left(\frac{(-3 t-2) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9}\right) c_{2}+\left(\frac{(-3 t+7) \mathrm{e}^{2 t}}{9}+\frac{2 \mathrm{e}^{-t}}{9}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left((6 t+4) c_{1}+(3 t+5) c_{2}+c_{3}(3 t-4)\right) \mathrm{e}^{2 t}-\frac{4\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-t}}{9}}{9} \\
\frac{\left((-6 t+2) c_{1}+(-3 t-2) c_{2}+(-3 t+7) c_{3}\right) \mathrm{e}^{2 t}-\frac{2\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-t}}{9}}{9}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & 1 \\
2 & 1-\lambda & -1 \\
0 & -1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
2 & 1 & 1 & 0 \\
2 & 2 & -1 & 0 \\
0 & -1 & 2 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 1 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 1 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3 t}{2}, v_{2}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{2} \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{3 t}{2} \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-1 & 1 & 1 \\
2 & -1 & -1 \\
0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 0 \\
2 & -1 & -1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-\frac{3}{2} \\ 2 \\ 1\end{array}\right]$
2	2	1	Yes	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 526: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
-\mathrm{e}^{2 t}(2+t) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-t}}{2} \\
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}(-t-2) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 c_{1} \mathrm{e}^{-t}}{2}-c_{3} \mathrm{e}^{2 t} \\
\left((-t-2) c_{3}-c_{2}\right) \mathrm{e}^{2 t}+2 c_{1} \mathrm{e}^{-t} \\
\left((t+1) c_{3}+c_{2}\right) \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

17.5.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)+x_{3}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)-x_{3}(t), x_{3}^{\prime}(t)=-x_{2}(t)+x_{3}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 2

$$
x \longrightarrow_{2}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, and

$$
x_{3}^{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{3}(t)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x^{\rightarrow}{ }_{3}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]-2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}
$\vec{p}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 2

$$
{\underset{3}{3}}_{3}(t)=\mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}_{1}+c_{2} x_{\hookrightarrow_{2}}(t)+c_{3} x \longrightarrow_{3}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{3}{2} \\
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 c_{1} \mathrm{e}^{-t}}{2} \\
\left(-c_{3} t-c_{2}\right) \mathrm{e}^{2 t}+2 c_{1} \mathrm{e}^{-t} \\
\left(c_{3} t+c_{2}\right) \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{3 c_{1} \mathrm{e}^{-t}}{2}, x_{2}(t)=\left(-c_{3} t-c_{2}\right) \mathrm{e}^{2 t}+2 c_{1} \mathrm{e}^{-t}, x_{3}(t)=\left(c_{3} t+c_{2}\right) \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{-t}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 76

```
dsolve([diff (x__1(t),t)=1*\mp@subsup{x}{_-}{\prime}1(t)+1*\mp@subsup{x}{_-_}{}2(t)+1*\mp@subsup{x}{_-}{\prime}3(t),\operatorname{diff}(\mp@subsup{x}{_-_}{}2(t),t)=2*x__1 (t)+1*\mp@subsup{x}{_-_}{}2(t)-1*
```

$$
\begin{aligned}
& x_{1}(t)=-\frac{3 \mathrm{e}^{-t} c_{1}}{2}-c_{3} \mathrm{e}^{2 t} \\
& x_{2}(t)=2 \mathrm{e}^{-t} c_{1}-c_{2} \mathrm{e}^{2 t}-\mathrm{e}^{2 t} c_{3} t-c_{3} \mathrm{e}^{2 t} \\
& x_{3}(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{2 t}+\mathrm{e}^{2 t} c_{3} t
\end{aligned}
$$

Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 164
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+1 * x 2[t]+1 * x 3[t], x 2{ }^{\prime}[t]==2 * x 1[t]+1 * x 2[t]-1 * x 3[t], x 3{ }^{\prime}[t]==0 * x 1[t]-1 * x 2\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(2 e^{3 t}+1\right)+\left(c_{2}+c_{3}\right)\left(e^{3 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{9} e^{-t}\left(c_{1}\left(e^{3 t}(6 t+4)-4\right)+c_{2}\left(e^{3 t}(3 t+5)+4\right)+c_{3}\left(e^{3 t}(3 t-4)+4\right)\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{9} e^{-t}\left(c_{1}\left(e^{3 t}(2-6 t)-2\right)+c_{2}\left(2-e^{3 t}(3 t+2)\right)-c_{3}\left(e^{3 t}(3 t-7)-2\right)\right)
\end{aligned}
$$

17.6 problem 6

17.6.1 Solution using Matrix exponential method 3723
17.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3724
17.6.3 Maple step by step solution . 3731

Internal problem ID [771]
Internal file name [OUTPUT/771_Sunday_June_05_2022_01_49_16_AM_29590752/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+x_{2}(t)
\end{aligned}
$$

17.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{2}+\left(\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(2 c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3} \\
\frac{\left(-c_{1}+2 c_{2}-c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3} \\
\frac{\left(-c_{1}-c_{2}+2 c_{3}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{1}+c_{2}+c_{3}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
-1	2	2	No	$\left[\begin{array}{cc}-1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 527: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{-t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{2}-c_{3}\right) \mathrm{e}^{-t}+c_{1} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

17.6.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{2}(t)+x_{3}(t), x_{2}^{\prime}(t)=x_{1}(t)+x_{3}(t), x_{3}^{\prime}(t)=x_{1}(t)+x_{2}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \cdot \underline{\longrightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $x \xrightarrow{\rightarrow}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for ${\underset{\sim}{2}}_{2}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]$
- Second solution from eigenvalue - 1

$$
x_{2}(t)=\mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
{x_{3}}^{\rightarrow}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$x \vec{\longrightarrow}=c_{1} \vec{\longrightarrow}_{1}(t)+c_{2} x \xrightarrow{\vec{n}}(t)+c_{3} x \overrightarrow{{ }_{3}}$
- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow \rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
c_{3} \mathrm{e}^{2 t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}, x_{2}(t)=c_{3} \mathrm{e}^{2 t}, x_{3}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 64

```
dsolve([diff(x__1(t),t)=0*x__1(t)+1*x__2(t)+1*x__3 (t), diff (x__ 2(t),t)=1*x__1(t)+0*x__2(t)+1*
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t} \\
& x_{2}(t)=c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}+\mathrm{e}^{-t} c_{1} \\
& x_{3}(t)=-2 c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{2 t}-\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 124

```
DSolve [{x1'[t]==0*x1[t]+1*x2[t]+1*x3[t], x2'[t]==1*x1[t]+0*x2[t]+1*x3[t], x3'[t]==1*x1[t]+1*x2
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}+2\right)+\left(c_{2}+c_{3}\right)\left(e^{3 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}+2\right)+c_{3}\left(e^{3 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}-1\right)+c_{3}\left(e^{3 t}+2\right)\right)
\end{aligned}
$$

17.7 problem 7

17.7.1 Solution using Matrix exponential method 3735
17.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3736

Internal problem ID [772]
Internal file name [OUTPUT/772_Sunday_June_05_2022_01_49_17_AM_55713821/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)-7 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=3, x_{2}(0)=2\right]
$$

17.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(4 t+1) & -4 t \mathrm{e}^{-3 t} \\
4 t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-4 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(4 t+1) & -4 t \mathrm{e}^{-3 t} \\
4 t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-4 t)
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \mathrm{e}^{-3 t}(4 t+1)-8 t \mathrm{e}^{-3 t} \\
12 t \mathrm{e}^{-3 t}+2 \mathrm{e}^{-3 t}(1-4 t)
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(4 t+3) \\
(4 t+2) \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -4 \\
4 & -7-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -4 & 0 \\
4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 528: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{5}{4} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{5}{4} \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}(4 t+5)}{4} \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(t+\frac{5}{4}\right) \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(c_{1}+c_{2} t+\frac{5}{4} c_{2}\right) \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=3 \tag{1}\\
x_{2}(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
c_{1}+\frac{5 c_{2}}{4} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-2 \\
c_{2}=4
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}(4 t+3) \\
(4 t+2) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 529: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29

```
dsolve([diff(x__1(t),t) = x__1(t)-4*x__ 2(t), diff(x__ 2(t),t) = 4*x__1(t)-7*\mp@subsup{x}{_}{\prime}2(t), \mp@subsup{x}{-_}{}1(0)
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-3 t}(4 t+3) \\
& x_{2}(t)=\frac{\mathrm{e}^{-3 t}(16 t+8)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 34
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-4 * x 2[t]\right\},\{x 1[0]==3, x 2[0]==2\},\{x 1[t], x 2[t]\}, t\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{5 e^{-3 t}}{3}+\frac{4}{3} \\
& \mathrm{x} 2(t) \rightarrow \frac{5 e^{-3 t}}{3}+\frac{1}{3}
\end{aligned}
$$

17.8 problem 8

17.8.1 Solution using Matrix exponential method 3743
17.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3744

Internal problem ID [773]
Internal file name [OUTPUT/773_Sunday_June_05_2022_01_49_18_AM_81518641/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{5 x_{1}(t)}{2}+\frac{3 x_{2}(t)}{2} \\
x_{2}^{\prime}(t) & =-\frac{3 x_{1}(t)}{2}+\frac{x_{2}(t)}{2}
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=3, x_{2}(0)=-1\right]
$$

17.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(1-\frac{3 t}{2}\right) & \frac{3 t \mathrm{e}^{-t}}{2} \\
-\frac{3 t \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1+\frac{3 t}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(1-\frac{3 t}{2}\right) & \frac{3 t \mathrm{e}^{-t}}{2} \\
-\frac{3 t \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1+\frac{3 t}{2}\right)
\end{array}\right]\left[\begin{array}{c}
3 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \mathrm{e}^{-t}\left(1-\frac{3 t}{2}\right)-\frac{3 t \mathrm{e}^{-t}}{2} \\
-\frac{9 t \mathrm{e}^{-t}}{2}-\mathrm{e}^{-t}\left(1+\frac{3 t}{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
(-6 t+3) \mathrm{e}^{-t} \\
(-6 t-1) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{5}{2}-\lambda & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{rr}
-\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-\frac{3}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-\frac{3}{2} & \frac{3}{2} & 0 \\
-\frac{3}{2} & \frac{3}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2} & \frac{3}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 530: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{rr}
-\frac{5}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{1}{2}
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
-\frac{3}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\frac{(1+3 t) \mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\mathrm{e}^{-t}\left(t+\frac{1}{3}\right) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-t}\left(c_{1}+c_{2} t+\frac{1}{3} c_{2}\right) \\
\mathrm{e}^{-t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=3 \tag{1}\\
x_{2}(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
c_{1}+\frac{c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=5 \\
c_{2}=-6
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
(-6 t+3) \mathrm{e}^{-t} \\
(-6 t-1) \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 531: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve([diff(x__1 (t),t) = -5/2*x__ 1(t)+3/2*x__ 2(t), diff (x__ 2(t),t) = -3/2*x__ 1 (t)+1/2*x__ 2(
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}(-6 t+3) \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}(-18 t-3)}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 31
DSolve $\left[\left\{x 1^{\prime}[t]==-5 / 2 * x 1[t]+3 / 2 * x 2[t], x 2{ }^{\prime}[t]==-3 / 2 * x 1[t]+1 / 2 * x 2[t]\right\},\{x 1[0]==3, x 2[0]==-1\},\{x 1[\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}(3-6 t) \\
& \mathrm{x} 2(t) \rightarrow-e^{-t}(6 t+1)
\end{aligned}
$$

17.9 problem 9

17.9.1 Solution using Matrix exponential method 3751
17.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3752

Internal problem ID [774]
Internal file name [OUTPUT/774_Sunday_June_05_2022_01_49_19_AM_6565187/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t)+\frac{3 x_{2}(t)}{2} \\
& x_{2}^{\prime}(t)=-\frac{3 x_{1}(t)}{2}-x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=3, x_{2}(0)=-2\right]
$$

17.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(1+\frac{3 t}{2}\right) & \frac{3 t e^{\frac{t}{2}}}{2} \\
-\frac{3 t \mathrm{e}^{\frac{t}{2}}}{2} & \mathrm{e}^{\frac{t}{2}}\left(1-\frac{3 t}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(1+\frac{3 t}{2}\right) & \frac{3 t \mathrm{e}^{\frac{t}{2}}}{2} \\
-\frac{3 t \mathrm{e}^{\frac{t}{2}}}{2} & \mathrm{e}^{\frac{t}{2}}\left(1-\frac{3 t}{2}\right)
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \mathrm{e}^{\frac{t}{2}}\left(1+\frac{3 t}{2}\right)-3 t \mathrm{e}^{\frac{t}{2}} \\
-\frac{9 t \mathrm{e}^{\frac{t}{2}}}{2}-2 \mathrm{e}^{\frac{t}{2}}\left(1-\frac{3 t}{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3 \mathrm{e}^{\frac{t}{2}}(2+t)}{2} \\
\mathrm{e}^{\frac{t}{2}}\left(-2-\frac{3 t}{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & \frac{3}{2} \\
-\frac{3}{2} & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda+\frac{1}{4}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=\frac{1}{2}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right]-\left(\frac{1}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2} & \frac{3}{2} & 0 \\
-\frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2} & \frac{3}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{2}$	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue $\frac{1}{2}$ is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 532: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right]-\left(\frac{1}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{3}{2} & \frac{3}{2} \\
-\frac{3}{2} & -\frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{5}{3} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue $\frac{1}{2}$. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{\frac{t}{2}} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{\frac{t}{2}} \\
\mathrm{e}^{\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{5}{3} \\
1
\end{array}\right]\right) \mathrm{e}^{\frac{t}{2}} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{t}{2}}(3 t+5)}{3} \\
\mathrm{e}^{\frac{t}{2}}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{\frac{t}{2}} \\
\mathrm{e}^{\frac{t}{2}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{2}}\left(-t-\frac{5}{3}\right) \\
\mathrm{e}^{\frac{t}{2}}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{2}}\left(-c_{1}-c_{2} t-\frac{5}{3} c_{2}\right) \\
\mathrm{e}^{\frac{t}{2}}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=3 \tag{1}\\
x_{2}(0)=-2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-c_{1}-\frac{5 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=-\frac{1}{2} \\
c_{2}=-\frac{3}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{2}}\left(3+\frac{3 t}{2}\right) \\
\mathrm{e}^{\frac{t}{2}}\left(-2-\frac{3 t}{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 533: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29

```
dsolve([diff(x__1(t),t) = 2*x__1 (t)+3/2*x__ 2(t), diff(x__ 2(t),t) = -3/2*x__ 1(t)-x__ 2(t), x__
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{\frac{t}{2}}\left(\frac{3 t}{2}+3\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{\frac{t}{2}}\left(\frac{9 t}{2}+6\right)}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38

```
DSolve[{x1'[t]==2*x1[t]+3/2*x2[t], x2'[t]==-3/2*x1[t]-1*x2[t]},{x1[0]==3, x2[0]==-2},{x1[t],x2
```

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{3}{2} e^{t / 2}(t+2) \\
\mathrm{x} 2(t) & \rightarrow-\frac{1}{2} e^{t / 2}(3 t+4)
\end{aligned}
$$

17.10 problem 10

17.10.1 Solution using Matrix exponential method 3759
17.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3760

Internal problem ID [775]
Internal file name [OUTPUT/775_Sunday_June_05_2022_01_49_21_AM_24868463/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)+9 x_{2}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)-3 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=2, x_{2}(0)=4\right]
$$

17.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1+3 t & 9 t \\
-t & 1-3 t
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
1+3 t & 9 t \\
-t & 1-3 t
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
2+42 t \\
-14 t+4
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 9 \\
-1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 & 9 & 0 \\
-1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ll|l}
3 & 9 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 9 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{c}-3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 534: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 9 \\
-1 & -3
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-4 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right] 1 \\
& =\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-3 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-4 \\
1
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
-4-3 t \\
t+1
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-4-3 t \\
t+1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-3 c_{1}+c_{2}(-4-3 t) \\
c_{2} t+c_{1}+c_{2}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=2 \tag{1}\\
x_{2}(0)=4
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
-3 c_{1}-4 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=18 \\
c_{2}=-14
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2+42 t \\
-14 t+4
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 535: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve([diff($\left.x_{-} 1(t), t\right)=3 * x_{_} 1(t)+9 * x_{_} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=-x_{-} 1(t)-3 * x __{-} 2(t), x_{-} 1(0)$

$$
\begin{aligned}
& x_{1}(t)=42 t+2 \\
& x_{2}(t)=4-14 t
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]+9 * x 2[t], x 2{ }^{\prime}[t]==-1 * x 1[t]-3 * x 2[t]\right\},\{x 1[0]==2, x 2[0]==4\},\{x 1[t], x 2[t]\}\right.$,

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow 42 t+2 \\
& \mathrm{x} 2(t) \rightarrow 4-14 t
\end{aligned}
$$

17.11 problem 11

17.11.1 Solution using Matrix exponential method 3767
17.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3768

Internal problem ID [776]
Internal file name [OUTPUT/776_Sunday_June_05_2022_01_49_22_AM_63754416/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) \\
x_{2}^{\prime}(t) & =-4 x_{1}(t)+x_{2}(t) \\
x_{3}^{\prime}(t) & =3 x_{1}(t)+6 x_{2}(t)+2 x_{3}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=-1, x_{2}(0)=2, x_{3}(0)=-30\right]
$$

17.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
-4 t \mathrm{e}^{t} & \mathrm{e}^{t} & 0 \\
-21 \mathrm{e}^{2 t}+(24 t+21) \mathrm{e}^{t} & 6 \mathrm{e}^{2 t}-6 \mathrm{e}^{t} & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
-4 t \mathrm{e}^{t} & \mathrm{e}^{t} & 0 \\
-21 \mathrm{e}^{2 t}+(24 t+21) \mathrm{e}^{t} & 6 \mathrm{e}^{2 t}-6 \mathrm{e}^{t} & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-30
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{t} \\
4 t \mathrm{e}^{t}+2 \mathrm{e}^{t} \\
3 \mathrm{e}^{2 t}-(24 t+21) \mathrm{e}^{t}-12 \mathrm{e}^{t}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{t} \\
(4 t+2) \mathrm{e}^{t} \\
3 \mathrm{e}^{2 t}+(-24 t-33) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-4 & 1-\lambda & 0 \\
3 & 6 & 2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(1-\lambda)(1-\lambda)(2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rl}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=} \\
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 \\
0
\end{array}\right]} \\
-4 & 0
\end{array} 0
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
-4 & 0 & 0 & 0 \\
3 & 6 & 1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
3 & 6 & 1 & 0
\end{array}\right]} \\
R_{3}=R_{3}+\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 6 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-4 & 0 & 0 & 0 \\
0 & 6 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & 6 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-\frac{t}{6}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{t}{6} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{6} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
-4 & -1 & 0 & 0 \\
3 & 6 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-4 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
3 & 6 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 6 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}+6 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ 1\end{array}\right]$
1	2	1	Yes	$\left[\begin{array}{c}0 \\ -\frac{1}{6} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

eigenvalue 1 is real and repated eigenvalue of multiplicity 2 .There are two possible cases that can happen. This is illustrated in this diagram

Figure 536: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
3 & 6 & 2
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
-4 & 0 & 0 \\
3 & 6 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{24} \\
1 \\
-\frac{41}{8}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{e^{t}}{6} \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-\frac{1}{6} \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{1}{24} \\
1 \\
-\frac{41}{8}
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{24} \\
-\frac{\mathrm{e}^{t}(t-6)}{6} \\
\frac{\mathrm{e}^{t}(8 t-41)}{8}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{t}}{6} \\
\mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{24} \\
\mathrm{e}^{t}\left(-\frac{t}{6}+1\right) \\
\mathrm{e}^{t}\left(t-\frac{41}{8}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{3} e^{t}}{24} \\
-\frac{\left((t-6) c_{3}+c_{2}\right) \mathrm{e}^{t}}{6} \\
c_{1} \mathrm{e}^{2 t}+\left(\left(t-\frac{41}{8}\right) c_{3}+c_{2}\right) \mathrm{e}^{t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=-1 \tag{1}\\
x_{2}(0)=2 \\
x_{3}(0)=-30
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-1 \\
2 \\
-30
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{3}}{24} \\
c_{3}-\frac{c_{2}}{6} \\
c_{1}-\frac{41 c_{3}}{8}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=3 \\
c_{2}=-156 \\
c_{3}=-24
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{t} \\
-\frac{(-24 t-12) \mathrm{e}^{t}}{6} \\
3 \mathrm{e}^{2 t}+(-24 t-33) \mathrm{e}^{t}
\end{array}\right]
$$

The following are plots of each solution against another.

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 39

```
dsolve([diff(x__1(t),t) = x__ 1(t), diff(x__ 2(t),t) = -4*x__ 1(t)+\mp@subsup{x}{-_}{}2(t), diff (x__ 3(t),t) =
```

$$
\begin{aligned}
& x_{1}(t)=-\mathrm{e}^{t} \\
& x_{2}(t)=(4 t+2) \mathrm{e}^{t} \\
& x_{3}(t)=-24 \mathrm{e}^{t} t-33 \mathrm{e}^{t}+3 \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 39
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+0 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-4 * x 1[t]+1 * x 2[t]+0 * x 3[t], x 3 '[t]==3 * x 1[t]+6 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{t} \\
& \mathrm{x} 2(t) \rightarrow 2 e^{t}(2 t+1) \\
& \mathrm{x} 3(t) \rightarrow 3 e^{t}\left(-8 t+e^{t}-11\right)
\end{aligned}
$$

17.12 problem 12

17.12.1 Solution using Matrix exponential method 3780
17.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3781

Internal problem ID [777]
Internal file name [OUTPUT/777_Sunday_June_05_2022_01_49_24_AM_20783531/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.8, Repeated Eigenvalues. page 436
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-\frac{5 x_{1}(t)}{2}+x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-\frac{5 x_{2}(t)}{2}+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+x_{2}(t)-\frac{5 x_{3}(t)}{2}
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=2, x_{2}(0)=3, x_{3}(0)=-1\right]
$$

17.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{5}{2} & 1 & 1 \\
1 & -\frac{5}{2} & 1 \\
1 & 1 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{lll}
\frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{\mathrm{e}^{-\frac{t}{2}}}{3}-\frac{\mathrm{e}^{-\frac{7 t}{2}}}{3} & \frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{\mathrm{e}^{-\frac{t}{2}}}{3}
\end{array}\right]\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3} \\
\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3}+\frac{5 \mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3}-\frac{7 \mathrm{e}^{-\frac{7 t}{2}}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

17.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{5}{2} & 1 & 1 \\
1 & -\frac{5}{2} & 1 \\
1 & 1 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{5}{2} & 1 & 1 \\
1 & -\frac{5}{2} & 1 \\
1 & 1 & -\frac{5}{2}
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\frac{5}{2}-\lambda & 1 & 1 \\
1 & -\frac{5}{2}-\lambda & 1 \\
1 & 1 & -\frac{5}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+\frac{15}{2} \lambda^{2}+\frac{63}{4} \lambda+\frac{49}{8}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2} \\
\lambda_{2} & =-\frac{7}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}$	1	real eigenvalue
$-\frac{7}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{7}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-\frac{5}{2} & 1 & 1 \\
1 & -\frac{5}{2} & 1 \\
1 & 1 & -\frac{5}{2}
\end{array}\right]-\left(-\frac{7}{2}\right)\right. & \left.\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-\frac{5}{2} & 1 & 1 \\
1 & -\frac{5}{2} & 1 \\
1 & 1 & -\frac{5}{2}
\end{array}\right]-\left(-\frac{1}{2}\right)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] }
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	algebraic m	geometric k	defective?
eigenvectors				
$-\frac{7}{2}$	2	2	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
			No	$\left[\begin{array}{cc}-1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{1}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-\frac{t}{2}} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{-\frac{t}{2}}
\end{aligned}
$$

eigenvalue $-\frac{7}{2}$ is real and repated eigenvalue of multiplicity 2 . There are two possible cases that can happen. This is illustrated in this diagram

Figure 537: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\frac{7 t}{2}} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{-\frac{7 t}{2}} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-\frac{7 t}{2}} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{-\frac{7 t}{2}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-\frac{7 t}{2}} \\
0 \\
\mathrm{e}^{-\frac{7 t}{2}}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{-\frac{7 t}{2}} \\
\mathrm{e}^{-\frac{7 t}{2}} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{2}-c_{3}\right) \mathrm{e}^{-\frac{7 t}{2}}+c_{1} \mathrm{e}^{-\frac{t}{2}} \\
c_{1} \mathrm{e}^{-\frac{t}{2}}+c_{3} \mathrm{e}^{-\frac{7 t}{2}} \\
c_{1} \mathrm{e}^{-\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{7 t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=2 \tag{1}\\
x_{2}(0)=3 \\
x_{3}(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-c_{2}-c_{3}+c_{1} \\
c_{1}+c_{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{4}{3} \\
c_{2}=-\frac{7}{3} \\
c_{3}=\frac{5}{3}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3} \\
\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3}+\frac{5 \mathrm{e}^{-\frac{7 t}{2}}}{3} \\
\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3}-\frac{7 \mathrm{e}^{-\frac{7 t}{2}}}{3}
\end{array}\right]
$$

The following are plots of each solution against another.

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 50

```
dsolve([diff(x__1(t),t) = -5/2*x__1 (t)+x__ 2(t)+x__ 3(t), diff (x__ 2(t),t) = x__-1 (t) -5/2*x__ 2(t
```

$$
\begin{aligned}
& x_{1}(t)=\frac{2 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3} \\
& x_{2}(t)=\frac{5 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3} \\
& x_{3}(t)=-\frac{7 \mathrm{e}^{-\frac{7 t}{2}}}{3}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 71
DSolve $\left[\left\{x 1^{\prime}[t]==-5 / 2 * x 1[t]+1 * x 2[t]+1 * x 3[t], x 2{ }^{\prime}[t]==1 * x 1[t]-5 / 2 * x 2[t]+1 * x 3[t], x 3{ }^{\prime}[t]==1 * x 1[t]\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{2}{3} e^{-7 t / 2}\left(2 e^{3 t}+1\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{3} e^{-7 t / 2}\left(4 e^{3 t}+5\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{3} e^{-7 t / 2}\left(4 e^{3 t}-7\right)
\end{aligned}
$$

18 Chapter 7.9, Nonhomogeneous Linear Systems. page 447
18.1 problem 1 3793
18.2 problem 2 3805
18.3 problem 3 3814
18.4 problem 4 3825
18.5 problem 5 3837
18.6 problem 6 3847
18.7 problem 7 3857
18.8 problem 8 3869
18.9 problem 9 3881
18.10problem 10 3893
18.11 problem 11 3902
18.12problem 12 3913
18.13problem 13 3924
18.14problem 18 3936

18.1 problem 1

18.1.1 Solution using Matrix exponential method 3793
18.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3795
18.1.3 Maple step by step solution

Internal problem ID [778]
Internal file name [OUTPUT/778_Sunday_June_05_2022_01_49_25_AM_67064786/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t)+\mathrm{e}^{t} \\
x_{2}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t)+t
\end{aligned}
$$

18.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(-\frac{c_{2}}{3}+c_{1}\right) \mathrm{e}^{t}}{2} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(-\frac{c_{2}}{3}+c_{1}\right) \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{(2 t+2) \mathrm{e}^{-t}}{4}-\frac{\mathrm{e}^{2 t}}{4}+\frac{(2 t-2) \mathrm{e}^{t}}{4}+\frac{3 t}{2} \\
\frac{(2 t+2) \mathrm{e}^{-t}}{4}-\frac{3 \mathrm{e}^{2 t}}{4}+\frac{(6 t-6) \mathrm{e}^{t}}{4}+\frac{3 t}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{(6 t-1) \mathrm{e}^{t}}{4}+t \\
\frac{(6 t-3) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-2 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{4}+\frac{\left(6 t+6 c_{1}-2 c_{2}-1\right) \mathrm{e}^{t}}{4}+t \\
\frac{\left(6 c_{2}-6 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(6 t+6 c_{1}-2 c_{2}-3\right) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
\end{aligned}
$$

18.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}\frac{1}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{3}{2}-\frac{t \mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{2 t}}{2}+\frac{3 t \mathrm{e}^{t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}(t+1)}{2}+\frac{3 t}{2} \\
-\frac{3 \mathrm{e}^{2 t}}{4}+\frac{(6 t-6) \mathrm{e}^{t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{(6 t-1) \mathrm{e}^{t}}{4}+t \\
\frac{(6 t-3) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2} \mathrm{e}^{-t}}{3} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
\frac{(6 t-1) \mathrm{e}^{t}}{4}+t \\
\frac{(6 t-3) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2} e^{-t}}{3}+\frac{\left(-1+6 t+4 c_{1}\right) \mathrm{e}^{t}}{4}+t \\
c_{2} \mathrm{e}^{-t}+\frac{\left(6 t+4 c_{1}-3\right) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
$$

18.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+\mathrm{e}^{t}, x_{2}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t)+t\right]
$$

- Define vector

$$
\overrightarrow{x^{\rightarrow}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow}(t)=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
\mathrm{e}^{t} \\
t
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x_{\longrightarrow}^{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+x^{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\ \mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\ \mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}\frac{1}{3} & 1 \\ 1 & 1\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-t}}{4}+\frac{(6 t-3) \mathrm{e}^{t}}{4}+t \\
\frac{9 \mathrm{e}^{-t}}{4}+\frac{(-5+6 t) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x_{\underline{\rightarrow}}(t)=c_{1} x_{-}^{\rightarrow}+c_{2} x_{-}^{\rightarrow}+\left[\begin{array}{c}
\frac{3 e^{-t}}{4}+\frac{(6 t-3) \mathrm{e}^{t}}{4}+t \\
\frac{9 \mathrm{e}^{-t}}{4}+\frac{(-5+6 t) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(9+4 c_{1}\right) \mathrm{e}^{-t}}{12}+\frac{\left(-3+6 t+4 c_{2}\right) \mathrm{e}^{t}}{4}+t \\
\frac{\left(9+4 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(6 t+4 c_{2}-5\right) \mathrm{e}^{t}}{4}+2 t-1
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(9+4 c_{1}\right) \mathrm{e}^{-t}}{12}+\frac{\left(-3+6 t+4 c_{2}\right) \mathrm{e}^{t}}{4}+t, x_{2}(t)=\frac{\left(9+4 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(6 t+4 c_{2}-5\right) \mathrm{e}^{t}}{4}+2 t-1\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 54
dsolve([diff $\left.\left(x_{\neq-} 1(t), t\right)=2 * x_{-_} 1(t)-1 * x_{_} 2(t)+\exp (t), \operatorname{diff}\left(x_{-} 2(t), t\right)=3 * x_{_} 1(t)-2 * x_{-} 2(t)+t\right]$, si

$$
\begin{aligned}
& x_{1}(t)=\frac{\mathrm{e}^{-t} c_{1}}{3}+c_{2} \mathrm{e}^{t}+\frac{3 \mathrm{e}^{t} t}{2}-\frac{\mathrm{e}^{t}}{4}+t \\
& x_{2}(t)=c_{2} \mathrm{e}^{t}+\mathrm{e}^{-t} c_{1}+\frac{3 \mathrm{e}^{t} t}{2}-\frac{3 \mathrm{e}^{t}}{4}+2 t-1
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.123 (sec). Leaf size: 97
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-1 * x 2[t]+\operatorname{Exp}[t], x 2{ }^{\prime}[t]==3 * x 1[t]-2 * x 2[t]+t\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{4} e^{-t}\left(4 e^{t} t+e^{2 t}\left(6 t-1+6 c_{1}-2 c_{2}\right)-2 c_{1}+2 c_{2}\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{4} e^{-t}\left(e^{t}(8 t-4)+e^{2 t}\left(6 t-3+6 c_{1}-2 c_{2}\right)-6 c_{1}+6 c_{2}\right)
\end{aligned}
$$

18.2 problem 2

18.2.1 Solution using Matrix exponential method 3805
18.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3807

Internal problem ID [779]
Internal file name [OUTPUT/779_Sunday_June_05_2022_01_49_27_AM_63990030/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+\sqrt{3} x_{2}(t)+\mathrm{e}^{t} \\
x_{2}^{\prime}(t) & =\sqrt{3} x_{1}(t)-x_{2}(t)+\sqrt{3} \mathrm{e}^{-t}
\end{aligned}
$$

18.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
\sqrt{3} \mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4} & -\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4} & -\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4}\right) c_{1}-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right) c_{2}}{4} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right) c_{1}}{4}+\left(\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}\right) c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4} & -\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4} & \frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
\sqrt{3} \mathrm{e}^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 \mathrm{e}^{2 t}}{4} & -\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{2 t}\right)}{4} & \frac{3 \mathrm{e}^{-2 t}}{4}+\frac{\mathrm{e}^{2 t}}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{6 t}-9 \mathrm{e}^{4 t}-9 \mathrm{e}^{2 t}-3\right) \mathrm{e}^{-3 t}}{12} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{6 t}-9 \mathrm{e}^{4 t}+3 \mathrm{e}^{2 t}+1\right) \mathrm{e}^{-3 t}}{12}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{t}}{3}-\mathrm{e}^{-t} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{t}-2 \mathrm{e}^{-t}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(\left(c_{2} \sqrt{3}+3 c_{1}\right) \mathrm{e}^{4 t}-c_{2} \sqrt{3}+c_{1}-4 \mathrm{e}^{t}-\frac{8 \mathrm{e}^{3 t}}{3}\right)}{4} \\
\frac{\left(\left(c_{1} \sqrt{3}+c_{2}\right) \mathrm{e}^{4 t}-\frac{4 \sqrt{3} \mathrm{e}^{3 t}}{3}+\left(-c_{1}+\frac{8 \mathrm{e}^{t}}{3}\right) \sqrt{3}+3 c_{2}\right) \mathrm{e}^{-2 t}}{4}
\end{array}\right]
\end{aligned}
$$

18.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
\sqrt{3} \mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & \sqrt{3} \\
\sqrt{3} & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 & \sqrt{3} & 0 \\
\sqrt{3} & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{\sqrt{3} R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
3 & \sqrt{3} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & \sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{\sqrt{3} t}{3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\sqrt{3} t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{3} t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{\sqrt{3} t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{\sqrt{3}}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{\sqrt{3} t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{3}}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{\sqrt{3} t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{3} \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & \sqrt{3} & 0 \\
\sqrt{3} & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\sqrt{3} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & \sqrt{3} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & \sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\sqrt{3} t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\sqrt{3} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\sqrt{3} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\sqrt{3} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| -2 |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{\sqrt{3}}{3} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\sqrt{3} \mathrm{e}^{-2 t}}{3} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\sqrt{3} \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{-2 t}}{3} & \sqrt{3} \mathrm{e}^{2 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{2 t}}{4} & \frac{3 \mathrm{e}^{2 t}}{4} \\
\frac{\sqrt{3} \mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{-2 t}}{3} & \sqrt{3} \mathrm{e}^{2 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{2 t}}{4} & \frac{3 \mathrm{e}^{2 t}}{4} \\
\frac{\sqrt{3} \mathrm{e}^{-2 t}}{4} & \frac{\mathrm{e}^{-2 t}}{4}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
\sqrt{3} \mathrm{e}^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{-2 t}}{3} & \sqrt{3} \mathrm{e}^{2 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\sqrt{3} \mathrm{e}^{t}\left(\mathrm{e}^{2 t}-3\right)}{4} \\
\frac{\sqrt{3} \mathrm{e}^{-3 t}\left(\mathrm{e}^{2 t}+1\right)}{4}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\sqrt{3} \mathrm{e}^{-2 t}}{3} & \sqrt{3} \mathrm{e}^{2 t} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(-\mathrm{e}^{3 t}+9 \mathrm{e}^{t}\right) \sqrt{3}}{12} \\
-\frac{\sqrt{3}\left(3 \mathrm{e}^{2 t}+1\right) \mathrm{e}^{-3 t}}{12}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{t}}{3}-\mathrm{e}^{-t} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{t}-2 \mathrm{e}^{-t}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{c_{1} \sqrt{3} \mathrm{e}^{-2 t}}{3} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \sqrt{3} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{t}}{3}-\mathrm{e}^{-t} \\
-\frac{\sqrt{3}\left(\mathrm{e}^{t}-2 \mathrm{e}^{-t}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(-3 c_{2} \sqrt{3} \mathrm{e}^{4 t}+\sqrt{3} c_{1}+3 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}\right) \mathrm{e}^{-2 t}}{3} \\
\frac{\left(3 \mathrm{e}^{4 t} c_{2}-\sqrt{3} \mathrm{e}^{3 t}+2 \sqrt{3} \mathrm{e}^{t}+3 c_{1}\right) \mathrm{e}^{-2 t}}{3}
\end{array}\right]
$$

Solution by Maple
Time used: 0.141 (sec). Leaf size: 71

```
dsolve([diff(x__1(t),t)=1*x__1(t)+sqrt(3)*x__ 2(t)+exp(t), diff(x__ 2(t),t)=sqrt (3)*x__ 1(t) - 1*x
```

$x_{1}(t)=\sinh (2 t) c_{2}+\cosh (2 t) c_{1}-\frac{5 \cosh (t)}{3}+\frac{\sinh (t)}{3}$
$x_{2}(t)=$
$-\frac{\sqrt{3}\left(\cosh (2 t) c_{1}-2 \cosh (2 t) c_{2}-2 \sinh (2 t) c_{1}+\sinh (2 t) c_{2}+\mathrm{e}^{t}+2 \sinh (t)-2 \cosh (t)\right)}{3}$
\checkmark Solution by Mathematica
Time used: 2.501 (sec). Leaf size: 313
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+\operatorname{Sqrt}[4] * x 2[t]+\operatorname{Exp}[t], x 2{ }^{\prime}[t]==\operatorname{Sqrt}[3] * x 1[t]-1 * x 2[t]+S q r t[3] * \operatorname{Exp}[-t]\right\}\right.$,

$$
\left.\begin{array}{r}
\mathrm{x} 1(t) \rightarrow \frac{1}{6}\left(-6 e^{-t}-\frac{2(6+\sqrt{3}) e^{t}}{1+2 \sqrt{3}}+\frac{\left(3(\sqrt{1+2 \sqrt{3}}-1) c_{1}-6 c_{2}\right) e^{-\sqrt{1+2 \sqrt{3}} t}}{\sqrt{1+2 \sqrt{3}}}\right. \\
\left.+\frac{3\left((1+\sqrt{1+2 \sqrt{3}}) c_{1}+2 c_{2}\right) e^{\sqrt{1+2 \sqrt{3}} t}}{\sqrt{1+2 \sqrt{3}}}\right) \\
\mathrm{x} 2(t) \rightarrow \frac{1}{4}\left(4 e^{-t}-2 e^{t}+\frac{2\left((6+\sqrt{3}) c_{1}+(1+2 \sqrt{3})(\sqrt{1+2 \sqrt{3}}-1) c_{2}\right) e^{\sqrt{1+2 \sqrt{3}} t}}{(1+2 \sqrt{3})^{3 / 2}}\right.
\end{array}\right)
$$

18.3 problem 3

18.3.1 Solution using Matrix exponential method 3814
18.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3816
18.3.3 Maple step by step solution . 3821

Internal problem ID [780]
Internal file name [OUTPUT/780_Sunday_June_05_2022_01_49_29_AM_86783349/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-5 x_{2}(t)-\cos (t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t)+\sin (t)
\end{aligned}
$$

18.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t)) c_{1}-5 \sin (t) c_{2} \\
\sin (t) c_{1}+(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
-3 \sin (t) \cos (t)+2 t-\cos (t)^{2} \\
-\cos (t)^{2}-\sin (t) \cos (t)+t+\frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (t)(2 t-1)+\frac{(-2 t-5) \sin (t)}{2} \\
-\frac{\cos (t)}{2}-\sin (t)+t \cos (t)
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-2 t+4 c_{1}-10 c_{2}-5\right) \sin (t)}{2}+2\left(t+\frac{c_{1}}{2}-\frac{1}{2}\right) \cos (t) \\
\frac{\left(2 t+2 c_{2}-1\right) \cos (t)}{2}+\sin (t)\left(c_{1}-2 c_{2}-1\right)
\end{array}\right]
\end{aligned}
$$

18.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i \mathrm{e}^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i \mathrm{e}^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{i \mathrm{e}^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i e^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{((1+2 i) \sin (t)+i \cos (t)) \mathrm{e}^{-i t}}{2} \\
-\frac{((-1+2 i) \sin (t)+i \cos (t)) \mathrm{e}^{i t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]\left[\begin{array}{c}
\frac{((i t+i-1) \sin (t)+t \cos (t)) \mathrm{e}^{-i t}}{2} \\
-\frac{((i t+i+1) \sin (t)-t \cos (t)) \mathrm{e}^{i t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(-t-3) \sin (t)+2 t \cos (t) \\
t \cos (t)-\sin (t)
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t} \\
c_{1} \mathrm{e}^{i t}
\end{array}\right]+\left[\begin{array}{c}
(2-i) c_{2} \mathrm{e}^{-i t} \\
c_{2} \mathrm{e}^{-i t}
\end{array}\right]+\left[\begin{array}{c}
(-t-3) \sin (t)+2 t \cos (t) \\
t \cos (t)-\sin (t)
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t}+(2-i) c_{2} \mathrm{e}^{-i t}+(-t-3) \sin (t)+2 t \cos (t) \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}+t \cos (t)-\sin (t)
\end{array}\right]
$$

18.3.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t)-\cos (t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)+\sin (t)\right]$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \underline{\longrightarrow}(t)+\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right]
$$

- \quad System to solve
$x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}2 & -5 \\ 1 & -2\end{array}\right] \cdot \underset{\longrightarrow}{\rightarrow}(t)+\left[\begin{array}{c}-\cos (t) \\ \sin (t)\end{array}\right]$
- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-\cos (t) \\
\sin (t)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x^{\rightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{1}^{\rightarrow}(t)=\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right], x_{2}^{\rightarrow}(t)=\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+x \xrightarrow{\rightarrow}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(t)=\left[\begin{array}{cc}
2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\
\cos (t) & -\sin (t)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\ \cos (t) & -\sin (t)\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$

$$
x_{\longrightarrow}^{\rightarrow} p(t)=\Phi(t) \cdot \vec{v}(t)
$$

- Take the derivative of the particular solution

$$
x{ }_{-}^{\prime \rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
{\underset{\sim}{\rightarrow}}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}{\left.\underset{p}{ }(t)=\left[\begin{array}{c}
(-t-3) \sin (t)+2 t \cos (t) \\
t \cos (t)-\sin (t)
\end{array}\right], ~\right]}
$$

- Plug particular solution back into general solution

$$
x_{\square}^{\rightarrow}(t)=c_{1} x_{1}^{\rightarrow}(t)+c_{2} x_{2}^{\rightarrow}(t)+\left[\begin{array}{c}
(-t-3) \sin (t)+2 t \cos (t) \\
t \cos (t)-\sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}-2 c_{2}-t-3\right) \sin (t)+2\left(t+c_{1}-\frac{c_{2}}{2}\right) \cos (t) \\
\left(t+c_{1}\right) \cos (t)-\sin (t)\left(c_{2}+1\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left(-c_{1}-2 c_{2}-t-3\right) \sin (t)+2\left(t+c_{1}-\frac{c_{2}}{2}\right) \cos (t), x_{2}(t)=\left(t+c_{1}\right) \cos (t)-\sin (t)\left(c_{2}-\right.\right.
$$

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 60

```
dsolve([diff(x__1 (t),t)=2*x__1(t)-5*x__ 2(t) -cos(t), diff (x__ 2(t),t)=1*x__1 (t) -2*x__ 2(t)+\operatorname{sin}(t)
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \sin (t)-\sin (t) t+c_{1} \cos (t)+2 \cos (t) t-\cos (t) \\
& x_{2}(t)=\frac{c_{1} \sin (t)}{5}+\frac{2 c_{2} \sin (t)}{5}+\frac{2 c_{1} \cos (t)}{5}-\frac{c_{2} \cos (t)}{5}+\cos (t) t-\cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 61
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-5 * x 2[t]-\operatorname{Cos}[t], x 2{ }^{\prime}[t]==1 * x 1[t]-2 * x 2[t]+\operatorname{Sin}[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, Inclu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow\left(2 t-\frac{1}{2}+c_{1}\right) \cos (t)-\left(t-1-2 c_{1}+5 c_{2}\right) \sin (t) \\
& \mathrm{x} 2(t) \rightarrow\left(t-1+c_{2}\right) \cos (t)+\frac{1}{2}\left(1+2 c_{1}-4 c_{2}\right) \sin (t)
\end{aligned}
$$

18.4 problem 4

18.4.1 Solution using Matrix exponential method 3825
18.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3827
18.4.3 Maple step by step solution . 3832

Internal problem ID [781]
Internal file name [OUTPUT/781_Sunday_June_05_2022_01_49_32_AM_79929771/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+\mathrm{e}^{-2 t} \\
x_{2}^{\prime}(t) & =4 x_{1}(t)-2 x_{2}(t)-2 \mathrm{e}^{t}
\end{aligned}
$$

18.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t} c_{1}}{5}+\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t} c_{2}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t} c_{1}}{5}+\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t} c_{2}}{5}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-3 t}\left(\left(4 c_{1}+c_{2}\right) \mathrm{e}^{5 t}-c_{2}+c_{1}\right)}{5} \\
\frac{4\left(\left(c_{1}+\frac{c_{2}}{4}\right) \mathrm{e}^{5 t}+c_{2}-c_{1}\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-2 t}}{5} & -\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-2 t}}{5} & -\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{8 t}+2 \mathrm{e}^{5 t}+4 \mathrm{e}^{3 t}-2\right) \mathrm{e}^{-4 t}}{10} \\
-\frac{\left(2 \mathrm{e}^{8 t}+4 \mathrm{e}^{5 t}-2 \mathrm{e}^{3 t}+1\right) \mathrm{e}^{-4 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
-\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}\left(\left(4 c_{1}+c_{2}\right) \mathrm{e}^{5 t}+c_{1}-c_{2}+\frac{5 \mathrm{e}^{4 t}}{2}\right)}{5} \\
\frac{4\left(\left(c_{1}+\frac{c_{2}}{4}\right) \mathrm{e}^{5 t}-c_{1}+c_{2}-\frac{5 \mathrm{e}^{t}}{4}\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
$$

18.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 1 & 0 \\
4 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}-\frac{1}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{2 t} & \mathrm{e}^{-3 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-2 t}}{5} & \frac{\mathrm{e}^{-2 t}}{5} \\
-\frac{4 \mathrm{e}^{3 t}}{5} & \frac{4 \mathrm{e}^{3 t}}{5}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{2 t} & \mathrm{e}^{-3 t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-2 t}}{5} & \frac{\mathrm{e}^{-2 t}}{5} \\
-\frac{4 \mathrm{e}^{3 t}}{5} & \frac{4 \mathrm{e}^{3 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{2 t} & \mathrm{e}^{-3 t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{4 \mathrm{e}^{-4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
-\frac{4 \mathrm{e}^{t}}{5}-\frac{8 \mathrm{e}^{4 t}}{5}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{2 t} & \mathrm{e}^{-3 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{-4 t}}{5}+\frac{2 \mathrm{e}^{-t}}{5} \\
-\frac{4 \mathrm{e}^{t}}{5}-\frac{2 \mathrm{e}^{4 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
-\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \mathrm{e}^{-3 t}}{4} \\
c_{2} \mathrm{e}^{-3 t}
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
-\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(4 c_{1} \mathrm{e}^{5 t}+2 \mathrm{e}^{4 t}-c_{2}\right) \mathrm{e}^{-3 t}}{4} \\
\left(c_{1} \mathrm{e}^{5 t}-\mathrm{e}^{t}+c_{2}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

18.4.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)+\frac{1}{\left(\mathrm{e}^{t}\right)^{2}}, x_{2}^{\prime}(t)=4 x_{1}(t)-2 x_{2}(t)-2 \mathrm{e}^{t}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \cdot x \underline{\rightarrow}(t)+\left[\begin{array}{c}
\frac{x_{1}(t)\left(\mathrm{e}^{t}\right)^{2}+x_{2}(t)\left(\mathrm{e}^{t}\right)^{2}+1}{\left(\mathrm{e}^{t}\right)^{2}}-x_{1}(t)-x_{2}(t) \\
-2 \mathrm{e}^{t}
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
0 \\
-2 \mathrm{e}^{t}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
0 \\
-2 \mathrm{e}^{t}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\underline{\rightarrow^{\prime}}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$x_{-}^{\rightarrow}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-\frac{1}{4} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \xrightarrow{\rightarrow}$ $x \xrightarrow{\rightarrow}(t)=c_{1} x_{\underline{\longrightarrow}}+c_{2} x_{2}+x_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst
$\phi(t)=\left[\begin{array}{cc}-\frac{e^{-3 t}}{4} & e^{2 t} \\ \mathrm{e}^{-3 t} & \mathrm{e}^{2 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}-\frac{e^{-3 t}}{4} & e^{2 t} \\ \mathrm{e}^{-3 t} & \mathrm{e}^{2 t}\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}-\frac{1}{4} & 1 \\ 1 & 1\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix
$\Phi(t)=\left[\begin{array}{ll}\frac{\left(4 e^{5 t}+1\right) e^{-3 t}}{5} & \frac{\left(e^{5 t}-1\right) e^{-3 t}}{5} \\ \frac{4\left(e^{5 t}-1\right) e^{-3 t}}{5} & \frac{\left(e^{5 t}+4\right) e^{-3 t}}{5}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$
$x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{\underline{p}}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x \longrightarrow_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
{\underset{\sim}{\rightarrow}}_{p}(t)=\left[\begin{array}{c}
-\frac{\left(4 \mathrm{e}^{5 t}-5 \mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{10} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x^{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+\left[\begin{array}{c}
-\frac{\left(4 \mathrm{e}^{5 t}-5 \mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{10} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(20 c_{2} \mathrm{e}^{5 t}-8 \mathrm{e}^{5 t}+10 \mathrm{e}^{4 t}-5 c_{1}-2\right) \mathrm{e}^{-3 t}}{20} \\
\frac{\left(5 c_{2} \mathrm{e}^{5 t}-2 \mathrm{e}^{5 t}+5 c_{1}+2\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(20 c_{2} \mathrm{e}^{5 t}-8 \mathrm{e}^{5 t}+10 \mathrm{e}^{4 t}-5 c_{1}-2\right) \mathrm{e}^{-3 t}}{20}, x_{2}(t)=\frac{\left(5 c_{2} \mathrm{e}^{5 t}-2 \mathrm{e}^{5 t}+5 c_{1}+2\right) \mathrm{e}^{-3 t}}{5}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 45
dsolve([diff $\left(x_{-} 1(t), t\right)=1 * x_{-} 1(t)+1 * x_{-} 2(t)+\exp (-2 * t), \operatorname{diff}\left(x_{-} 2(t), t\right)=4 * x_{-} 1(t)-2 * x_{--} 2(t)-2 *$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{2 t}-\frac{c_{1} \mathrm{e}^{-3 t}}{4}+\frac{\mathrm{e}^{t}}{2} \\
& x_{2}(t)=c_{2} \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{-3 t}-\mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.585 (sec). Leaf size: 84
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+1 * x 2[t]+\operatorname{Exp}[-2 * t], x 2{ }^{\prime}[t]==4 * x 1[t]-2 * x 2[t]-2 * \operatorname{Exp}[t]\right\},\{x 1[t], x 2[t]\}, t\right.$,

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{e^{t}}{2}+\frac{1}{5}\left(c_{1}-c_{2}\right) e^{-3 t}+\frac{1}{5}\left(4 c_{1}+c_{2}\right) e^{2 t} \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{5} e^{-3 t}\left(-5 e^{t}+\left(4 c_{1}+c_{2}\right) e^{5 t}-4 c_{1}+4 c_{2}\right)
\end{aligned}
$$

18.5 problem 5

18.5.1 Solution using Matrix exponential method 3837
18.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3839
18.5.3 Maple step by step solution . 3844

Internal problem ID [782]
Internal file name [OUTPUT/782_Sunday_June_05_2022_01_49_34_AM_87329820/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)-2 x_{2}(t)+\frac{1}{t^{3}} \\
x_{2}^{\prime}(t) & =8 x_{1}(t)-4 x_{2}(t)-\frac{1}{t^{2}}
\end{aligned}
$$

18.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{t^{3}} \\
-\frac{1}{t^{2}}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(4 t+1) c_{1}-2 t c_{2} \\
8 t c_{1}+(1-4 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(4 c_{1}-2 c_{2}\right) t+c_{1} \\
\left(8 c_{1}-4 c_{2}\right) t+c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
1-4 t & 2 t \\
-8 t & 4 t+1
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right] \int\left[\begin{array}{cc}
1-4 t & 2 t \\
-8 t & 4 t+1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{t^{3}} \\
-\frac{1}{t^{2}}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
4 t+1 & -2 t \\
8 t & 1-4 t
\end{array}\right]\left[\begin{array}{c}
\frac{4}{t}-\frac{1}{2 t^{2}}-2 \ln (t) \\
\frac{9}{t}-4 \ln (t)
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{-2 t^{2} \ln (t)-2\left(t-\frac{1}{2}\right)^{2}}{t^{2}} \\
\frac{-4 \ln (t) t-4 t+5}{t}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\left(4 c_{1}-2 c_{2}\right) t+c_{1}+\frac{-2 t^{2} \ln (t)-2\left(t-\frac{1}{2}\right)^{2}}{t^{2}} \\
\left(8 c_{1}-4 c_{2}\right) t+c_{2}+\frac{-4 \ln (t) t-4 t+5}{t}
\end{array}\right]
\end{aligned}
$$

18.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{t^{3}} \\
-\frac{1}{t^{2}}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
8 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -2 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 538: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
\frac{7}{4}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] 1 \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
\frac{7}{4}
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
\frac{t}{2}+1 \\
t+\frac{7}{4}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{t}{2}+1 \\
t+\frac{7}{4}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{ll}
\frac{1}{2} & \frac{t}{2}+1 \\
1 & t+\frac{7}{4}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-8 t-14 & 8+4 t \\
8 & -4
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{1}{2} & \frac{t}{2}+1 \\
1 & t+\frac{7}{4}
\end{array}\right] \int\left[\begin{array}{cc}
-8 t-14 & 8+4 t \\
8 & -4
\end{array}\right]\left[\begin{array}{c}
\frac{1}{t^{3}} \\
-\frac{1}{t^{2}}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{1}{2} & \frac{t}{2}+1 \\
1 & t+\frac{7}{4}
\end{array}\right] \int\left[\begin{array}{c}
\frac{-4 t^{2}-16 t-14}{t^{3}} \\
\frac{8+4 t}{t^{3}}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{1}{2} & \frac{t}{2}+1 \\
1 & t+\frac{7}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{16}{t}+\frac{7}{t^{2}}-4 \ln (t) \\
\frac{-4 t-4}{t^{2}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{-2 t^{2} \ln (t)-2\left(t-\frac{1}{2}\right)^{2}}{t^{2}} \\
\frac{-4 \ln (t) t-4 t+5}{t}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]+\left[\begin{array}{c}
c_{2}\left(\frac{t}{2}+1\right) \\
c_{2}\left(t+\frac{7}{4}\right)
\end{array}\right]+\left[\begin{array}{c}
\frac{-2 t^{2} \ln (t)-2\left(t-\frac{1}{2}\right)^{2}}{t^{2}} \\
\frac{-4 \ln (t) t-4 t+5}{t}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{-4 t^{2} \ln (t)-1+c_{2} t^{3}+\left(c_{1}+2 c_{2}-4\right) t^{2}+4 t}{2 t^{2}} \\
c_{1}+c_{2}\left(t+\frac{7}{4}\right)+\frac{-4 \ln (t) t-4 t+5}{t}
\end{array}\right]
$$

18.5.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=4 x_{1}(t)-2 x_{2}(t)+\frac{1}{t^{3}}, x_{2}^{\prime}(t)=8 x_{1}(t)-4 x_{2}(t)-\frac{1}{t^{2}}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\frac{4 x_{1}(t) t^{3}-2 x_{2}(t) t^{3}+1}{t^{3}}-4 x_{1}(t)+2 x_{2}(t) \\
\frac{8 x_{1}(t) t^{2}-4 x_{2}(t) t^{2}-1}{t^{2}}-8 x_{1}(t)+4 x_{2}(t)
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}^{\rightarrow}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{2}}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\xrightarrow{\rightarrow}}=c_{1} x_{\xrightarrow{\rightarrow}}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x \rightarrow=\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1}}{2}, x_{2}(t)=c_{1}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 47

```
dsolve([diff(x__1 (t),t)=4*x__1(t)-2*x__ 2(t)+1/(t^3), diff (x__ 2(t),t)=8*x__1(t)-4*x__ 2(t) -1/(t
```

$$
\begin{aligned}
& x_{1}(t)=-\frac{1}{2 t^{2}}+\frac{2}{t}-2 \ln (t)+c_{1} t+c_{2} \\
& x_{2}(t)=2 c_{1} t-4 \ln (t)-\frac{c_{1}}{2}+2 c_{2}+\frac{5}{t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 61
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]-2 * x 2[t]+1 /(t \wedge 3), x 2{ }^{\prime}[t]==8 * x 1[t]-4 * x 2[t]-1 /\left(t^{\wedge} 2\right)\right\},\{x 1[t], x 2[t]\}, t\right.$, Inc

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-\frac{1}{2 t^{2}}+\frac{2}{t}-2 \log (t)+4 c_{1} t-2 c_{2} t-2+c_{1} \\
& \mathrm{x} 2(t) \rightarrow \frac{5}{t}-4 \log (t)+8 c_{1} t-4 c_{2} t-4+c_{2}
\end{aligned}
$$

18.6 problem 6

18.6.1 Solution using Matrix exponential method 3847
18.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3849
18.6.3 Maple step by step solution . 3854

Internal problem ID [783]
Internal file name [OUTPUT/783_Sunday_June_05_2022_01_49_35_AM_71046668/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-4 x_{1}(t)+2 x_{2}(t)+\frac{1}{t} \\
& x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+\frac{2}{t}+4
\end{aligned}
$$

18.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{t} \\
\frac{2}{t}+4
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{\mathrm{e}^{-5 t}}{5}+\frac{4}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{\mathrm{e}^{-5 t}}{5}+\frac{4}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5}\right) c_{1}+\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{2} \\
\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{1}+\left(\frac{\mathrm{e}^{-5 t}}{5}+\frac{4}{5}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(4 c_{1}-2 c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{c_{1}}{5}+\frac{2 c_{2}}{5} \\
\frac{\left(-2 c_{1}+c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{2 c_{1}}{5}+\frac{4 c_{2}}{5}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{5 t}}{5}+\frac{1}{5} & -\frac{2 \mathrm{e}^{5 t}}{5}+\frac{2}{5} \\
-\frac{2 \mathrm{e}^{5 t}}{5}+\frac{2}{5} & \frac{\mathrm{e}^{5 t}}{5}+\frac{4}{5}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{\mathrm{e}^{-5 t}}{5}+\frac{4}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{5 t}}{5}+\frac{1}{5} & -\frac{2 \mathrm{e}^{5 t}}{5}+\frac{2}{5} \\
-\frac{2 \mathrm{e}^{5 t}}{5}+\frac{2}{5} & \frac{\mathrm{e}^{5 t}}{5}+\frac{4}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{t} \\
\frac{2}{t}+4
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{\mathrm{e}^{-5 t}}{5}+\frac{4}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{8 t}{5}+\ln (5)+\ln (t)-\frac{8 \mathrm{e}^{5 t}}{25} \\
2 \ln (5)+2 \ln (t)+\frac{16 t}{5}+\frac{4 \mathrm{e}^{5 t}}{25}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{8}{25}+\frac{8 t}{5}+\ln (5)+\ln (t) \\
\frac{16 t}{5}+2 \ln (5)+2 \ln (t)+\frac{4}{25}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
-\frac{8}{25}+\frac{2\left(2 c_{1}-c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{8 t}{5}+\frac{c_{1}}{5}+\frac{2 c_{2}}{5}+\ln (5)+\ln (t) \\
\frac{\left(-2 c_{1}+c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{2 c_{1}}{5}+\frac{4 c_{2}}{5}+\frac{16 t}{5}+2 \ln (5)+2 \ln (t)+\frac{4}{25}
\end{array}\right]
\end{aligned}
$$

18.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{t} \\
\frac{2}{t}+4
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+5 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-5 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 2 & 0 \\
2 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & 2 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-5	1	1	No	$\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -5 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-5 t} \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-2 \mathrm{e}^{-5 t} & \frac{1}{2} \\
\mathrm{e}^{-5 t} & 1
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{2 e^{5 t}}{5} & \frac{\mathrm{e}^{5 t}}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-2 \mathrm{e}^{-5 t} & \frac{1}{2} \\
\mathrm{e}^{-5 t} & 1
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{2 \mathrm{e}^{5 t}}{5} & \frac{\mathrm{e}^{5 t}}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{t} \\
\frac{2}{t}+4
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-2 \mathrm{e}^{-5 t} & \frac{1}{2} \\
\mathrm{e}^{-5 t} & 1
\end{array}\right] \int\left[\begin{array}{c}
\frac{4 \mathrm{e}^{5 t}}{5} \\
\frac{2}{t}+\frac{16}{5}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-2 \mathrm{e}^{-5 t} & \frac{1}{2} \\
\mathrm{e}^{-5 t} & 1
\end{array}\right]\left[\begin{array}{c}
\frac{4 \mathrm{e}^{5 t}}{25} \\
\frac{16 t}{5}+2 \ln (t)
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{8}{25}+\frac{8 t}{5}+\ln (t) \\
\frac{4}{25}+\frac{16 t}{5}+2 \ln (t)
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-2 c_{1} \mathrm{e}^{-5 t} \\
c_{1} \mathrm{e}^{-5 t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2}}{2} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
-\frac{8}{25}+\frac{8 t}{5}+\ln (t) \\
\frac{4}{25}+\frac{16 t}{5}+2 \ln (t)
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1} \mathrm{e}^{-5 t}+\frac{c_{2}}{2}-\frac{8}{25}+\frac{8 t}{5}+\ln (t) \\
c_{1} \mathrm{e}^{-5 t}+c_{2}+\frac{4}{25}+\frac{16 t}{5}+2 \ln (t)
\end{array}\right]
$$

18.6.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-4 x_{1}(t)+2 x_{2}(t)+\frac{1}{t}, x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+\frac{2}{t}+4\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
-\frac{4 x_{1}(t) t-2 x_{2}(t) t-1}{t}+4 x_{1}(t)-2 x_{2}(t) \\
\frac{2 x_{1}(t) t-x_{2}(t) t+4 t+2}{t}-2 x_{1}(t)+x_{2}(t)
\end{array}\right]
$$

- System to solve

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-5,\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2}}{2} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1} \mathrm{e}^{-5 t}+\frac{c_{2}}{2} \\
c_{1} \mathrm{e}^{-5 t}+c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-2 c_{1} \mathrm{e}^{-5 t}+\frac{c_{2}}{2}, x_{2}(t)=c_{1} \mathrm{e}^{-5 t}+c_{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
dsolve([diff (x__1 (t),t)=-4*x__1 (t)+2*x__ 2(t)+1/t, diff (x__ 2(t),t)=2*x__ 1(t)-1*x__ 2(t)+2/t+4],
```

$$
\begin{aligned}
& x_{1}(t)=\ln (-5 t)-\frac{c_{1} \mathrm{e}^{-5 t}}{5}+\frac{8 t}{5}+c_{2} \\
& x_{2}(t)=\frac{c_{1} \mathrm{e}^{-5 t}}{10}+2 \ln (-5 t)+2 c_{2}+\frac{16 t}{5}+\frac{4}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 86
DSolve $\left[\left\{x 1^{\prime}[t]==-4 * x 1[t]+2 * x 2[t]+1 / t, x 2{ }^{\prime}[t]==2 * x 1[t]-1 * x 2[t]+2 / t+4\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{25}\left(40 t+25 \log (t)+20 c_{1} e^{-5 t}-10 c_{2} e^{-5 t}-8+5 c_{1}+10 c_{2}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{25}\left(80 t+50 \log (t)-10 c_{1} e^{-5 t}+5 c_{2} e^{-5 t}+4+10 c_{1}+20 c_{2}\right)
\end{aligned}
$$

18.7 problem 7

18.7.1 Solution using Matrix exponential method 3857
18.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3859
18.7.3 Maple step by step solution . 3864

Internal problem ID [784]
Internal file name [OUTPUT/784_Sunday_June_05_2022_01_49_37_AM_33602493/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+2 \mathrm{e}^{t} \\
x_{2}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t)-\mathrm{e}^{t}
\end{aligned}
$$

18.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4}\right) c_{2} \\
\left(\mathrm{e}^{3 t}-\mathrm{e}^{-t}\right) c_{1}+\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-c_{2}\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{3 t}}{2} \\
\frac{\left(-2 c_{1}+c_{2}\right) \mathrm{e}^{-t}}{2}+\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2} & -\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{4} \\
-\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t} & \frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2} & -\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{4} \\
-\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t} & \frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{5 \mathrm{e}^{2 t}}{8}-\frac{3 \mathrm{e}^{-2 t}}{8} \\
-\frac{5 \mathrm{e}^{2 t}}{4}-\frac{3 \mathrm{e}^{-2 t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{4} \\
-2 \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-c_{2}\right) \mathrm{e}^{-t}}{4}+\frac{\left(2 c_{1}+c_{2}\right) \mathrm{e}^{3 t}}{4}+\frac{\mathrm{e}^{t}}{4} \\
\frac{\left(-2 c_{1}+c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{\left(2 c_{1}+c_{2}\right) \mathrm{e}^{3 t}}{2}-2 \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

18.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| 3 |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{3 t} & \mathrm{e}^{-t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & \frac{\mathrm{e}^{-3 t}}{2} \\
-\mathrm{e}^{t} & \frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{3 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & \frac{\mathrm{e}^{-3 t}}{2} \\
-\mathrm{e}^{t} & \frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{3 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-2 t}}{2} \\
-\frac{5 \mathrm{e}^{2 t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{3 t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{-2 t}}{4} \\
-\frac{5 \mathrm{e}^{2 t}}{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{4} \\
-2 \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{3 t}}{2} \\
c_{1} \mathrm{e}^{3 t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \mathrm{e}^{-t}}{2} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{4} \\
-2 \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{3 t}}{2}-\frac{c_{2} \mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{4} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-t}-2 \mathrm{e}^{t}
\end{array}\right]
$$

18.7.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)+2 \mathrm{e}^{t}, x_{2}^{\prime}(t)=4 x_{1}(t)+x_{2}(t)-\mathrm{e}^{t}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+x_{p}(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{3 t}}{2} \\ \mathrm{e}^{-t} & \mathrm{e}^{3 t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{-t} & \mathrm{e}^{3 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix $\Phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\ \mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
{\underset{\sim}{\rightarrow}}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{4}-\frac{5 \mathrm{e}^{-t}}{8}+\frac{3 \mathrm{e}^{3 t}}{8} \\
\frac{3 \mathrm{e}^{3 t}}{4}+\frac{5 \mathrm{e}^{-t}}{4}-2 \mathrm{e}^{t}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x^{\rightarrow}(t)=c_{1} \underline{\longrightarrow}_{1}+c_{2} x_{2}^{\rightarrow}+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{4}-\frac{5 \mathrm{e}^{-t}}{8}+\frac{3 \mathrm{e}^{3 t}}{8} \\
\frac{3 \mathrm{e}^{3 t}}{4}+\frac{5 \mathrm{e}^{-t}}{4}-2 \mathrm{e}^{t}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{\left(-4 c_{1}-5\right) \mathrm{e}^{-t}}{8}+\frac{\left(4 c_{2}+3\right) \mathrm{e}^{3 t}}{8}+\frac{\mathrm{e}^{t}}{4} \\
\frac{\left(5+4 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(4 c_{2}+3\right) \mathrm{e}^{3 t}}{4}-2 \mathrm{e}^{t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-4 c_{1}-5\right) \mathrm{e}^{-t}}{8}+\frac{\left(4 c_{2}+3\right) \mathrm{e}^{3 t}}{8}+\frac{\mathrm{e}^{t}}{4}, x_{2}(t)=\frac{\left(5+4 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(4 c_{2}+3\right) \mathrm{e}^{3 t}}{4}-2 \mathrm{e}^{t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 44
dsolve([diff $\left(x_{-} 1(t), t\right)=1 * x_{-} 1(t)+1 * x_{-} 2(t)+2 * \exp (t), \operatorname{diff}\left(x_{-} 2(t), t\right)=4 * x_{-} 1(t)+1 * x_{-} 2(t)-\exp$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+\mathrm{e}^{-t} c_{1}+\frac{\mathrm{e}^{t}}{4} \\
& x_{2}(t)=2 c_{2} \mathrm{e}^{3 t}-2 \mathrm{e}^{-t} c_{1}-2 \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 80
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+1 * x 2[t]+2 * \operatorname{Exp}[t], x 2{ }^{\prime}[t]==4 * x 1[t]+1 * x 2[t]-\operatorname{Exp}[t]\right\},\{x 1[t], x 2[t]\}, t, \operatorname{Inc}\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-t}\left(e^{2 t}+\left(2 c_{1}+c_{2}\right) e^{4 t}+2 c_{1}-c_{2}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(-4 e^{2 t}+\left(2 c_{1}+c_{2}\right) e^{4 t}-2 c_{1}+c_{2}\right)
\end{aligned}
$$

18.8 problem 8

18.8.1 Solution using Matrix exponential method 3869
18.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3871
18.8.3 Maple step by step solution . 3876

Internal problem ID [785]
Internal file name [OUTPUT/785_Sunday_June_05_2022_01_49_39_AM_83821617/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+\mathrm{e}^{t} \\
& x_{2}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t)-\mathrm{e}^{t}
\end{aligned}
$$

18.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(-\frac{c_{2}}{3}+c_{1}\right) \mathrm{e}^{t}}{2} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(-\frac{c_{2}}{3}+c_{1}\right) \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 t-\frac{\mathrm{e}^{2 t}}{2} \\
2 t-\frac{3 \mathrm{e}^{2 t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(-\frac{1}{2}+2 t\right) \\
\mathrm{e}^{t}\left(-\frac{3}{2}+2 t\right)
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-t}}{2}+2\left(t+\frac{3 c_{1}}{4}-\frac{c_{2}}{4}-\frac{1}{4}\right) \mathrm{e}^{t} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{2}+2\left(t+\frac{3 c_{1}}{4}-\frac{c_{2}}{4}-\frac{3}{4}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

18.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}\frac{1}{3} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\
\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2} \\
\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\
\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{t}}{2} & \frac{3 \mathrm{e}^{t}}{2} \\
\frac{3 \mathrm{e}^{-t}}{2} & -\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\
\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-3 \mathrm{e}^{2 t} \\
2
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\
\mathrm{e}^{-t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{2 t}}{2} \\
2 t
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(-\frac{1}{2}+2 t\right) \\
\mathrm{e}^{t}\left(-\frac{3}{2}+2 t\right)
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-t}}{3} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{t} \\
c_{2} \mathrm{e}^{t}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{e}^{t}\left(-\frac{1}{2}+2 t\right) \\
\mathrm{e}^{t}\left(-\frac{3}{2}+2 t\right)
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-t}}{3}+2\left(t+\frac{c_{2}}{2}-\frac{1}{4}\right) \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{-t}+2\left(t+\frac{c_{2}}{2}-\frac{3}{4}\right) \mathrm{e}^{t}
\end{array}\right]
$$

18.8.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+\mathrm{e}^{t}, x_{2}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t)-\mathrm{e}^{t}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
\mathrm{e}^{t} \\
-\mathrm{e}^{t}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x_{\longrightarrow}^{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+x^{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\ \mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$
$\Phi(t)=\left[\begin{array}{cc}\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{t} \\ \mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}\frac{1}{3} & 1 \\ 1 & 1\end{array}\right]}$
- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}+2 t \mathrm{e}^{t} \\
2 t \mathrm{e}^{t}+\frac{3 \mathrm{e}^{-t}}{2}-\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x \xrightarrow{\rightarrow}(t)=c_{1} x \longrightarrow_{1}+c_{2} x \longrightarrow_{2}+\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}+2 t \mathrm{e}^{t} \\
2 t \mathrm{e}^{t}+\frac{3 \mathrm{e}^{-t}}{2}-\frac{3 \mathrm{e}^{t}}{2}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(2 c_{1}+3\right) \mathrm{e}^{-t}}{6}+2\left(t+\frac{c_{2}}{2}-\frac{1}{4}\right) \mathrm{e}^{t} \\
\frac{\left(2 c_{1}+3\right) \mathrm{e}^{-t}}{2}+2\left(t+\frac{c_{2}}{2}-\frac{3}{4}\right) \mathrm{e}^{t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(2 c_{1}+3\right) \mathrm{e}^{-t}}{6}+2\left(t+\frac{c_{2}}{2}-\frac{1}{4}\right) \mathrm{e}^{t}, x_{2}(t)=\frac{\left(2 c_{1}+3\right) \mathrm{e}^{-t}}{2}+2\left(t+\frac{c_{2}}{2}-\frac{3}{4}\right) \mathrm{e}^{t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

```
dsolve([diff(x__1 (t),t)=2*x__1(t)-1*x__2(t)+exp(t), diff (x__ 2(t),t)=3*x__1(t)-2*x__ 2(t) -exp(t
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{t}+\mathrm{e}^{-t} c_{1}+2 \mathrm{e}^{t} t \\
& x_{2}(t)=c_{2} \mathrm{e}^{t}+3 \mathrm{e}^{-t} c_{1}+2 \mathrm{e}^{t} t-\mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 80
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-1 * x 2[t]+\operatorname{Exp}[t], x 2{ }^{\prime}[t]==3 * x 1[t]-2 * x 2[t]-\operatorname{Exp}[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, Inclu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{-t}\left(e^{2 t}\left(4 t-1+3 c_{1}-c_{2}\right)-c_{1}+c_{2}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(e^{2 t}\left(4 t-3+3 c_{1}-c_{2}\right)-3 c_{1}+3 c_{2}\right)
\end{aligned}
$$

18.9 problem 9

18.9.1 Solution using Matrix exponential method 3881
18.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3883
18.9.3 Maple step by step solution

Internal problem ID [786]
Internal file name [OUTPUT/786_Sunday_June_05_2022_01_49_41_AM_45101061/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-\frac{5 x_{1}(t)}{4}+\frac{3 x_{2}(t)}{4}+2 t \\
& x_{2}^{\prime}(t)=\frac{3 x_{1}(t)}{4}-\frac{5 x_{2}(t)}{4}+\mathrm{e}^{t}
\end{aligned}
$$

18.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{2} \\
\left(\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(c_{1}+c_{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}+\frac{\left(-c_{2}+c_{1}\right) \mathrm{e}^{-2 t}}{2} \\
\frac{\left(c_{1}+c_{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\left(-c_{2}+c_{1}\right) \mathrm{e}^{-2 t}}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{\frac{3 t}{2}}+1\right) \mathrm{e}^{\frac{t}{2}}}{2} & -\frac{\left(\mathrm{e}^{\frac{3 t}{2}}-1\right) \mathrm{e}^{\frac{t}{2}}}{2} \\
-\frac{\left(\mathrm{e}^{\frac{3 t}{2}}-1\right) \mathrm{e}^{\frac{t}{2}}}{2} & \frac{\left(\mathrm{e}^{\frac{3 t}{2}}+1\right) \mathrm{e}^{\frac{t}{2}}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{\frac{3 t}{2}}+1\right) \mathrm{e}^{\frac{t}{2}}}{2} & -\frac{\left(\mathrm{e}^{\frac{3 t}{2}}-1\right) \mathrm{e}^{\frac{t}{2}}}{2} \\
-\frac{\left(\mathrm{e}^{\frac{3 t}{2}}-1\right) \mathrm{e}^{\frac{t}{2}}}{2} & \frac{\left(\mathrm{e}^{\frac{3 t}{2}}+1\right) \mathrm{e}^{\frac{t}{2}}}{2}
\end{array}\right]\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]\left[\begin{array}{l}
2(t-2) \mathrm{e}^{\frac{t}{2}}+\frac{\mathrm{e}^{\frac{3 t}{2}}}{3}+\frac{(2 t-1) \mathrm{e}^{2 t}}{4}-\frac{\mathrm{e}^{3 t}}{6} \\
2(t-2) \mathrm{e}^{\frac{t}{2}}+\frac{\mathrm{e}^{\frac{3 t}{2}}}{3}+\frac{(1-2 t) \mathrm{e}^{2 t}}{4}+\frac{\mathrm{e}^{3 t}}{6}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{t}}{6}+\frac{5 t}{2}-\frac{17}{4} \\
\frac{\mathrm{e}^{t}}{2}+\frac{3 t}{2}-\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-2 t}\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{\frac{3 t}{2}}+5 \mathrm{e}^{2 t} t+c_{1}-c_{2}-\frac{17 \mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{3 t}}{3}\right)}{2} \\
\left.\frac{\mathrm{e}^{-2 t}\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3 \mathrm{e}^{2 t} t-c_{1}+c_{2}-\frac{15 \mathrm{e}^{2 t}}{2}\right.}{2}+\mathrm{e}^{3 t}\right)
\end{array}\right]
\end{aligned}
$$

18.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
2 t \\
\mathrm{e}^{t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{5}{4}-\lambda & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\frac{5}{2} \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-\frac{1}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
$-\frac{1}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
\frac{3}{4} & \frac{3}{4} & 0 \\
\frac{3}{4} & \frac{3}{4} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
\frac{3}{4} & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{4} & \frac{3}{4} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]-\left(-\frac{1}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{3}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{3}{4}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{3}{4} & \frac{3}{4} & 0 \\
\frac{3}{4} & -\frac{3}{4} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{4} & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{4} & \frac{3}{4} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
$-\frac{1}{2}$	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue $-\frac{1}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\frac{t}{2}} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-\frac{t}{2}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{\frac{t}{2}}}{2} & \frac{\mathrm{e}^{\frac{t}{2}}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{\frac{t}{2}}}{2} & \frac{\mathrm{e}^{\frac{t}{2}}}{2}
\end{array}\right]\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right] \int\left[\begin{array}{c}
-\mathrm{e}^{2 t} t+\frac{\mathrm{e}^{3 t}}{2} \\
t \mathrm{e}^{\frac{t}{2}}+\frac{\mathrm{e}^{\frac{3 t}{2}}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]\left[\begin{array}{c}
\frac{(1-2 t) \mathrm{e}^{2 t}}{4}+\frac{\mathrm{e}^{3 t}}{6} \\
2(t-2) \mathrm{e}^{\frac{t}{2}}+\frac{\mathrm{e}^{\frac{3 t}{2}}}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{6}+\frac{5 t}{2}-\frac{17}{4} \\
\frac{\mathrm{e}^{t}}{2}+\frac{3 t}{2}-\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{-\frac{t}{2}} \\
c_{2} \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{6}+\frac{5 t}{2}-\frac{17}{4} \\
\frac{\mathrm{e}^{t}}{2}+\frac{3 t}{2}-\frac{15}{4}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(2 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} t-51 \mathrm{e}^{2 t}+12 c_{2} \mathrm{e}^{\frac{3 t}{2}}-12 c_{1}\right) \mathrm{e}^{-2 t}}{12} \\
\frac{\left(2 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t} t-15 \mathrm{e}^{2 t}+4 c_{2} \mathrm{e}^{\frac{3 t}{2}}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4}
\end{array}\right]
$$

18.9.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{5 x_{1}(t)}{4}+\frac{3 x_{2}(t)}{4}+2 t, x_{2}^{\prime}(t)=\frac{3 x_{1}(t)}{4}-\frac{5 x_{2}(t)}{4}+\mathrm{e}^{t}\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
2 t \\
\mathrm{e}^{t}
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{5}{4} & \frac{3}{4} \\
\frac{3}{4} & -\frac{5}{4}
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\underline{\rightarrow^{\prime}}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2},\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\frac{1}{2},\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{2}}_{2}=\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution x^{\rightarrow} $x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+x^{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\ \mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-2 t} & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$

$$
x \xrightarrow{\rightarrow} p(t)=\Phi(t) \cdot \vec{v}(t)
$$

- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow} p(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\left(2 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} t-51 \mathrm{e}^{2 t}+44 \mathrm{e}^{\frac{3 t}{2}}+5\right) \mathrm{e}^{-2 t}}{12} \\
\frac{\left(6 \mathrm{e}^{3 t}+18 \mathrm{e}^{2 t} t-45 \mathrm{e}^{2 t}+44 \mathrm{e}^{\frac{3 t}{2}}-5\right) \mathrm{e}^{-2 t}}{12}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x^{\rightarrow}(t)=c_{1} x_{-}^{\rightarrow}+c_{2} \underline{\rightarrow}_{2}+\left[\begin{array}{c}
\frac{\left(2 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} t-51 \mathrm{e}^{2 t}+44 \mathrm{e}^{\frac{3 t}{2}}+5\right) \mathrm{e}^{-2 t}}{12} \\
\frac{\left(6 \mathrm{e}^{3 t}+18 \mathrm{e}^{2 t} t-45 \mathrm{e}^{2 t}+44 \mathrm{e}^{\frac{3 t}{2}}-5\right) \mathrm{e}^{-2 t}}{12}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{\left(2 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} t-51 \mathrm{e}^{2 t}+12 c_{2} \mathrm{e}^{\frac{3 t}{2}}+44 \mathrm{e}^{\frac{3 t}{2}}-12 c_{1}+5\right) \mathrm{e}^{-2 t}}{12} \\
\frac{\left(6 \mathrm{e}^{3 t}+18 \mathrm{e}^{2 t} t-45 \mathrm{e}^{2 t}+12 c_{2} \mathrm{e}^{\frac{3 t}{2}}+44 \mathrm{e}^{\frac{3 t}{2}}+12 c_{1}-5\right) \mathrm{e}^{-2 t}}{12}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(2 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} t-51 \mathrm{e}^{2 t}+12 c_{2} \mathrm{e}^{\frac{3 t}{2}}+44 \mathrm{e}^{\frac{3 t}{2}}-12 c_{1}+5\right) \mathrm{e}^{-2 t}}{12}, x_{2}(t)=\frac{\left(6 \mathrm{e}^{3 t}+18 \mathrm{e}^{2 t} t-45 \mathrm{e}^{2 t}+12 c_{2} \mathrm{e}^{\frac{3 t}{2}}+44 \mathrm{e}^{\frac{3 t}{2}}+12 c_{1}-5\right)}{12}\right.
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 51
dsolve([diff $\left(x_{-} 1(t), t\right)=-5 / 4 * x_{_} 1(t)+3 / 4 * x_{_} \quad 2(t)+2 * t, \operatorname{diff}\left(x_{-} 2(t), t\right)=3 / 4 * x_{-} 1(t)-5 / 4 * x_{_} \quad 2(t)$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-\frac{t}{2}}-\frac{17}{4}+\frac{\mathrm{e}^{t}}{6}+\frac{5 t}{2} \\
& x_{2}(t)=-c_{2} \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-\frac{t}{2}}+\frac{\mathrm{e}^{t}}{2}-\frac{15}{4}+\frac{3 t}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 101
DSolve $\left[\left\{x 1^{\prime}[\mathrm{t}]==-5 / 4 * \mathrm{x} 1[\mathrm{t}]+3 / 4 * \mathrm{x} 2[\mathrm{t}]+2 * \mathrm{t}, \mathrm{x} 2 \mathrm{~S}^{\prime}[\mathrm{t}]==3 / 4 * \mathrm{x} 1[\mathrm{t}]-5 / 4 * \mathrm{x} 2[\mathrm{t}]+\operatorname{Exp}[\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t}\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{12}\left(30 t+2 e^{t}+6\left(c_{1}-c_{2}\right) e^{-2 t}+6\left(c_{1}+c_{2}\right) e^{-t / 2}-51\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{4} e^{-2 t}\left(3 e^{2 t}(2 t-5)+2 e^{3 t}+2\left(c_{1}+c_{2}\right) e^{3 t / 2}-2 c_{1}+2 c_{2}\right)
\end{aligned}
$$

18.10 problem 10

18.10.1 Solution using Matrix exponential method 3893
18.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3895

Internal problem ID [787]
Internal file name [OUTPUT/787_Sunday_June_05_2022_01_49_43_AM_10721479/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima

Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-3 x_{1}(t)+\sqrt{2} x_{2}(t)+\mathrm{e}^{-t} \\
x_{2}^{\prime}(t) & =\sqrt{2} x_{1}(t)-2 x_{2}(t)-\mathrm{e}^{-t}
\end{aligned}
$$

18.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{-t} \\
-\mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & \frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} \\
\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & \frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} \\
\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right) c_{2}}{3} \\
\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right) c_{1}}{3}+\left(\frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}\right) c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(2 \mathrm{e}^{3 t}+1\right) \mathrm{e}^{t}}{3} & -\frac{\sqrt{2} \mathrm{e}^{t}\left(\mathrm{e}^{3 t}-1\right)}{3} \\
-\frac{\sqrt{2} \mathrm{e}^{t}\left(\mathrm{e}^{3 t}-1\right)}{3} & \frac{\left(\mathrm{e}^{3 t}+2\right) \mathrm{e}^{t}}{3}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & \frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} \\
\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]\left[\begin{array}{cc}
\frac{\left(2 \mathrm{e}^{3 t}+1\right) \mathrm{e}^{t}}{3} & -\frac{\sqrt{2} \mathrm{e}^{t}\left(\mathrm{e}^{3 t}-1\right)}{3} \\
-\frac{\sqrt{2} \mathrm{e}^{t}\left(\mathrm{e}^{3 t}-1\right)}{3} & \frac{\left(\mathrm{e}^{3 t}+2\right) \mathrm{e}^{t}}{3}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{-t} \\
-\mathrm{e}^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & \frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} \\
\frac{\sqrt{2}\left(\mathrm{e}^{-t}-\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]\left[\begin{array}{c}
\frac{(2+\sqrt{2}) \mathrm{e}^{3 t}}{9}-\frac{t(\sqrt{2}-1)}{3} \\
\frac{(-1-\sqrt{2}) \mathrm{e}^{3 t}}{9}+\frac{t(-2+\sqrt{2})}{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{((1-3 t) \sqrt{2}+3 t+2) \mathrm{e}^{-t}}{9} \\
\frac{((-1+3 t) \sqrt{2}-6 t-1) \mathrm{e}^{-t}}{9}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(\left(-3 t+3 c_{2}+1\right) \sqrt{2}+3 t+3 c_{1}+2\right) \mathrm{e}^{-t}}{9}+\frac{2\left(-\frac{c_{2} \sqrt{2}}{2}+c_{1}\right) \mathrm{e}^{-4 t}}{3} \\
\frac{\left(\left(3 t+3 c_{1}-1\right) \sqrt{2}-6 t+6 c_{2}-1\right) \mathrm{e}^{-t}}{9}-\frac{\mathrm{e}^{-4 t}\left(c_{1} \sqrt{2}-c_{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

18.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\mathrm{e}^{-t} \\
-\mathrm{e}^{-t}
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & \sqrt{2} \\
\sqrt{2} & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+5 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-4 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-(-4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
\sqrt{2} & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\sqrt{2} t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & \sqrt{2} & 0 \\
\sqrt{2} & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{\sqrt{2} R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & \sqrt{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{\sqrt{2} t}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-4	1	1	No	$\left[\begin{array}{c}-\sqrt{2} \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-4 t} \\
& =\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\sqrt{2} \mathrm{e}^{-4 t} \\
\mathrm{e}^{-4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\sqrt{2} \mathrm{e}^{-4 t} & \frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\sqrt{2} \mathrm{e}^{4 t}}{3} & \frac{\mathrm{e}^{4 t}}{3} \\
\frac{\sqrt{2} \mathrm{e}^{t}}{3} & \frac{2 \mathrm{e}^{t}}{3}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\sqrt{2} \mathrm{e}^{-4 t} & \frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\sqrt{2} \mathrm{e}^{4 t}}{3} & \frac{\mathrm{e}^{4 t}}{3} \\
\frac{\sqrt{2} \mathrm{e}^{t}}{3} & \frac{2 \mathrm{e}^{t}}{3}
\end{array}\right]\left[\begin{array}{c}
\mathrm{e}^{-t} \\
-\mathrm{e}^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\sqrt{2} \mathrm{e}^{-4 t} & \frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}(1+\sqrt{2})}{3} \\
\frac{\sqrt{2}}{3}-\frac{2}{3}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\sqrt{2} \mathrm{e}^{-4 t} & \frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-4 t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}(1+\sqrt{2})}{9} \\
\frac{t(-2+\sqrt{2})}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{((1-3 t) \sqrt{2}+3 t+2) \mathrm{e}^{-t}}{9} \\
\frac{((-1+3 t) \sqrt{2}-6 t-1) \mathrm{e}^{-t}}{9}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \sqrt{2} \mathrm{e}^{-4 t} \\
c_{1} \mathrm{e}^{-4 t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2} \sqrt{2} \mathrm{e}^{-t}}{2} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
\frac{((1-3 t) \sqrt{2}+3 t+2) \mathrm{e}^{-t}}{9} \\
\frac{((-1+3 t) \sqrt{2}-6 t-1) \mathrm{e}^{-t}}{9}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(-6 t+9 c_{2}+2\right) \sqrt{2}+6 t+4\right) \mathrm{e}^{-t}}{18}-c_{1} \sqrt{2} \mathrm{e}^{-4 t} \\
\frac{\left((-1+3 t) \sqrt{2}-6 t+9 c_{2}-1\right) \mathrm{e}^{-t}}{9}+c_{1} \mathrm{e}^{-4 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 90
dsolve([diff($\left.x_{-} 1(t), t\right)=-3 * x_{-} 1(t)+s q r t(2) * x_{-} 2(t)+\exp (-t), \operatorname{diff}\left(x_{_-} 2(t), t\right)=s q f t(2) * x_{-} 1(t)-2$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{-t}+\mathrm{e}^{-4 t} c_{1}-\frac{t \mathrm{e}^{-t} \sqrt{2}}{3}+\frac{t \mathrm{e}^{-t}}{3} \\
& x_{2}(t)=-\frac{2 t \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{-t}}{3}+\sqrt{2} \mathrm{e}^{-t} c_{2}+\frac{t \mathrm{e}^{-t} \sqrt{2}}{3}-\frac{\sqrt{2} \mathrm{e}^{-4 t} c_{1}}{2}-\frac{\sqrt{2} \mathrm{e}^{-t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 128
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]+\operatorname{Sqrt}[2] * x 2[t]+\operatorname{Exp}[-t], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==\operatorname{Sqrt}[2] * \mathrm{x} 1[\mathrm{t}]-2 * \mathrm{x} 2[\mathrm{t}]-\operatorname{Exp}[-\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}]\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{9} e^{-4 t}\left(e^{3 t}\left(-3(\sqrt{2}-1) t+\sqrt{2}+2+3 c_{1}+3 \sqrt{2} c_{2}\right)+6 c_{1}-3 \sqrt{2} c_{2}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{9} e^{-4 t}\left(e^{3 t}\left(3(\sqrt{2}-2) t-\sqrt{2}-1+3 \sqrt{2} c_{1}+6 c_{2}\right)-3 \sqrt{2} c_{1}+3 c_{2}\right)
\end{aligned}
$$

18.11 problem 11

18.11.1 Solution using Matrix exponential method 3902
18.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3904
18.11.3 Maple step by step solution . 3909

Internal problem ID [788]
Internal file name [OUTPUT/788_Sunday_June_05_2022_01_49_46_AM_47915974/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t)+\cos (t)
\end{aligned}
$$

18.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t)) c_{1}-5 \sin (t) c_{2} \\
\sin (t) c_{1}+(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
\frac{5 \sin (t)^{2}}{2} \\
\frac{\sin (t) \cos (t)}{2}+\frac{t}{2}-\cos (t)^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{5 \sin (t)(t-2)}{2} \\
\frac{(t-2) \cos (t)}{2}+\frac{(-2 t+5) \sin (t)}{2}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-5 t+4 c_{1}-10 c_{2}+10\right) \sin (t)}{2}+c_{1} \cos (t) \\
\frac{\left(-2 t+2 c_{1}-4 c_{2}+5\right) \sin (t)}{2}+\frac{\cos (t)\left(t+2 c_{2}-2\right)}{2}
\end{array}\right]
\end{aligned}
$$

18.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i e^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i e^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{i e^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i \mathrm{e}^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \cos (t) \\
\left(\frac{1}{2}-i\right) \mathrm{e}^{i t} \cos (t)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]\left[\begin{array}{c}
\left(\frac{1}{4}+\frac{i}{2}\right)(i t \sin (t)+t \cos (t)+\sin (t)) \mathrm{e}^{-i t} \\
\left(\frac{1}{4}-\frac{i}{2}\right) t+\left(-\frac{1}{4}-\frac{i}{8}\right) \mathrm{e}^{2 i t}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{5 \cos (t)}{8}+\frac{5(i-4 t) \sin (t)}{8} \\
\frac{\cos (t)(-2-i+4 t)}{8}+\frac{\left(\frac{3}{2}+i-4 t\right) \sin (t)}{4}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t} \\
c_{1} \mathrm{e}^{i t}
\end{array}\right]+\left[\begin{array}{c}
(2-i) c_{2} \mathrm{e}^{-i t} \\
c_{2} \mathrm{e}^{-i t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{5 \cos (t)}{8}+\frac{5(i-4 t) \sin (t)}{8} \\
\frac{\cos (t)(-2-i+4 t)}{8}+\frac{\left(\frac{3}{2}+i-4 t\right) \sin (t)}{4}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left((16-8 i) c_{2}-10 i t-5\right) \mathrm{e}^{-i t}}{8}+\frac{5\left(\left(\frac{8}{5}+\frac{4 i}{5}\right) c_{1}+i t\right) \mathrm{e}^{i t}}{4} \\
\frac{\left(8 c_{1}-2-i+4 t+8 c_{2}\right) \cos (t)}{8}+\left(i c_{1}-t+\frac{3}{8}+\frac{1}{4} i-i c_{2}\right) \sin (t)
\end{array}\right]
$$

18.11.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)+\cos (t)\right]$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
0 \\
\cos (t)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\underline{\rightarrow^{\prime}}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\underset{x_{1}}{\rightarrow}(t)=\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right], \underline{{ }_{-}^{\rightarrow}(t)}\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+x \xrightarrow{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\ \cos (t) & -\sin (t)\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\
\cos (t) & -\sin (t)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$

$$
x_{\underline{\rightarrow}}{ }^{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)
$$

- Take the derivative of the particular solution

$$
x^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
-\frac{5 t \sin (t)}{2} \\
-t \sin (t)+\frac{\sin (t)}{2}+\frac{t \cos (t)}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x \xrightarrow{\rightarrow}(t)=c_{1} x_{1}(t)+c_{2} x \xrightarrow{\rightarrow}_{2}(t)+\left[\begin{array}{c}
-\frac{5 t \sin (t)}{2} \\
-t \sin (t)+\frac{\sin (t)}{2}+\frac{t \cos (t)}{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-5 t-2 c_{1}-4 c_{2}\right) \sin (t)}{2}+2\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t) \\
\frac{\left(-2 t-2 c_{2}+1\right) \sin (t)}{2}+\frac{\cos (t)\left(2 c_{1}+t\right)}{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-5 t-2 c_{1}-4 c_{2}\right) \sin (t)}{2}+2\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t), x_{2}(t)=\frac{\left(-2 t-2 c_{2}+1\right) \sin (t)}{2}+\frac{\cos (t)\left(2 c_{1}+t\right)}{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 57
dsolve([diff $\left.\left(x_{-} 1(t), t\right)=2 * x_{--} 1(t)-5 * x_{-} 2(t)+0, \operatorname{diff}\left(x_{-} 2(t), t\right)=1 * x_{-} 1(t)-2 * x_{-} 2(t)+\cos (t)\right]$, si
$x_{1}(t)=c_{2} \sin (t)+c_{1} \cos (t)-\frac{5 \sin (t) t}{2}$
$x_{2}(t)=-\frac{c_{2} \cos (t)}{5}+\frac{c_{1} \sin (t)}{5}+\frac{\cos (t) t}{2}+\frac{\sin (t)}{2}+\frac{2 c_{2} \sin (t)}{5}+\frac{2 c_{1} \cos (t)}{5}-\sin (t) t$
\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 60
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-5 * x 2[t]+0, x 2{ }^{\prime}[t]==1 * x 1[t]-2 * x 2[t]-\operatorname{Cos}[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow\left(\frac{5}{2}+c_{1}\right) \cos (t)+\frac{1}{2}\left(5 t+4 c_{1}-10 c_{2}\right) \sin (t) \\
& \mathrm{x} 2(t) \rightarrow\left(-\frac{t}{2}+1+c_{2}\right) \cos (t)+\left(t+c_{1}-2 c_{2}\right) \sin (t)
\end{aligned}
$$

18.12 problem 12

18.12.1 Solution using Matrix exponential method 3913
18.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3915
18.12.3 Maple step by step solution . 3920

Internal problem ID [789]
Internal file name [OUTPUT/789_Sunday_June_05_2022_01_49_48_AM_41360408/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-5 x_{2}(t)+\csc (t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t)+\sec (t)
\end{aligned}
$$

18.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t)) c_{1}-5 \sin (t) c_{2} \\
\sin (t) c_{1}+(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (t)-2 \sin (t) & 5 \sin (t) \\
-\sin (t) & \cos (t)+2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{c}
-2 t+\ln (\sin (t))+5 \ln (\sec (t)) \\
-2 \ln (\cos (t))
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t))(-2 t+\ln (\sin (t))+5 \ln (\sec (t)))+10 \sin (t) \ln (\cos (t)) \\
(-2 \cos (t)+4 \sin (t)) \ln (\cos (t))-2\left(t-\frac{5 \ln (\sec (t))}{2}-\frac{\ln (\sin (t))}{2}\right) \sin (t)
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t)+(\cos (t)+2 \sin (t))(-2 t+\ln (\sin (t))+5 \ln (\sec (t)))+10 \sin (\\
(-2 \cos (t)+4 \sin (t)) \ln (\cos (t))+5 \sin (t) \ln (\sec (t))+\sin (t) \ln (\sin (t))+\left(-2 t+c_{1}-2 c_{2}\right) \sin
\end{array}\right.
\end{aligned}
$$

18.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i \mathrm{e}^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i \mathrm{e}^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{i \mathrm{e}^{-i t}}{2} & \left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \\
\frac{i \mathrm{e}^{i t}}{2} & \left(\frac{1}{2}-i\right) \mathrm{e}^{i t}
\end{array}\right]\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{((-1-2 i) \sec (t)+i \csc (t)) \mathrm{e}^{-i t}}{2} \\
\frac{((1-2 i) \sec (t)+i \csc (t)) \mathrm{e}^{i t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
(2+i) \mathrm{e}^{i t} & (2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{i t} & \mathrm{e}^{-i t}
\end{array}\right]\left[\begin{array}{c}
\left(-1+\frac{i}{2}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)-\frac{i \ln \left(\mathrm{e}^{i t}-1\right)}{2}-\frac{i \ln \left(\mathrm{e}^{i t}+1\right)}{2}+2 \ln \left(\mathrm{e}^{i t}\right) \\
\frac{i \ln \left(\mathrm{e}^{2 i t}-1\right)}{2}+\left(-1-\frac{i}{2}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \ln \left(\mathrm{e}^{2 i t}-1\right)+\frac{\left(-5 \mathrm{e}^{-i t}-5 \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+2\left(\left(\frac{1}{4}-\frac{i}{2}\right) \ln \left(\mathrm{e}^{i t}-1\right)+\left(\frac{1}{4}-\frac{i}{2}\right) \ln \left(\mathrm{e}^{i t}+1\right)+\right. \\
\frac{\left((-2-i) \mathrm{e}^{-i t}+(-2+i) \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+\frac{i \mathrm{e}^{-i t} \ln \left(\mathrm{e}^{2 i t}-1\right)}{2}-\frac{\left(i \ln \left(\mathrm{e}^{i t}-1\right)+i \ln \left(\mathrm{e}^{i t}+1\right)-4 \ln \left(\mathrm{e}^{i t}\right)\right) \mathrm{e}^{i t}}{2}
\end{array}\right.
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t} \\
c_{1} \mathrm{e}^{i t}
\end{array}\right]+\left[\begin{array}{c}
(2-i) c_{2} \mathrm{e}^{-i t} \\
c_{2} \mathrm{e}^{-i t}
\end{array}\right]+\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \ln \left(\mathrm{e}^{2 i t}-1\right)+\frac{\left(-5 \mathrm{e}^{-i t}-5 \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+ \\
\frac{\left((-2-i) \mathrm{e}^{-i t}+(-2+i) \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+
\end{array}\right.
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{-i t} \ln \left(\mathrm{e}^{2 i t}-1\right)+\frac{\left(-5 \mathrm{e}^{-i t}-5 \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+\left(\frac{1}{2}-i\right) \mathrm{e}^{i t} \ln \left(\mathrm{e}^{i t}-1\right)+\left(\frac{1}{2}-i\right) \mathrm{e}^{i t} \ln \left(\mathrm{e}^{i t}\right. \\
\frac{\left((-2-i) \mathrm{e}^{-i t}+(-2+i) \mathrm{e}^{i t}\right) \ln \left(\mathrm{e}^{2 i t}+1\right)}{2}+\frac{i \mathrm{e}^{-i t} \ln \left(\mathrm{e}^{2 i t}-1\right)}{2}-\frac{i \mathrm{e}^{i t} \ln \left(\mathrm{e}^{i t}-1\right)}{2}-\frac{i \mathrm{e}^{i t} \ln \left(\mathrm{e}^{i t}+1\right)}{2}
\end{array} .\right.
$$

18.12.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t)+\csc (t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)+\sec (t)\right]
$$

- Define vector

$$
x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
\csc (t) \\
\sec (t)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\underset{x_{1}}{\rightarrow}(t)=\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right], \underline{{ }_{-}^{\rightarrow}(t)}\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$
$x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+x \xrightarrow{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\ \cos (t) & -\sin (t)\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
2 \cos (t)-\sin (t) & -\cos (t)-2 \sin (t) \\
\cos (t) & -\sin (t)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x^{\rightarrow} p(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$
$\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x^{\rightarrow} p(t)=\left[\begin{array}{l}
(\cos (t)+2 \sin (t))\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right)-10 \sin (t)\left(\int_{0}^{t} \tan (s\right. \\
\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right) \sin (t)+2(\cos (t)-2 \sin (t))\left(\int_{0}^{t} \tan (s)\right.
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
x \xrightarrow{\rightarrow}(t)=c_{1} x \longrightarrow_{1}(t)+c_{2} x \longrightarrow_{2}(t)+\left[\begin{array}{l}
(\cos (t)+2 \sin (t))\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s))\right. \\
\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right) \sin (t)+2(\cos
\end{array}\right.
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{r}
(\cos (t)+2 \sin (t))\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right)-10 \sin (t)\left(\int_{0}^{t} \tan \right. \\
\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right) \sin (t)+(2 \cos (t)-4 \sin (t))
\end{array}\right.
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=(\cos (t)+2 \sin (t))\left(\int_{0}^{t}(-4 \cot (s)-2+5 \sec (s) \csc (s)) d s\right)-10 \sin (t)\left(\int_{0}^{t} \tan (s) d s\right.\right.
$$

\checkmark Solution by Maple

Time used: 0.235 (sec). Leaf size: 113

$$
\begin{aligned}
x_{1}(t)= & \ln (\sin (t)) \cos (t)-5 \cos (t) \ln (\cos (t))+c_{1} \cos (t)-2 \cos (t) t \\
& +2 \ln (\sin (t)) \sin (t)+c_{2} \sin (t)-4 \sin (t) t+\cos (t) \\
x_{2}(t)= & -2 \cos (t) \ln (\cos (t))+\frac{2 c_{1} \cos (t)}{5}-\frac{c_{2} \cos (t)}{5} \\
& +\ln (\sin (t)) \sin (t)-\sin (t) \ln (\cos (t))+\frac{c_{1} \sin (t)}{5} \\
& +\frac{2 c_{2} \sin (t)}{5}-2 \sin (t) t-\frac{\cos (t)^{2}}{5 \sin (t)}+\frac{2 \cos (t)}{5}+\frac{\csc (t)}{5}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.018 (sec). Leaf size: 79

$$
\begin{aligned}
& \text { DSolve }\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==2 * \mathrm{x} 1[\mathrm{t}]-5 * \mathrm{x} 2[\mathrm{t}]+\operatorname{Csc}[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]-2 * \mathrm{x} 2[\mathrm{t}]+\operatorname{Sec}[\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t},\right. \text { Inclu } \\
& \begin{aligned}
\mathrm{x} 1(t) \rightarrow & \sin (t)\left(-4 t+2 \log (\sin (t))+2 c_{1}-5 c_{2}\right) \\
& \quad \cos (t)\left(-2 t+\log (\sin (t))-5 \log (\cos (t))+c_{1}\right)
\end{aligned} \\
& \mathrm{x} 2(t) \rightarrow \cos (t)\left(-2 \log (\cos (t))+c_{2}\right)+\sin (t)\left(-2 t+\log (\sin (t))-\log (\cos (t))+c_{1}-2 c_{2}\right)
\end{aligned}
$$

18.13 problem 13

18.13.1 Solution using Matrix exponential method 3924
18.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3926
18.13.3 Maple step by step solution . 3931

Internal problem ID [790]
Internal file name [OUTPUT/790_Sunday_June_05_2022_01_49_50_AM_26957802/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-\frac{x_{1}(t)}{2}-\frac{x_{2}(t)}{8}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
& x_{2}^{\prime}(t)=2 x_{1}(t)-\frac{x_{2}(t)}{2}
\end{aligned}
$$

18.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right)}}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right)}}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) c_{2}}{4} \\
\mathrm{e}^{-\frac{t}{2}}\left(4 \sin \left(\frac{t}{2}\right) c_{1}+\cos \left(\frac{t}{2}\right) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}} & \frac{\sin \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{4} \\
-4 \sin \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}} & \cos \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right] \int\left[\begin{array}{cc}
\cos \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}} & \frac{\sin \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{4} \\
-4 \sin \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}} & \cos \left(\frac{t}{2}\right) \mathrm{e}^{\frac{t}{2}}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]\left[\begin{array}{c}
\sin \left(\frac{t}{2}\right) \\
4 \cos \left(\frac{t}{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
4 \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) c_{1}-\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right) c_{2}}}{4} \\
\mathrm{e}^{-\frac{t}{2}}\left(4+4 \sin \left(\frac{t}{2}\right) c_{1}+\cos \left(\frac{t}{2}\right) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

18.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2}-\lambda & -\frac{1}{8} \\
2 & -\frac{1}{2}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+\frac{1}{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{1}{2}+\frac{i}{2} \\
\lambda_{2} & =-\frac{1}{2}-\frac{i}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}+\frac{i}{2}$	1	complex eigenvalue
$-\frac{1}{2}-\frac{i}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}-\frac{i}{2}\right)\right. & {\left.\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
\frac{i}{2} & -\frac{1}{8} \\
2 & \frac{i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{i}{2} & -\frac{1}{8} & 0 \\
2 & \frac{i}{2} & 0
\end{array}\right]} \\
R_{2}=4 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
\frac{i}{2} & -\frac{1}{8} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{i}{2} & -\frac{1}{8} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{i t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{i}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}+\frac{i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{i}{2} & -\frac{1}{8} \\
2 & -\frac{i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{i}{2} & -\frac{1}{8} & 0 \\
2 & -\frac{i}{2} & 0
\end{array}\right]} \\
R_{2}=-4 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{i}{2} & -\frac{1}{8} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{i}{2} & -\frac{1}{8} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{i t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{i}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{4} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
4
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}+\frac{i}{2}$	1	1	No	$\left[\begin{array}{c}\frac{i}{4} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{i}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{i}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{i \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{i \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{i \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} & -\frac{i \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-2 i \mathrm{e}^{\left(\frac{1}{2}-\frac{i}{2}\right) t} & \frac{\mathrm{e}^{\left(\frac{1}{2}-\frac{i}{2}\right) t}}{2} \\
2 i \mathrm{e}^{\left(\frac{1}{2}+\frac{i}{2}\right) t} & \frac{\mathrm{e}^{\left(\frac{1}{2}+\frac{i}{2}\right) t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{i e\left(-\frac{1}{2}+\frac{i}{2}\right) t}{4} & \left.-\frac{i e^{\left(-\frac{1}{2}-\frac{i}{2}\right.} 2}{2}\right) \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{cc}
-2 i \mathrm{e}^{\left(\frac{1}{2}-\frac{i}{2}\right) t} & \frac{\mathrm{e}^{\left(\frac{1}{2}-\frac{i}{2}\right) t}}{2} \\
2 i \mathrm{e}^{\left(\frac{1}{2}+\frac{i}{2}\right) t} & \frac{\mathrm{e}^{\left(\frac{1}{2}+\frac{i}{2}\right) t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{i e^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} & -\frac{i e^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{2} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{c}
-i \mathrm{e}^{-\frac{i t}{2}} \\
i \mathrm{e}^{\frac{i t}{2}}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{i e^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} & -\frac{i e^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{4} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t} & \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{-\frac{i t}{2}} \\
2 \mathrm{e}^{\frac{i t}{2}}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
4 \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{i c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}}{4} \\
c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{i c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}}{4} \\
c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
4 \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}-c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}\right)}{4} \\
c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i}{2}\right) t}+4 \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
$$

18.13.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-\frac{x_{1}(t)}{2}-\frac{x_{2}(t)}{8}+\frac{\mathrm{e}^{-\frac{t}{2}}}{2}, x_{2}^{\prime}(t)=2 x_{1}(t)-\frac{x_{2}(t)}{2}\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right]
$$

- \quad System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{t}{2}}}{2} \\
0
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{8} \\
2 & -\frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{2}-\frac{\mathrm{I}}{2},\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I}}{2},\left[\begin{array}{c}
\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I}}{2},\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos
$\mathrm{e}^{-\frac{t}{2}} \cdot\left(\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)\right) \cdot\left[\begin{array}{c}-\frac{\mathrm{I}}{4} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{4}\left(\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)\right) \\
\cos \left(\frac{t}{2}\right)-\mathrm{I} \sin \left(\frac{t}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$

$$
x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}_{2}(t)+x^{\rightarrow} p(t)
$$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{t}{2}\right)}}{4} & -\frac{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)}{4} \\
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{4} & -\frac{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)}{4} \\
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
0 & -\frac{1}{4} \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right) & -\frac{\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right)}{4} \\
4 \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{t}{2}\right)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{-}^{\rightarrow}(t)=\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) \\
-4 \mathrm{e}^{-\frac{t}{2}}\left(-1+\cos \left(\frac{t}{2}\right)\right)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x_{\square}^{\rightarrow}(t)=c_{1} x^{\rightarrow}(t)+c_{2} x{\underset{2}{2}}_{2}(t)+\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{t}{2}\right) \\
-4 \mathrm{e}^{-\frac{t}{2}}\left(-1+\cos \left(\frac{t}{2}\right)\right)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(\left(-4+c_{1}\right) \sin \left(\frac{t}{2}\right)+c_{2} \cos \left(\frac{t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{4} \\
\left(\left(-4+c_{1}\right) \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)+4\right) \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{\left(\left(-4+c_{1}\right) \sin \left(\frac{t}{2}\right)+c_{2} \cos \left(\frac{t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{4}, x_{2}(t)=\left(\left(-4+c_{1}\right) \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)+4\right) \mathrm{e}^{-\frac{t}{2}}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 47
dsolve ([diff $\left(x_{-} 1(t), t\right)=-1 / 2 * x_{_} 1(t)-1 / 8 * x_{_} 2(t)+1 / 2 * \exp (-t / 2), \operatorname{diff}\left(x_{-} 2(t), t\right)=2 * x_{-} 1(t)-1 / 2$

$$
\begin{aligned}
& x_{1}(t)=\frac{\mathrm{e}^{-\frac{t}{2}}\left(c_{2} \cos \left(\frac{t}{2}\right)-c_{1} \sin \left(\frac{t}{2}\right)\right)}{4} \\
& x_{2}(t)=\mathrm{e}^{-\frac{t}{2}}\left(4+\cos \left(\frac{t}{2}\right) c_{1}+\sin \left(\frac{t}{2}\right) c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 69
DSolve $\left[\left\{x 1^{\prime}[t]==-1 / 2 * x 1[t]-1 / 8 * x 2[t]+1 / 2 * \operatorname{Exp}[-t / 2], x 2{ }^{\prime}[t]==2 * x 1[t]-1 / 2 * x 2[t]+0\right\},\{x 1[t], x 2[t]\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-t / 2}\left(4 c_{1} \cos \left(\frac{t}{2}\right)-c_{2} \sin \left(\frac{t}{2}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t / 2}\left(c_{2} \cos \left(\frac{t}{2}\right)+4 c_{1} \sin \left(\frac{t}{2}\right)+4\right)
\end{aligned}
$$

18.14 problem 18

18.14.1 Solution using Matrix exponential method 3936
18.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3938

Internal problem ID [791]
Internal file name [OUTPUT/791_Sunday_June_05_2022_01_49_52_AM_56180441/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-2 x_{1}(t)+x_{2}(t)+2 \mathrm{e}^{-t} \\
x_{2}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t)+3 t
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=\alpha_{1}, x_{2}(0)=\alpha_{2}\right]
$$

18.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
3 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) \alpha_{1}+\left(\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}\right) \alpha_{2} \\
\left(\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}\right) \alpha_{1}+\left(\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) \alpha_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-\alpha_{2}+\alpha_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(\alpha_{1}+\alpha_{2}\right)}{2} \\
\frac{\left(\alpha_{2}-\alpha_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(\alpha_{1}+\alpha_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} \\
-\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} & \frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} \\
-\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} & \frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
3 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{(1-3 t) \mathrm{e}^{3 t}}{6}+\frac{\mathrm{e}^{2 t}}{2}+\frac{(9 t-9) \mathrm{e}^{t}}{6}+t \\
\frac{(-1+3 t) \mathrm{e}^{3 t}}{6}-\frac{\mathrm{e}^{2 t}}{2}+\frac{(9 t-9) \mathrm{e}^{t}}{6}+t
\end{array}\right] \\
& =\left[\begin{array}{c}
t-\frac{4}{3}+\frac{\mathrm{e}^{-t}}{2}+t \mathrm{e}^{-t} \\
t \mathrm{e}^{-t}+2 t-\frac{5}{3}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(6 t+3 \alpha_{1}+3 \alpha_{2}+3\right) \mathrm{e}^{-t}}{6}+\frac{\left(3 \alpha_{1}-3 \alpha_{2}\right) \mathrm{e}^{-3 t}}{6}+t-\frac{4}{3} \\
\frac{\left(6 t+3 \alpha_{1}+3 \alpha_{2}-3\right) \mathrm{e}^{-t}}{6}+\frac{\left(-3 \alpha_{1}+3 \alpha_{2}\right) \mathrm{e}^{-3 t}}{6}+2 t-\frac{5}{3}
\end{array}\right]
\end{aligned}
$$

18.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
3 t
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\mathrm{e}^{-3 t} \\
\mathrm{e}^{-t} & \mathrm{e}^{-3 t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2} \\
-\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\mathrm{e}^{-3 t} \\
\mathrm{e}^{-t} & \mathrm{e}^{-3 t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2} \\
-\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
3 t
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\mathrm{e}^{-3 t} \\
\mathrm{e}^{-t} & \mathrm{e}^{-3 t}
\end{array}\right] \int\left[\begin{array}{c}
1+\frac{3 t \mathrm{e}^{t}}{2} \\
-\mathrm{e}^{2 t}+\frac{3 \mathrm{e}^{3 t} t}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\mathrm{e}^{-3 t} \\
\mathrm{e}^{-t} & \mathrm{e}^{-3 t}
\end{array}\right]\left[\begin{array}{c}
\frac{(3 t-3) \mathrm{e}^{t}}{2}+t \\
\frac{(-1+3 t) \mathrm{e}^{3 t}}{6}-\frac{\mathrm{e}^{2 t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
t-\frac{4}{3}+\frac{\mathrm{e}^{-t}}{2}+t \mathrm{e}^{-t} \\
t \mathrm{e}^{-t}+2 t-\frac{5}{3}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \mathrm{e}^{-3 t} \\
c_{2} \mathrm{e}^{-3 t}
\end{array}\right]+\left[\begin{array}{c}
t-\frac{4}{3}+\frac{\mathrm{e}^{-t}}{2}+t \mathrm{e}^{-t} \\
t \mathrm{e}^{-t}+2 t-\frac{5}{3}-\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(6 t+6 c_{1}+3\right) \mathrm{e}^{-t}}{6}-c_{2} \mathrm{e}^{-3 t}+t-\frac{4}{3} \\
\frac{\left(6 t+6 c_{1}-3\right) \mathrm{e}^{-t}}{6}+c_{2} \mathrm{e}^{-3 t}+2 t-\frac{5}{3}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=\alpha_{1} \tag{1}\\
x_{2}(0)=\alpha_{2}
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{6}+c_{1}-c_{2} \\
-\frac{13}{6}+c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{\alpha_{1}}{2}+\frac{3}{2}+\frac{\alpha_{2}}{2} \\
c_{2}=\frac{\alpha_{2}}{2}+\frac{2}{3}-\frac{\alpha_{1}}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{\left(6 t+3 \alpha_{1}+12+3 \alpha_{2}\right) \mathrm{e}^{-t}}{6}-\left(\frac{\alpha_{2}}{2}+\frac{2}{3}-\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-3 t}+t-\frac{4}{3} \\
\frac{\left(6 t+3 \alpha_{1}+6+3 \alpha_{2}\right) \mathrm{e}^{-t}}{6}+\left(\frac{\alpha_{2}}{2}+\frac{2}{3}-\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-3 t}+2 t-\frac{5}{3}
\end{array}\right]
$$

The following are plots of each solution.

\checkmark Solution by Maple

Time used: 0.031 (sec). Leaf size: 93

```
dsolve([diff (x__1 (t),t) = -2*x__ 1 (t)+x__ 2(t)+2*exp (-t), diff (x__ 2(t),t) = x___ 1 (t)-2*x__ 2(t)+
```

$$
\begin{aligned}
& x_{1}(t)=\left(\frac{3}{2}+\frac{\alpha_{2}}{2}+\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-t}-\left(\frac{2}{3}+\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{-t}}{2}+t \mathrm{e}^{-t}-\frac{4}{3}+t \\
& x_{2}(t)=\left(\frac{3}{2}+\frac{\alpha_{2}}{2}+\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-t}+\left(\frac{2}{3}+\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{2}\right) \mathrm{e}^{-3 t}+t \mathrm{e}^{-t}+2 t-\frac{5}{3}-\frac{\mathrm{e}^{-t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 122

```
DSolve[{x1'[t]==-2*x1[t]+1*x2[t]+2*Exp[-t],x2'[t]==1*x1[t]-2*x2[t]+3*t},{x1[0]==a1,x2[0]==a2
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{6} e^{-3 t}\left(3 \mathrm{a} 1\left(e^{2 t}+1\right)+3 \mathrm{a} 2\left(e^{2 t}-1\right)+12 e^{2 t}-8 e^{3 t}+6 e^{2 t} t+6 e^{3 t} t-4\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{6} e^{-3 t}\left(3 \mathrm{a} 1\left(e^{2 t}-1\right)+3 \mathrm{a} 2\left(e^{2 t}+1\right)+6 e^{2 t}(t+1)+2 e^{3 t}(6 t-5)+4\right)
\end{aligned}
$$

19 Chapter 9.1, The Phase Plane: Linear Systems. page 505
19.1 problem 1 3946
19.2 problem 2 3955
19.3 problem 3 3964
19.4 problem 4 3973
19.5 problem 5 3983
19.6 problem 6 3991
19.7 problem 7 3999
19.8 problem 8 4008
19.9 problem 9 4017
19.10problem 10 4027
19.11 problem 11 4036
19.12problem 12 4045
19.13problem 13 4054
19.14problem 14 4067
19.15problem 15 4079

19.1 problem 1

19.1.1 Solution using Matrix exponential method 3946
19.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3947
19.1.3 Maple step by step solution . 3952

Internal problem ID [792]
Internal file name [OUTPUT/792_Sunday_June_05_2022_01_49_55_AM_22760055/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

19.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{3}+\frac{4 \mathrm{e}^{2 t}}{3} & -\frac{2 \mathrm{e}^{2 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{2 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} & \frac{4 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{3}+\frac{4 \mathrm{e}^{2 t}}{3} & -\frac{2 \mathrm{e}^{2 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{2 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} & \frac{4 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{3}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-t}}{3}+\frac{4 \mathrm{e}^{2 t}}{3}\right) c_{1}+\left(-\frac{2 \mathrm{e}^{2 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}\right) c_{2} \\
\left(\frac{2 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3}\right) c_{1}+\left(\frac{4 \mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{2 t}}{3}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{3}+\frac{4\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{2 t}}{3} \\
\frac{\left(-2 c_{1}+4 c_{2}\right) \mathrm{e}^{-t}}{3}+\frac{2\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{2 t}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & -2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -2 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -2 & 0 \\
2 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{2 t}+\frac{c_{2} \mathrm{e}^{-t}}{2} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 539: Phase plot

19.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=2 x_{1}(t)-2 x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}2 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \rightarrow c_{1} x \rightarrow{ }_{-}^{\rightarrow}+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x \longrightarrow=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-t}}{2}+2 c_{2} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1} \mathrm{e}^{-t}}{2}+2 c_{2} \mathrm{e}^{2 t}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}\right\}
$$

Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve([diff (x__1(t),t)=3*x__1(t)-2*x__2(t), diff (x__ 2(t),t)=2*x__1 (t) -2*x__ 2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{2 t} \\
& x_{2}(t)=2 \mathrm{e}^{-t} c_{1}+\frac{c_{2} \mathrm{e}^{2 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-2 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]-2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(4 e^{3 t}-1\right)-2 c_{2}\left(e^{3 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{3} e^{-t}\left(2 c_{1}\left(e^{3 t}-1\right)-c_{2}\left(e^{3 t}-4\right)\right)
\end{aligned}
$$

19.2 problem 2

19.2.1 Solution using Matrix exponential method 3955
19.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3956
19.2.3 Maple step by step solution . 3961

Internal problem ID [793]
Internal file name [OUTPUT/793_Sunday_June_05_2022_01_49_56_AM_69247619/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =5 x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =3 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

19.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2} \\
\frac{3 \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2} & -\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2} \\
\frac{3 \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2} & \frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{2 t}}{2}+\frac{3 \mathrm{e}^{4 t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{2 t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{2 t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{2 t}}{2}-\frac{\mathrm{e}^{4 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{2 t}}{2}+\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \mathrm{e}^{4 t}}{2} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{2 t}}{2}+\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \mathrm{e}^{4 t}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & -1 \\
3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+8=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}\frac{1}{3} \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{r}
\frac{1}{3} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 540: Phase plot

19.2.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=5 x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\xrightarrow{\rightarrow}}=c_{1} x_{-}^{\rightarrow}+c_{2} x_{-}^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{4 t}, x_{2}(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{4 t}\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 35
dsolve ([diff $\left.\left(x_{-} 1(t), t\right)=5 * x_{-} 1(t)-1 * x_{\neq-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=3 * x_{-} 1(t)+1 * x_{-} 2(t)\right]$, singsol $=a l l$

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{2 t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{4 t}+3 c_{2} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve $\left[\left\{x 1^{\prime}[t]==5 * x 1[t]-1 * x 2[t], x 2{ }^{\prime}[t]==3 * x 1[t]+1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{2 t}\left(c_{1}\left(3 e^{2 t}-1\right)-c_{2}\left(e^{2 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{2 t}\left(3 c_{1}\left(e^{2 t}-1\right)-c_{2}\left(e^{2 t}-3\right)\right)
\end{aligned}
$$

19.3 problem 3

19.3.1 Solution using Matrix exponential method 3964
19.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3965
19.3.3 Maple step by step solution . 3970

Internal problem ID [794]
Internal file name [OUTPUT/794_Sunday_June_05_2022_01_49_57_AM_46336794/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

19.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-t}}{2}+\frac{3 \mathrm{e}^{t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \mathrm{e}^{t}}{2} \\
\frac{\left(-3 c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{3\left(c_{1}-\frac{c_{2}}{3}\right) \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\\
{\left[\begin{array}{ll}
3 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & -1 & 0 \\
3 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}\frac{1}{3} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-t}}{3}+c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 541: Phase plot

19.3.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{t} .\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \rightarrow c_{1} x \rightarrow{ }_{-}^{\rightarrow}+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-t}}{3}+c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1} \mathrm{e}^{-t}}{3}+c_{2} \mathrm{e}^{t}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 31
dsolve([diff $\left.\left(x_{-} 1(t), t\right)=2 * x_{-} 1(t)-1 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=3 * x_{_} 1(t)-2 * x_{_} 2(t)\right]$, singsol $=a l l$

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{t}+3 c_{2} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-1 * x 2[t], x 2{ }^{\prime}[t]==3 * x 1[t]-2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(3 e^{2 t}-1\right)-c_{2}\left(e^{2 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(3 c_{1}\left(e^{2 t}-1\right)-c_{2}\left(e^{2 t}-3\right)\right)
\end{aligned}
$$

19.4 problem 4

19.4.1 Solution using Matrix exponential method 3973
19.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3974
19.4.3 Maple step by step solution . 3979

Internal problem ID [795]
Internal file name [OUTPUT/795_Sunday_June_05_2022_01_49_58_AM_52350690/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)-4 x_{2}(t) \\
& x_{2}^{\prime}(t)=4 x_{1}(t)-7 x_{2}(t)
\end{aligned}
$$

19.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(4 t+1) & -4 t \mathrm{e}^{-3 t} \\
4 t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-4 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(4 t+1) & -4 t \mathrm{e}^{-3 t} \\
4 t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-4 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(4 t+1) c_{1}-4 t \mathrm{e}^{-3 t} c_{2} \\
4 t \mathrm{e}^{-3 t} c_{1}+\mathrm{e}^{-3 t}(1-4 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(4 t c_{1}-4 c_{2} t+c_{1}\right) \\
\mathrm{e}^{-3 t}\left(4 t c_{1}-4 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -4 \\
4 & -7-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -4 & 0 \\
4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 542: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{ll}
4 & -4 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{5}{4} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{5}{4} \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}(4 t+5)}{4} \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(t+\frac{5}{4}\right) \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(c_{1}+c_{2} t+\frac{5}{4} c_{2}\right) \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 543: Phase plot

19.4.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)-7 x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}1 & -4 \\ 4 & -7\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[-3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue -3
$x^{\rightarrow{ }_{1}}(t)=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-3$ is the eigenvalue, an
$x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -3

$$
\left(\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right]-(-3) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -3

$$
\underset{x_{2}}{ }(t)=\mathrm{e}^{-3 t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
1 \\
1
\end{array}\right]+\mathrm{e}^{-3 t} c_{2} \cdot\left(t \cdot\left[\begin{array}{c}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(c_{1}+c_{2} t+\frac{1}{4} c_{2}\right) \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-3 t}\left(c_{1}+c_{2} t+\frac{1}{4} c_{2}\right), x_{2}(t)=\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right)\right\}
$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 35

```
dsolve([diff(x__1(t),t)=1*x__1(t)-4*x__2(t), diff (x__2(t),t)=4*x__1 (t)-7*x__2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{-3 t}\left(4 c_{2} t+4 c_{1}-c_{2}\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==4 * x 1[t]-7 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-3 t}\left(4 c_{1} t-4 c_{2} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-3 t}\left(4\left(c_{1}-c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

19.5 problem 5

19.5.1 Solution using Matrix exponential method 3983
19.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3984
19.5.3 Maple step by step solution . 3988

Internal problem ID [796]
Internal file name [OUTPUT/796_Sunday_June_05_2022_01_49_59_AM_55876202/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-3 x_{2}(t)
\end{aligned}
$$

19.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t)+2 \mathrm{e}^{-t} \sin (t) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)-2 \mathrm{e}^{-t} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) & -5 \mathrm{e}^{-t} \sin (t) \\
\mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t}(\cos (t)-2 \sin (t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(\cos (t)+2 \sin (t)) c_{1}-5 \mathrm{e}^{-t} \sin (t) c_{2} \\
\mathrm{e}^{-t} \sin (t) c_{1}+\mathrm{e}^{-t}(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t)\right) \mathrm{e}^{-t} \\
\left(\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)\right) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -5 \\
1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i$	1	complex eigenvalue
$-1+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-(-1-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]-(-1+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i$	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-1-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{(-1+i) t} \\
\mathrm{e}^{(-1+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{(-1-i) t} \\
\mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{(-1+i) t}+(2-i) c_{2} \mathrm{e}^{(-1-i) t} \\
c_{1} \mathrm{e}^{(-1+i) t}+c_{2} \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 544: Phase plot

19.5.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-3 x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right]
$$

- Rewrite the system as
$x_{\underline{\prime}}{ }^{\prime}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[-1-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(-1-\mathrm{I}) t} \cdot\left[\begin{array}{c}2-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \longrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow \rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
2\left(\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t)-\frac{\sin (t)\left(c_{1}+2 c_{2}\right)}{2}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=2\left(\left(c_{1}-\frac{c_{2}}{2}\right) \cos (t)-\frac{\sin (t)\left(c_{1}+2 c_{2}\right)}{2}\right) \mathrm{e}^{-t}, x_{2}(t)=\mathrm{e}^{-t}\left(-c_{2} \sin (t)+c_{1} \cos (t)\right)\right\}
$$

Solution by Maple
Time used: 0.0 (sec). Leaf size: 48

```
dsolve([diff(x__1(t),t)=1*x__1(t)-5*x__2(t),\operatorname{diff}(x___2(t),t)=1*x__1(t)-3*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}\left(-c_{1} \cos (t)+c_{2} \sin (t)+2 c_{1} \sin (t)+2 c_{2} \cos (t)\right)}{5}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 54
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-5 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(c_{1} \cos (t)+\left(2 c_{1}-5 c_{2}\right) \sin (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(c_{2} \cos (t)+\left(c_{1}-2 c_{2}\right) \sin (t)\right)
\end{aligned}
$$

19.6 problem 6

19.6.1 Solution using Matrix exponential method 3991
19.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3992
19.6.3 Maple step by step solution . 3996

Internal problem ID [797]
Internal file name [OUTPUT/797_Sunday_June_05_2022_01_50_01_AM_59153892/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t) \\
& x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

19.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+2 \sin (t) & -5 \sin (t) \\
\sin (t) & \cos (t)-2 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+2 \sin (t)) c_{1}-5 \sin (t) c_{2} \\
\sin (t) c_{1}+(\cos (t)-2 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-5 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(c_{1}-2 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
1 & -2+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
1 & -2-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(2+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(2+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(2+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
2+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}2+i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}2-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(2+i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(2-i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(2+i) c_{1} \mathrm{e}^{i t}+(2-i) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 545: Phase plot

19.6.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)\right]
$$

- Define vector

$$
\overrightarrow{x^{\rightarrow}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right]$
- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x^{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
2+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}2-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
2-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(2-\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{x}}_{1}(t)=\left[\begin{array}{c}
2 \cos (t)-\sin (t) \\
\cos (t)
\end{array}\right], \underline{x}_{2}(t)=\left[\begin{array}{c}
-\cos (t)-2 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \hookrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=\left[\begin{array}{c}
c_{2}(-\cos (t)-2 \sin (t))+c_{1}(2 \cos (t)-\sin (t)) \\
-c_{2} \sin (t)+c_{1} \cos (t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\cos (t)\left(2 c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+2 c_{2}\right) \\
-c_{2} \sin (t)+c_{1} \cos (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\cos (t)\left(2 c_{1}-c_{2}\right)-\sin (t)\left(c_{1}+2 c_{2}\right), x_{2}(t)=-c_{2} \sin (t)+c_{1} \cos (t)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 38

```
dsolve([diff(x__1(t),t)=2*x__1(t)-5*x__2(t),\operatorname{diff}(\mp@subsup{x}{___}{\prime2}(t),t)=1*x__1(t)-2*x__2(t)],}\mathrm{ singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \sin (t)+c_{2} \cos (t) \\
& x_{2}(t)=-\frac{c_{1} \cos (t)}{5}+\frac{c_{2} \sin (t)}{5}+\frac{2 c_{1} \sin (t)}{5}+\frac{2 c_{2} \cos (t)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 41
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]-5 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1}(2 \sin (t)+\cos (t))-5 c_{2} \sin (t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (t)+\left(c_{1}-2 c_{2}\right) \sin (t)
\end{aligned}
$$

19.7 problem 7

19.7.1 Solution using Matrix exponential method 3999
19.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4000
19.7.3 Maple step by step solution . 4005

Internal problem ID [798]
Internal file name [OUTPUT/798_Sunday_June_05_2022_01_50_03_AM_80643564/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

19.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) & -\mathrm{e}^{t} \sin (2 t) \\
2 \mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(\cos (2 t)+\sin (2 t)) c_{1}-\mathrm{e}^{t} \sin (2 t) c_{2} \\
2 \mathrm{e}^{t} \sin (2 t) c_{1}+\mathrm{e}^{t}(\cos (2 t)-\sin (2 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\left(-c_{2}+c_{1}\right) \sin (2 t)+c_{1} \cos (2 t)\right) \\
\mathrm{e}^{t}\left(2 c_{1}-c_{2}\right) \sin (2 t)+\mathrm{e}^{t} \cos (2 t) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+2 i & -2 \\
4 & -2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
4 & -2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -2 \\
4 & -1
\end{array}\right]-(1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
4 & -2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $1+2 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(1+2 i) t}+\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(1-2 i) t} \\
c_{1} \mathrm{e}^{(1+2 i) t}+c_{2} \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 546: Phase plot

19.7.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=3 x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)-x_{2}(t)\right]$

- Define vector

$$
\underset{\rightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow}(t)=A \cdot x \xrightarrow{\rightarrow}(t
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[1+2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(1-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x \rightarrow_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right], x{ }_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x^{\rightarrow}{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{t}\left(\left(c_{1}-c_{2}\right) \cos (2 t)-\sin (2 t)\left(c_{1}+c_{2}\right)\right)}{2} \\
\mathrm{e}^{t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\mathrm{e}^{t}\left(\left(c_{1}-c_{2}\right) \cos (2 t)-\sin (2 t)\left(c_{1}+c_{2}\right)\right)}{2}, x_{2}(t)=\mathrm{e}^{t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)\right\}
$$

Solution by Maple
Time used: 0.0 (sec). Leaf size: 56

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& x_{2}(t)=-\mathrm{e}^{t}\left(c_{1} \cos (2 t)-c_{2} \cos (2 t)-c_{1} \sin (2 t)-c_{2} \sin (2 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 58
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==3 * \mathrm{x} 1[\mathrm{t}]-2 * \mathrm{x} 2[\mathrm{t}], \mathrm{x} 2 \mathrm{~A}^{\prime}[\mathrm{t}]==4 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t}\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(c_{1} \cos (2 t)+\left(c_{1}-c_{2}\right) \sin (2 t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(c_{2} \cos (2 t)+\left(2 c_{1}-c_{2}\right) \sin (2 t)\right)
\end{aligned}
$$

19.8 problem 8

19.8.1 Solution using Matrix exponential method 4008
19.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4009
19.8.3 Maple step by step solution . 4014

Internal problem ID [799]
Internal file name [OUTPUT/799_Sunday_June_05_2022_01_50_04_AM_7663506/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-x_{1}(t)-x_{2}(t) \\
& x_{2}^{\prime}(t)=-\frac{5 x_{2}(t)}{2}
\end{aligned}
$$

19.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\frac{2 \mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{-\frac{5 t}{2}}}{3} \\
0 & \mathrm{e}^{-\frac{5 t}{2}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & -\frac{2 \mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{-\frac{5 t}{2}}}{3} \\
0 & \mathrm{e}^{-\frac{5 t}{2}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} c_{1}+\left(-\frac{2 \mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{-\frac{5 t}{2}}}{3}\right) c_{2} \\
\mathrm{e}^{-\frac{5 t}{2}} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{2 \mathrm{e}^{-\frac{5 t}{2}} c_{2}}{3}+\left(c_{1}-\frac{2 c_{2}}{3}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-\frac{5 t}{2}} c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -1 \\
0 & -\frac{5}{2}-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)\left(-\frac{5}{2}-\lambda\right)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-\frac{5}{2} \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
$-\frac{5}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & -1 \\
0 & -\frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
0 & -1 & 0 \\
0 & -\frac{3}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{5}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]-\left(-\frac{5}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{3}{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{3}{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{5}{2}$	1	1	No	$\left[\begin{array}{l}\frac{2}{3} \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{5}{2}$ is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-\frac{5 t}{2}} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] e^{-\frac{5 t}{2}}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{-\frac{5 t}{2}}}{3} \\
\mathrm{e}^{-\frac{5 t}{2}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{-\frac{5 t}{2}}}{3}+c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-\frac{5 t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 547: Phase plot

19.8.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=-\frac{5 x_{2}(t)}{2}\right]$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
0 & -\frac{5}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
x \xrightarrow{\rightarrow}^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{5}{2},\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{5}{2},\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-\frac{5 t}{2}} \cdot\left[\begin{array}{l}
\frac{2}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-\frac{5 t}{2}} \cdot\left[\begin{array}{l}
\frac{2}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{-\frac{5 t}{2}}}{3}+c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-\frac{5 t}{2}}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{2 c_{1} \mathrm{e}^{-\frac{5 t}{2}}}{3}+c_{2} \mathrm{e}^{-t}, x_{2}(t)=c_{1} \mathrm{e}^{-\frac{5 t}{2}}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve([diff $\left.\left(x_{-_} 1(t), t\right)=-1 * x_{_} 1(t)-1 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=0 * x_{_} 1(t)-25 / 10 * x_{-} 2(t)\right]$, singso

$$
\begin{aligned}
& x_{1}(t)=\frac{2 c_{2} \mathrm{e}^{-\frac{5 t}{2}}}{3}+\mathrm{e}^{-t} c_{1} \\
& x_{2}(t)=c_{2} \mathrm{e}^{-\frac{5 t}{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 47
DSolve $\left[\left\{x 1^{\prime}[t]==-1 * x 1[t]-1 * x 2[t], x 2{ }^{\prime}[t]==0 * x 1[t]-25 / 10 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingula

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow\left(c_{1}-\frac{2 c_{2}}{3}\right) e^{-t}+\frac{2}{3} c_{2} e^{-5 t / 2} \\
& \mathrm{x} 2(t) \rightarrow c_{2} e^{-5 t / 2}
\end{aligned}
$$

19.9 problem 9

19.9.1 Solution using Matrix exponential method 4017
19.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4018
19.9.3 Maple step by step solution . 4023

Internal problem ID [800]
Internal file name [OUTPUT/800_Sunday_June_05_2022_01_50_05_AM_83117480/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-x_{2}(t)
\end{aligned}
$$

19.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t}(1+2 t) & -4 t \mathrm{e}^{t} \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(1+2 t) & -4 t \mathrm{e}^{t} \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(1+2 t) c_{1}-4 t \mathrm{e}^{t} c_{2} \\
t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(2 t c_{1}-4 c_{2} t+c_{1}\right) \\
\mathrm{e}^{t}\left(t c_{1}-2 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -4 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -4 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	2	1	Yes	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 548: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
2 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
2 \\
1
\end{array}\right] t+\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(2 t+3) \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t}(2 t+3) \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((2 t+3) c_{2}+2 c_{1}\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 549: Phase plot

19.9.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=3 x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1
$x_{\longrightarrow}^{\rightarrow}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}(t)+c_{2} x^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}+c_{2}\right) \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}+c_{2}\right), x_{2}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve([diff(x__1(t),t)=3*x__1(t)-4*x__2(t), diff(x__2(t),t)=1*x__1(t)-1*x__2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 41
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(2 c_{1} t-4 c_{2} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(\left(c_{1}-2 c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

19.10 problem 10

19.10.1 Solution using Matrix exponential method 4027
19.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4028
19.10.3 Maple step by step solution . 4033

Internal problem ID [801]
Internal file name [OUTPUT/801_Sunday_June_05_2022_01_50_06_AM_94844149/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t) & =-5 x_{1}(t)
\end{aligned}
$$

19.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{39} t}{2}\right)+\frac{\sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} & \frac{4 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} \\
-\frac{10 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} & \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{39} t}{2}\right)-\frac{\sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)+39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right)}{39} & \frac{4 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} \\
-\frac{10 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} & -\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)-39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right)}{39}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)+39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right)}{39} & \frac{4 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} \\
-\frac{10 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right)}{39} & -\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)-39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right)}{39}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)+39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right) c_{1}}{39}+\frac{4 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right) c_{2}}{39} \\
-\frac{10 \sqrt{39} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{39} t}{2}\right) c_{1}}{39}-\frac{\mathrm{e}^{\frac{t}{2}}\left(\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)-39 \cos \left(\frac{\sqrt{39} t}{2}\right)\right) c_{2}}{39}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\sqrt{39}\left(c_{1}+4 c_{2}\right) \sin \left(\frac{\sqrt{39} t}{2}\right)+39 \cos \left(\frac{\sqrt{39} t}{2}\right) c_{1}\right) \mathrm{e}^{\frac{t}{2}}}{39} \\
-\frac{10 \mathrm{e}^{\frac{t}{2}}\left(\sqrt{39}\left(c_{1}+\frac{c_{2}}{10}\right) \sin \left(\frac{\sqrt{39} t}{2}\right)-\frac{39 \cos \left(\frac{\sqrt{39} t}{2}\right) c_{2}}{10}\right)}{39}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
-5 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{39}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{39}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}-\frac{i \sqrt{39}}{2}$	1	complex eigenvalue
$\frac{1}{2}+\frac{i \sqrt{39}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}-\frac{i \sqrt{39}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]-\left(\frac{1}{2}-\frac{i \sqrt{39}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{39}}{2} & 2 \\
-5 & -\frac{1}{2}+\frac{i \sqrt{39}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{39}}{2} & 2 & 0 \\
-5 & -\frac{1}{2}+\frac{i \sqrt{39}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{5 R_{1}}{\frac{1}{2}+\frac{i \sqrt{39}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{39}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{39}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{4 t}{1+i \sqrt{39}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{4 t}{1+\mathrm{I} \sqrt{39}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{1+i \sqrt{39}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{4 t}{1+\mathrm{I} \sqrt{39}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{1+i \sqrt{39}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{4 t}{1+\mathrm{I} \sqrt{39}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{1+i \sqrt{39}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{4 t}{1+\mathrm{I} \sqrt{39}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{1+i \sqrt{39}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{2}+\frac{i \sqrt{39}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]-\right. & \left.\left(\frac{1}{2}+\frac{i \sqrt{39}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{39}}{2} & 2 \\
-5 & -\frac{1}{2}-\frac{i \sqrt{39}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{39}}{2} & 2 & 0 \\
-5 & -\frac{1}{2}-\frac{i \sqrt{39}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{\frac{1}{2}-\frac{i \sqrt{39}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{39}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{39}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{4 t}{i \sqrt{39}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{4 t}{\mathrm{I} \sqrt{39}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{i \sqrt{39}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{4 t}{\mathrm{I} \sqrt{39}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{i \sqrt{39}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{4 t}{\mathrm{I} \sqrt{39}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{i \sqrt{39}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{4 t}{\mathrm{I} \sqrt{39}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{i \sqrt{39}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{2}+\frac{i \sqrt{39}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}+\frac{i \sqrt{39}}{2}} \\ 1\end{array}\right]$
$\frac{1}{2}-\frac{i \sqrt{39}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}-\frac{i \sqrt{39}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\left.2 \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{39}}{2}\right.}\right) t}{-\frac{1}{2}+\frac{i \sqrt{39}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{39}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\frac{2 \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{39}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{39}}{2}} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{39}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{i(i-\sqrt{39}) c_{1} \frac{(1+i \sqrt{39}) t}{2}}{10}+\frac{i(\sqrt{39}+i) c_{2} \mathrm{e}^{-\frac{(i \sqrt{39}-1) t}{2}}}{10} \\
c_{1} \mathrm{e}^{\frac{(1+i \sqrt{39}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{39}-1) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 550: Phase plot

19.10.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t), x_{2}^{\prime}(t)=-5 x_{1}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-5 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2},\left[\begin{array}{c}
\frac{2}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2}} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\mathrm{I} \sqrt{39}}{2},\left[\begin{array}{c}
\frac{2}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{39}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2},\left[\begin{array}{c}
\frac{2}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{2}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2}} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{\frac{t}{2}} \cdot\left(\cos \left(\frac{\sqrt{39} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{39} t}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{2}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{39}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
\frac{2\left(\cos \left(\frac{\sqrt{39} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{39} t}{2}\right)\right)}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{29}}{2}} \\
\cos \left(\frac{\sqrt{39} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{39} t}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{1}}^{\rightarrow^{\prime}}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{39} t}{3}\right)}{10}+\frac{\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)}{10} \\
\cos \left(\frac{\sqrt{39} t}{2}\right)
\end{array}\right], x_{2}^{\rightarrow}(t)=\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{39} t}{2}\right) \sqrt{39}}{10}+\frac{\sin \left(\frac{\sqrt{39} t}{2}\right)}{10} \\
-\sin \left(\frac{\sqrt{39} t}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}{ }_{1}(t)+c_{2} x \longrightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{39} t}{2}\right)}{10}+\frac{\sqrt{39} \sin \left(\frac{\sqrt{39} t}{2}\right)}{10} \\
\cos \left(\frac{\sqrt{39} t}{2}\right)
\end{array}\right]+c_{2} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{39} t}{2}\right) \sqrt{39}}{10}+\frac{\sin \left(\frac{\sqrt{39} t}{2}\right)}{10} \\
-\sin \left(\frac{\sqrt{39} t}{2}\right)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(\sqrt{39} c_{2}-c_{1}\right) \cos \left(\frac{\sqrt{39} t}{2}\right)+\sin \left(\frac{\sqrt{39} t}{2}\right)\left(c_{1} \sqrt{39}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{10} \\
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{\sqrt{39} t}{2}\right) c_{1}-\sin \left(\frac{\sqrt{39} t}{2}\right) c_{2}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(\left(\sqrt{39} c_{2}-c_{1}\right) \cos \left(\frac{\sqrt{39} t}{2}\right)+\sin \left(\frac{\sqrt{39} t}{2}\right)\left(c_{1} \sqrt{39}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{10}, x_{2}(t)=\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{\sqrt{39} t}{2}\right) c_{1}-\sin \left(\frac{\sqrt{39} t}{2}\right) c_{2}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 84

```
dsolve([diff(x__1(t),t)=1*x__1(t)+2*x__ 2(t), diff(x__ 2(t),t)=-5*x__1(t)-0*x__ 2 (t)], singsol=al
```

$$
\begin{aligned}
& x_{1}(t)=\frac{\mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{\sqrt{39} t}{2}\right) \sqrt{39} c_{2}-\cos \left(\frac{\sqrt{39} t}{2}\right) \sqrt{39} c_{1}-\sin \left(\frac{\sqrt{39} t}{2}\right) c_{1}-\cos \left(\frac{\sqrt{39} t}{2}\right) c_{2}\right)}{10} \\
& x_{2}(t)=\mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{\sqrt{39} t}{2}\right) c_{1}+\cos \left(\frac{\sqrt{39} t}{2}\right) c_{2}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 54
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+2 * x 2[t], x 2{ }^{\prime}[t]==-5 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} \cos (3 t)+\frac{1}{3}\left(c_{1}+2 c_{2}\right) \sin (3 t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (3 t)-\frac{1}{3}\left(5 c_{1}+c_{2}\right) \sin (3 t)
\end{aligned}
$$

19.11 problem 11

19.11.1 Solution using Matrix exponential method 4036
19.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4037
19.11.3 Maple step by step solution . 4041

Internal problem ID [802]
Internal file name [OUTPUT/802_Sunday_June_05_2022_01_50_08_AM_89376539/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t) \\
x_{2}^{\prime}(t) & =-x_{2}(t)
\end{aligned}
$$

19.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} c_{1} \\
\mathrm{e}^{-t} c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
0 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}, v_{2}\right\}$ and there are no leading variables. Let $v_{1}=t$. Let $v_{2}=s$. Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{l}
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	2	No	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 551: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 552: Phase plot

19.11.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-x_{1}(t), x_{2}^{\prime}(t)=-x_{2}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation
$x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow{ }^{\prime}}(t)=A \cdot x_{\underline{\rightarrow}}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
x_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an $x^{\rightarrow} 2(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{-}{ }_{2}(t)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]-(-1) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\underset{2}{\rightarrow{ }_{2}}(t)=\mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}{ }_{1}(t)+c_{2} x_{\longrightarrow_{2}}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=0, x_{2}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff $\left.\left(x_{-} 1(t), t\right)=-1 * x_{_} 1(t)-0 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=0 * x_{_} 1(t)-1 * x_{_} 2(t)\right]$, singsol=al

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{-t} \\
& x_{2}(t)=\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 65
DSolve $\left[\left\{x 1^{\prime}[t]==-1 * x 1[t]-0 * x 2[t], x 2{ }^{\prime}[t]==0 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{-t} \\
& \mathrm{x} 2(t) \rightarrow c_{2} e^{-t} \\
& \mathrm{x} 1(t) \rightarrow c_{1} e^{-t} \\
& \mathrm{x} 2(t) \rightarrow 0 \\
& \mathrm{x} 1(t) \rightarrow 0 \\
& \mathrm{x} 2(t) \rightarrow c_{2} e^{-t} \\
& \mathrm{x} 1(t) \rightarrow 0 \\
& \mathrm{x} 2(t) \rightarrow 0
\end{aligned}
$$

19.12 problem 12

19.12.1 Solution using Matrix exponential method 4045
19.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4046
19.12.3 Maple step by step solution . 4051

Internal problem ID [803]
Internal file name [OUTPUT/803_Sunday_June_05_2022_01_50_09_AM_89623807/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-\frac{5 x_{2}(t)}{2} \\
x_{2}^{\prime}(t) & =\frac{9 x_{1}(t)}{5}-x_{2}(t)
\end{aligned}
$$

19.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right)+\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right) & -\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right)-\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) & -\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right)
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) & -\frac{5 \mathrm{e}^{\frac{t}{2} \sin \left(\frac{3 t}{2}\right)}}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right)}{5} & \mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)+\sin \left(\frac{3 t}{2}\right)\right) c_{1}-\frac{5 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right) c_{2}}{3} \\
\frac{6 \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{3 t}{2}\right) c_{1}}{5}+\mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{1}-\frac{5 c_{2}}{3}\right) \sin \left(\frac{3 t}{2}\right)+c_{1} \cos \left(\frac{3 t}{2}\right)\right) \mathrm{e}^{\frac{t}{2}} \\
\frac{\mathrm{e}^{\frac{t}{2}}\left(6 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)}{5}+\mathrm{e}^{\frac{t}{2}} \cos \left(\frac{3 t}{2}\right) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

19.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{rr}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -\frac{5}{2} \\
\frac{9}{5} & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda+\frac{5}{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3 i}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3 i}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{2}-\frac{3 i}{2}$	1	complex eigenvalue
$\frac{1}{2}+\frac{3 i}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{2}-\frac{3 i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\left(\frac{1}{2}-\frac{3 i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} \\
\frac{9}{5} & -\frac{3}{2}+\frac{3 i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} & 0 \\
\frac{9}{5} & -\frac{3}{2}+\frac{3 i}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\left(-\frac{3}{5}+\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}+\frac{3 i}{2} & -\frac{5}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{5}{6}-\frac{5 i}{6}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 i}{6}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{6}-\frac{5 i}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{6}-\frac{5 i}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
5-5 i \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{2}+\frac{3 i}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{rr}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]-\left(\frac{1}{2}+\frac{3 i}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} \\
\frac{9}{5} & -\frac{3}{2}-\frac{3 i}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} & 0 \\
\frac{9}{5} & -\frac{3}{2}-\frac{3 i}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{3}{5}-\frac{3 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}-\frac{3 i}{2} & -\frac{5}{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{5}{6}+\frac{5 i}{6}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{6}+\frac{5 i}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{6}+\frac{5 i}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 \mathrm{I}}{6}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
5+5 i \\
6
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $\frac{1}{2}+\frac{3 i}{2}$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t} \\
\mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{5}{6}-\frac{5 i}{6}\right) \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t} \\
\mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{5}{6}+\frac{5 i}{6}\right) c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}+\left(\frac{5}{6}-\frac{5 i}{6}\right) c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t} \\
c_{1} \mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) t}+c_{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 553: Phase plot

19.12.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=2 x_{1}(t)-\frac{5 x_{2}(t)}{2}, x_{2}^{\prime}(t)=\frac{9 x_{1}(t)}{5}-x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{rr}2 & -\frac{5}{2} \\ \frac{9}{5} & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{rr}
2 & -\frac{5}{2} \\
\frac{9}{5} & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{1}{2}-\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}+\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{3 \mathrm{I}}{2},\left[\begin{array}{c}
\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{\left(\frac{1}{2}-\frac{3 \mathrm{I}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{\frac{t}{2}} \cdot\left(\cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\right) \cdot\left[\begin{array}{c}\frac{5}{6}-\frac{5 \mathrm{I}}{6} \\ 1\end{array}\right]$
- Simplify expression
$\mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}\left(\frac{5}{6}-\frac{5 \mathrm{I}}{6}\right)\left(\cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\right) \\ \cos \left(\frac{3 t}{2}\right)-\mathrm{I} \sin \left(\frac{3 t}{2}\right)\end{array}\right]$
- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
\frac{5 \cos \left(\frac{3 t}{2}\right)}{6}-\frac{5 \sin \left(\frac{3 t}{2}\right)}{6} \\
\cos \left(\frac{3 t}{2}\right)
\end{array}\right]+c_{2} \mathrm{e}^{\frac{t}{2}} \cdot\left[\begin{array}{c}
-\frac{5 \sin \left(\frac{3 t}{2}\right)}{6}-\frac{5 \cos \left(\frac{3 t}{2}\right)}{6} \\
-\sin \left(\frac{3 t}{2}\right)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{5\left(\left(c_{1}-c_{2}\right) \cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\left(c_{1}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{6} \\
\mathrm{e}^{\frac{t}{2}\left(c_{1} \cos \left(\frac{3 t}{2}\right)-c_{2} \sin \left(\frac{3 t}{2}\right)\right)}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{5\left(\left(c_{1}-c_{2}\right) \cos \left(\frac{3 t}{2}\right)-\sin \left(\frac{3 t}{2}\right)\left(c_{1}+c_{2}\right)\right) \mathrm{e}^{\frac{t}{2}}}{6}, x_{2}(t)=\mathrm{e}^{\frac{t}{2}}\left(c_{1} \cos \left(\frac{3 t}{2}\right)-c_{2} \sin \left(\frac{3 t}{2}\right)\right)\right\}
$$

\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 58

$$
\begin{gathered}
\text { dsolve }\left[\left[\operatorname{diff}\left(\mathrm{x}_{--} 1(\mathrm{t}), \mathrm{t}\right)=2 * \mathrm{x}_{-_} 1(\mathrm{t})-5 / 2 * \mathrm{x}_{-_} 2(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{-} 2(\mathrm{t}), \mathrm{t}\right)=9 / 5 * \mathrm{x}_{--} 1(\mathrm{t})-1 * \mathrm{x}-2(\mathrm{t})\right]\right. \text {, singsol } \\
x_{1}(t)=\mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{3 t}{2}\right) c_{1}+\cos \left(\frac{3 t}{2}\right) c_{2}\right) \\
x_{2}(t)=\frac{3 \mathrm{e}^{\frac{t}{2}}\left(\sin \left(\frac{3 t}{2}\right) c_{1}+\sin \left(\frac{3 t}{2}\right) c_{2}-\cos \left(\frac{3 t}{2}\right) c_{1}+\cos \left(\frac{3 t}{2}\right) c_{2}\right)}{5}
\end{gathered}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 84
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==2 * \mathrm{x} 1[\mathrm{t}]-5 / 2 * \mathrm{x} 2[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==9 / 5 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t}\right.$, IncludeSingular

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{t / 2}\left(3 c_{1} \cos \left(\frac{3 t}{2}\right)+\left(3 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{5} e^{t / 2}\left(5 c_{2} \cos \left(\frac{3 t}{2}\right)+\left(6 c_{1}-5 c_{2}\right) \sin \left(\frac{3 t}{2}\right)\right)
\end{aligned}
$$

19.13 problem 13

19.13.1 Solution using Matrix exponential method 4054
19.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4056
19.13.3 Maple step by step solution . 4062

Internal problem ID [804]
Internal file name [OUTPUT/804_Sunday_June_05_2022_01_50_11_AM_95295454/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)-2 \\
& x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)
\end{aligned}
$$

19.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-2 \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4} & \frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4} & \frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4}\right) c_{1}+\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2} c_{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2} c_{1}}{4}+\left(\frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\left(-c_{1}-c_{2}\right) \sqrt{2}+2 c_{1}\right) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\left(\left(c_{1}+c_{2}\right) \sqrt{2}+2 c_{1}\right) \mathrm{e}^{\sqrt{2} t}}{4} \\
\frac{\left(\left(c_{2}-c_{1}\right) \sqrt{2}+2 c_{2}\right) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t\left(\left(-c_{2}+c_{1}\right) \sqrt{2}+2 c_{2}\right)}}{4}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4} & -\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2}} t}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4} & \frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}
\end{array}\right] \int\left[\begin{array}{c}
\frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\end{array}\right]\left[\begin{array}{cc}
\frac{(2-\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}(2+\sqrt{2})}{4} & \frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}
\end{array}\right]\left[\begin{array}{c}
\frac{(1+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{2}-\frac{\mathrm{e}^{\sqrt{2} t}(\sqrt{2}-1)}{2} \\
\frac{\mathrm{e}^{\sqrt{2} t}}{2}+\frac{\mathrm{e}^{-\sqrt{2} t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(\left(-c_{1}-c_{2}\right) \sqrt{2}+2 c_{1}\right) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\left(\left(c_{1}+c_{2}\right) \sqrt{2}+2 c_{1}\right) \mathrm{e}^{\sqrt{2}} t}{4}+1 \\
\frac{\left(\left(c_{2}-c_{1}\right) \sqrt{2}+2 c_{2}\right) \mathrm{e}^{-\sqrt{2} t}}{4}+\frac{\mathrm{e}^{\sqrt{2} t}\left(\left(-c_{2}+c_{1}\right) \sqrt{2}+2 c_{2}\right)}{4}+1
\end{array}\right]
\end{aligned}
$$

19.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-2 \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =\sqrt{2} \\
\lambda_{2} & =-\sqrt{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{2}$	1	real eigenvalue
$-\sqrt{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]-(\sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1-\sqrt{2} & 1 \\
1 & -1-\sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
1-\sqrt{2} & 1 & 0 \\
1 & -1-\sqrt{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{1-\sqrt{2}} \Longrightarrow\left[\begin{array}{cc|c}
1-\sqrt{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-\sqrt{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{\sqrt{2}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{2}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{\sqrt{2}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{2}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{2}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]-(-\sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1+\sqrt{2} & 1 \\
1 & \sqrt{2}-1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
1+\sqrt{2} & 1 & 0 \\
1 & \sqrt{2}-1 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{1+\sqrt{2}} \Longrightarrow\left[\begin{array}{cc|c}
1+\sqrt{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+\sqrt{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{1+\sqrt{2}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{1+\sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{1+\sqrt{2}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{1+\sqrt{2}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{1+\sqrt{2}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{1+\sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{1+\sqrt{2}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{1+\sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{1+\sqrt{2}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\sqrt{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{\sqrt{2}-1} \\ 1\end{array}\right]$
$-\sqrt{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{-1-\sqrt{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\sqrt{2} t} \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right] e^{\sqrt{2} t}
\end{aligned}
$$

Since eigenvalue $-\sqrt{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\sqrt{2} t} \\
& =\left[\begin{array}{c}
\frac{1}{-1-\sqrt{2}} \\
1
\end{array}\right] e^{-\sqrt{2} t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
\frac{\mathrm{e}^{\sqrt{2} t}}{\sqrt{2}-1} \\
\mathrm{e}^{\sqrt{2} t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{-\sqrt{2} t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{ll}
\frac{e^{\sqrt{2}} t}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\sqrt{2} \mathrm{e}^{-\sqrt{2}} t}{4} & \frac{\sqrt{2}(\sqrt{2}-1) \mathrm{e}^{-\sqrt{2} t}}{4} \\
-\frac{\sqrt{2} \mathrm{e}^{\sqrt{2}} t}{4} & \frac{\sqrt{2} \mathrm{e}^{\sqrt{2}} t(1+\sqrt{2})}{4}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{\mathrm{e}^{\sqrt{2} t}}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\sqrt{2} \mathrm{e}^{-\sqrt{2} t}}{4} & \frac{\sqrt{2}(\sqrt{2}-1) \mathrm{e}^{-\sqrt{2} t}}{4} \\
-\frac{\sqrt{2} \mathrm{e}^{\sqrt{2} t}}{4} & \frac{\sqrt{2} \mathrm{e}^{\sqrt{2} t}(1+\sqrt{2})}{4}
\end{array}\right]\left[\begin{array}{c}
-2 \\
0
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{\sqrt{2} t}}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\sqrt{2} \mathrm{e}^{-\sqrt{2} t}}{2} \\
\frac{\sqrt{2} \mathrm{e}^{\sqrt{2}} t}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{\sqrt{2} t}}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{-\sqrt{2} t}}{2} \\
\frac{\mathrm{e}^{\sqrt{2}} t}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{2} t}{\sqrt{2}-1} \\
c_{1} \mathrm{e}^{\sqrt{2} t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2} \mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
c_{2} \mathrm{e}^{-\sqrt{2} t}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2}(\sqrt{2}-1) \mathrm{e}^{-\sqrt{2} t}+1+c_{1}(1+\sqrt{2}) \mathrm{e}^{\sqrt{2} t} \\
c_{1} \mathrm{e}^{\sqrt{2} t}+c_{2} \mathrm{e}^{-\sqrt{2} t}+1
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 554: Phase plot

19.13.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)+x_{2}(t)-2, x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)\right]$

- Define vector
$x_{\underline{-}}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{c}-2 \\ 0\end{array}\right]$
- \quad System to solve
$x_{\underline{\prime}}(t)=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}-2 \\ 0\end{array}\right]$
- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-2 \\
0
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\sqrt{2},\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right]\right],\left[-\sqrt{2},\left[\begin{array}{c}
\frac{1}{-1-\sqrt{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\sqrt{2},\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{\sqrt{2} t} \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{2}-1} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{2},\left[\begin{array}{c}
\frac{1}{-1-\sqrt{2}} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{-\sqrt{2} t} \cdot\left[\begin{array}{c}
\frac{1}{-1-\sqrt{2}} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$ $x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+x^{\rightarrow} p(t)$
Fundamental matrix
- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{ll}\frac{\mathrm{e}^{\sqrt{2}} t}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\ \mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{ll}
\frac{\mathrm{e}^{\sqrt{2} t}}{\sqrt{2}-1} & \frac{\mathrm{e}^{-\sqrt{2} t}}{-1-\sqrt{2}} \\
\mathrm{e}^{\sqrt{2} t} & \mathrm{e}^{-\sqrt{2} t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\frac{1}{\sqrt{2}-1} & \frac{1}{-1-\sqrt{2}} \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{\left((\sqrt{2}-1) \mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}(1+\sqrt{2})\right) \sqrt{2}}{4} & \frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} \\
\frac{\left(-\mathrm{e}^{-\sqrt{2} t}+\mathrm{e}^{\sqrt{2} t}\right) \sqrt{2}}{4} & \frac{(2+\sqrt{2}) \mathrm{e}^{-\sqrt{2} t}}{4}-\frac{\mathrm{e}^{\sqrt{2} t}(-2+\sqrt{2})}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x^{\rightarrow} p(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix $\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x_{\square}^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute
- Plug particular solution back into general solution

$$
x_{\longrightarrow}^{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}_{1}+c_{2} x \rightarrow 2+\left[\begin{array}{c}
\frac{(\sqrt{2}-1) \mathrm{e}^{-\sqrt{2} t}}{2}+1+\frac{(-1-\sqrt{2}) \mathrm{e}^{\sqrt{2} t}}{2} \\
1-\frac{\mathrm{e}^{\sqrt{2} t}}{2}-\frac{\mathrm{e}^{-\sqrt{2} t}}{2}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(1-2 c_{2}\right) \sqrt{2}-1+2 c_{2}\right) \mathrm{e}^{-\sqrt{2} t}}{2}+1+\frac{\left(\left(-1+2 c_{1}\right) \sqrt{2}+2 c_{1}-1\right) \mathrm{e}^{\sqrt{2} t}}{2} \\
c_{1} \mathrm{e}^{\sqrt{2} t}+c_{2} \mathrm{e}^{-\sqrt{2} t}+1-\frac{\mathrm{e}^{\sqrt{2} t}}{2}-\frac{\mathrm{e}^{-\sqrt{2} t}}{2}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(\left(1-2 c_{2}\right) \sqrt{2}-1+2 c_{2}\right) \mathrm{e}^{-\sqrt{2} t}}{2}+1+\frac{\left(\left(-1+2 c_{1}\right) \sqrt{2}+2 c_{1}-1\right) \mathrm{e}^{\sqrt{2}} t}{2}, x_{2}(t)=c_{1} \mathrm{e}^{\sqrt{2} t}+c_{2} \mathrm{e}^{-\sqrt{2} t}+1-\frac{\mathrm{e}^{\sqrt{2} t}}{2}\right.
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 72

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{\sqrt{2} t} c_{2}+\mathrm{e}^{-\sqrt{2} t} c_{1}+1 \\
& x_{2}(t)=\sqrt{2} \mathrm{e}^{\sqrt{2} t} c_{2}-\sqrt{2} \mathrm{e}^{-\sqrt{2} t} c_{1}-\mathrm{e}^{\sqrt{2} t} c_{2}-\mathrm{e}^{-\sqrt{2} t} c_{1}+1
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.097 (sec). Leaf size: 160
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+1 * x 2[t]-2, x 2^{\prime}[t]==1 * x 1[t]-1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSo

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-\sqrt{2} t}\left(4 e^{\sqrt{2} t}+\left((2+\sqrt{2}) c_{1}+\sqrt{2} c_{2}\right) e^{2 \sqrt{2} t}-\left((\sqrt{2}-2) c_{1}\right)-\sqrt{2} c_{2}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{4} e^{-\sqrt{2} t}\left(4 e^{\sqrt{2} t}+\left(\sqrt{2} c_{1}-(\sqrt{2}-2) c_{2}\right) e^{2 \sqrt{2} t}-\sqrt{2} c_{1}+(2+\sqrt{2}) c_{2}\right)
\end{aligned}
$$

19.14 problem 14

19.14.1 Solution using Matrix exponential method 4067
19.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4069
19.14.3 Maple step by step solution . 4075

Internal problem ID [805]
Internal file name [OUTPUT/805_Sunday_June_05_2022_01_50_13_AM_61368531/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-2 x_{1}(t)+x_{2}(t)-2 \\
& x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)+1
\end{aligned}
$$

19.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}\right) c_{2} \\
\left(\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2}+c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(c_{1}+c_{2}\right)}{2} \\
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} \\
-\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} & \frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2} & -\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} \\
-\frac{\left(\mathrm{e}^{2 t}-1\right) \mathrm{e}^{t}}{2} & \frac{\left(\mathrm{e}^{2 t}+1\right) \mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2}+c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(c_{1}+c_{2}\right)}{2}-1 \\
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}\left(c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

19.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2} \\
\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2} \\
\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{3 \mathrm{e}^{3 t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{-3 t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{-t} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}-1 \\
c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 555: Phase plot

19.14.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-2 x_{1}(t)+x_{2}(t)-2, x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)+1\right]$

- Define vector
$x^{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$ $x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow} 2+x^{\rightarrow}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th

$$
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{-t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{ll}
\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2} & \frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x^{\rightarrow}{ }_{p}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)$
- Integrate to solve for $\vec{v}(t)$
$\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}}{2}-1+\frac{\mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x \xrightarrow{\rightarrow}(t)=c_{1} x \longrightarrow_{1}+c_{2} x \longrightarrow_{2}+\left[\begin{array}{c}
\frac{\mathrm{e}^{-3 t}}{2}-1+\frac{\mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{-3 t}}{2}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-2 c_{1}+1\right) \mathrm{e}^{-3 t}}{2}-1+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{-t}}{2} \\
\frac{\left(-1+2 c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{-t}}{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-2 c_{1}+1\right) \mathrm{e}^{-3 t}}{2}-1+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{-t}}{2}, x_{2}(t)=\frac{\left(-1+2 c_{1}\right) \mathrm{e}^{-3 t}}{2}+\frac{\left(2 c_{2}+1\right) \mathrm{e}^{-t}}{2}\right\}
$$

\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 36

```
dsolve([diff(x__1(t),t)=-2*x__1(t)+1*\mp@subsup{x}{_-_}{\prime}2(t)-2,\operatorname{diff}(\mp@subsup{x}{_-_}{}2(t),t)=1*\mp@subsup{x}{_-_}{}1(t)-2*\mp@subsup{x}{_}{\prime}2(t)+1],\mathrm{ singso}
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-3 t}-1 \\
& x_{2}(t)=c_{2} \mathrm{e}^{-t}-c_{1} \mathrm{e}^{-3 t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 72

```
DSolve[{x1'[t]==-2*x1[t]+1*x2[t]-2, x2'[t]==1*x1[t]-2*x2[t]+1},{x1[t], x2[t]},t,IncludeSingula
```

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{-3 t}\left(-2 e^{3 t}+\left(c_{1}+c_{2}\right) e^{2 t}+c_{1}-c_{2}\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{-3 t}\left(c_{1}\left(e^{2 t}-1\right)+c_{2}\left(e^{2 t}+1\right)\right)
\end{aligned}
$$

19.15 problem 15

19.15.1 Solution using Matrix exponential method 4079
19.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4081
19.15.3 Maple step by step solution . 4087

Internal problem ID [806]
Internal file name [OUTPUT/806_Sunday_June_05_2022_01_50_15_AM_35575306/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)-x_{2}(t)-1 \\
x_{2}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t)+5
\end{aligned}
$$

19.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) & \mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) & \mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \cos (\sqrt{2} t) c_{1}-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) c_{2}}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) c_{1}+\mathrm{e}^{-t} \cos (\sqrt{2} t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \cos (\sqrt{2} t) c_{1}-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) c_{2}}{2} \\
\mathrm{e}^{-t}\left(\sqrt{2} \sin (\sqrt{2} t) c_{1}+\cos (\sqrt{2} t) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\cos (\sqrt{2} t) \mathrm{e}^{t} & \frac{\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{t}}{2} \\
-\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{t} & \cos (\sqrt{2} t) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) & \mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right] \int\left[\begin{array}{cc}
\cos (\sqrt{2} t) \mathrm{e}^{t} & \frac{\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{t}}{2} \\
-\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{t} & \cos (\sqrt{2} t) \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
-1 \\
5
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) & \mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{t}(\sqrt{2} \sin (\sqrt{2} t)-4 \cos (\sqrt{2} t))}{2} \\
\mathrm{e}^{t}(2 \sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t))
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \cos (\sqrt{2} t) c_{1}-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) c_{2}}{2}-2 \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) c_{1}+\mathrm{e}^{-t} \cos (\sqrt{2} t) c_{2}+1
\end{array}\right]
\end{aligned}
$$

19.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -1 \\
2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{2} \\
& \lambda_{2}=-1-i \sqrt{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1+i \sqrt{2}$	1	complex eigenvalue
$-1-i \sqrt{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]-(-1-i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
i \sqrt{2} & -1 & 0 \\
2 & i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+i \sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
i \sqrt{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
i \sqrt{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{i t \sqrt{2}}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i t \sqrt{2}}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \sqrt{2} \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]-(-1+i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-i \sqrt{2} & -1 & 0 \\
2 & -i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-i \sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-i \sqrt{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-i \sqrt{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{i t \sqrt{2}}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i t \sqrt{2}}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
i \sqrt{2} \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}\frac{i \sqrt{2}}{2} \\ 1\end{array}\right]$
$-1-i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}-\frac{i \sqrt{2}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{i \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} \\
\mathrm{e}^{(-1+i \sqrt{2}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{i \mathrm{e}^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
\frac{i \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} & -\frac{i \mathrm{e}^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(-1+i \sqrt{2}) t} & \mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{i \sqrt{2} \mathrm{e}^{-(-1+i \sqrt{2}) t}}{2} & \frac{\mathrm{e}^{-(-1+i \sqrt{2}) t}}{2} \\
\frac{i \sqrt{2} \mathrm{e}^{(1+i \sqrt{2}) t}}{2} & \frac{\mathrm{e}^{(1+i \sqrt{2}) t}}{2}
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
\frac{i \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} & -\frac{i \mathrm{e}^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(-1+i \sqrt{2}) t} & \mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{i \sqrt{2} \mathrm{e}^{-(-1+i \sqrt{2}) t}}{2} & \frac{\mathrm{e}^{-(-1+i \sqrt{2}) t}}{2} \\
\frac{i \sqrt{2} \mathrm{e}^{(1+i \sqrt{2}) t}}{2} & \frac{\mathrm{e}^{(1+i \sqrt{2}) t}}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
5
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{i \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} & -\frac{i e^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(-1+i \sqrt{2}) t} & \mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{-(-1+i \sqrt{2}) t}(i \sqrt{2}+5)}{2} \\
-\frac{\mathrm{e}^{(1+i \sqrt{2}) t}(i \sqrt{2}-5)}{2}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{i \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} & -\frac{i \mathrm{e}^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(-1+i \sqrt{2}) t} & \mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]\left[\begin{array}{l}
\frac{(1+i \sqrt{2}) \mathrm{e}^{-(-1+i \sqrt{2}) t}(i \sqrt{2}+5)}{6} \\
-\frac{\mathrm{e}^{(1+i \sqrt{2}) t}(i+\sqrt{2})(\sqrt{2}+5 i)}{6}
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{i c_{1} \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2} \\
c_{1} \mathrm{e}^{(-1+i \sqrt{2}) t}
\end{array}\right]+\left[\begin{array}{c}
-\frac{i c_{2} \mathrm{e}^{(-1-i \sqrt{2}) t} \sqrt{2}}{2} \\
c_{2} \mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{i c_{1} \sqrt{2} \mathrm{e}^{(-1+i \sqrt{2}) t}}{2}-\frac{i c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t} \sqrt{2}}{2}-2 \\
c_{1} \mathrm{e}^{(-1+i \sqrt{2}) t}+c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t}+1
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 556: Phase plot

19.15.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-x_{1}(t)-x_{2}(t)-1, x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)+5\right]$

- Define vector
$x^{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}-1 & -1 \\ 2 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}-1 \\ 5\end{array}\right]$
- \quad System to solve
$x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}-1 & -1 \\ 2 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{c}-1 \\ 5\end{array}\right]$
- Define the forcing function

$$
\vec{f}(t)=\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)+\vec{f}
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair
$\mathrm{e}^{(-1-\mathrm{I} \sqrt{2}) t} \cdot\left[\begin{array}{c}-\frac{\mathrm{I}}{2} \sqrt{2} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-t} \cdot(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{2}(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)) \sqrt{2} \\
\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[x_{1}^{\rightarrow}(t)=\mathrm{e}^{-t} \cdot\left[-\frac{\sqrt{2} \sin (\sqrt{2} t)}{2}+x_{2}^{\rightarrow}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{2} t) \sqrt{2}}{2} \\
-\sin (\sqrt{2} t)
\end{array}\right]\right]\right.
$$

- General solution of the system of ODEs can be written in terms of the particular solution $x \rightarrow$ $x \xrightarrow{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+x \xrightarrow{\rightarrow}(t)$

Fundamental matrix

- Let $\phi(t)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(t)=\left[\begin{array}{cc}-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} & -\frac{\sqrt{2} \mathrm{e}^{-t} \cos (\sqrt{2} t)}{2} \\ \mathrm{e}^{-t} \cos (\sqrt{2} t) & -\mathrm{e}^{-t} \sin (\sqrt{2} t)\end{array}\right]$
- The fundamental matrix, $\Phi(t)$ is a normalized version of $\phi(t)$ satisfying $\Phi(0)=I$ where I is th $\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(t)$ and $\phi(0)$

$$
\Phi(t)=\left[\begin{array}{ll}
-\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} & -\frac{\sqrt{2} \mathrm{e}^{-t} \cos (\sqrt{2} t)}{2} \\
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\mathrm{e}^{-t} \sin (\sqrt{2} t)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
0 & -\frac{\sqrt{2}}{2} \\
1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{2} t) & -\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2} \\
\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t) & \mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(t)$ and solve for $\vec{v}(t)$ $x \xrightarrow{\rightarrow}(t)=\Phi(t) \cdot \vec{v}(t)$
- Take the derivative of the particular solution

$$
x_{-}^{\rightarrow}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)
$$

- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
$$

- Cancel like terms

$$
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
$$

- Integrate to solve for $\vec{v}(t)$

$$
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(t)$ into the equation for the particular solution

$$
x^{\rightarrow}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
x_{p}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2}-2+2 \mathrm{e}^{-t} \cos (\sqrt{2} t) \\
2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)+1-\mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
x^{\rightarrow}(t)=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2}{\underset{\longrightarrow}{\rightarrow}}_{2}(t)+\left[\begin{array}{c}
\frac{\sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)}{2}-2+2 \mathrm{e}^{-t} \cos (\sqrt{2} t) \\
2 \sqrt{2} \mathrm{e}^{-t} \sin (\sqrt{2} t)+1-\mathrm{e}^{-t} \cos (\sqrt{2} t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-\sqrt{2} c_{2}+4\right) \mathrm{e}^{-t} \cos (\sqrt{2} t)}{2}-2-\frac{\sqrt{2} \mathrm{e}^{-t}\left(c_{1}-1\right) \sin (\sqrt{2} t)}{2} \\
\mathrm{e}^{-t}\left(c_{1}-1\right) \cos (\sqrt{2} t)+1-\mathrm{e}^{-t}\left(c_{2}-2 \sqrt{2}\right) \sin (\sqrt{2} t)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-\sqrt{2} c_{2}+4\right) \mathrm{e}^{-t} \cos (\sqrt{2} t)}{2}-2-\frac{\sqrt{2} \mathrm{e}^{-t}\left(c_{1}-1\right) \sin (\sqrt{2} t)}{2}, x_{2}(t)=\mathrm{e}^{-t}\left(c_{1}-1\right) \cos (\sqrt{2} t)+1-\mathrm{e}^{-t}\right.
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 61

```
dsolve([diff(x__ 1(t),t)=-1*x__ 1(t)-1*x__ 2(t)-1, diff (x__ 2(t),t)=2*x__ 1(t)-1*x__ 2(t)+5], singso
```

$$
\begin{aligned}
& x_{1}(t)=-2+\mathrm{e}^{-t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right) \\
& x_{2}(t)=1-\mathrm{e}^{-t} \sqrt{2}\left(c_{2} \cos (\sqrt{2} t)-c_{1} \sin (\sqrt{2} t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.414 (sec). Leaf size: 85
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-1 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]-1, \mathrm{x} 2 \mathrm{I}^{\prime}[\mathrm{t}]==2 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]+5\right\},\{\mathrm{x} 1[\mathrm{t}], \mathrm{x} 2[\mathrm{t}]\}, \mathrm{t}\right.$, IncludeSingula

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{-t} \cos (\sqrt{2} t)-\frac{c_{2} e^{-t} \sin (\sqrt{2} t)}{\sqrt{2}}-2 \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(e^{t}+c_{2} \cos (\sqrt{2} t)+\sqrt{2} c_{1} \sin (\sqrt{2} t)\right)
\end{aligned}
$$

20 Chapter 9.2, Autonomous Systems and Stability. page 517

20.1 problem 1 4093
20.2 problem 2 part 1 4101
20.3 problem 2 part 2 4109
20.4 problem 3 part 1 4117
20.5 problem 3 part 2 4124

20.1 problem 1

20.1.1 Solution using Matrix exponential method 4093
20.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4094

Internal problem ID [807]
Internal file name [DUTPUT/807_Sunday_June_05_2022_01_50_17_AM_1022039/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t) \\
y^{\prime}(t) & =-2 y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=2]
$$

20.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \mathrm{e}^{-t} \\
2 \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
0 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
c_{2} \\
c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=2 \\
c_{2}=4
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
4 \mathrm{e}^{-t} \\
2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 557: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff $(x(t), t)=-x(t), \operatorname{diff}(y(t), t)=-2 * y(t), x(0)=4, y(0)=2]$, singsol=all)

$$
\begin{aligned}
x(t) & =4 \mathrm{e}^{-t} \\
y(t) & =2 \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 22
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+0 * y[t], y^{\prime}[t]==-2 * y[t]\right\},\{x[0]==4, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSingula

$$
\begin{aligned}
& x(t) \rightarrow 4 e^{-t} \\
& y(t) \rightarrow 2 e^{-2 t}
\end{aligned}
$$

20.2 problem 2 part 1

20.2.1 Solution using Matrix exponential method 4101
20.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4102

Internal problem ID [808]
Internal file name [OUTPUT/808_Sunday_June_05_2022_01_50_18_AM_30327055/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number: 2 part 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t) \\
y^{\prime}(t) & =2 y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=2]
$$

20.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
4 \\
2
\end{array}\right] \\
& =\left[\begin{array}{l}
4 \mathrm{e}^{-t} \\
2 \mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)(2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t} \\
c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=4 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
4 \mathrm{e}^{-t} \\
2 \mathrm{e}^{2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 558: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff $(x(t), t)=-x(t), \operatorname{diff}(y(t), t)=2 * y(t), x(0)=4, y(0)=2]$, singsol=all)

$$
\begin{aligned}
x(t) & =4 \mathrm{e}^{-t} \\
y(t) & =2 \mathrm{e}^{2 t}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 22
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+0 * y[t], y^{\prime}[t]==0 * x[t]+2 * y[t]\right\},\{x[0]==4, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow 4 e^{-t} \\
& y(t) \rightarrow 2 e^{2 t}
\end{aligned}
$$

20.3 problem 2 part 2

20.3.1 Solution using Matrix exponential method 4109
20.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4110

Internal problem ID [809]
Internal file name [OUTPUT/809_Sunday_June_05_2022_01_50_20_AM_21084214/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number: 2 part 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t) \\
y^{\prime}(t) & =2 y(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=0]
$$

20.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \mathrm{e}^{-t} \\
0
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-1-\lambda)(2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t} \\
c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=4 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
4 \mathrm{e}^{-t} \\
0
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 559: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve([diff $(x(t), t)=-x(t), \operatorname{diff}(y(t), t)=2 * y(t), x(0)=4, y(0)=0]$, singsol=all)

$$
\begin{aligned}
& x(t)=4 \mathrm{e}^{-t} \\
& y(t)=0
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+0 * y[t], y^{\prime}[t]==0 * x[t]+2 * y[t]\right\},\{x[0]==4, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow 4 e^{-t} \\
& y(t) \rightarrow 0
\end{aligned}
$$

20.4 problem 3 part 1

20.4.1 Solution using Matrix exponential method 4117
20.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4118

Internal problem ID [810]
Internal file name [OUTPUT/810_Sunday_June_05_2022_01_50_21_AM_58122514/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number: 3 part 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-y(t) \\
y^{\prime}(t) & =x(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=0]
$$

20.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \cos (t) \\
4 \sin (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
i & -1 & 0 \\
1 & i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-i & -1 & 0 \\
1 & -i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{2} \mathrm{e}^{-i t}-c_{1} \mathrm{e}^{i t}\right) \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-2 i \\
c_{2}=2 i
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(2 i \mathrm{e}^{-i t}+2 i \mathrm{e}^{i t}\right) \\
-2 i \mathrm{e}^{i t}+2 i \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 560: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve([diff(x(t),t) = - y(t), diff(y(t),t) = x(t), x(0) = 4, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=4 \cos (t) \\
& y(t)=4 \sin (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16
DSolve[\{x'[t]==-0*x[t]-1*y[t],y'[t]==1*x[t]+0*y[t]\},\{x[0]==4,y[0]==0\},\{x[t],y[t]\},t,IncludeS

$$
\begin{aligned}
& x(t) \rightarrow 4 \cos (t) \\
& y(t) \rightarrow 4 \sin (t)
\end{aligned}
$$

20.5 problem 3 part 2

20.5.1 Solution using Matrix exponential method 4124
20.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4125

Internal problem ID [811]
Internal file name [OUTPUT/811_Sunday_June_05_2022_01_50_22_AM_62168446/index.tex]
Book: Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section: Chapter 9.2, Autonomous Systems and Stability. page 517
Problem number: 3 part 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-y(t) \\
y^{\prime}(t) & =x(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=4]
$$

20.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
0 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-4 \sin (t) \\
4 \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

20.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-i$	1	complex eigenvalue
i	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
i & -1 & 0 \\
1 & i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-i & -1 & 0 \\
1 & -i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-i & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-i & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1} \mathrm{e}^{i t}-c_{2} \mathrm{e}^{-i t}\right) \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=4
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=2 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(2 \mathrm{e}^{i t}-2 \mathrm{e}^{-i t}\right) \\
2 \mathrm{e}^{i t}+2 \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 561: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve([diff(x(t),t) = - y (t), diff(y(t),t) = x (t), x(0) = 0, y(0) = 4], singsol=all)
```

$$
\begin{aligned}
& x(t)=-4 \sin (t) \\
& y(t)=4 \cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 16
DSolve $\left[\left\{x^{\prime}[t]==-0 * x[t]-1 * y[t], y^{\prime}[t]==1 * x[t]+0 * y[t]\right\},\{x[0]==0, y[0]==4\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow-4 \sin (t) \\
& y(t) \rightarrow 4 \cos (t)
\end{aligned}
$$

