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Internal problem ID [2432]
Internal file name [OUTPUT/1924_Sunday_June_05_2022_02_39_42_AM_58612681/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 2

1.1.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

2 dx

= 2x+ c1

Summary
The solution(s) found are the following

(1)y = 2x+ c1
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Figure 1: Slope field plot

Verification of solutions

y = 2x+ c1

Verified OK.

1.1.2 Maple step by step solution

Let’s solve
y′ = 2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
2dx+ c1

• Evaluate integral
y = 2x+ c1

• Solve for y
y = 2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)=2,y(x), singsol=all)� �

y(x) = 2x+ c1

3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 11� �
DSolve[y'[x]==2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x+ c1
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1.2 problem 2(b)
1.2.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7

Internal problem ID [2433]
Internal file name [OUTPUT/1925_Sunday_June_05_2022_02_39_43_AM_28780283/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 2 e3x

1.2.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

2 e3x dx

= 2 e3x
3 + c1

Summary
The solution(s) found are the following

(1)y = 2 e3x
3 + c1
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Figure 2: Slope field plot

Verification of solutions

y = 2 e3x
3 + c1

Verified OK.

1.2.2 Maple step by step solution

Let’s solve
y′ = 2 e3x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
2 e3xdx+ c1

• Evaluate integral
y = 2 e3x

3 + c1

• Solve for y
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y = 2 e3x
3 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=2*exp(3*x),y(x), singsol=all)� �

y(x) = 2 e3x
3 + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 17� �
DSolve[y'[x]==2*Exp[3*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2e3x
3 + c1
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1.3 problem 2(c)
1.3.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 10

Internal problem ID [2434]
Internal file name [OUTPUT/1926_Sunday_June_05_2022_02_39_45_AM_20320997/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = 2√
−x2 + 1

1.3.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ 2√

−x2 + 1
dx

= 2arcsin (x) + c1

Summary
The solution(s) found are the following

(1)y = 2arcsin (x) + c1
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Figure 3: Slope field plot

Verification of solutions

y = 2arcsin (x) + c1

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
y′ = 2√

−x2+1

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫ 2√
−x2+1dx+ c1

• Evaluate integral
y = 2arcsin (x) + c1

• Solve for y

10



y = 2arcsin (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)=2/sqrt(1-x^2),y(x), singsol=all)� �

y(x) = 2 arcsin (x) + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 28� �
DSolve[y'[x]==2/Sqrt[1-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −4 arctan
(√

1− x2

x+ 1

)
+ c1
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1.4 problem 2(d)
1.4.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 13

Internal problem ID [2435]
Internal file name [OUTPUT/1927_Sunday_June_05_2022_02_39_47_AM_51050310/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = ex2

1.4.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

ex2 dx

=
√
π erfi (x)

2 + c1

Summary
The solution(s) found are the following

(1)y =
√
π erfi (x)

2 + c1
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Figure 4: Slope field plot

Verification of solutions

y =
√
π erfi (x)

2 + c1

Verified OK.

1.4.2 Maple step by step solution

Let’s solve
y′ = ex2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
ex2

dx+ c1

• Evaluate integral

y =
√
π erfi(x)

2 + c1

• Solve for y
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y =
√
π erfi(x)

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=exp(x^2),y(x), singsol=all)� �

y(x) =
√
π erfi (x)

2 + c1

3 Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 19� �
DSolve[y'[x]==Exp[x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
πerfi(x) + c1
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1.5 problem 2(e)
1.5.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 16

Internal problem ID [2436]
Internal file name [OUTPUT/1928_Sunday_June_05_2022_02_39_49_AM_13964111/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = x ex2

1.5.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

x ex2 dx

= ex2

2 + c1

Summary
The solution(s) found are the following

(1)y = ex2

2 + c1
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Figure 5: Slope field plot

Verification of solutions

y = ex2

2 + c1

Verified OK.

1.5.2 Maple step by step solution

Let’s solve
y′ = x ex2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
x ex2

dx+ c1

• Evaluate integral

y = ex2

2 + c1

• Solve for y
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y = ex2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=x*exp(x^2),y(x), singsol=all)� �

y(x) = ex2

2 + c1

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 17� �
DSolve[y'[x]==x*Exp[x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex
2

2 + c1
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1.6 problem 2(a)
1.6.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 18
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 19

Internal problem ID [2437]
Internal file name [OUTPUT/1929_Sunday_June_05_2022_02_39_50_AM_71357439/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ = arcsin (x)

1.6.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

arcsin (x) dx

= x arcsin (x) +
√
−x2 + 1 + c1

Summary
The solution(s) found are the following

(1)y = x arcsin (x) +
√
−x2 + 1 + c1
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Figure 6: Slope field plot

Verification of solutions

y = x arcsin (x) +
√
−x2 + 1 + c1

Verified OK.

1.6.2 Maple step by step solution

Let’s solve
y′ = arcsin (x)

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′dx =

∫
arcsin (x) dx+ c1

• Evaluate integral
y = x arcsin (x) +

√
−x2 + 1 + c1

• Solve for y
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y = x arcsin (x) +
√
−x2 + 1 + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)=arcsin(x),y(x), singsol=all)� �

y(x) = x arcsin (x) +
√
−x2 + 1 + c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 23� �
DSolve[y'[x]==ArcSin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin(x) +
√
1− x2 + c1
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1.7 problem 3(a)
1.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 21
1.7.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 23
1.7.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 24
1.7.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 26
1.7.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 34

Internal problem ID [2438]
Internal file name [OUTPUT/1930_Sunday_June_05_2022_02_39_52_AM_98288231/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − yx = 0

1.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy
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Where f(x) = x and g(y) = y. Integrating both sides gives

1
y
dy = x dx∫ 1

y
dy =

∫
x dx

ln (y) = x2

2 + c1

y = ex2
2 +c1

= c1e
x2
2

Summary
The solution(s) found are the following

(1)y = c1e
x2
2

Figure 7: Slope field plot

Verification of solutions

y = c1e
x2
2

Verified OK.
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1.7.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −x

q(x) = 0

Hence the ode is

y′ − yx = 0

The integrating factor µ is

µ = e
∫
−xdx

= e−x2
2

The ode becomes

d
dxµy = 0

d
dx

(
e−x2

2 y
)
= 0

Integrating gives

e−x2
2 y = c1

Dividing both sides by the integrating factor µ = e−x2
2 results in

y = c1e
x2
2

Summary
The solution(s) found are the following

(1)y = c1e
x2
2
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Figure 8: Slope field plot

Verification of solutions

y = c1e
x2
2

Verified OK.

1.7.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u(x2 − 1)
x
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Where f(x) = x2−1
x

and g(u) = u. Integrating both sides gives

1
u
du = x2 − 1

x
dx∫ 1

u
du =

∫
x2 − 1

x
dx

ln (u) = x2

2 − ln (x) + c2

u = ex2
2 −ln(x)+c2

= c2e
x2
2 −ln(x)

Which simplifies to

u(x) = c2e
x2
2

x

Therefore the solution y is

y = xu

= c2e
x2
2

Summary
The solution(s) found are the following

(1)y = c2e
x2
2
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Figure 9: Slope field plot

Verification of solutions

y = c2e
x2
2

Verified OK.

1.7.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = ex2
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ex2
2

dy

Which results in

S = e−x2
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −x e−x2
2 y

Sy = e−x2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

e−x2
2 y = c1

Which simplifies to

e−x2
2 y = c1

Which gives

y = c1e
x2
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy dS
dR

= 0

R = x

S = e−x2
2 y

Summary
The solution(s) found are the following

(1)y = c1e
x2
2
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Figure 10: Slope field plot

Verification of solutions

y = c1e
x2
2

Verified OK.

1.7.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy = (x) dx

(−x) dx+
(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x)

= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y)

The solution becomes

y = ex2
2 +c1

Summary
The solution(s) found are the following

(1)y = ex2
2 +c1

Figure 11: Slope field plot
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Verification of solutions

y = ex2
2 +c1

Verified OK.

1.7.6 Maple step by step solution

Let’s solve
y′ − yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= x

• Integrate both sides with respect to x∫
y′

y
dx =

∫
xdx+ c1

• Evaluate integral
ln (y) = x2

2 + c1

• Solve for y

y = ex2
2 +c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=y(x)*x,y(x), singsol=all)� �

y(x) = ex2
2 c1
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3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 22� �
DSolve[y'[x]==y[x]*x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
x2
2

y(x) → 0
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1.8 problem 3(b)
1.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 36
1.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 38
1.8.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 42
1.8.4 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 46
1.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48

Internal problem ID [2439]
Internal file name [OUTPUT/1931_Sunday_June_05_2022_02_39_53_AM_57998689/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "separable",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y2x2 = 0

1.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= y2x2

Where f(x) = x2 and g(y) = y2. Integrating both sides gives

1
y2

dy = x2 dx∫ 1
y2

dy =
∫

x2 dx

−1
y
= x3

3 + c1
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Which results in

y = − 3
x3 + 3c1

Summary
The solution(s) found are the following

(1)y = − 3
x3 + 3c1

Figure 12: Slope field plot

Verification of solutions

y = − 3
x3 + 3c1

Verified OK.
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1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2

dx

Which results in

S = x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2x2
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3

3 = −1
y
+ c1

Which simplifies to

x3

3 = −1
y
+ c1

Which gives

y = 3
−x3 + 3c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2x2 dS
dR

= 1
R2

R = y

S = x3

3

Summary
The solution(s) found are the following

(1)y = 3
−x3 + 3c1
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Figure 13: Slope field plot

Verification of solutions

y = 3
−x3 + 3c1

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y2

)
dy =

(
x2) dx

(
−x2) dx+( 1

y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = 1
y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0
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And

∂N

∂x
= ∂

∂x

(
1
y2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y2
. Therefore equation (4) becomes

(5)1
y2

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y2
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y2

)
dy

f(y) = −1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 − 1
y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − 1
y

The solution becomes

y = − 3
x3 + 3c1

Summary
The solution(s) found are the following

(1)y = − 3
x3 + 3c1
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Figure 14: Slope field plot

Verification of solutions

y = − 3
x3 + 3c1

Verified OK.

1.8.4 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 0 and f2(x) = x2. Let

y = −u′

f2u

= −u′

x2u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2x

f1f2 = 0
f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

x2u′′(x)− 2xu′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c2x
3 + c1

The above shows that
u′(x) = 3c2x2

Using the above in (1) gives the solution

y = − 3c2
c2x3 + c1

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − 3
x3 + c3
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Summary
The solution(s) found are the following

(1)y = − 3
x3 + c3

Figure 15: Slope field plot

Verification of solutions

y = − 3
x3 + c3

Verified OK.

1.8.5 Maple step by step solution

Let’s solve
y′ − y2x2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables

48



y′

y2
= x2

• Integrate both sides with respect to x∫
y′

y2
dx =

∫
x2dx+ c1

• Evaluate integral
− 1

y
= x3

3 + c1

• Solve for y
y = − 3

x3+3c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)=y(x)^2*x^2,y(x), singsol=all)� �

y(x) = − 3
x3 − 3c1

3 Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 22� �
DSolve[y'[x]==y[x]^2*x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 3
x3 + 3c1

y(x) → 0
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1.9 problem 3(c)
1.9.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 50
1.9.2 Solving as first order special form ID 1 ode . . . . . . . . . . . . 52
1.9.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 53
1.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 57
1.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 61

Internal problem ID [2440]
Internal file name [OUTPUT/1932_Sunday_June_05_2022_02_39_55_AM_49856130/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first order
special form ID 1", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + x ey = 0

1.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −x ey

Where f(x) = −x and g(y) = ey. Integrating both sides gives

1
ey dy = −x dx∫ 1
ey dy =

∫
−x dx

−e−y = −x2

2 + c1
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Which results in

y = ln
(
− 2
−x2 + 2c1

)
Summary
The solution(s) found are the following

(1)y = ln
(
− 2
−x2 + 2c1

)

Figure 16: Slope field plot

Verification of solutions

y = ln
(
− 2
−x2 + 2c1

)
Verified OK.
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1.9.2 Solving as first order special form ID 1 ode

Writing the ode as

y′ = −x ey (1)

And using the substitution u = e−y then

u′ = −y′e−y

The above shows that

y′ = −u′(x) ey

= −u′(x)
u

Substituting this in (1) gives

−u′(x)
u

= −x

u

The above simplifies to

u′(x) = x (2)

Now ode (2) is solved for u(x) Integrating both sides gives

u(x) =
∫

x dx

= x2

2 + c1

Substituting the solution found for u(x) in u = e−y gives

y = − ln (u(x))

= − ln
(
x2

2 + c1

)
= ln (2)− ln

(
x2 + 2c1

)
Summary
The solution(s) found are the following

(1)y = ln (2)− ln
(
x2 + 2c1

)
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Figure 17: Slope field plot

Verification of solutions

y = ln (2)− ln
(
x2 + 2c1

)
Verified OK.

1.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x ey

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

− 1
x

dx

Which results in

S = −x2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x ey

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = −x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e−y (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −e−R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

2 = −e−y + c1

Which simplifies to

−x2

2 = −e−y + c1

Which gives

y = − ln
(
x2

2 + c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x ey dS
dR

= e−R

R = y

S = −x2

2

Summary
The solution(s) found are the following

(1)y = − ln
(
x2

2 + c1

)
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Figure 18: Slope field plot

Verification of solutions

y = − ln
(
x2

2 + c1

)
Verified OK.

1.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−e−y

)
dy = (x) dx

(−x) dx+
(
−e−y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = −e−y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
−e−y

)
= 0
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −e−y. Therefore equation (4) becomes

(5)−e−y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −e−y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−e−y

)
dy

f(y) = e−y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + e−y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + e−y

The solution becomes

y = − ln
(
x2

2 + c1

)

Summary
The solution(s) found are the following

(1)y = − ln
(
x2

2 + c1

)

Figure 19: Slope field plot

Verification of solutions

y = − ln
(
x2

2 + c1

)
Verified OK.
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1.9.5 Maple step by step solution

Let’s solve
y′ + x ey = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

ey = −x

• Integrate both sides with respect to x∫
y′

ey dx =
∫
−xdx+ c1

• Evaluate integral
− 1

ey = −x2

2 + c1

• Solve for y

y = ln
(
− 2

−x2+2c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 17� �
dsolve(diff(y(x),x)=-x*exp(y(x)),y(x), singsol=all)� �

y(x) = ln (2) + ln
(

1
x2 + 2c1

)
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3 Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 19� �
DSolve[y'[x]==-x*Exp[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(2)− log
(
x2 − 2c1

)
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1.10 problem 3(d)
1.10.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 63
1.10.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 65
1.10.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 66
1.10.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 70
1.10.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 74

Internal problem ID [2441]
Internal file name [OUTPUT/1933_Sunday_June_05_2022_02_39_57_AM_21333843/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "differential-
Type", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ sin (y) = x2

1.10.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x2

sin (y)

Where f(x) = x2 and g(y) = 1
sin(y) . Integrating both sides gives

1
1

sin(y)
dy = x2 dx

∫ 1
1

sin(y)
dy =

∫
x2 dx
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− cos (y) = x3

3 + c1

Which results in

y = π − arccos
(
x3

3 + c1

)
Summary
The solution(s) found are the following

(1)y = π − arccos
(
x3

3 + c1

)

Figure 20: Slope field plot

Verification of solutions

y = π − arccos
(
x3

3 + c1

)
Verified OK.
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1.10.2 Solving as differentialType ode

Writing the ode as

y′ = x2

sin (y) (1)

Which becomes

(sin (y)) dy =
(
x2) dx (2)

But the RHS is complete differential because

(
x2) dx = d

(
x3

3

)
Hence (2) becomes

(sin (y)) dy = d

(
x3

3

)
Integrating both sides gives gives these solutions

y = π − arccos
(
x3

3 + c1

)
+ c1

Summary
The solution(s) found are the following

(1)y = π − arccos
(
x3

3 + c1

)
+ c1
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Figure 21: Slope field plot

Verification of solutions

y = π − arccos
(
x3

3 + c1

)
+ c1

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2

sin (y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x2

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x2

dx

Which results in

S = x3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2

sin (y)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sin (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sin (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x3

3 = − cos (y) + c1

Which simplifies to

x3

3 = − cos (y) + c1

Which gives

y = arccos
(
−x3

3 + c1

)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2

sin(y)
dS
dR

= sin (R)

R = y

S = x3

3
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Summary
The solution(s) found are the following

(1)y = arccos
(
−x3

3 + c1

)

Figure 22: Slope field plot

Verification of solutions

y = arccos
(
−x3

3 + c1

)
Verified OK.

1.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(sin (y)) dy =
(
x2) dx(

−x2) dx+(sin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x2

N(x, y) = sin (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives

∂M

∂y
= ∂

∂y

(
−x2)

= 0

And
∂N

∂x
= ∂

∂x
(sin (y))

= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x2 dx

(3)φ = −x3

3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (y). Therefore equation (4) becomes

(5)sin (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = sin (y)
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(sin (y)) dy

f(y) = − cos (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x3

3 − cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x3

3 − cos (y)

Summary
The solution(s) found are the following

(1)−x3

3 − cos (y) = c1

Figure 23: Slope field plot

73



Verification of solutions

−x3

3 − cos (y) = c1

Verified OK.

1.10.5 Maple step by step solution

Let’s solve
y′ sin (y) = x2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
y′ sin (y) dx =

∫
x2dx+ c1

• Evaluate integral
− cos (y) = x3

3 + c1

• Solve for y

y = π − arccos
(

x3

3 + c1
)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)*sin(y(x))=x^2,y(x), singsol=all)� �

y(x) = π

2 + arcsin
(
x3

3 + c1

)
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3 Solution by Mathematica
Time used: 0.509 (sec). Leaf size: 37� �
DSolve[y'[x]*Sin[y[x]]==x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
−x3

3 − c1

)
y(x) → arccos

(
−x3

3 − c1

)
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1.11 problem 3(e)
1.11.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 76
1.11.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 78
1.11.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 82
1.11.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 86

Internal problem ID [2442]
Internal file name [OUTPUT/1934_Sunday_June_05_2022_02_39_59_AM_77840185/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

xy′ −
√

1− y2 = 0

1.11.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

=
√
−y2 + 1
x

Where f(x) = 1
x
and g(y) =

√
−y2 + 1. Integrating both sides gives

1√
−y2 + 1

dy = 1
x
dx∫ 1√

−y2 + 1
dy =

∫ 1
x
dx

arcsin (y) = ln (x) + c1
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Which results in
y = sin (ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = sin (ln (x) + c1)

Figure 24: Slope field plot

Verification of solutions

y = sin (ln (x) + c1)

Verified OK.
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1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
√
−y2 + 1
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
−y2 + 1
x
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Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1√

−y2 + 1
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1√

−R2 + 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arcsin (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = arcsin (y) + c1

Which simplifies to

ln (x) = arcsin (y) + c1

Which gives

y = − sin (− ln (x) + c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

−y2+1
x

dS
dR

= 1√
−R2+1

R = y

S = ln (x)

Summary
The solution(s) found are the following

(1)y = − sin (− ln (x) + c1)
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Figure 25: Slope field plot

Verification of solutions

y = − sin (− ln (x) + c1)

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1√

−y2 + 1

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1√

−y2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1√
−y2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1√

−y2 + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
−y2+1

. Therefore equation (4) becomes

(5)1√
−y2 + 1

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1√
−y2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1√
−y2 + 1

)
dy

f(y) = arcsin (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + arcsin (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + arcsin (y)

The solution becomes
y = sin (ln (x) + c1)

Summary
The solution(s) found are the following

(1)y = sin (ln (x) + c1)

Figure 26: Slope field plot

Verification of solutions

y = sin (ln (x) + c1)

Verified OK.
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1.11.4 Maple step by step solution

Let’s solve
xy′ −

√
1− y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
1−y2

= 1
x

• Integrate both sides with respect to x∫
y′√
1−y2

dx =
∫ 1

x
dx+ c1

• Evaluate integral
arcsin (y) = ln (x) + c1

• Solve for y
y = sin (ln (x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 9� �
dsolve(diff(y(x),x)*x=sqrt(1-y(x)^2),y(x), singsol=all)� �

y(x) = sin (ln (x) + c1)
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3 Solution by Mathematica
Time used: 0.217 (sec). Leaf size: 29� �
DSolve[y'[x]*x==Sqrt[1-y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos(log(x) + c1)
y(x) → −1
y(x) → 1
y(x) → Interval[{−1, 1}]
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1.12 problem 3(f)
1.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 89

Internal problem ID [2443]
Internal file name [OUTPUT/1935_Sunday_June_05_2022_02_40_01_AM_72065445/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(f).
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − y2 = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = −y (1)
y′ = y (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫
−1
y
dy =

∫
dx

− ln (y) = x+ c1

Raising both side to exponential gives
1
y
= ex+c1

Which simplifies to
1
y
= c2ex
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Summary
The solution(s) found are the following

(1)y = e−x

c2

Verification of solutions

y = e−x

c2

Verified OK.
Solving equation (2)

Integrating both sides gives ∫ 1
y
dy = x+ c3

ln (y) = x+ c3

y = ex+c3

y = c3ex

Summary
The solution(s) found are the following

(1)y = c3ex

Verification of solutions

y = c3ex

Verified OK.

1.12.1 Maple step by step solution

Let’s solve
y′2 − y2 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y
= 1

• Integrate both sides with respect to x
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∫
y′

y
dx =

∫
1dx+ c1

• Evaluate integral
ln (y) = x+ c1

• Solve for y
y = ex+c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((diff(y(x),x))^2-y(x)^2=0,y(x), singsol=all)� �

y(x) = exc1
y(x) = e−xc1

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 28� �
DSolve[(y'[x])^2-y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x

y(x) → c1e
x

y(x) → 0
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1.13 problem 3(g)
1.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 92

Internal problem ID [2444]
Internal file name [OUTPUT/1936_Sunday_June_05_2022_02_40_04_AM_47833826/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(g).
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′
2 − 3y′ = −2

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 2 (1)
y′ = 1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫

2 dx

= 2x+ c1

Summary
The solution(s) found are the following

(1)y = 2x+ c1

Verification of solutions

y = 2x+ c1

Verified OK.
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Solving equation (2)

Integrating both sides gives

y =
∫

1 dx

= x+ c2

Summary
The solution(s) found are the following

(1)y = x+ c2

Verification of solutions

y = x+ c2

Verified OK.

1.13.1 Maple step by step solution

Let’s solve
y′2 − 3y′ = −2

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
y′2 − 3y′

)
dx =

∫
(−2) dx+ c1

• Cannot compute integral∫ (
y′2 − 3y′

)
dx = −2x+ c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(diff(y(x),x)^2-3*diff(y(x),x)+2=0,y(x), singsol=all)� �

y(x) = 2x+ c1
y(x) = c1 + x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 19� �
DSolve[(y'[x])^2-3*y'[x]+2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1
y(x) → 2x+ c1
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1.14 problem 3(h)
1.14.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 94
1.14.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 95

Internal problem ID [2445]
Internal file name [OUTPUT/1937_Sunday_June_05_2022_02_40_05_AM_55553494/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(h).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
x2 + 1

)
y′ = 1

1.14.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ 1

x2 + 1 dx

= arctan (x) + c1

Summary
The solution(s) found are the following

(1)y = arctan (x) + c1
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Figure 27: Slope field plot

Verification of solutions

y = arctan (x) + c1

Verified OK.

1.14.2 Maple step by step solution

Let’s solve
(x2 + 1) y′ = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = 1

x2+1

• Integrate both sides with respect to x∫
y′dx =

∫ 1
x2+1dx+ c1

• Evaluate integral
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y = arctan (x) + c1

• Solve for y
y = arctan (x) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 8� �
dsolve((1+x^2)*diff(y(x),x)=1,y(x), singsol=all)� �

y(x) = arctan (x) + c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10� �
DSolve[(1+x^2)*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → arctan(x) + c1
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1.15 problem 3(i)
1.15.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 97
1.15.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 98

Internal problem ID [2446]
Internal file name [OUTPUT/1938_Sunday_June_05_2022_02_40_07_AM_86851588/index.tex]

Book: Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section: Exercis 2, page 5
Problem number: 3(i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y′ sin (x) = 1

1.15.1 Solving as quadrature ode

Integrating both sides gives

y =
∫ 1

sin (x) dx

= ln (csc (x)− cot (x)) + c1

Summary
The solution(s) found are the following

(1)y = ln (csc (x)− cot (x)) + c1
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Figure 28: Slope field plot

Verification of solutions

y = ln (csc (x)− cot (x)) + c1

Verified OK.

1.15.2 Maple step by step solution

Let’s solve
y′ sin (x) = 1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ = 1

sin(x)

• Integrate both sides with respect to x∫
y′dx =

∫ 1
sin(x)dx+ c1

• Evaluate integral
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y = ln (csc (x)− cot (x)) + c1

• Solve for y
y = ln (csc (x)− cot (x)) + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)*sin(x)=1,y(x), singsol=all)� �

y(x) = − ln (csc (x) + cot (x)) + c1

3 Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 13� �
DSolve[y'[x]*Sin[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −arctanh(cos(x)) + c1
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