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Internal problem ID [3080]
Internal file name [OUTPUT/2572_Sunday_June_05_2022_03_20_04_AM_84551471/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 1.a.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

−y2 + xyy′ = −x2

1.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)2 x2 + x2u(x) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 1
ux
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Where f(x) = − 1
x
and g(u) = 1

u
. Integrating both sides gives

1
1
u

du = −1
x
dx

∫ 1
1
u

du =
∫

−1
x
dx

u2

2 = − ln (x) + c2

The solution is
u(x)2

2 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y2

2x2 + ln (x)− c2 = 0

y2

2x2 + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y2

2x2 + ln (x)− c2 = 0
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Figure 1: Slope field plot

Verification of solutions

y2

2x2 + ln (x)− c2 = 0

Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x2 + y2

xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = x2

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2

y

dy

Which results in

S = y2

2x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x2 + y2

xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y2

x3

Sy =
y

x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2

2x2 = − ln (x) + c1

Which simplifies to

y2

2x2 = − ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x2+y2

xy
dS
dR

= − 1
R

R = x

S = y2

2x2

Summary
The solution(s) found are the following

(1)y2

2x2 = − ln (x) + c1
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Figure 2: Slope field plot

Verification of solutions

y2

2x2 = − ln (x) + c1

Verified OK.

1.1.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x2 + y2

xy

This is a Bernoulli ODE.
y′ = 1

x
y − x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = −x

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = y2

x
− x (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = w(x)

x
− x

w′ = 2w
x

− 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −2
x

q(x) = −2x
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Hence the ode is

w′(x)− 2w(x)
x

= −2x

The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µw) = (µ) (−2x)

d
dx

( w
x2

)
=
(

1
x2

)
(−2x)

d
( w
x2

)
=
(
−2
x

)
dx

Integrating gives

w

x2 =
∫

−2
x
dx

w

x2 = −2 ln (x) + c1

Dividing both sides by the integrating factor µ = 1
x2 results in

w(x) = −2 ln (x)x2 + c1x
2

which simplifies to

w(x) = x2(−2 ln (x) + c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = x2(−2 ln (x) + c1)

Solving for y gives

y(x) =
√
−2 ln (x) + c1 x

y(x) = −
√

−2 ln (x) + c1 x
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Summary
The solution(s) found are the following

(1)y =
√
−2 ln (x) + c1 x

(2)y = −
√

−2 ln (x) + c1 x

Figure 3: Slope field plot

Verification of solutions

y =
√

−2 ln (x) + c1 x

Verified OK.

y = −
√

−2 ln (x) + c1 x

Verified OK.
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1.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy) dy =
(
−x2 + y2

)
dx(

x2 − y2
)
dx+(xy) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − y2

N(x, y) = xy
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − y2

)
= −2y

And
∂N

∂x
= ∂

∂x
(xy)

= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy
((−2y)− (y))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
x2 − y2

)
= x2 − y2

x3
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And

N = µN

= 1
x3 (xy)

= y

x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − y2

x3

)
+
( y

x2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 − y2

x3 dx

(3)φ = y2

2x2 + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= y
x2 . Therefore equation (4) becomes

(5)y

x2 = y

x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y2

2x2 + ln (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y2

2x2 + ln (x)

Summary
The solution(s) found are the following

(1)y2

2x2 + ln (x) = c1

Figure 4: Slope field plot
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Verification of solutions

y2

2x2 + ln (x) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 28� �
dsolve((x^2-y(x)^2)+x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

−2 ln (x) + c1 x

y(x) = −
√
−2 ln (x) + c1 x

3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 36� �
DSolve[(x^2-y[x]^2)+x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x
√
−2 log(x) + c1

y(x) → x
√

−2 log(x) + c1
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1.2 problem 1.b
1.2.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 18
1.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 20
1.2.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 24
1.2.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 28
1.2.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 32

Internal problem ID [3081]
Internal file name [OUTPUT/2573_Sunday_June_05_2022_03_20_07_AM_1694912/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 1.b.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _Bernoulli]

y′x2 − 2yx− 2y2 = 0

1.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − 2u(x)x2 − 2u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2u2 + u

x

18



Where f(x) = 1
x
and g(u) = 2u2 + u. Integrating both sides gives

1
2u2 + u

du = 1
x
dx∫ 1

2u2 + u
du =

∫ 1
x
dx

− ln (2u+ 1) + ln (u) = ln (x) + c2

Raising both side to exponential gives

e− ln(2u+1)+ln(u) = eln(x)+c2

Which simplifies to
u

2u+ 1 = c3x

Therefore the solution y is

y = xu

= − x2c3
2c3x− 1

Summary
The solution(s) found are the following

(1)y = − x2c3
2c3x− 1
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Figure 5: Slope field plot

Verification of solutions

y = − x2c3
2c3x− 1

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = 2y(y + x)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 3: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = y2

x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

x2

dy

Which results in

S = −x2

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 2y(y + x)
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x
y

Sy =
x2

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

22



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−x2

y
= 2x+ c1

Which simplifies to

−x2

y
= 2x+ c1

Which gives

y = − x2

2x+ c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 2y(y+x)
x2

dS
dR

= 2

R = x

S = −x2

y

23



Summary
The solution(s) found are the following

(1)y = − x2

2x+ c1

Figure 6: Slope field plot

Verification of solutions

y = − x2

2x+ c1

Verified OK.

1.2.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= 2y(y + x)
x2

This is a Bernoulli ODE.
y′ = 2

x
y + 2

x2y
2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
2
x

f1(x) =
2
x2

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 2
xy

+ 2
x2 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = 2w(x)
x

+ 2
x2

w′ = −2w
x

− 2
x2 (7)

The above now is a linear ODE in w(x) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = − 2
x2

Hence the ode is

w′(x) + 2w(x)
x

= − 2
x2

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
− 2
x2

)
d
dx
(
x2w

)
=
(
x2)(− 2

x2

)
d
(
x2w

)
= −2 dx

Integrating gives

x2w =
∫

−2 dx

x2w = −2x+ c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = −2
x
+ c1

x2

which simplifies to

w(x) = −2x+ c1
x2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= −2x+ c1

x2
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Or

y = x2

−2x+ c1

Summary
The solution(s) found are the following

(1)y = x2

−2x+ c1

Figure 7: Slope field plot

Verification of solutions

y = x2

−2x+ c1

Verified OK.
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1.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy =

(
2xy + 2y2

)
dx(

−2xy − 2y2
)
dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy − 2y2

N(x, y) = x2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2xy − 2y2

)
= −2x− 4y

And

∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 ((−2x− 4y)− (2x))

= −4x− 4y
x2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2y (y + x)((2x)− (−2x− 4y))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy
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The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2
(
−2xy − 2y2

)
= −2y − 2x

y

And

N = µN

= 1
y2
(
x2)

= x2

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2y − 2x
y

)
+
(
x2

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2y − 2x

y
dx

(3)φ = −x(x+ 2y)
y

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2x

y
+ x(x+ 2y)

y2
+ f ′(y)

= x2

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x2

y2
. Therefore equation (4) becomes

(5)x2

y2
= x2

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x(x+ 2y)
y

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x(x+ 2y)
y

The solution becomes

y = − x2

2x+ c1

Summary
The solution(s) found are the following

(1)y = − x2

2x+ c1

31



Figure 8: Slope field plot

Verification of solutions

y = − x2

2x+ c1

Verified OK.

1.2.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= 2y(y + x)
x2

This is a Riccati ODE. Comparing the ODE to solve

y′ = 2y
x

+ 2y2
x2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = 2
x
and f2(x) = 2

x2 . Let

y = −u′

f2u

= −u′

2u
x2

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 4

x3

f1f2 =
4
x3

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

2u′′(x)
x2 = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1x+ c2

The above shows that
u′(x) = c1

Using the above in (1) gives the solution

y = − c1x
2

2 (c1x+ c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = − c3x
2

2c3x+ 2
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Summary
The solution(s) found are the following

(1)y = − c3x
2

2c3x+ 2

Figure 9: Slope field plot

Verification of solutions

y = − c3x
2

2c3x+ 2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x)-2*x*y(x)-2*y(x)^2=0,y(x), singsol=all)� �

y(x) = x2

−2x+ c1

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 22� �
DSolve[x^2*y'[x]-2*x*y[x]-2*y[x]^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2

−2x+ c1
y(x) → 0
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1.3 problem 1.c
1.3.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 36
1.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 38

Internal problem ID [3082]
Internal file name [OUTPUT/2574_Sunday_June_05_2022_03_20_10_AM_25744284/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 1.c.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′x2 − 3
(
y2 + x2) arctan(y

x

)
− yx = 0

1.3.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 − 3
(
u(x)2 x2 + x2) arctan (u(x))− u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 3(u2 + 1) arctan (u)
x

Where f(x) = 3
x
and g(u) = arctan (u) (u2 + 1). Integrating both sides gives

1
arctan (u) (u2 + 1) du = 3

x
dx∫ 1

arctan (u) (u2 + 1) du =
∫ 3

x
dx

ln (arctan (u)) = 3 ln (x) + c2
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Raising both side to exponential gives

arctan (u) = e3 ln(x)+c2

Which simplifies to

arctan (u) = c3x
3

Therefore the solution y is

y = xu

= x tan
(
c3ec2x3)

Summary
The solution(s) found are the following

(1)y = x tan
(
c3ec2x3)

Figure 10: Slope field plot

Verification of solutions

y = x tan
(
c3ec2x3)

Verified OK.
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1.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
3arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(
3 arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

)
(b3 − a2)

x2

−
(
3 arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

)2
a3

x4

−

− 3y
y2
x2+1

+ 6x arctan
(
y
x

)
− 3y3

x2
(

y2
x2+1

) + y

x2

−
2
(
3 arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

)
x3

 (xa2 + ya3 + a1)

−

(
3x

y2
x2+1

+ 3y2

x
(

y2
x2+1

) + 6arctan
(
y
x

)
y + x

)
(xb2 + yb3 + b1)

x2 = 0

Putting the above in normal form gives

−
9 arctan

(
y
x

)2
x4a3 + 18 arctan

(
y
x

)2
x2y2a3 + 9arctan

(
y
x

)2
y4a3 + 3arctan

(
y
x

)
x4a2 − 3 arctan

(
y
x

)
x4b3 + 6arctan

(
y
x

)
x3ya3 + 6arctan

(
y
x

)
x3yb2 − 3 arctan

(
y
x

)
x2y2a2 + 3arctan

(
y
x

)
x2y2b3 + 6arctan

(
y
x

)
x2yb1 − 6 arctan

(
y
x

)
x y2a1 + 3b2x4 − 3x3ya2 + 3x3yb3 − 3x2y2a3 + 4x3b1 − 4x2ya1

x4

= 0
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Setting the numerator to zero gives

(6E)

−9 arctan
(y
x

)2
x4a3 − 18 arctan

(y
x

)2
x2y2a3 − 9 arctan

(y
x

)2
y4a3

− 3 arctan
(y
x

)
x4a2 + 3arctan

(y
x

)
x4b3 − 6 arctan

(y
x

)
x3ya3

− 6 arctan
(y
x

)
x3yb2 + 3arctan

(y
x

)
x2y2a2 − 3 arctan

(y
x

)
x2y2b3

− 6 arctan
(y
x

)
x2yb1 + 6arctan

(y
x

)
x y2a1 − 3b2x4

+ 3x3ya2 − 3x3yb3 + 3x2y2a3 − 4x3b1 + 4x2ya1 = 0

Simplifying the above gives

(6E)

−27 arctan
(y
x

)2
x4y2a3 − 27 arctan

(y
x

)2
x2y4a3

− 6 arctan
(y
x

)
x5ya3 − 6 arctan

(y
x

)
x5yb2 − 6 arctan

(y
x

)
x3y3a3

− 6 arctan
(y
x

)
x3y3b2 + 3arctan

(y
x

)
x2y4a2 − 3 arctan

(y
x

)
x2y4b3

− 6 arctan
(y
x

)
x4yb1 + 6arctan

(y
x

)
x3y2a1 − 6 arctan

(y
x

)
x2y3b1

+ 6arctan
(y
x

)
x y4a1 − 9 arctan

(y
x

)2
x6a3 − 9 arctan

(y
x

)2
y6a3

− 3 arctan
(y
x

)
x6a2 + 3arctan

(y
x

)
x6b3 − 3x6b2 − 4x5b1

+ 3x5ya2 − 3x5yb3 + 3x4y2a3 − 3x4y2b2 + 3x3y3a2
− 3x3y3b3 + 3x2y4a3 + 4x4ya1 − 4x3y2b1 + 4x2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, arctan

(y
x

)}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, arctan
(y
x

)
= v3

}
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The above PDE (6E) now becomes

(7E)

−9v23v61a3 − 27v23v41v22a3 − 27v23v21v42a3 − 9v23v62a3 − 3v3v61a2 + 3v3v21v42a2
− 6v3v51v2a3 − 6v3v31v32a3 − 6v3v51v2b2 − 6v3v31v32b2 + 3v3v61b3
− 3v3v21v42b3 + 6v3v31v22a1 + 6v3v1v42a1 + 3v51v2a2 + 3v31v32a2
+ 3v41v22a3 + 3v21v42a3 − 6v3v41v2b1 − 6v3v21v32b1 − 3v61b2 − 3v41v22b2
− 3v51v2b3 − 3v31v32b3 + 4v41v2a1 + 4v21v32a1 − 4v51b1 − 4v31v22b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

−9v23v61a3 + (−3a2 + 3b3) v61v3 − 3v61b2 + (−6a3 − 6b2) v51v2v3
+ (3a2 − 3b3) v51v2 − 4v51b1 − 27v23v41v22a3 + (3a3 − 3b2) v41v22
− 6v3v41v2b1 + 4v41v2a1 + (−6a3 − 6b2) v31v32v3 + (3a2 − 3b3) v31v32
+ 6v3v31v22a1 − 4v31v22b1 − 27v23v21v42a3 + (3a2 − 3b3) v21v42v3
+ 3v21v42a3 − 6v3v21v32b1 + 4v21v32a1 + 6v3v1v42a1 − 9v23v62a3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a1 = 0
6a1 = 0

−27a3 = 0
−9a3 = 0
3a3 = 0

−6b1 = 0
−4b1 = 0
−3b2 = 0

−3a2 + 3b3 = 0
3a2 − 3b3 = 0

−6a3 − 6b2 = 0
3a3 − 3b2 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
3 arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

x2

)
(x)

=
−3 arctan

(
y
x

)
x2 − 3 arctan

(
y
x

)
y2

x
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3 arctan
( y
x

)
x2−3 arctan

( y
x

)
y2

x

dy
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Which results in

S = −
ln
(
arctan

(
y
x

))
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
3 arctan

(
y
x

)
x2 + 3arctan

(
y
x

)
y2 + xy

x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

3 (x2 + y2) arctan
(
y
x

)
Sy = − x

3 (x2 + y2) arctan
(
y
x

)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−
ln
(
arctan

(
y
x

))
3 = − ln (x) + c1
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Which simplifies to

−
ln
(
arctan

(
y
x

))
3 = − ln (x) + c1

Which gives

y = tan
(
e−3c1x3)x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 3 arctan
( y
x

)
x2+3arctan

( y
x

)
y2+xy

x2
dS
dR

= − 1
R

R = x

S = −
ln
(
arctan

(
y
x

))
3

Summary
The solution(s) found are the following

(1)y = tan
(
e−3c1x3)x
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Figure 11: Slope field plot

Verification of solutions

y = tan
(
e−3c1x3)x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 12� �
dsolve(x^2*diff(y(x),x)=3*(x^2+y(x)^2)*arctan(y(x)/x)+x*y(x),y(x), singsol=all)� �

y(x) = tan
(
c1x

3)x
3 Solution by Mathematica
Time used: 0.179 (sec). Leaf size: 37� �
DSolve[x^2*y'[x]==3*(x^2+y[x]^2)*Arctan[y[x]/x]+x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[∫ y(x)

x

1

1
Arctan(K[1]) (K[1]2 + 1)dK[1] = 3 log(x) + c1, y(x)

]
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1.4 problem 1.d
1.4.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 46
1.4.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 48
1.4.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 50
1.4.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 55

Internal problem ID [3083]
Internal file name [OUTPUT/2575_Sunday_June_05_2022_03_20_14_AM_70604598/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 1.d.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

sin
(y
x

)
y′x− sin

(y
x

)
y = x

1.4.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = y

x
+ 1

sin
(
y
x

) (A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= sin

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = 1
x sin (u (x))

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
x sin (u)

Where f(x) = 1
x
and g(u) = 1

sin(u) . Integrating both sides gives

1
1

sin(u)
du = 1

x
dx

∫ 1
1

sin(u)
du =

∫ 1
x
dx

− cos (u) = ln (x) + c1

The solution is
− cos (u(x))− ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

− cos
(y
x

)
− ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)− cos
(y
x

)
− ln (x)− c1 = 0

Figure 12: Slope field plot

Verification of solutions

− cos
(y
x

)
− ln (x)− c1 = 0

Verified OK.

1.4.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

sin (u(x)) (u′(x)x+ u(x))x− sin (u(x))u(x)x = x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 1
sin (u)x
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Where f(x) = 1
x
and g(u) = 1

sin(u) . Integrating both sides gives

1
1

sin(u)
du = 1

x
dx

∫ 1
1

sin(u)
du =

∫ 1
x
dx

− cos (u) = ln (x) + c2

The solution is
− cos (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

− cos
(y
x

)
− ln (x)− c2 = 0

− cos
(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)− cos
(y
x

)
− ln (x)− c2 = 0

Figure 13: Slope field plot
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Verification of solutions

− cos
(y
x

)
− ln (x)− c2 = 0

Verified OK.

1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
sin
(
y
x

)
y + x

sin
(
y
x

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
sin
(
y
x

)
y + x

sin
(
y
x

)
x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

sin
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − sin (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1ecos(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1ecos

( y
x

)

Which simplifies to

−1
x
= c1ecos

( y
x

)

Which gives

y = arccos
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin
( y
x

)
y+x

sin
( y
x

)
x

dS
dR

= − sin (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arccos
(
ln
(
− 1
c1x

))
x
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Figure 14: Slope field plot

Verification of solutions

y = arccos
(
ln
(
− 1
c1x

))
x

Verified OK.

1.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
sin
(y
x

)
x
)
dy =

(
sin
(y
x

)
y + x

)
dx(

− sin
(y
x

)
y − x

)
dx+

(
sin
(y
x

)
x
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sin
(y
x

)
y − x

N(x, y) = sin
(y
x

)
x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sin

(y
x

)
y − x

)
= −

cos
(
y
x

)
y

x
− sin

(y
x

)
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And
∂N

∂x
= ∂

∂x

(
sin
(y
x

)
x
)

= −
cos
(
y
x

)
y

x
+ sin

(y
x

)
Since ∂M

∂y
6= ∂N

∂x
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
=

csc
(
y
x

)
x

((
−
cos
(
y
x

)
y

x
− sin

(y
x

))
−

(
−
cos
(
y
x

)
y

x
+ sin

(y
x

)))
= −2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
− sin

(y
x

)
y − x

)
=

− sin
(
y
x

)
y − x

x2

And

N = µN

= 1
x2

(
sin
(y
x

)
x
)

=
sin
(
y
x

)
x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− sin
(
y
x

)
y − x

x2

)
+
(
sin
(
y
x

)
x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ − sin
(
y
x

)
y − x

x2 dx

(3)φ = ln
(
1
x

)
− cos

(y
x

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
=

sin
(
y
x

)
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= sin
( y
x

)
x

. Therefore equation (4) becomes

(5)
sin
(
y
x

)
x

=
sin
(
y
x

)
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln
(
1
x

)
− cos

(y
x

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln
(
1
x

)
− cos

(y
x

)
Summary
The solution(s) found are the following

(1)ln
(
1
x

)
− cos

(y
x

)
= c1

Figure 15: Slope field plot

Verification of solutions

ln
(
1
x

)
− cos

(y
x

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve(x*sin(y(x)/x)*diff(y(x),x)=y(x)*sin(y(x)/x)+x,y(x), singsol=all)� �

y(x) = (π + 2arcsin (ln (x) + c1))x
2

3 Solution by Mathematica
Time used: 0.435 (sec). Leaf size: 34� �
DSolve[x*Sin[y[x]/x]*y'[x]==y[x]*Sin[y[x]/x]+x,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos(− log(x)− c1)
y(x) → x arccos(− log(x)− c1)
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1.5 problem 1.
1.5.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 61
1.5.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 63
1.5.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 65

Internal problem ID [3084]
Internal file name [OUTPUT/2576_Sunday_June_05_2022_03_20_17_AM_58252680/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 1..
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`]]

xy′ − y − 2 e−
y
x = 0

1.5.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = y

x
+ 2 e− y

x

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 2
x

b = 1

f

(
bx

y

)
= e

y
x

Substituting the above in (2) results in the u(x) ode as

u′(x) = 2 e−u(x)

x2

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2 e−u

x2

Where f(x) = 2
x2 and g(u) = e−u. Integrating both sides gives

1
e−u

du = 2
x2 dx∫ 1

e−u
du =

∫ 2
x2 dx

eu = −2
x
+ c1

The solution is

eu(x) + 2
x
− c1 = 0

Therefore the solution is found using y = ux. Hence

e
y
x + 2

x
− c1 = 0

Summary
The solution(s) found are the following

(1)e
y
x + 2

x
− c1 = 0
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Figure 16: Slope field plot

Verification of solutions

e
y
x + 2

x
− c1 = 0

Verified OK.

1.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− 2 e−u(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= 2 e−u

x2

Where f(x) = 2
x2 and g(u) = e−u. Integrating both sides gives

1
e−u

du = 2
x2 dx
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∫ 1
e−u

du =
∫ 2

x2 dx

eu = −2
x
+ c2

The solution is

eu(x) + 2
x
− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

e
y
x + 2

x
− c2 = 0

x e y
x − c2x+ 2

x
= 0

Summary
The solution(s) found are the following

(1)x e y
x − c2x+ 2

x
= 0

Figure 17: Slope field plot
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Verification of solutions

x e y
x − c2x+ 2

x
= 0

Verified OK.

1.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + 2 e− y
x

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2 e− y
x

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= e y

x

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= e y

x

2 + c1

Which simplifies to

−1
x
= e y

x

2 + c1

Which gives

y = x ln
(
−2(c1x+ 1)

x

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+2 e−
y
x

x
dS
dR

= eR
2

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = x ln
(
−2(c1x+ 1)

x

)
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Figure 18: Slope field plot

Verification of solutions

y = x ln
(
−2(c1x+ 1)

x

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(x*diff(y(x),x)=y(x)+2*exp(- y(x)/x),y(x), singsol=all)� �

y(x) =
(
ln (2) + ln

(
c1x− 1

x

))
x

3 Solution by Mathematica
Time used: 0.618 (sec). Leaf size: 16� �
DSolve[x*y'[x]==y[x]+2*Exp[- y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x log
(
−2
x
+ c1

)
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1.6 problem 3.a
1.6.1 Solving as homogeneousTypeC ode . . . . . . . . . . . . . . . . 72
1.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 74
1.6.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 78

Internal problem ID [3085]
Internal file name [OUTPUT/2577_Sunday_June_05_2022_03_20_19_AM_9450860/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 3.a.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (y + x)2 = 0

1.6.1 Solving as homogeneousTypeC ode

Let

z = y + x (1)

Then

z′(x) = y′ + 1

Therefore

y′ = z′(x)− 1

Hence the given ode can now be written as

z′(x)− 1 = z2
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This is separable first order ode. Integrating∫
dx =

∫ 1
z2 + 1dz

x+ c1 = arctan (z)

Replacing z back by its value from (1) then the above gives the solution as

y = −x+ tan (x+ c1)

y = −x+ tan (x+ c1)

Summary
The solution(s) found are the following

(1)y = −x+ tan (x+ c1)

Figure 19: Slope field plot

Verification of solutions

y = −x+ tan (x+ c1)

Verified OK.
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1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = (y + x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 9: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 1
η(x, y) = −1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= −1
1

= −1

This is easily solved to give

y = −x+ c1

Where now the coordinate R is taken as the constant of integration. Hence

R = y + x

And S is found from

dS = dx

ξ

= dx

1

Integrating gives

S =
∫

dx

T

= x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = (y + x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 1
Sx = 1
Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

1 + (y + x)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R2 + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x = arctan (y + x) + c1

Which simplifies to

x = arctan (y + x) + c1
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Which gives

y = −x− tan (−x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= (y + x)2 dS
dR

= 1
R2+1

R = y + x

S = x

Summary
The solution(s) found are the following

(1)y = −x− tan (−x+ c1)
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Figure 20: Slope field plot

Verification of solutions

y = −x− tan (−x+ c1)

Verified OK.

1.6.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= (y + x)2

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 2xy + y2

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2, f1(x) = 2x and f2(x) = 1. Let

y = −u′

f2u

= −u′

u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 2x
f 2
2 f0 = x2

Substituting the above terms back in equation (2) gives

u′′(x)− 2xu′(x) + x2u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex2
2 (c1 cos (x) + c2 sin (x))

The above shows that

u′(x) = ex2
2 ((c1x+ c2) cos (x) + sin (x) (c2x− c1))

Using the above in (1) gives the solution

y = −(c1x+ c2) cos (x) + sin (x) (c2x− c1)
c1 cos (x) + c2 sin (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)
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Summary
The solution(s) found are the following

(1)y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)

Figure 21: Slope field plot

Verification of solutions

y = (−c3x− 1) cos (x)− sin (x) (−c3 + x)
c3 cos (x) + sin (x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)=(x+y(x))^2,y(x), singsol=all)� �

y(x) = −x− tan (c1 − x)

3 Solution by Mathematica
Time used: 0.735 (sec). Leaf size: 14� �
DSolve[y'[x]==(x+y[x])^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ tan(x+ c1)
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1.7 problem 3.b
1.7.1 Solving as first order ode lie symmetry calculated ode . . . . . . 82

Internal problem ID [3086]
Internal file name [OUTPUT/2578_Sunday_June_05_2022_03_20_22_AM_29566835/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 3.b.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − sin (x− y + 1)2 = 0

1.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = sin (x− y + 1)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + sin (x− y + 1)2 (b3 − a2)− sin (x− y + 1)4 a3
− 2 sin (x− y + 1) cos (x− y + 1) (xa2 + ya3 + a1)
+ 2 sin (x− y + 1) cos (x− y + 1) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− sin (x− y + 1)4 a3 − 2 sin (x− y + 1) cos (x− y + 1)xa2
+ 2 sin (x− y + 1) cos (x− y + 1)xb2 − 2 sin (x− y + 1) cos (x− y + 1) ya3
+ 2 sin (x− y + 1) cos (x− y + 1) yb3 − sin (x− y + 1)2 a2 + sin (x− y + 1)2 b3
− 2 sin (x− y+1) cos (x− y+1) a1 +2 sin (x− y+1) cos (x− y+1) b1 + b2 = 0

Setting the numerator to zero gives

(6E)
− sin (x− y + 1)4 a3 − 2 sin (x− y + 1) cos (x− y + 1)xa2
+2 sin (x− y+1) cos (x− y+1)xb2 − 2 sin (x− y+1) cos (x− y+1) ya3
+ 2 sin (x− y + 1) cos (x− y + 1) yb3 − sin (x− y + 1)2 a2
+ sin (x− y + 1)2 b3 − 2 sin (x− y + 1) cos (x− y + 1) a1
+ 2 sin (x− y + 1) cos (x− y + 1) b1 + b2 = 0

Simplifying the above gives

(6E)
b2 −

3a3
8 − a2

2 + b3
2 + a3 cos (2x− 2y + 2)

2 − a3 cos (4x− 4y + 4)
8

− xa2 sin (2x− 2y + 2) + xb2 sin (2x− 2y + 2)− ya3 sin (2x− 2y + 2)

+ yb3 sin (2x− 2y + 2) + a2 cos (2x− 2y + 2)
2 − b3 cos (2x− 2y + 2)

2
− a1 sin (2x− 2y + 2) + b1 sin (2x− 2y + 2) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (2x− 2y + 2) , cos (4x− 4y + 4) , sin (2x− 2y + 2)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (2x− 2y + 2) = v3, cos (4x− 4y + 4) = v4, sin (2x− 2y + 2) = v5}
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The above PDE (6E) now becomes

(7E)b2 −
3
8a3 −

1
2a2 +

1
2b3 +

1
2a3v3 −

1
8a3v4 − v1a2v5 + v1b2v5

− v2a3v5 + v2b3v5 +
1
2a2v3 −

1
2b3v3 − a1v5 + b1v5 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)b2 −
3a3
8 − a2

2 + b3
2 +

(
a3
2 + a2

2 − b3
2

)
v3 −

a3v4
8

+ (−a1 + b1) v5 + (−a2 + b2) v5v1 + (−a3 + b3) v5v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3
8 = 0

−a1 + b1 = 0
−a2 + b2 = 0
−a3 + b3 = 0

a3
2 + a2

2 − b3
2 = 0

b2 −
3a3
8 − a2

2 + b3
2 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
sin (x− y + 1)2

)
(1)

= 1− sin (x)2 cos (y)2 cos (1)2 − 2 sin (x)2 cos (y) cos (1) sin (y) sin (1) + 2 sin (x) cos (y) cos (1)2 cos (x) sin (y)− 2 sin (x) cos (y)2 cos (1) cos (x) sin (1)− sin (x)2 sin (y)2 sin (1)2 + 2 sin (x) sin (y)2 sin (1) cos (x) cos (1)− 2 sin (x) sin (y) sin (1)2 cos (x) cos (y)− cos (x)2 sin (y)2 cos (1)2 + 2 cos (x)2 sin (y) cos (1) cos (y) sin (1)− cos (x)2 cos (y)2 sin (1)2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1− sin (x)2 cos (y)2 cos (1)2 − 2 sin (x)2 cos (y) cos (1) sin (y) sin (1) + 2 sin (x) cos (y) cos (1)2 cos (x) sin (y)− 2 sin (x) cos (y)2 cos (1) cos (x) sin (1)− sin (x)2 sin (y)2 sin (1)2 + 2 sin (x) sin (y)2 sin (1) cos (x) cos (1)− 2 sin (x) sin (y) sin (1)2 cos (x) cos (y)− cos (x)2 sin (y)2 cos (1)2 + 2 cos (x)2 sin (y) cos (1) cos (y) sin (1)− cos (x)2 cos (y)2 sin (1)2
dy

Which results in

S = − tan (x− y + 1)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (x− y + 1)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sec (x− y + 1)2

Sy = sec (x− y + 1)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− tan (x− y + 1) = −x+ c1

Which simplifies to

− tan (x− y + 1) = −x+ c1

Which gives

y = x+ 1 + arctan (−x+ c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (x− y + 1)2 dS
dR

= −1

R = x

S = − tan (x− y + 1)

Summary
The solution(s) found are the following

(1)y = x+ 1 + arctan (−x+ c1)
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Figure 22: Slope field plot

Verification of solutions

y = x+ 1 + arctan (−x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �

88



3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 13� �
dsolve(diff(y(x),x)=sin(x-y(x)+1)^2,y(x), singsol=all)� �

y(x) = x+ 1 + arctan (c1 − x)

3 Solution by Mathematica
Time used: 0.344 (sec). Leaf size: 33� �
DSolve[y'[x]==Sin[x-y[x]+1]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve[2y(x)− 2(tan(−y(x) + x+ 1)− arctan(tan(−y(x) + x+ 1))) = c1, y(x)]
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1.8 problem 5.a
1.8.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 90
1.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 93

Internal problem ID [3087]
Internal file name [OUTPUT/2579_Sunday_June_05_2022_03_20_34_AM_14083881/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 5.a.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ y + 4
x− y − 6 = 0

1.8.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − X + x0 + Y (X) + y0 + 4

−X − x0 + Y (X) + y0 + 6

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −5

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − X + Y (X)

−X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − X + Y

−X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = X+Y and N = X−Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u− 1

u− 1
du
dX =

−u(X)−1
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)−1
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 1 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 + 1 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 + 1
X (u− 1)
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Where f(X) = − 1
X

and g(u) = u2+1
u−1 . Integrating both sides gives

1
u2+1
u−1

du = − 1
X

dX

∫ 1
u2+1
u−1

du =
∫

− 1
X

dX

ln (u2 + 1)
2 − arctan (u) = − ln (X) + c2

The solution is

ln
(
u(X)2 + 1

)
2 − arctan (u(X)) + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

Y (X)2
X2 + 1

)
2 − arctan

(
Y (X)
X

)
+ ln (X)− c2 = 0

Using the solution for Y (X)

ln
(

Y (X)2
X2 + 1

)
2 − arctan

(
Y (X)
X

)
+ ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 5
X = x+ 1

Then the solution in y becomes

ln
(

(y+5)2

(x−1)2 + 1
)

2 − arctan
(
y + 5
x− 1

)
+ ln (x− 1)− c2 = 0
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Summary
The solution(s) found are the following

(1)
ln
(

(y+5)2

(x−1)2 + 1
)

2 − arctan
(
y + 5
x− 1

)
+ ln (x− 1)− c2 = 0

Figure 23: Slope field plot

Verification of solutions

ln
(

(y+5)2

(x−1)2 + 1
)

2 − arctan
(
y + 5
x− 1

)
+ ln (x− 1)− c2 = 0

Verified OK.

1.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − x+ y + 4
−x+ y + 6

y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(x+ y + 4) (b3 − a2)

−x+ y + 6 − (x+ y + 4)2 a3
(−x+ y + 6)2

−
(
− 1
−x+ y + 6 − x+ y + 4

(−x+ y + 6)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y + 6 + x+ y + 4

(−x+ y + 6)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 + x2b2 − x2b3 − 2xya2 + 2xya3 + 2xyb2 + 2xyb3 − y2a2 − y2a3 − y2b2 + y2b3 − 12xa2 + 8xa3 + 2xb1 + 10xb2 + 2xb3 − 2ya1 − 10ya2 − 2ya3 − 12yb2 + 8yb3 − 10a1 − 24a2 + 16a3 − 2b1 − 36b2 + 24b3
(x− y − 6)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 − x2b2 + x2b3 + 2xya2 − 2xya3 − 2xyb2 − 2xyb3 + y2a2
+ y2a3 + y2b2 − y2b3 + 12xa2 − 8xa3 − 2xb1 − 10xb2 − 2xb3 + 2ya1 + 10ya2
+ 2ya3 + 12yb2 − 8yb3 + 10a1 + 24a2 − 16a3 + 2b1 + 36b2 − 24b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 + 2a2v1v2 + a2v

2
2 − a3v

2
1 − 2a3v1v2 + a3v

2
2 − b2v

2
1 − 2b2v1v2 + b2v

2
2

+ b3v
2
1 − 2b3v1v2 − b3v

2
2 + 2a1v2 + 12a2v1 + 10a2v2 − 8a3v1 + 2a3v2 − 2b1v1

−10b2v1+12b2v2−2b3v1−8b3v2+10a1+24a2−16a3+2b1+36b2−24b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v21 + (2a2 − 2a3 − 2b2 − 2b3) v1v2
+ (12a2 − 8a3 − 2b1 − 10b2 − 2b3) v1 + (a2 + a3 + b2 − b3) v22
+(2a1+10a2+2a3+12b2−8b3) v2+10a1+24a2−16a3+2b1+36b2−24b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a2 − a3 − b2 + b3 = 0
a2 + a3 + b2 − b3 = 0

2a2 − 2a3 − 2b2 − 2b3 = 0
2a1 + 10a2 + 2a3 + 12b2 − 8b3 = 0
12a2 − 8a3 − 2b1 − 10b2 − 2b3 = 0

10a1 + 24a2 − 16a3 + 2b1 + 36b2 − 24b3 = 0

Solving the above equations for the unknowns gives

a1 = −5b2 − b3

a2 = b3

a3 = −b2

b1 = −b2 + 5b3
b2 = b2

b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 5

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 5−
(
− x+ y + 4
−x+ y + 6

)
(x− 1)

= −x2 − y2 + 2x− 10y − 26
x− y − 6

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2−y2+2x−10y−26
x−y−6

dy

Which results in

S = ln (x2 + y2 − 2x+ 10y + 26)
2 +

2(1− x) arctan
(2y+10

2x−2

)
2x− 2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − x+ y + 4
−x+ y + 6

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ y + 4
x2 + y2 − 2x+ 10y + 26

Sy =
−x+ y + 6

x2 + y2 − 2x+ 10y + 26

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2 + 10y − 2x+ 26)
2 − arctan

(
y + 5
x− 1

)
= c1

Which simplifies to

ln (y2 + x2 + 10y − 2x+ 26)
2 − arctan

(
y + 5
x− 1

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − x+y+4
−x+y+6

dS
dR

= 0

R = x

S = ln (x2 + y2 − 2x+ 10y + 26)
2 − arctan

(
y + 5
x− 1

)

Summary
The solution(s) found are the following

(1)ln (y2 + x2 + 10y − 2x+ 26)
2 − arctan

(
y + 5
x− 1

)
= c1
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Figure 24: Slope field plot

Verification of solutions

ln (y2 + x2 + 10y − 2x+ 26)
2 − arctan

(
y + 5
x− 1

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 31� �
dsolve(diff(y(x),x)=(x+y(x)+4)/(x-y(x)-6),y(x), singsol=all)� �

y(x) = −5− tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 1) + 2c1

))
(x− 1)

3 Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 58� �
DSolve[y'[x]==(x+y[x]+4)/(x-y[x]-6),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2 arctan

(
y(x) + x+ 4
y(x)− x+ 6

)
+ log

(
x2 + y(x)2 + 10y(x)− 2x+ 26

2(x− 1)2

)
+ 2 log(x− 1) + c1 = 0, y(x)

]
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1.9 problem 5.b
1.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 101

Internal problem ID [3088]
Internal file name [OUTPUT/2580_Sunday_June_05_2022_03_20_38_AM_82893986/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37
Problem number: 5.b.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − x+ y + 4
x+ y − 6 = 0

1.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ y + 4
x+ y − 6

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x+ y + 4) (b3 − a2)

x+ y − 6 − (x+ y + 4)2 a3
(x+ y − 6)2

−
(

1
x+ y − 6 − x+ y + 4

(x+ y − 6)2
)
(xa2 + ya3 + a1)

−
(

1
x+ y − 6 − x+ y + 4

(x+ y − 6)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a2 + x2a3 − x2b2 − x2b3 + 2xya2 + 2xya3 − 2xyb2 − 2xyb3 + y2a2 + y2a3 − y2b2 − y2b3 − 12xa2 + 8xa3 + 2xb2 + 2xb3 − 2ya2 − 2ya3 + 12yb2 − 8yb3 − 10a1 − 24a2 + 16a3 − 10b1 − 36b2 + 24b3
(x+ y − 6)2

= 0

Setting the numerator to zero gives

(6E)−x2a2 − x2a3 + x2b2 + x2b3 − 2xya2 − 2xya3 + 2xyb2 + 2xyb3 − y2a2
− y2a3 + y2b2 + y2b3 + 12xa2 − 8xa3 − 2xb2 − 2xb3 + 2ya2 + 2ya3
− 12yb2 + 8yb3 + 10a1 + 24a2 − 16a3 + 10b1 + 36b2 − 24b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1 − 2a2v1v2 − a2v

2
2 − a3v

2
1 − 2a3v1v2 − a3v

2
2 + b2v

2
1 + 2b2v1v2

+ b2v
2
2 + b3v

2
1 + 2b3v1v2 + b3v

2
2 + 12a2v1 + 2a2v2 − 8a3v1 + 2a3v2 − 2b2v1

− 12b2v2 − 2b3v1 + 8b3v2 + 10a1 + 24a2 − 16a3 + 10b1 + 36b2 − 24b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 + b2 + b3) v21 + (−2a2 − 2a3 + 2b2 + 2b3) v1v2
+ (12a2 − 8a3 − 2b2 − 2b3) v1 + (−a2 − a3 + b2 + b3) v22
+ (2a2 +2a3 − 12b2 +8b3) v2 +10a1 +24a2 − 16a3 +10b1 +36b2 − 24b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 − 2a3 + 2b2 + 2b3 = 0
−a2 − a3 + b2 + b3 = 0

2a2 + 2a3 − 12b2 + 8b3 = 0
12a2 − 8a3 − 2b2 − 2b3 = 0

10a1 + 24a2 − 16a3 + 10b1 + 36b2 − 24b3 = 0

Solving the above equations for the unknowns gives

a1 = −2b3 − b1

a2 = b3

a3 = b3

b1 = b1

b2 = b3

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
x+ y + 4
x+ y − 6

)
(−1)

= 2x+ 2y − 2
x+ y − 6

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x+2y−2
x+y−6

dy

Which results in

S = y

2 − 5 ln (x− 1 + y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ y + 4
x+ y − 6

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 5
2x+ 2y − 2

Sy =
x+ y − 6
2x+ 2y − 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

2 − 5 ln (y + x− 1)
2 = x

2 + c1

Which simplifies to

y

2 − 5 ln (y + x− 1)
2 = x

2 + c1

Which gives

y = −5 LambertW
(
−e− 2x

5 + 1
5−

2c1
5

5

)
− x+ 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+y+4
x+y−6

dS
dR

= 1
2

R = x

S = y

2 − 5 ln (x− 1 + y)
2

Summary
The solution(s) found are the following

(1)y = −5 LambertW
(
−e− 2x

5 + 1
5−

2c1
5

5

)
− x+ 1
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Figure 25: Slope field plot

Verification of solutions

y = −5 LambertW
(
−e− 2x

5 + 1
5−

2c1
5

5

)
− x+ 1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)=(x+y(x)+4)/(x+y(x)-6),y(x), singsol=all)� �

y(x) = −x− 5 LambertW
(
−c1e−

2x
5 + 1

5

5

)
+ 1

3 Solution by Mathematica
Time used: 4.019 (sec). Leaf size: 35� �
DSolve[y'[x]==(x+y[x]+4)/(x+y[x]-6),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −5W
(
−e−

2x
5 −1+c1

)
− x+ 1

y(x) → 1− x
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2.1 problem 1
2.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 110
2.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 115
2.1.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 119

Internal problem ID [3089]
Internal file name [OUTPUT/2581_Sunday_June_05_2022_03_20_40_AM_2961885/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _exact , _rational , [_Abel , `2nd

type `, `class B`]]

(
x+ 2

y

)
y′ + y = 0

2.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy + 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy + 2 − y4a3

(xy + 2)2
− y3(xa2 + ya3 + a1)

(xy + 2)2

−
(
− 2y
xy + 2 + y2x

(xy + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 − 2y4a3 + x y2b1 − y3a1 + 8xyb2 + 2y2a2 + 2y2b3 + 4yb1 + 4b2
(xy + 2)2

= 0

Setting the numerator to zero gives

(6E)2x2y2b2 − 2y4a3 + x y2b1 − y3a1 + 8xyb2 + 2y2a2 + 2y2b3 + 4yb1 + 4b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 + 2a2v22 + 8b2v1v2 + 2b3v22 + 4b1v2 + 4b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21v22 + b1v1v
2
2 + 8b2v1v2 − 2a3v42 − a1v

3
2 + (2a2 + 2b3) v22 + 4b1v2 + 4b2 = 0

111



Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−a1 = 0
−2a3 = 0
4b1 = 0
2b2 = 0
4b2 = 0
8b2 = 0

2a2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy + 2

)
(−x)

= 2y
xy + 2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y
xy+2

dy

Which results in

S = xy

2 + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy + 2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

2
Sy =

x

2 + 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx

2 + ln (y) = c1

Which simplifies to
yx

2 + ln (y) = c1

Which gives

y = e−LambertW
(

ec1x
2

)
+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy+2
dS
dR

= 0

R = x

S = xy

2 + ln (y)
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Summary
The solution(s) found are the following

(1)y = e−LambertW
(

ec1x
2

)
+c1

Figure 26: Slope field plot

Verification of solutions

y = e−LambertW
(

ec1x
2

)
+c1

Verified OK.

2.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x+ 2

y

)
dy = (−y) dx

(y) dx+
(
x+ 2

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = x+ 2
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1
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And
∂N

∂x
= ∂

∂x

(
x+ 2

y

)
= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x+ 2
y
. Therefore equation (4) becomes

(5)x+ 2
y
= x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 2
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (2
y

)
dy

f(y) = 2 ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + 2 ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + 2 ln (y)

The solution becomes

y = e
−LambertW

(
x e

c1
2

2

)
+ c1

2

Summary
The solution(s) found are the following

(1)y = e
−LambertW

(
x e

c1
2

2

)
+ c1

2

Figure 27: Slope field plot
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Verification of solutions

y = e
−LambertW

(
x e

c1
2

2

)
+ c1

2

Verified OK.

2.1.3 Maple step by step solution

Let’s solve(
x+ 2

y

)
y′ + y = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
ydx+ f1(y)

• Evaluate integral
F (x, y) = xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x+ 2

y
= x+ d

dy
f1(y)
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• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2

y

• Solve for f1(y)
f1(y) = 2 ln (y)

• Substitute f1(y) into equation for F (x, y)
F (x, y) = xy + 2 ln (y)

• Substitute F (x, y) into the solution of the ODE
xy + 2 ln (y) = c1

• Solve for y

y = e
−LambertW

(
x e

c1
2

2

)
+ c1

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve((x+2/y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) =
2LambertW

(
x e

c1
2

2

)
x
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3 Solution by Mathematica
Time used: 10.621 (sec). Leaf size: 58� �
DSolve[(x+2/y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
2W
(
−1

2

√
ec1x2

)
x

y(x) →
2W
(

1
2

√
ec1x2

)
x

y(x) → 0

121



2.2 problem 2
2.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 122

Internal problem ID [3090]
Internal file name [OUTPUT/2582_Sunday_June_05_2022_03_20_43_AM_35899133/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

sin (x) tan (y) + cos (x) sec (y)2 y′ = −1

2.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

cos (x) sec (y)2
)
dy = (− sin (x) tan (y)− 1) dx

(sin (x) tan (y) + 1) dx+
(
cos (x) sec (y)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sin (x) tan (y) + 1
N(x, y) = cos (x) sec (y)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(sin (x) tan (y) + 1)

= sin (x) sec (y)2

And
∂N

∂x
= ∂

∂x

(
cos (x) sec (y)2

)
= − sin (x) sec (y)2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (x) cos (y)2

((
sin (x)

(
1 + tan (y)2

))
−
(
− sin (x) sec (y)2

))
= 2 tan (x)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2 tan(x) dx

The result of integrating gives

µ = e−2 ln(cos(x))

= sec (x)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sec (x)2 (sin (x) tan (y) + 1)
= (sin (x) tan (y) + 1) sec (x)2

And

N = µN

= sec (x)2
(
cos (x) sec (y)2

)
= sec (x) sec (y)2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(sin (x) tan (y) + 1) sec (x)2
)
+
(
sec (x) sec (y)2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(sin (x) tan (y) + 1) sec (x)2 dx

(3)φ = sec (x) tan (y) + tan (x) + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sec (x)

(
1 + tan (y)2

)
+ f ′(y)

= sec (x) sec (y)2 + f ′(y)

But equation (2) says that ∂φ
∂y

= sec (x) sec (y)2. Therefore equation (4) becomes

(5)sec (x) sec (y)2 = sec (x) sec (y)2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sec (x) tan (y) + tan (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sec (x) tan (y) + tan (x)

Summary
The solution(s) found are the following

(1)sec (x) tan (y) + tan (x) = c1
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Figure 28: Slope field plot

Verification of solutions

sec (x) tan (y) + tan (x) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE`, diff(y(x), x)+2*y(x)/sin(2*x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

-> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*sin(x)/cos(x), y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

`, `-> Computing symmetries using: way = HINT
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((sin(x)*tan(y(x))+1)+(cos(x)*sec(y(x))^2)*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found

3 Solution by Mathematica
Time used: 2.318 (sec). Leaf size: 54� �
DSolve[(Sin[x]*Tan[y[x]]+1)+(Cos[x]*Sec[y[x]]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arctan(sin(x) + c1 cos(x))

y(x) → −1
2π
√
cos2(x) sec(x)

y(x) → 1
2π
√
cos2(x) sec(x)
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2.3 problem 3
2.3.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 129
2.3.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 131
2.3.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 134

Internal problem ID [3091]
Internal file name [OUTPUT/2583_Sunday_June_05_2022_03_20_59_AM_88936391/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational]

y +
(
x+ y3

)
y′ = x3

2.3.1 Solving as differentialType ode

Writing the ode as

y′ = −y + x3

x+ y3
(1)

Which becomes (
y3
)
dy = (−x) dy +

(
x3 − y

)
dx (2)

But the RHS is complete differential because

(−x) dy +
(
x3 − y

)
dx = d

(
1
4x

4 − xy

)
Hence (2) becomes

(
y3
)
dy = d

(
1
4x

4 − xy

)
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Integrating both sides gives gives the solution as

y4

4 = x4

4 − yx+ c1

Summary
The solution(s) found are the following

(1)y4

4 = x4

4 − yx+ c1

Figure 29: Slope field plot

Verification of solutions

y4

4 = x4

4 − yx+ c1

Verified OK.
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2.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3 + x

)
dy =

(
x3 − y

)
dx(

−x3 + y
)
dx+

(
y3 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 + y

N(x, y) = y3 + x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 + y

)
= 1

And
∂N

∂x
= ∂

∂x

(
y3 + x

)
= 1

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 + y dx

(3)φ = −1
4x

4 + xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= y3 + x. Therefore equation (4) becomes

(5)y3 + x = x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3
)
dy

f(y) = y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −1
4x

4 + xy + 1
4y

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
4x

4 + xy + 1
4y

4

Summary
The solution(s) found are the following

(1)y4

4 − x4

4 + yx = c1
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Figure 30: Slope field plot

Verification of solutions

y4

4 − x4

4 + yx = c1

Verified OK.

2.3.3 Maple step by step solution

Let’s solve
y + (x+ y3) y′ = x3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x3 + y) dx+ f1(y)

• Evaluate integral
F (x, y) = −x4

4 + xy + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y3 + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y3

• Solve for f1(y)

f1(y) = y4

4

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

4x
4 + xy + 1

4y
4

• Substitute F (x, y) into the solution of the ODE
−1

4x
4 + xy + 1

4y
4 = c1

• Solve for y
y = RootOf

(
_Z4 − x4 + 4_Zx− 4c1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
dsolve((y(x)-x^3)+(x+y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

−x4

4 + xy(x) + y(x)4

4 + c1 = 0
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3 Solution by Mathematica
Time used: 60.173 (sec). Leaf size: 1210� �
DSolve[(y[x]-x^3)+(x+y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√√√√ 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 −
3
√
3(x4+4c1)

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3
+
√√√√√√√

6
√
2x√√√√√√√

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3−
3
√
3(

x4+4c1
)

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3

− 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 +
3
√
3(x4+4c1)

3
√
9x2 +

√
3
√
27x4 + (x4 + 4c1) 3

√
2 3
√
3

y(x)

→

√√√√√√√
6
√
2x√√√√√√√

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3−
3
√
3(

x4+4c1
)

3
√
9x2 +

√
3
√
27x4 + (x4 + 4c1) 3

− 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 +
3
√
3(x4+4c1)

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3
−
√√√√ 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 −
3
√
3(x4+4c1)

3
√
9x2 +

√
3
√
27x4 + (x4 + 4c1) 3

√
2 3
√
3

y(x)

→

√√√√ 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 −
3
√
3(x4+4c1)

3
√

9x2 +
√
3
√
27x4 + (x4 + 4c1) 3

−
√√√√√√√− 6

√
2x√√√√√√√

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3−
3
√
3(

x4+4c1
)

3
√
9x2 +

√
3
√
27x4 + (x4 + 4c1) 3

− 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 +
3
√
3(x4+4c1)

3
√
9x2 +

√
3
√
27x4 + (x4 + 4c1) 3

√
2 3
√
3

y(x)

→

√√√√ 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 −
3
√
3(x4+4c1)

3
√

9x2 +
√
3
√
27x4 + (x4 + 4c1) 3

+
√√√√√√√− 6

√
2x√√√√√√√

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3−
3
√
3(

x4+4c1
)

3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3

− 3
√

9x2 +
√
3
√

27x4 + (x4 + 4c1) 3 +
3
√
3(x4+4c1)

3
√

9x2 +
√
3
√
27x4 + (x4 + 4c1) 3

√
2 3
√
3
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2.4 problem 4
Internal problem ID [3092]
Internal file name [OUTPUT/2584_Sunday_June_05_2022_03_21_02_AM_23832912/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

Unable to solve or complete the solution.

2y2 − (4− 2y + 4yx) y′ = 4x− 5

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((2*y(x)^2-4*x+5)=(4-2*y(x)+4*x*y(x))*diff(y(x),x),y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(2*y[x]^2-4*x+5)==(4-2*y[x]+4*x*y[x])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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2.5 problem 5
2.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 141
2.5.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 143
2.5.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 144
2.5.4 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 146
2.5.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 147
2.5.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 151
2.5.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 155

Internal problem ID [3093]
Internal file name [OUTPUT/2585_Sunday_June_05_2022_03_21_08_AM_57565474/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_order_ode_lie_symme-
try_lookup"

Maple gives the following as the ode type
[_separable]

y + y cos (yx) + (x+ x cos (yx)) y′ = 0

2.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −y

x
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Where f(x) = − 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = −1

x
dx∫ 1

y
dy =

∫
−1
x
dx

ln (y) = − ln (x) + c1

y = e− ln(x)+c1

= c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

Figure 31: Slope field plot

Verification of solutions

y = c1
x

Verified OK.
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2.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = 0

Hence the ode is

y′ + y

x
= 0

The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes

d
dxµy = 0
d
dx(xy) = 0

Integrating gives

xy = c1

Dividing both sides by the integrating factor µ = x results in

y = c1
x

Summary
The solution(s) found are the following

(1)y = c1
x

143



Figure 32: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

2.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x+ u(x)x cos
(
u(x)x2)+ (x+ x cos

(
u(x)x2)) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2u
x
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Where f(x) = − 2
x
and g(u) = u. Integrating both sides gives

1
u
du = −2

x
dx∫ 1

u
du =

∫
−2
x
dx

ln (u) = −2 ln (x) + c2

u = e−2 ln(x)+c2

= c2
x2

Therefore the solution y is

y = ux

= c2
x

Summary
The solution(s) found are the following

(1)y = c2
x

Figure 33: Slope field plot
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Verification of solutions

y = c2
x

Verified OK.

2.5.4 Solving as differentialType ode

Writing the ode as

y′ = −y − y cos (yx)
x+ x cos (yx) (1)

Which becomes

0 = (−x) dy + (−y) dx (2)

But the RHS is complete differential because

(−x) dy + (−y) dx = d(−xy)

Hence (2) becomes

0 = d(−xy)

Integrating both sides gives gives these solutions

y = c1
x

+ c1

Summary
The solution(s) found are the following

(1)y = c1
x
+ c1
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Figure 34: Slope field plot

Verification of solutions

y = c1
x
+ c1

Verified OK.

2.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = c1

Which simplifies to

yx = c1

Which gives

y = c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x

dS
dR

= 0

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = c1
x
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Figure 35: Slope field plot

Verification of solutions

y = c1
x

Verified OK.

2.5.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
−1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = −1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
−1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
y
. Therefore equation (4) becomes

(5)−1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)

The solution becomes

y = e−c1

x

Summary
The solution(s) found are the following

(1)y = e−c1

x

Figure 36: Slope field plot
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Verification of solutions

y = e−c1

x

Verified OK.

2.5.7 Maple step by step solution

Let’s solve
y + y cos (yx) + (x+ x cos (yx)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(y + y cos (yx) + (x+ x cos (yx)) y′) dx =

∫
0dx+ c1

• Evaluate integral
yx+ sin (yx) = c1

Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve((y(x)+y(x)*cos(x*y(x)))+(x+x*cos(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = π

x

y(x) = c1
x
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3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 49� �
DSolve[(y[x]+y[x]*Cos[x*y[x]])+(x+x*Cos[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −π

x

y(x) → π

x

y(x) → c1
x

y(x) → −π

x

y(x) → π

x
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2.6 problem 6
2.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 157
2.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 159
2.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 163
2.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 167

Internal problem ID [3094]
Internal file name [OUTPUT/2586_Sunday_June_05_2022_03_21_10_AM_67179578/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

cos (x) cos (y)2 + 2 sin (x) sin (y) cos (y) y′ = 0

2.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −cos (x) cot (y)
2 sin (x)

Where f(x) = − cos(x)
2 sin(x) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = − cos (x)

2 sin (x) dx∫ 1
cot (y) dy =

∫
− cos (x)
2 sin (x) dx

− ln (cos (y)) = − ln (sin (x))
2 + c1
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Raising both side to exponential gives

1
cos (y) = e−

ln(sin(x))
2 +c1

Which simplifies to

sec (y) = c2√
sin (x)

Which simplifies to

y = arcsec
(

c2ec1√
sin (x)

)

Summary
The solution(s) found are the following

(1)y = arcsec
(

c2ec1√
sin (x)

)

Figure 37: Slope field plot
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Verification of solutions

y = arcsec
(

c2ec1√
sin (x)

)

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − cos (x) cos (y)
2 sin (x) sin (y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = −2 sin (x)
cos (x)

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

−2 sin(x)
cos(x)

dx

Which results in

S = − ln (sin (x))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − cos (x) cos (y)
2 sin (x) sin (y)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = −cot (x)
2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= tan (y) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (cos (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (sin (x))
2 = − ln (cos (y)) + c1

Which simplifies to

− ln (sin (x))
2 = − ln (cos (y)) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − cos(x) cos(y)
2 sin(x) sin(y)

dS
dR

= tan (R)

R = y

S = − ln (sin (x))
2

Summary
The solution(s) found are the following

(1)− ln (sin (x))
2 = − ln (cos (y)) + c1
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Figure 38: Slope field plot

Verification of solutions

− ln (sin (x))
2 = − ln (cos (y)) + c1

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2 sin (y)

cos (y)

)
dy =

(
cos (x)
sin (x)

)
dx(

−cos (x)
sin (x)

)
dx+

(
−2 sin (y)

cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −cos (x)
sin (x)

N(x, y) = −2 sin (y)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−cos (x)
sin (x)

)
= 0
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And

∂N

∂x
= ∂

∂x

(
−2 sin (y)

cos (y)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−cos (x)
sin (x) dx

(3)φ = − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= −2 sin(y)
cos(y) . Therefore equation (4) becomes

(5)−2 sin (y)
cos (y) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2 sin (y)
cos (y)

= −2 tan (y)
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−2 tan (y)) dy

f(y) = 2 ln (cos (y)) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (sin (x)) + 2 ln (cos (y)) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (sin (x)) + 2 ln (cos (y))

Summary
The solution(s) found are the following

(1)− ln (sin (x)) + 2 ln (cos (y)) = c1

Figure 39: Slope field plot
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Verification of solutions

− ln (sin (x)) + 2 ln (cos (y)) = c1

Verified OK.

2.6.4 Maple step by step solution

Let’s solve
cos (x) cos (y)2 + 2 sin (x) sin (y) cos (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ sin(y)
cos(y) = − cos(x)

2 sin(x)

• Integrate both sides with respect to x∫ y′ sin(y)
cos(y) dx =

∫
− cos(x)

2 sin(x)dx+ c1

• Evaluate integral
− ln (cos (y)) = − ln(sin(x))

2 + c1

• Solve for y{
y = π − arccos

(√
e2c1 sin(x)
e2c1

)
, y = arccos

(√
e2c1 sin(x)
e2c1

)}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.25 (sec). Leaf size: 31� �
dsolve(cos(x)*cos(y(x))^2+(2*sin(x)*sin(y(x))*cos(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = π

2
y(x) = arccos

(√
c1 sin (x)

)
y(x) = π

2 + arcsin
(√

c1 sin (x)
)

3 Solution by Mathematica
Time used: 5.526 (sec). Leaf size: 73� �
DSolve[Cos[x]*Cos[y[x]]^2+(2*Sin[x]*Sin[y[x]]*Cos[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −π

2
y(x) → π

2
y(x) → − arccos

(
−1
4c1
√

sin(x)
)

y(x) → arccos
(
−1
4c1
√
sin(x)

)
y(x) → −π

2
y(x) → π

2
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2.7 problem 7
2.7.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 169
2.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 172

Internal problem ID [3095]
Internal file name [OUTPUT/2587_Sunday_June_05_2022_03_21_13_AM_3875844/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

(sin (x) sin (y)− x ey) y′ − ey − cos (x) cos (y) = 0

2.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(sin (x) sin (y)− x ey) dy = (ey + cos (x) cos (y)) dx
(−ey − cos (x) cos (y)) dx+(sin (x) sin (y)− x ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −ey − cos (x) cos (y)
N(x, y) = sin (x) sin (y)− x ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−ey − cos (x) cos (y))

= cos (x) sin (y)− ey

And
∂N

∂x
= ∂

∂x
(sin (x) sin (y)− x ey)

= cos (x) sin (y)− ey

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ey − cos (x) cos (y) dx

(3)φ = − sin (x) cos (y)− x ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) sin (y)− x ey + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x) sin (y)− x ey. Therefore equation (4) becomes

(5)sin (x) sin (y)− x ey = sin (x) sin (y)− x ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − sin (x) cos (y)− x ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − sin (x) cos (y)− x ey

Summary
The solution(s) found are the following

(1)− sin (x) cos (y)− x ey = c1
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Figure 40: Slope field plot

Verification of solutions

− sin (x) cos (y)− x ey = c1

Verified OK.

2.7.2 Maple step by step solution

Let’s solve
(sin (x) sin (y)− x ey) y′ − ey − cos (x) cos (y) = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
cos (x) sin (y)− ey = cos (x) sin (y)− ey

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−ey − cos (x) cos (y)) dx+ f1(y)

• Evaluate integral
F (x, y) = − sin (x) cos (y)− x ey + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
sin (x) sin (y)− x ey = sin (x) sin (y)− x ey + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = − sin (x) cos (y)− x ey

• Substitute F (x, y) into the solution of the ODE
− sin (x) cos (y)− x ey = c1

• Solve for y

y = RootOf
(
_Z− ln

(
−

sin(x) cos
(
_Z

)
+c1

x

))
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 16� �
dsolve((sin(x)*sin(y(x))-x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x)),y(x), singsol=all)� �

c1 + sin (x) cos (y(x)) + ey(x)x = 0

3 Solution by Mathematica
Time used: 0.626 (sec). Leaf size: 21� �
DSolve[(Sin[x]*Sin[y[x]]-x*Exp[y[x]])*y'[x]==Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2
(
xey(x) + sin(x) cos(y(x))

)
= c1, y(x)

]
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2.8 problem 8
2.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 175
2.8.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 177
2.8.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 178
2.8.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 179
2.8.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 183
2.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 187

Internal problem ID [3096]
Internal file name [OUTPUT/2588_Sunday_June_05_2022_03_21_22_AM_91288277/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

−
sin
(

x
y

)
y

+
x sin

(
x
y

)
y′

y2
= 0

2.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x
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Where f(x) = 1
x
and g(y) = y. Integrating both sides gives

1
y
dy = 1

x
dx∫ 1

y
dy =

∫ 1
x
dx

ln (y) = ln (x) + c1

y = eln(x)+c1

= c1x

Summary
The solution(s) found are the following

(1)y = c1x

Figure 41: Slope field plot

Verification of solutions
y = c1x

Verified OK.
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2.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = 0

Hence the ode is

y′ − y

x
= 0

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dxµy = 0

d
dx

(y
x

)
= 0

Integrating gives
y

x
= c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 42: Slope field plot

Verification of solutions
y = c1x

Verified OK.

2.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−
sin
(

1
u(x)

)
u (x)x +

sin
(

1
u(x)

)
(u′(x)x+ u(x))

xu (x)2
= 0

Integrating both sides gives

u(x) =
∫

0 dx

= c2

Therefore the solution y is

y = xu

= c2x
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Summary
The solution(s) found are the following

(1)y = c2x

Figure 43: Slope field plot

Verification of solutions
y = c2x

Verified OK.

2.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= c1

Which simplifies to
y

x
= c1

Which gives

y = c1x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x

dS
dR

= 0

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = c1x
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Figure 44: Slope field plot

Verification of solutions
y = c1x

Verified OK.

2.8.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1
y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
1
y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1
y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y
. Therefore equation (4) becomes

(5)1
y
= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + ln (y)

The solution becomes
y = ec1x

Summary
The solution(s) found are the following

(1)y = ec1x

Figure 45: Slope field plot

Verification of solutions

y = ec1x

Verified OK.
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2.8.6 Maple step by step solution

Let’s solve

−
sin
(

x
y

)
y

+
x sin

(
x
y

)
y′

y2
= 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
−

sin
(

x
y

)
y

+
x sin

(
x
y

)
y′

y2

)
dx =

∫
0dx+ c1

• Evaluate integral

cos
(

x
y

)
= c1

• Solve for y
y = x

arccos(c1)

Maple trace

� �
`Classification methods on request
Methods to be used are: [exact]
----------------------------
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve(-1/y(x)*sin(x/y(x))+x/y(x)^2*sin(x/y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

π − c1
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3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19� �
DSolve[-1/y[x]*Sin[x/y[x]]+x/y[x]^2*Sin[x/y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x
y(x) → ComplexInfinity
y(x) → ComplexInfinity
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Internal problem ID [3097]
Internal file name [OUTPUT/2589_Sunday_June_05_2022_03_21_24_AM_19231703/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_separable]

y + (1− x) y′ = −1

2.9.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y + 1
x− 1
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Where f(x) = 1
x−1 and g(y) = y + 1. Integrating both sides gives

1
y + 1 dy = 1

x− 1 dx∫ 1
y + 1 dy =

∫ 1
x− 1 dx

ln (y + 1) = ln (x− 1) + c1

Raising both side to exponential gives

y + 1 = eln(x−1)+c1

Which simplifies to

y + 1 = c2(x− 1)

Summary
The solution(s) found are the following

(1)y = c2eln(x−1)+c1 − 1

Figure 46: Slope field plot
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Verification of solutions

y = c2eln(x−1)+c1 − 1

Verified OK.

2.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x− 1

q(x) = 1
x− 1

Hence the ode is

y′ − y

x− 1 = 1
x− 1

The integrating factor µ is

µ = e
∫
− 1

x−1dx

= 1
x− 1

The ode becomes

d
dx(µy) = (µ)

(
1

x− 1

)
d
dx

(
y

x− 1

)
=
(

1
x− 1

)(
1

x− 1

)
d
(

y

x− 1

)
= 1

(x− 1)2
dx

Integrating gives

y

x− 1 =
∫ 1

(x− 1)2
dx

y

x− 1 = − 1
x− 1 + c1
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Dividing both sides by the integrating factor µ = 1
x−1 results in

y = −1 + c1(x− 1)

Summary
The solution(s) found are the following

(1)y = −1 + c1(x− 1)

Figure 47: Slope field plot

Verification of solutions

y = −1 + c1(x− 1)

Verified OK.
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2.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x+ (1− x) (u′(x)x+ u(x)) = −1

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u+ 1
x (x− 1)

Where f(x) = 1
x(x−1) and g(u) = u+ 1. Integrating both sides gives

1
u+ 1 du = 1

x (x− 1) dx∫ 1
u+ 1 du =

∫ 1
x (x− 1) dx

ln (u+ 1) = ln (x− 1)− ln (x) + c2

Raising both side to exponential gives

u+ 1 = eln(x−1)−ln(x)+c2

Which simplifies to

u+ 1 = c3eln(x−1)−ln(x)

Which simplifies to

u(x) = c3

(
ec2 − ec2

x

)
− 1

Therefore the solution y is

y = ux

= x

(
c3

(
ec2 − ec2

x

)
− 1
)

Summary
The solution(s) found are the following

(1)y = x

(
c3

(
ec2 − ec2

x

)
− 1
)
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Figure 48: Slope field plot

Verification of solutions

y = x

(
c3

(
ec2 − ec2

x

)
− 1
)

Verified OK.

2.9.4 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)
d

dX
Y (X) = Y (X) + y0 + 1

X + x0 − 1
Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)

X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y

X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u

du
dX = 0

Or
d

dX
u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). Integrating
both sides gives

u(X) =
∫

0 dX

= c2

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = Xc2

Using the solution for Y (X)

Y (X) = Xc2
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And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes

y + 1 = c2(x− 1)

Summary
The solution(s) found are the following

(1)y + 1 = c2(x− 1)

Figure 49: Slope field plot

Verification of solutions

y + 1 = c2(x− 1)

Verified OK.
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2.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + 1
x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = x− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x− 1dy

Which results in

S = y

x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 1
x− 1
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x− 1)2

Sy =
1

x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(x− 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R− 1)2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 1
R− 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x− 1 = − 1
x− 1 + c1

Which simplifies to

−c1x+ c1 + y + 1
x− 1 = 0

Which gives

y = c1x− c1 − 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+1
x−1

dS
dR

= 1
(R−1)2

R = x

S = y

x− 1

Summary
The solution(s) found are the following

(1)y = c1x− c1 − 1

200



Figure 50: Slope field plot

Verification of solutions

y = c1x− c1 − 1

Verified OK.

2.9.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y + 1

)
dy =

(
1

x− 1

)
dx(

− 1
x− 1

)
dx+

(
1

y + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x− 1

N(x, y) = 1
y + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x− 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y + 1

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x− 1 dx

(3)φ = − ln (x− 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y+1 . Therefore equation (4) becomes

(5)1
y + 1 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y + 1

)
dy

f(y) = ln (y + 1) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x− 1) + ln (y + 1) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x− 1) + ln (y + 1)

The solution becomes
y = ec1x− ec1 − 1

Summary
The solution(s) found are the following

(1)y = ec1x− ec1 − 1

Figure 51: Slope field plot

Verification of solutions

y = ec1x− ec1 − 1

Verified OK.
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2.9.7 Maple step by step solution

Let’s solve
y + (1− x) y′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

−1−y
= 1

1−x

• Integrate both sides with respect to x∫
y′

−1−y
dx =

∫ 1
1−x

dx+ c1

• Evaluate integral
− ln (−1− y) = − ln (1− x) + c1

• Solve for y
y = − ec1−x+1

ec1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve((1+y(x))+(1-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1 + c1(x− 1)
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3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 18� �
DSolve[(1+y[x])+(1-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1 + c1(x− 1)
y(x) → −1
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2.10 problem 10
2.10.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 207
2.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 210

Internal problem ID [3098]
Internal file name [OUTPUT/2590_Sunday_June_05_2022_03_21_26_AM_11054784/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

2xy3 + cos (x) y +
(
3y2x2 + sin (x)

)
y′ = 0

2.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3y2x2 + sin (x)
)
dy =

(
−2x y3 − cos (x) y

)
dx(

2x y3 + cos (x) y
)
dx+

(
3y2x2 + sin (x)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x y3 + cos (x) y
N(x, y) = 3y2x2 + sin (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x y3 + cos (x) y

)
= 6x y2 + cos (x)

And
∂N

∂x
= ∂

∂x

(
3y2x2 + sin (x)

)
= 6x y2 + cos (x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x y3 + cos (x) y dx

(3)φ = y
(
y2x2 + sin (x)

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3y2x2 + sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= 3y2x2 + sin (x). Therefore equation (4) becomes

(5)3y2x2 + sin (x) = 3y2x2 + sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y
(
y2x2 + sin (x)

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y
(
y2x2 + sin (x)

)
Summary
The solution(s) found are the following

(1)y
(
y2x2 + sin (x)

)
= c1
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Figure 52: Slope field plot

Verification of solutions

y
(
y2x2 + sin (x)

)
= c1

Verified OK.

2.10.2 Maple step by step solution

Let’s solve
2xy3 + cos (x) y + (3y2x2 + sin (x)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
6x y2 + cos (x) = 6x y2 + cos (x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(2x y3 + cos (x) y) dx+ f1(y)

• Evaluate integral
F (x, y) = sin (x) y + y3x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
3y2x2 + sin (x) = sin (x) + 3y2x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = sin (x) y + y3x2

• Substitute F (x, y) into the solution of the ODE
sin (x) y + y3x2 = c1

• Solve for y
y =

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3

6x − 2 sin(x)

x

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3
, y = −

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3

12x + sin(x)

x

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3
−

I
√
3


(
12

√
3
√

27c21x
2+4 sin(x)3+108c1x

) 1
3

6x + 2 sin(x)

x

(
12

√
3
√

27c21x
2+4 sin(x)3+108c1x

) 1
3


2 , y = −

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3

12x + sin(x)

x

(
12

√
3
√

27c21x2+4 sin(x)3+108c1x
) 1

3
+

I
√
3


(
12

√
3
√

27c21x
2+4 sin(x)3+108c1x

) 1
3

6x + 2 sin(x)

x

(
12

√
3
√

27c21x
2+4 sin(x)3+108c1x

) 1
3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 302� �
dsolve((2*x*y(x)^3+y(x)*cos(x))+(3*x^2*y(x)^2+sin(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
12
√
3
√
27c21x2 + 4 sin (x)3 − 108c1x

) 2
3

− 12 sin (x)

6x
(
12
√
3
√

27c21x2 + 4 sin (x)3 − 108c1x
) 1

3

y(x) =

−
i
√
3
(
12
√
3
√

27c21x2 + 4 sin (x)3 − 108c1x
) 2

3

+ 12i
√
3 sin (x) +

(
12
√
3
√

27c21x2 + 4 sin (x)3 − 108c1x
) 2

3

− 12 sin (x)

12x
(
12
√
3
√
27c21x2 + 4 sin (x)3 − 108c1x

) 1
3

y(x)

=
i
√
3
(
12
√
3
√

27c21x2 + 4 sin (x)3 − 108c1x
) 2

3

+ 12i
√
3 sin (x)−

(
12
√
3
√
27c21x2 + 4 sin (x)3 − 108c1x

) 2
3

+ 12 sin (x)

12x
(
12
√
3
√

27c21x2 + 4 sin (x)3 − 108c1x
) 1

3
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3 Solution by Mathematica
Time used: 32.512 (sec). Leaf size: 339� �
DSolve[(2*x*y[x]^3+y[x]*Cos[x])+(3*x^2*y[x]^2+Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3

√
9c1x4 +

√
12x6 sin3(x) + 81c12x8

3
√
232/3x2

−
3

√
2
3 sin(x)

3

√
9c1x4 +

√
12x6 sin3(x) + 81c12x8

y(x) →
(
1 + i

√
3
)
sin(x)

22/3 3

√
27c1x4 + 3

√
12x6 sin3(x) + 81c12x8

−

(
1− i

√
3
) 3

√
27c1x4 +

√
108x6 sin3(x) + 729c12x8

6 3
√
2x2

y(x) →
(
1− i

√
3
)
sin(x)

22/3 3

√
27c1x4 + 3

√
12x6 sin3(x) + 81c12x8

−

(
1 + i

√
3
) 3

√
27c1x4 +

√
108x6 sin3(x) + 729c12x8

6 3
√
2x2
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2.11 problem 11
2.11.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 214
2.11.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 218
2.11.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 220

Internal problem ID [3099]
Internal file name [OUTPUT/2591_Sunday_June_05_2022_03_21_32_AM_30495618/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati"

Maple gives the following as the ode type
[_exact , _rational , _Riccati]

− y

1− y2x2 − xy′

1− y2x2 = −1

2.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− x

−y2x2 + 1

)
dy =

(
−1 + y

−y2x2 + 1

)
dx(

1− y

−y2x2 + 1

)
dx+

(
− x

−y2x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1− y

−y2x2 + 1
N(x, y) = − x

−y2x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
1− y

−y2x2 + 1

)
= −y2x2 − 1

(y2x2 − 1)2
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And

∂N

∂x
= ∂

∂x

(
− x

−y2x2 + 1

)
= −y2x2 − 1

(y2x2 − 1)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
1− y

−y2x2 + 1 dx

(3)φ = x− ln (xy + 1)
2 + ln (xy − 1)

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

2 (xy + 1) +
x

2xy − 2 + f ′(y)

= x

y2x2 − 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= − x
−y2x2+1 . Therefore equation (4) becomes

(5)− x

−y2x2 + 1 = x

y2x2 − 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x− ln (xy + 1)
2 + ln (xy − 1)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− ln (xy + 1)
2 + ln (xy − 1)

2

The solution becomes

y = − e−2x+2c1 + 1
x (e−2x+2c1 − 1)

Summary
The solution(s) found are the following

(1)y = − e−2x+2c1 + 1
x (e−2x+2c1 − 1)

Figure 53: Slope field plot
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Verification of solutions

y = − e−2x+2c1 + 1
x (e−2x+2c1 − 1)

Verified OK.

2.11.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= −y2x2 + y − 1
x

This is a Riccati ODE. Comparing the ODE to solve

y′ = −x y2 − y

x
+ 1

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = 1
x
, f1(x) = − 1

x
and f2(x) = −x. Let

y = −u′

f2u

= −u′

−xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = −1

f1f2 = 1
f 2
2 f0 = x

Substituting the above terms back in equation (2) gives

−xu′′(x) + xu(x) = 0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1e−x + c2ex

The above shows that
u′(x) = −c1e−x + c2ex

Using the above in (1) gives the solution

y = −c1e−x + c2ex
x (c1e−x + c2ex)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = e2x − c3
x (e2x + c3)

Summary
The solution(s) found are the following

(1)y = e2x − c3
x (e2x + c3)
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Figure 54: Slope field plot

Verification of solutions

y = e2x − c3
x (e2x + c3)

Verified OK.

2.11.3 Maple step by step solution

Let’s solve
− y

1−y2x2 − xy′

1−y2x2 = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs
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F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

− 1
−y2x2+1 −

2y2x2

(−y2x2+1)2 = − 1
−y2x2+1 −

2y2x2

(−y2x2+1)2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

1− y
−y2x2+1

)
dx+ f1(y)

• Evaluate integral
F (x, y) = x− ln(xy+1)

2 + ln(xy−1)
2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
− x

−y2x2+1 = − x
2(xy+1) +

x
2(xy−1) +

d
dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = − x

−y2x2+1 +
x

2(xy+1) −
x

2(xy−1)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x− ln(xy+1)

2 + ln(xy−1)
2

• Substitute F (x, y) into the solution of the ODE
x− ln(xy+1)

2 + ln(xy−1)
2 = c1

• Solve for y
y = − e−2x+2c1+1

x
(
e−2x+2c1−1

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve(1=y(x)/(1-x^2*y(x)^2)+x/(1-x^2*y(x)^2)*diff(y(x),x),y(x), singsol=all)� �

y(x) = e2x + c1
x (e2x − c1)

3 Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 18� �
DSolve[1==y[x]/(1-x^2*y[x]^2)+x/(1-x^2*y[x]^2)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → tanh(x+ ic1)
x
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3 Chapter 2, section 10, page 47
3.1 problem 2(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
3.2 problem 2(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
3.3 problem 2(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
3.4 problem 4(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
3.5 problem 4(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
3.6 problem 4(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.7 problem 4(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
3.8 problem 4(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
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3.1 problem 2(a)
3.1.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 224
3.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 226
3.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 232

Internal problem ID [3100]
Internal file name [OUTPUT/2592_Sunday_June_05_2022_03_21_35_AM_8164515/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

(
3x2 − y2

)
y′ − 2yx = 0

3.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
3x2 − u(x)2 x2) (u′(x)x+ u(x))− 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u3 − u

x (u2 − 3)

Where f(x) = − 1
x
and g(u) = u3−u

u2−3 . Integrating both sides gives

1
u3−u
u2−3

du = −1
x
dx

224



∫ 1
u3−u
u2−3

du =
∫

−1
x
dx

− ln (u+ 1)− ln (u− 1) + 3 ln (u) = − ln (x) + c2

Raising both side to exponential gives

e− ln(u+1)−ln(u−1)+3 ln(u) = e− ln(x)+c2

Which simplifies to

u3

u2 − 1 = c3
x

The solution is
u(x)3

u (x)2 − 1
= c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y3

x3
(

y2

x2 − 1
) = c3

x

y3

x (y2 − x2) = c3
x

Which simplifies to

− y3

(−y + x) (y + x) = c3

Summary
The solution(s) found are the following

(1)− y3

(−y + x) (y + x) = c3
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Figure 55: Slope field plot

Verification of solutions

− y3

(−y + x) (y + x) = c3

Verified OK.

3.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2yx
−3x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2yx(b3 − a2)
−3x2 + y2

− 4y2x2a3

(−3x2 + y2)2

−
(
− 2y
−3x2 + y2

− 12y x2

(−3x2 + y2)2
)
(xa2 + ya3 + a1)

−
(
− 2x
−3x2 + y2

+ 4y2x
(−3x2 + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3 + y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1
(3x2 − y2)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 + 2y2x2a3 − 8x2y2b2 + 4x y3a2 − 4x y3b3 + 2y4a3
+ y4b2 − 6x3b1 + 6x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v1v32 + 2a3v21v22 + 2a3v42 + 3b2v41 − 8b2v21v22 + b2v
4
2

− 4b3v1v32 + 6a1v21v2 + 2a1v32 − 6b1v31 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 − 6b1v31 + (2a3 − 8b2) v21v22 + 6a1v21v2
+ (4a2 − 4b3) v1v32 − 2b1v1v22 + (2a3 + b2) v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
6a1 = 0

−6b1 = 0
−2b1 = 0
3b2 = 0

4a2 − 4b3 = 0
2a3 − 8b2 = 0
2a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
−3x2 + y2

)
(x)

= x2y − y3

3x2 − y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y−y3

3x2−y2

dy

Which results in

S = − ln (y + x)− ln (y − x) + 3 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
−3x2 + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
x2 − y2

Sy = − 1
y + x

+ 1
−y + x

+ 3
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y + x)− ln (y − x) + 3 ln (y) = c1

Which simplifies to

− ln (y + x)− ln (y − x) + 3 ln (y) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
−3x2+y2

dS
dR

= 0

R = x

S = − ln (y + x)− ln (y − x) + 3 ln (y)

Summary
The solution(s) found are the following

(1)− ln (y + x)− ln (y − x) + 3 ln (y) = c1
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Figure 56: Slope field plot

Verification of solutions

− ln (y + x)− ln (y − x) + 3 ln (y) = c1

Verified OK.

3.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x2 − y2

)
dy = (2xy) dx

(−2xy) dx+
(
3x2 − y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy
N(x, y) = 3x2 − y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy)

= −2x

And
∂N

∂x
= ∂

∂x

(
3x2 − y2

)
= 6x
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x2 − y2
((−2x)− (6x))

= − 8x
3x2 − y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

2xy ((6x)− (−2x))

= −4
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 4

y
dy

The result of integrating gives

µ = e−4 ln(y)

= 1
y4

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y4

(−2xy)

= −2x
y3
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And

N = µN

= 1
y4
(
3x2 − y2

)
= 3x2 − y2

y4

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−2x
y3

)
+
(
3x2 − y2

y4

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x
y3

dx

(3)φ = −x2

y3
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 3x2

y4
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3x2−y2

y4
. Therefore equation (4) becomes

(5)3x2 − y2

y4
= 3x2

y4
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− 1
y2

)
dy

f(y) = 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

y3
+ 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

y3
+ 1

y

Summary
The solution(s) found are the following

(1)−x2

y3
+ 1

y
= c1
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Figure 57: Slope field plot

Verification of solutions

−x2

y3
+ 1

y
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 317� �
dsolve((3*x^2-y(x)^2)*diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)� �

y(x) =

1 +

(
12

√
3x
√

27c21x2−4 c1−108c21x2+8
) 1

3

2 + 2(
12

√
3x
√

27c21x2−4 c1−108c21x2+8
) 1

3

3c1
y(x) =

−

(
1 + i

√
3
) (

12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 2

3 − 4i
√
3− 4

(
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 1

3 + 4

12
(
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 1

3
c1

y(x)

=

(
i
√
3− 1

) (
12
√
3x
√

27c21x2 − 4 c1 − 108c21x2 + 8
) 2

3 − 4i
√
3 + 4

(
12
√
3x
√
27c21x2 − 4 c1 − 108c21x2 + 8

) 1
3 − 4

12
(
12
√
3x
√
27c21x2 − 4 c1 − 108c21x2 + 8

) 1
3
c1
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3 Solution by Mathematica
Time used: 60.175 (sec). Leaf size: 458� �
DSolve[(3*x^2-y[x]^2)*y'[x]-2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3

 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

3
√
2

+
3
√
2e2c1

3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1


y(x) →

i
(√

3 + i
) 3
√
27ec1x2 + 3

√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

−
i
(√

3− i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3

y(x) → −
i
(√

3− i
) 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

6 3
√
2

+
i
(√

3 + i
)
e2c1

3 22/3 3
√

27ec1x2 + 3
√
81e2c1x4 − 12e4c1x2 − 2e3c1

− ec1

3
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3.2 problem 2(b)
3.2.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 240

Internal problem ID [3101]
Internal file name [OUTPUT/2593_Sunday_June_05_2022_03_21_38_AM_27792734/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`], [_Abel ,

`2nd type `, `class B`]]

yx+
(
x2 − yx

)
y′ = 1

3.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2 − xy
)
dy = (−xy + 1) dx

(xy − 1) dx+
(
x2 − xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy − 1
N(x, y) = x2 − xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(xy − 1)

= x

And
∂N

∂x
= ∂

∂x

(
x2 − xy

)
= 2x− y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (−y + x)((x)− (2x− y))

= −1
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(xy − 1)

= xy − 1
x

And

N = µN

= 1
x

(
x2 − xy

)
= −y + x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

xy − 1
x

)
+ (−y + x) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
xy − 1

x
dx

(3)φ = xy − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y + x. Therefore equation (4) becomes

(5)−y + x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy − ln (x)− y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − ln (x)− y2

2
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Summary
The solution(s) found are the following

(1)yx− ln (x)− y2

2 = c1

Figure 58: Slope field plot

Verification of solutions

yx− ln (x)− y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 39� �
dsolve((x*y(x)-1)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x−
√

x2 − 2 ln (x) + 2c1
y(x) = x+

√
x2 − 2 ln (x) + 2c1

3 Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 68� �
DSolve[(x*y[x]-1)+(x^2-x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+
√

−1
x

√
−x (x2 − 2 log(x) + c1)

y(x) → x+ x

(
−1
x

)3/2√
−x (x2 − 2 log(x) + c1)
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3.3 problem 2(c)
3.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 246
3.3.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 252

Internal problem ID [3102]
Internal file name [OUTPUT/2594_Sunday_June_05_2022_03_21_40_AM_91788273/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
x+ 3y4x3) y′ + y = 0

3.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

x (3x2y4 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(b3 − a2)

x (3x2y4 + 1) −
y2a3

x2 (3x2y4 + 1)2

−
(

y

x2 (3x2y4 + 1) +
6y5

(3x2y4 + 1)2
)
(xa2 + ya3 + a1)

−
(
− 1
x (3x2y4 + 1) +

12y4x
(3x2y4 + 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

9x6y8b2 − 3x4y4b2 − 6x3y5a2 − 12x3y5b3 − 9x2y6a3 − 9x3y4b1 − 9x2y5a1 + 2b2x2 − 2y2a3 + xb1 − ya1

x2 (3x2y4 + 1)2
= 0

Setting the numerator to zero gives

(6E)9x6y8b2 − 3x4y4b2 − 6x3y5a2 − 12x3y5b3 − 9x2y6a3
− 9x3y4b1 − 9x2y5a1 + 2b2x2 − 2y2a3 + xb1 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)9b2v61v82 − 6a2v31v52 − 9a3v21v62 − 3b2v41v42 − 12b3v31v52
− 9a1v21v52 − 9b1v31v42 − 2a3v22 + 2b2v21 − a1v2 + b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)9b2v61v82 − 3b2v41v42 + (−6a2 − 12b3) v31v52 − 9b1v31v42
− 9a3v21v62 − 9a1v21v52 + 2b2v21 + b1v1 − 2a3v22 − a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−9a1 = 0
−a1 = 0
−9a3 = 0
−2a3 = 0
−9b1 = 0
−3b2 = 0
2b2 = 0
9b2 = 0

−6a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

x (3x2y4 + 1)

)
(−2x)

= 3x2y5 − y

3x2y4 + 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2y5−y
3x2y4+1

dy

Which results in

S = ln (3x2y4 − 1)
2 − ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x (3x2y4 + 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3y4x
3x2y4 − 1

Sy =
3x2y4 + 1
3x2y5 − y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (3x2y4 − 1)
2 − ln (y) = ln (x) + c1

Which simplifies to

ln (3x2y4 − 1)
2 − ln (y) = ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x(3x2y4+1)

dS
dR

= 1
R

R = x

S = ln (3x2y4 − 1)
2 − ln (y)

Summary
The solution(s) found are the following

(1)ln (3x2y4 − 1)
2 − ln (y) = ln (x) + c1
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Figure 59: Slope field plot

Verification of solutions

ln (3x2y4 − 1)
2 − ln (y) = ln (x) + c1

Verified OK.

3.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

252



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
3x3y4 + x

)
dy = (−y) dx

(y) dx+
(
3x3y4 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = 3x3y4 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x

(
3x3y4 + x

)
= 9x2y4 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x3y4 + x

(
(1)−

(
9x2y4 + 1

))
= − 9x y4

3x2y4 + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y

((
9x2y4 + 1

)
− (1)

)
= 9y3x2

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (9x2y4 + 1)− (1)
x (y)− y (3x3y4 + x)

= − 3
xy

Replacing all powers of terms xy by t gives

R = −3
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 3
t

)
dt
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The result of integrating gives

µ = e−3 ln(t)

= 1
t3

Now t is replaced back with xy giving

µ = 1
x3y3

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
x3y3

(y)

= 1
y2x3

And

N = µN

= 1
x3y3

(
3x3y4 + x

)
= 3x2y4 + 1

x2y3

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

1
y2x3

)
+
(
3x2y4 + 1

x2y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
y2x3 dx

(3)φ = − 1
2y2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

y3x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 3x2y4+1
x2y3

. Therefore equation (4) becomes

(5)3x2y4 + 1
x2y3

= 1
y3x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3y) dy

f(y) = 3y2
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − 1
2y2x2 + 3y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − 1
2y2x2 + 3y2

2
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Summary
The solution(s) found are the following

(1)− 1
2y2x2 + 3y2

2 = c1

Figure 60: Slope field plot

Verification of solutions

− 1
2y2x2 + 3y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 133� �
dsolve((x+3*x^3*y(x)^4)*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = −

√
6
√
xc1
(
x−

√
12c21 + x2

)
6xc1

y(x) =

√
6
√

xc1
(
x−

√
12c21 + x2

)
6xc1

y(x) = −

√
6
√
xc1
(
x+

√
12c21 + x2

)
6xc1

y(x) =

√
6
√

xc1
(
x+

√
12c21 + x2

)
6xc1
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3 Solution by Mathematica
Time used: 10.044 (sec). Leaf size: 166� �
DSolve[(x+3*x^3*y[x]^4)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −

√
c1 −

√
x2(3+c12x2)

x2√
3

y(x) →

√
c1 −

√
x2(3+c12x2)

x2√
3

y(x) → −

√√
x2(3+c12x2)

x2 + c1√
3

y(x) →

√√
x2(3+c12x2)

x2 + c1√
3

y(x) → 0
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3.4 problem 4(a)
3.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 260
3.4.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 265

Internal problem ID [3103]
Internal file name [OUTPUT/2595_Sunday_June_05_2022_03_21_43_AM_85572339/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 4(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

(
x− 1− y2

)
y′ − y = 0

3.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

y2 − x+ 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
y2 − x+ 1 − y2a3

(y2 − x+ 1)2
+ y(xa2 + ya3 + a1)

(y2 − x+ 1)2

−
(
− 1
y2 − x+ 1 + 2y2

(y2 − x+ 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−−y4b2 + 3x y2b2 − y3a2 + 2y3b3 + y2b1 − 2y2b2 + xb1 + xb2 − ya1 − ya2 − b1 − b2

(−y2 + x− 1)2
= 0

Setting the numerator to zero gives

(6E)y4b2 − 3x y2b2 + y3a2 − 2y3b3 − y2b1 +2y2b2 − xb1 − xb2 + ya1 + ya2 + b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
4
2+a2v

3
2−3b2v1v22−2b3v32−b1v

2
2+2b2v22+a1v2+a2v2−b1v1−b2v1+b1+b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)−3b2v1v22 + (−b1 − b2) v1 + b2v
4
2 + (a2 − 2b3) v32

+ (−b1 + 2b2) v22 + (a1 + a2) v2 + b1 + b2 = 0

261



Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−3b2 = 0

a1 + a2 = 0
a2 − 2b3 = 0
−b1 − b2 = 0
−b1 + 2b2 = 0

b1 + b2 = 0

Solving the above equations for the unknowns gives

a1 = −2b3
a2 = 2b3
a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(
− y

y2 − x+ 1

)
(y)

= − y2

−y2 + x− 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

−y2+x−1

dy

Which results in

S = y + x− 1
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

y2 − x+ 1
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy =
y2 − x+ 1

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2 + x− 1
y

= c1

Which simplifies to

y2 + x− 1
y

= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
y2−x+1

dS
dR

= 0

R = x

S = y2 + x− 1
y

Summary
The solution(s) found are the following

(1)y2 + x− 1
y

= c1
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Figure 61: Slope field plot

Verification of solutions

y2 + x− 1
y

= c1

Verified OK.

3.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 + x− 1

)
dy = (y) dx

(−y) dx+
(
−y2 + x− 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y

N(x, y) = −y2 + x− 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y)

= −1

And
∂N

∂x
= ∂

∂x

(
−y2 + x− 1

)
= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y2 + x− 1((−1)− (1))

= − 2
−y2 + x− 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

y
((1)− (−1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(−y)

= −1
y
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And

N = µN

= 1
y2
(
−y2 + x− 1

)
= −y2 + x− 1

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1
y

)
+
(
−y2 + x− 1

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
y
dx

(3)φ = −x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −y2+x−1
y2

. Therefore equation (4) becomes

(5)−y2 + x− 1
y2

= x

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −y2 + 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
−y2 − 1

y2

)
dy

f(y) = −y + 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
− y + 1

y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
− y + 1

y

Summary
The solution(s) found are the following

(1)−x

y
− y + 1

y
= c1
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Figure 62: Slope field plot

Verification of solutions

−x

y
− y + 1

y
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �

270



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
dsolve((x-1-y(x)^2)*diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = c1
2 −

√
c21 − 4x+ 4

2

y(x) = c1
2 +

√
c21 − 4x+ 4

2

3 Solution by Mathematica
Time used: 0.304 (sec). Leaf size: 56� �
DSolve[(x-1-y[x]^2)*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
c1 −

√
−4x+ 4 + c12

)
y(x) → 1

2

(√
−4x+ 4 + c12 + c1

)
y(x) → 0
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3.5 problem 4(b)
3.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 272
3.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 274
3.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 279
3.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 282

Internal problem ID [3104]
Internal file name [OUTPUT/2596_Sunday_June_05_2022_03_21_46_AM_66865626/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 4(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y −
(
x+ xy3

)
y′ = 0

3.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y

x (y3 + 1)
Where f(x) = 1

x
and g(y) = y

y3+1 . Integrating both sides gives

1
y

y3+1
dy = 1

x
dx

∫ 1
y

y3+1
dy =

∫ 1
x
dx

y3

3 + ln (y) = ln (x) + c1
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Which results in

y = 1(
1

LambertW
(
x3e3c1

)) 1
3

Since c1 is constant, then exponential powers of this constant are constants also, and
these can be simplified to just c1 in the above solution. Which simplifies to

y = 1(
1

LambertW
(
x3e3c1

)) 1
3

gives

y = 1(
1

LambertW
(
c31x

3
)) 1

3

Summary
The solution(s) found are the following

(1)y = 1(
1

LambertW
(
c31x

3
)) 1

3

Figure 63: Slope field plot
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Verification of solutions

y = 1(
1

LambertW
(
c31x

3
)) 1

3

Verified OK.

3.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y

x (y3 + 1)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

x
dx

Which results in

S = ln (x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

x (y3 + 1)

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= y3 + 1

y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R3 + 1

R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R3

3 + ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) = y3

3 + ln (y) + c1

Which simplifies to

ln (x) = y3

3 + ln (y) + c1

Which gives

y = 1(
1

LambertW
(
e−3c1x3

)) 1
3

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
x(y3+1)

dS
dR

= R3+1
R

R = y

S = ln (x)

277



Summary
The solution(s) found are the following

(1)y = 1(
1

LambertW
(
e−3c1x3

)) 1
3

Figure 64: Slope field plot

Verification of solutions

y = 1(
1

LambertW
(
e−3c1x3

)) 1
3

Verified OK.

278



3.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3 + 1

y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
y3 + 1

y

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = y3 + 1
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0

And
∂N

∂x
= ∂

∂x

(
y3 + 1

y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)
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But equation (2) says that ∂φ
∂y

= y3+1
y

. Therefore equation (4) becomes

(5)y3 + 1
y

= 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3 + 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y3 + 1

y

)
dy

f(y) = y3

3 + ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x) + y3

3 + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x) + y3

3 + ln (y)

The solution becomes

y = 1(
1

LambertW
(
x3e3c1

)) 1
3

Summary
The solution(s) found are the following

(1)y = 1(
1

LambertW
(
x3e3c1

)) 1
3
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Figure 65: Slope field plot

Verification of solutions

y = 1(
1

LambertW
(
x3e3c1

)) 1
3

Verified OK.

3.5.4 Maple step by step solution

Let’s solve
y − (x+ xy3) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+1)

(
y2−y+1

)
y

= 1
x

• Integrate both sides with respect to x∫ y′(y+1)
(
y2−y+1

)
y

dx =
∫ 1

x
dx+ c1
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• Evaluate integral
y3

3 + ln (y) = ln (x) + c1

• Solve for y
y = x

e
LambertW

(
x3e3c1

)
3 −c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(y(x)-(x+x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1(
1

LambertW(c1x3)

) 1
3

3 Solution by Mathematica
Time used: 4.377 (sec). Leaf size: 76� �
DSolve[y[x]-(x+x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 3
√

W (e3c1x3)
y(x) → − 3

√
−1 3
√

W (e3c1x3)
y(x) → (−1)2/3 3

√
W (e3c1x3)

y(x) → 0
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3.6 problem 4(c)
3.6.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 284
3.6.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 286
3.6.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 291

Internal problem ID [3105]
Internal file name [OUTPUT/2597_Sunday_June_05_2022_03_21_48_AM_92210252/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 4(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

xy′ − y2x3 − y = x5

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)2 x5 − u(x)x = x5

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= x3(u2 + 1

)
Where f(x) = x3 and g(u) = u2 + 1. Integrating both sides gives

1
u2 + 1 du = x3 dx∫ 1
u2 + 1 du =

∫
x3 dx

arctan (u) = x4

4 + c2
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The solution is

arctan (u(x))− x4

4 − c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

arctan
(y
x

)
− x4

4 − c2 = 0

arctan
(y
x

)
− x4

4 − c2 = 0

Summary
The solution(s) found are the following

(1)arctan
(y
x

)
− x4

4 − c2 = 0

Figure 66: Slope field plot

Verification of solutions

arctan
(y
x

)
− x4

4 − c2 = 0

Verified OK.
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3.6.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x5 + x3y2 + y

)
dx(

−x5 − x3y2 − y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x5 − x3y2 − y

N(x, y) = x
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x5 − x3y2 − y

)
= −2x3y − 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = −y2x3 − x5 − y and N = x by this integrating factor
the ode becomes exact. The new M,N are

M = −y2x3 − x5 − y

y2 + x2

N = x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

x2 + y2

)
dy =

(
−−x5 − x3y2 − y

x2 + y2

)
dx(

−x5 − x3y2 − y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x5 − x3y2 − y

x2 + y2

N(x, y) = x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x5 − x3y2 − y

x2 + y2

)
= −x2 + y2

(x2 + y2)2

And
∂N

∂x
= ∂

∂x

(
x

x2 + y2

)
= −x2 + y2

(x2 + y2)2

288



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x5 − x3y2 − y

x2 + y2
dx

(3)φ = −x4

4 − arctan
(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
(

x2

y2
+ 1
) + f ′(y)

= x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
x2+y2

. Therefore equation (4) becomes

(5)x

x2 + y2
= x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x4

4 − arctan
(
x

y

)
+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x4

4 − arctan
(
x

y

)

The solution becomes
y = − x

tan
(
x4

4 + c1
)

Summary
The solution(s) found are the following

(1)y = − x

tan
(
x4

4 + c1
)

Figure 67: Slope field plot

Verification of solutions

y = − x

tan
(
x4

4 + c1
)

Verified OK.
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3.6.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x5 + x3y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x4 + y2x2 + y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x4, f1(x) = 1
x
and f2(x) = x2. Let

y = −u′

f2u

= −u′

x2u
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 2x

f1f2 = x

f 2
2 f0 = x8

Substituting the above terms back in equation (2) gives

x2u′′(x)− 3xu′(x) + x8u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin
(
x4

4

)
+ c2 cos

(
x4

4

)
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The above shows that

u′(x) = x3
(
c1 cos

(
x4

4

)
− c2 sin

(
x4

4

))

Using the above in (1) gives the solution

y = −
x
(
c1 cos

(
x4

4

)
− c2 sin

(
x4

4

))
c1 sin

(
x4

4

)
+ c2 cos

(
x4

4

)
Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =

(
−c3 cos

(
x4

4

)
+ sin

(
x4

4

))
x

c3 sin
(
x4

4

)
+ cos

(
x4

4

)
Summary
The solution(s) found are the following

(1)y =

(
−c3 cos

(
x4

4

)
+ sin

(
x4

4

))
x

c3 sin
(
x4

4

)
+ cos

(
x4

4

)
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Figure 68: Slope field plot

Verification of solutions

y =

(
−c3 cos

(
x4

4

)
+ sin

(
x4

4

))
x

c3 sin
(
x4

4

)
+ cos

(
x4

4

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x)=x^5+x^3*y(x)^2+y(x),y(x), singsol=all)� �

y(x) = tan
(
x4

4 + c1

)
x

3 Solution by Mathematica
Time used: 0.212 (sec). Leaf size: 18� �
DSolve[x*y'[x]==x^5+x^3*y[x]^2+y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan
(
x4

4 + c1

)
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3.7 problem 4(d)
3.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 295
3.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 297
3.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 302

Internal problem ID [3106]
Internal file name [OUTPUT/2598_Sunday_June_05_2022_03_21_51_AM_23105553/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 4(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

(y + x) y′ − y = −x

3.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u(x)x+ x) (u′(x)x+ u(x))− u(x)x = −x

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u2 + 1
x (u+ 1)
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Where f(x) = − 1
x
and g(u) = u2+1

u+1 . Integrating both sides gives

1
u2+1
u+1

du = −1
x
dx

∫ 1
u2+1
u+1

du =
∫

−1
x
dx

ln (u2 + 1)
2 + arctan (u) = − ln (x) + c2

The solution is

ln
(
u(x)2 + 1

)
2 + arctan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0
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Figure 69: Slope field plot

Verification of solutions

ln
(

y2

x2 + 1
)

2 + arctan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

3.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y − x

y + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
(y − x) (b3 − a2)

y + x
− (y − x)2 a3

(y + x)2
−
(
− 1
y + x

− y − x

(y + x)2
)
(xa2+ya3+a1)

−
(

1
y + x

− y − x

(y + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x2a2 − x2a3 − x2b2 − x2b3 + 2xya2 + 2xya3 + 2xyb2 − 2xyb3 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 + 2ya1
(y + x)2

= 0

Setting the numerator to zero gives

(6E)x2a2 − x2a3 − x2b2 − x2b3 + 2xya2 + 2xya3 + 2xyb2
− 2xyb3 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
2
1 + 2a2v1v2 − a2v

2
2 − a3v

2
1 + 2a3v1v2 + a3v

2
2 − b2v

2
1

+ 2b2v1v2 + b2v
2
2 − b3v

2
1 − 2b3v1v2 + b3v

2
2 + 2a1v2 − 2b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

298



Equation (7E) now becomes

(8E)(a2 − a3 − b2 − b3) v21 + (2a2 + 2a3 + 2b2 − 2b3) v1v2
− 2b1v1 + (−a2 + a3 + b2 + b3) v22 + 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 = 0
−2b1 = 0

−a2 + a3 + b2 + b3 = 0
a2 − a3 − b2 − b3 = 0

2a2 + 2a3 + 2b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
y − x

y + x

)
(x)

= x2 + y2

y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+y2

y+x

dy

Which results in

S = ln (x2 + y2)
2 + arctan

(y
x

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y − x

y + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −y + x

x2 + y2

Sy =
y + x

x2 + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Which simplifies to

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y−x
y+x

dS
dR

= 0

R = x

S = ln (x2 + y2)
2 + arctan

(y
x

)
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Figure 70: Slope field plot

Verification of solutions

ln (y2 + x2)
2 + arctan

(y
x

)
= c1

Verified OK.

3.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(y + x) dy = (y − x) dx
(−y + x) dx+(y + x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y + x

N(x, y) = y + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−y + x)

= −1
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And
∂N

∂x
= ∂

∂x
(y + x)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = −y + x and N = y + x by this integrating factor the
ode becomes exact. The new M,N are

M = −y + x

y2 + x2

N = y + x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y + x

x2 + y2

)
dy =

(
−−y + x

x2 + y2

)
dx(

−y + x

x2 + y2

)
dx+

(
y + x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y + x

x2 + y2

N(x, y) = y + x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y + x

x2 + y2

)
= −x2 − 2xy + y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
y + x

x2 + y2

)
= −x2 − 2xy + y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y + x

x2 + y2
dx

(3)φ = ln (x2 + y2)
2 − arctan

(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
+ x

y2
(

x2

y2
+ 1
) + f ′(y)

= y + x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y+x
x2+y2

. Therefore equation (4) becomes

(5)y + x

x2 + y2
= y + x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (x2 + y2)
2 − arctan

(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (x2 + y2)

2 − arctan
(
x

y

)
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Summary
The solution(s) found are the following

(1)ln (y2 + x2)
2 − arctan

(
x

y

)
= c1

Figure 71: Slope field plot

Verification of solutions

ln (y2 + x2)
2 − arctan

(
x

y

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve((y(x)+x)*diff(y(x),x)=(y(x)-x),y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
2_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x) + 2c1

))
x

3 Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 34� �
DSolve[(y[x]+x)*y'[x]==(y[x]-x),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
arctan

(
y(x)
x

)
+ 1

2 log
(
y(x)2
x2 + 1

)
= − log(x) + c1, y(x)

]
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3.8 problem 4(e)
3.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 309
3.8.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 310

Internal problem ID [3107]
Internal file name [OUTPUT/2599_Sunday_June_05_2022_03_21_53_AM_63742245/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47
Problem number: 4(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

xy′ − y − 9y2 = x2

3.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− 9u(x)2 x2 = x2

Integrating both sides gives ∫ 1
9u2 + 1du = x+ c2

arctan (3u)
3 = x+ c2

Solving for u gives these solutions

u1 =
tan (3x+ 3c2)

3
Therefore the solution y is

y = xu

= x tan (3x+ 3c2)
3
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Summary
The solution(s) found are the following

(1)y = x tan (3x+ 3c2)
3

Figure 72: Slope field plot

Verification of solutions

y = x tan (3x+ 3c2)
3

Verified OK.

3.8.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + 9y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x+ 9y2
x

+ y

x
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With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1
x
and f2(x) = 9

x
. Let

y = −u′

f2u

= −u′

9u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 9

x2

f1f2 =
9
x2

f 2
2 f0 =

81
x

Substituting the above terms back in equation (2) gives

9u′′(x)
x

+ 81u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin (3x) + c2 cos (3x)

The above shows that
u′(x) = 3c1 cos (3x)− 3c2 sin (3x)

Using the above in (1) gives the solution

y = −(3c1 cos (3x)− 3c2 sin (3x))x
9 (c1 sin (3x) + c2 cos (3x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution
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y = (−c3 cos (3x) + sin (3x))x
3c3 sin (3x) + 3 cos (3x)

Summary
The solution(s) found are the following

(1)y = (−c3 cos (3x) + sin (3x))x
3c3 sin (3x) + 3 cos (3x)

Figure 73: Slope field plot

Verification of solutions

y = (−c3 cos (3x) + sin (3x))x
3c3 sin (3x) + 3 cos (3x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x*diff(y(x),x)=y(x)+x^2+9*y(x)^2,y(x), singsol=all)� �

y(x) = tan (3x+ 3c1)x
3

3 Solution by Mathematica
Time used: 0.285 (sec). Leaf size: 17� �
DSolve[x*y'[x]==y[x]+x^2+9*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3x tan(3(x+ c1))
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4 Chapter 2, section 11, page 49
4.1 problem 2(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.2 problem 2(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.3 problem 2(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
4.4 problem 2(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
4.5 problem 2(e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.6 problem 2(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
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4.1 problem 2(a)
4.1.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 315
4.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 317
4.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 321
4.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 326

Internal problem ID [3108]
Internal file name [OUTPUT/2600_Sunday_June_05_2022_03_21_56_AM_40981428/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ − 3y = x4

4.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3
x

q(x) = x3

Hence the ode is

y′ − 3y
x

= x3
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The integrating factor µ is

µ = e
∫
− 3

x
dx

= 1
x3

The ode becomes

d
dx(µy) = (µ)

(
x3)

d
dx

( y

x3

)
=
(

1
x3

)(
x3)

d
( y

x3

)
= dx

Integrating gives

y

x3 =
∫

dx
y

x3 = x+ c1

Dividing both sides by the integrating factor µ = 1
x3 results in

y = c1x
3 + x4

which simplifies to

y = x3(x+ c1)

Summary
The solution(s) found are the following

(1)y = x3(x+ c1)
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Figure 74: Slope field plot

Verification of solutions

y = x3(x+ c1)

Verified OK.

4.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x4 + 3y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x3dy

Which results in

S = y

x3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x4 + 3y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −3y
x4

Sy =
1
x3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x3 = x+ c1

Which simplifies to
y

x3 = x+ c1

Which gives

y = x3(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x4+3y
x

dS
dR

= 1

R = x

S = y

x3

Summary
The solution(s) found are the following

(1)y = x3(x+ c1)
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Figure 75: Slope field plot

Verification of solutions

y = x3(x+ c1)

Verified OK.

4.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
x4 + 3y

)
dx(

−x4 − 3y
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x4 − 3y
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x4 − 3y

)
= −3

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
((−3)− (1))

= −4
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4

x
dx

The result of integrating gives

µ = e−4 ln(x)

= 1
x4

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x4

(
−x4 − 3y

)
= −x4 − 3y

x4

And

N = µN

= 1
x4 (x)

= 1
x3

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x4 − 3y
x4

)
+
(

1
x3

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x4 − 3y

x4 dx

(3)φ = −x+ y

x3 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x3 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x3 . Therefore equation (4) becomes

(5)1
x3 = 1

x3 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ y

x3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ y

x3

324



The solution becomes
y = x3(x+ c1)

Summary
The solution(s) found are the following

(1)y = x3(x+ c1)

Figure 76: Slope field plot

Verification of solutions

y = x3(x+ c1)

Verified OK.
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4.1.4 Maple step by step solution

Let’s solve
xy′ − 3y = x4

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 3y

x
+ x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 3y

x
= x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 3y

x

)
= µ(x)x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 3y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −3µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x3dx+ c1

• Solve for y

y =
∫
µ(x)x3dx+c1

µ(x)

• Substitute µ(x) = 1
x3

y = x3(∫ 1dx+ c1
)

• Evaluate the integrals on the rhs
y = x3(x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)-3*y(x)=x^4,y(x), singsol=all)� �

y(x) = (c1 + x)x3

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13� �
DSolve[x*y'[x]-3*y[x]==x^4,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3(x+ c1)
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4.2 problem 2(b)
4.2.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 328
4.2.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 330
4.2.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 334
4.2.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 338

Internal problem ID [3109]
Internal file name [OUTPUT/2601_Sunday_June_05_2022_03_21_58_AM_39847362/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y = 1
e2x + 1

4.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1

q(x) = 1
e2x + 1

Hence the ode is

y′ + y = 1
e2x + 1
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The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
1

e2x + 1

)
d
dx(e

xy) = (ex)
(

1
e2x + 1

)
d(exy) =

(
ex

e2x + 1

)
dx

Integrating gives

exy =
∫ ex

e2x + 1 dx

exy = arctan (ex) + c1

Dividing both sides by the integrating factor µ = ex results in

y = arctan (ex) e−x + c1e−x

which simplifies to

y = e−x(arctan (ex) + c1)

Summary
The solution(s) found are the following

(1)y = e−x(arctan (ex) + c1)
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Figure 77: Slope field plot

Verification of solutions

y = e−x(arctan (ex) + c1)

Verified OK.

4.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −e2xy + y − 1
e2x + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −e2xy + y − 1
e2x + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy
Sy = ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex

e2x + 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

e2R + 1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = arctan
(
eR
)
+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy = arctan (ex) + c1

Which simplifies to

exy = arctan (ex) + c1

Which gives

y = e−x(arctan (ex) + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − e2xy+y−1
e2x+1

dS
dR

= eR
e2R+1

R = x

S = exy

Summary
The solution(s) found are the following

(1)y = e−x(arctan (ex) + c1)
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Figure 78: Slope field plot

Verification of solutions

y = e−x(arctan (ex) + c1)

Verified OK.

4.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−y + 1

e2x + 1

)
dx(

y − 1
e2x + 1

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − 1
e2x + 1

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y − 1

e2x + 1

)
= 1
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((1)− (0))
= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
y − 1

e2x + 1

)
= ex(e2xy + y − 1)

e2x + 1
And

N = µN

= ex(1)
= ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex(e2xy + y − 1)
e2x + 1

)
+ (ex) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ ex(e2xy + y − 1)
e2x + 1 dx

(3)φ = exy − arctan (ex) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + f ′(y)

But equation (2) says that ∂φ
∂y

= ex. Therefore equation (4) becomes

(5)ex = ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = exy − arctan (ex) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = exy − arctan (ex)
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Summary
The solution(s) found are the following

(1)exy − arctan (ex) = c1

Figure 79: Slope field plot

Verification of solutions

exy − arctan (ex) = c1

Verified OK.

4.2.4 Maple step by step solution

Let’s solve
y′ + y = 1

e2x+1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y + 1

e2x+1
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y = 1

e2x+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y) = µ(x)

e2x+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
e2x+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
e2x+1dx+ c1

• Solve for y

y =
∫ µ(x)

e2x+1dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫ ex

e2x+1dx+c1

ex

• Evaluate the integrals on the rhs
y = arctan(ex)+c1

ex

• Simplify
y = e−x(arctan (ex) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+y(x)=1/(1+exp(2*x)),y(x), singsol=all)� �

y(x) = (arctan (ex) + c1) e−x

3 Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 18� �
DSolve[y'[x]+y[x]==1/(1+Exp[2*x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x(arctan (ex) + c1)
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4.3 problem 2(c)
4.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 341
4.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 343
4.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 347
4.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 351

Internal problem ID [3110]
Internal file name [OUTPUT/2602_Sunday_June_05_2022_03_22_00_AM_85419095/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

2yx+
(
x2 + 1

)
y′ = cot (x)

4.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = cot (x)
x2 + 1

Hence the ode is

y′ + 2xy
x2 + 1 = cot (x)

x2 + 1
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
cot (x)
x2 + 1

)
d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)(cot (x)
x2 + 1

)
d
((
x2 + 1

)
y
)
= cot (x) dx

Integrating gives (
x2 + 1

)
y =

∫
cot (x) dx(

x2 + 1
)
y = ln (sin (x)) + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = ln (sin (x))
x2 + 1 + c1

x2 + 1

which simplifies to

y = ln (sin (x)) + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = ln (sin (x)) + c1
x2 + 1
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Figure 80: Slope field plot

Verification of solutions

y = ln (sin (x)) + c1
x2 + 1

Verified OK.

4.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy + cot (x)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy + cot (x)
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cot (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (sin (R)) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y = ln (sin (x)) + c1

Which simplifies to (
x2 + 1

)
y = ln (sin (x)) + c1

Which gives

y = ln (sin (x)) + c1
x2 + 1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy+cot(x)
x2+1

dS
dR

= cot (R)

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = ln (sin (x)) + c1
x2 + 1
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Figure 81: Slope field plot

Verification of solutions

y = ln (sin (x)) + c1
x2 + 1

Verified OK.

4.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (−2xy + cot (x)) dx

(2xy − cot (x)) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy − cot (x)
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2xy − cot (x))

= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy − cot (x) dx

(3)φ = x2y − ln (sin (x)) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(1) dy

f(y) = y + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y − ln (sin (x)) + y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y − ln (sin (x)) + y

The solution becomes

y = ln (sin (x)) + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = ln (sin (x)) + c1
x2 + 1

Figure 82: Slope field plot

Verification of solutions

y = ln (sin (x)) + c1
x2 + 1

Verified OK.
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4.3.4 Maple step by step solution

Let’s solve
2yx+ (x2 + 1) y′ = cot (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 +
cot(x)
x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = cot(x)
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2xy

x2+1

)
= µ(x) cot(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) cot(x)
x2+1 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) cot(x)
x2+1 dx+ c1

• Solve for y

y =
∫ µ(x) cot(x)

x2+1 dx+c1

µ(x)

• Substitute µ(x) = x2 + 1

y =
∫
cot(x)dx+c1

x2+1

• Evaluate the integrals on the rhs
y = ln(sin(x))+c1

x2+1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((1+x^2)*diff(y(x),x)+2*x*y(x)=cot(x),y(x), singsol=all)� �

y(x) = ln (sin (x)) + c1
x2 + 1

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 19� �
DSolve[(1+x^2)*y'[x]+2*x*y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → log(sin(x)) + c1
x2 + 1
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4.4 problem 2(d)
4.4.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 353
4.4.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 355
4.4.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 359
4.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 363

Internal problem ID [3111]
Internal file name [OUTPUT/2603_Sunday_June_05_2022_03_22_02_AM_53367141/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ + y = 2x e−x + x2

4.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = x

(
2 e−x + x

)
Hence the ode is

y′ + y = x
(
2 e−x + x

)
The integrating factor µ is

µ = e
∫
1dx

= ex
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The ode becomes
d
dx(µy) = (µ)

(
x
(
2 e−x + x

))
d
dx(e

xy) = (ex)
(
x
(
2 e−x + x

))
d(exy) = (x(x ex + 2)) dx

Integrating gives

exy =
∫

x(x ex + 2) dx

exy = x2ex − 2x ex + 2 ex + x2 + c1

Dividing both sides by the integrating factor µ = ex results in

y = e−x
(
x2ex − 2x ex + 2 ex + x2)+ c1e−x

which simplifies to

y =
(
x2 + c1

)
e−x + x2 − 2x+ 2

Summary
The solution(s) found are the following

(1)y =
(
x2 + c1

)
e−x + x2 − 2x+ 2

Figure 83: Slope field plot
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Verification of solutions

y =
(
x2 + c1

)
e−x + x2 − 2x+ 2

Verified OK.

4.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + 2x e−x + x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = exy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + 2x e−x + x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = exy
Sy = ex

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x(x ex + 2) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R

(
R eR + 2

)
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eRR2 − 2R eR + 2 eR +R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy = x2ex − 2x ex + 2 ex + x2 + c1

Which simplifies to

exy = x2ex − 2x ex + 2 ex + x2 + c1

Which gives

y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y + 2x e−x + x2 dS
dR

= R
(
R eR + 2

)

R = x

S = exy

Summary
The solution(s) found are the following

(1)y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x
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Figure 84: Slope field plot

Verification of solutions

y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x

Verified OK.

4.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−y + 2x e−x + x2) dx(

y − 2x e−x − x2) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − 2x e−x − x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y − 2x e−x − x2)

= 1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((1)− (0))
= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
y − 2x e−x − x2)

=
(
−x2 + y

)
ex − 2x

And

N = µN

= ex(1)
= ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0((

−x2 + y
)
ex − 2x

)
+ (ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ (
−x2 + y

)
ex − 2x dx

(3)φ =
(
−x2 + 2x+ y − 2

)
ex − x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + f ′(y)

But equation (2) says that ∂φ
∂y

= ex. Therefore equation (4) becomes

(5)ex = ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
−x2 + 2x+ y − 2

)
ex − x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
−x2 + 2x+ y − 2

)
ex − x2

The solution becomes

y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x
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Summary
The solution(s) found are the following

(1)y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x

Figure 85: Slope field plot

Verification of solutions

y =
(
x2ex − 2x ex + 2 ex + x2 + c1

)
e−x

Verified OK.

4.4.4 Maple step by step solution

Let’s solve
y′ + y = 2x e−x + x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −y + 2x e−x + x2
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• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y = 2x e−x + x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + y) = µ(x) (2x e−x + x2)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (2x e−x + x2) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (2x e−x + x2) dx+ c1

• Solve for y

y =
∫
µ(x)

(
2x e−x+x2)dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫
ex
(
2x e−x+x2)dx+c1

ex

• Evaluate the integrals on the rhs
y = x2ex−2x ex+2 ex+x2+c1

ex

• Simplify
y = (x2 + c1) e−x + x2 − 2x+ 2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �

364



3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 22� �
dsolve(diff(y(x),x)+y(x)=2*x*exp(-x)+x^2,y(x), singsol=all)� �

y(x) =
(
x2 + c1

)
e−x + x2 − 2x+ 2

3 Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 29� �
DSolve[y'[x]+y[x]==2*x*Exp[-x]+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
x2 + ex

(
x2 − 2x+ 2

)
+ c1

)
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4.5 problem 2(e)
4.5.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 366
4.5.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 368
4.5.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 372
4.5.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 376

Internal problem ID [3112]
Internal file name [OUTPUT/2604_Sunday_June_05_2022_03_22_07_AM_72034493/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y cot (x) = 2 csc (x)x

4.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cot (x)
q(x) = 2 csc (x)x

Hence the ode is

y′ + y cot (x) = 2 csc (x)x

The integrating factor µ is

µ = e
∫
cot(x)dx

= sin (x)
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The ode becomes
d
dx(µy) = (µ) (2 csc (x)x)

d
dx(sin (x) y) = (sin (x)) (2 csc (x)x)

d(sin (x) y) = (2x) dx

Integrating gives

sin (x) y =
∫

2x dx

sin (x) y = x2 + c1

Dividing both sides by the integrating factor µ = sin (x) results in

y = csc (x)x2 + c1 csc (x)

which simplifies to

y = csc (x)
(
x2 + c1

)
Summary
The solution(s) found are the following

(1)y = csc (x)
(
x2 + c1

)

Figure 86: Slope field plot
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Verification of solutions

y = csc (x)
(
x2 + c1

)
Verified OK.

4.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y cot (x) + 2 csc (x)x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
sin (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
sin(x)

dy

Which results in

S = sin (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y cot (x) + 2 csc (x)x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = cos (x) y
Sy = sin (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y sin (x) = x2 + c1

Which simplifies to

y sin (x) = x2 + c1

Which gives

y = x2 + c1
sin (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y cot (x) + 2 csc (x)x dS
dR

= 2R

R = x

S = sin (x) y

Summary
The solution(s) found are the following

(1)y = x2 + c1
sin (x)
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Figure 87: Slope field plot

Verification of solutions

y = x2 + c1
sin (x)

Verified OK.

4.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy = (−y cot (x) + 2 csc (x)x) dx
(y cot (x)− 2 csc (x)x) dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y cot (x)− 2 csc (x)x
N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y cot (x)− 2 csc (x)x)

= cot (x)

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((cot (x))− (0))
= cot (x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
cot(x) dx

The result of integrating gives

µ = eln(sin(x))

= sin (x)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= sin (x) (y cot (x)− 2 csc (x)x)
= cos (x) y − 2x

And

N = µN

= sin (x) (1)
= sin (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(cos (x) y − 2x) + (sin (x)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (x) y − 2x dx

(3)φ = sin (x) y − x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= sin (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= sin (x). Therefore equation (4) becomes

(5)sin (x) = sin (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (x) y − x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (x) y − x2

The solution becomes

y = x2 + c1
sin (x)
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Summary
The solution(s) found are the following

(1)y = x2 + c1
sin (x)

Figure 88: Slope field plot

Verification of solutions

y = x2 + c1
sin (x)

Verified OK.

4.5.4 Maple step by step solution

Let’s solve
y′ + y cot (x) = 2 csc (x)x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
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y′ = −y cot (x) + 2 csc (x)x
• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y′ + y cot (x) = 2 csc (x)x
• The ODE is linear; multiply by an integrating factor µ(x)

µ(x) (y′ + y cot (x)) = 2µ(x) csc (x)x
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ + y cot (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cot (x)

• Solve to find the integrating factor
µ(x) = sin (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
2µ(x) csc (x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
2µ(x) csc (x)xdx+ c1

• Solve for y

y =
∫
2µ(x) csc(x)xdx+c1

µ(x)

• Substitute µ(x) = sin (x)

y =
∫
2 csc(x)x sin(x)dx+c1

sin(x)

• Evaluate the integrals on the rhs
y = x2+c1

sin(x)

• Simplify
y = csc (x) (x2 + c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)+y(x)*cot(x)=2*x*csc(x),y(x), singsol=all)� �

y(x) = csc (x)
(
x2 + c1

)
3 Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 14� �
DSolve[y'[x]+y[x]*Cot[x]==2*x*Csc[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
(
x2 + c1

)
csc(x)
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4.6 problem 2(f)
4.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 379
4.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 381
4.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 385
4.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 390

Internal problem ID [3113]
Internal file name [OUTPUT/2605_Sunday_June_05_2022_03_22_09_AM_5462670/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49
Problem number: 2(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2y − xy′ = x3

4.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = −x2

Hence the ode is

y′ − 2y
x

= −x2
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The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
−x2)

d
dx

( y

x2

)
=
(

1
x2

)(
−x2)

d
( y

x2

)
= −1 dx

Integrating gives

y

x2 =
∫

−1 dx
y

x2 = −x+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

y = c1x
2 − x3

which simplifies to

y = x2(−x+ c1)

Summary
The solution(s) found are the following

(1)y = x2(−x+ c1)
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Figure 89: Slope field plot

Verification of solutions

y = x2(−x+ c1)

Verified OK.

4.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x3 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

381



Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2dy

Which results in

S = y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x3 + 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y
x3

Sy =
1
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 = −x+ c1

Which simplifies to
y

x2 = −x+ c1

Which gives

y = x2(−x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x3+2y
x

dS
dR

= −1

R = x

S = y

x2

Summary
The solution(s) found are the following

(1)y = x2(−x+ c1)
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Figure 90: Slope field plot

Verification of solutions

y = x2(−x+ c1)

Verified OK.

4.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x) dy =
(
x3 − 2y

)
dx(

−x3 + 2y
)
dx+(−x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 + 2y
N(x, y) = −x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x3 + 2y

)
= 2

And
∂N

∂x
= ∂

∂x
(−x)

= −1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= −1

x
((2)− (−1))

= −3
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
−x3 + 2y

)
= −x3 + 2y

x3

And

N = µN

= 1
x3 (−x)

= − 1
x2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 + 2y
x3

)
+
(
− 1
x2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 + 2y

x3 dx

(3)φ = −x− y

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
x2 . Therefore equation (4) becomes

(5)− 1
x2 = − 1

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x− y

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x− y

x2
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The solution becomes
y = −(x+ c1)x2

Summary
The solution(s) found are the following

(1)y = −(x+ c1)x2

Figure 91: Slope field plot

Verification of solutions

y = −(x+ c1)x2

Verified OK.
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4.6.4 Maple step by step solution

Let’s solve
2y − xy′ = x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y

x
− x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y

x
= −x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2y

x

)
= −µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
−µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
−µ(x)x2dx+ c1

• Solve for y

y =
∫
−µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x2

y = x2(∫ (−1) dx+ c1
)

• Evaluate the integrals on the rhs
y = x2(−x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((2*y(x)-x^3)=x*diff(y(x),x),y(x), singsol=all)� �

y(x) = (c1 − x)x2

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 15� �
DSolve[(2*y[x]-x^3)==x*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(−x+ c1)
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5.1 problem 2
5.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 393
5.1.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 398

Internal problem ID [3114]
Internal file name [OUTPUT/2606_Sunday_June_05_2022_03_22_11_AM_87162369/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

(−yx+ 1) y′ − y2 = 0

5.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy − 1 − y4a3

(xy − 1)2
− y3(xa2 + ya3 + a1)

(xy − 1)2

−
(
− 2y
xy − 1 + y2x

(xy − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2

(xy − 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 − 2y4a3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − y2b3 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v42 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 − a2v

2
2 − 4b2v1v2 − b3v

2
2 − 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21v22 + b1v1v
2
2 − 4b2v1v2 − 2a3v42 − a1v

3
2 + (−a2 − b3) v22 − 2b1v2 + b2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy − 1

)
(−x)

= − y

xy − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

395



The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
xy−1

dy

Which results in

S = −xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −x+ 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−yx+ ln (y) = c1

Which simplifies to

−yx+ ln (y) = c1

Which gives

y = e−LambertW(−ec1x)+c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy−1
dS
dR

= 0

R = x

S = −xy + ln (y)
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Summary
The solution(s) found are the following

(1)y = e−LambertW(−ec1x)+c1

Figure 92: Slope field plot

Verification of solutions

y = e−LambertW(−ec1x)+c1

Verified OK.

5.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−xy + 1) dy =
(
y2
)
dx(

−y2
)
dx+(−xy + 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2

N(x, y) = −xy + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−y2

)
= −2y
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And
∂N

∂x
= ∂

∂x
(−xy + 1)

= −y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−xy + 1((−2y)− (−y))

= y

xy − 1
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

y2
((−y)− (−2y))

= −1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

(
−y2

)
= −y
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And

N = µN

= 1
y
(−xy + 1)

= −xy + 1
y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(−y) +
(
−xy + 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−y dx

(3)φ = −xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −xy+1
y

. Therefore equation (4) becomes

(5)−xy + 1
y

= −x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (1
y

)
dy

f(y) = ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −xy + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −xy + ln (y)

The solution becomes
y = e−LambertW(−ec1x)+c1

Summary
The solution(s) found are the following

(1)y = e−LambertW(−ec1x)+c1
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Figure 93: Slope field plot

Verification of solutions

y = e−LambertW(−ec1x)+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((1-x*y(x))*diff(y(x),x)=y(x)^2,y(x), singsol=all)� �

y(x) = −LambertW (−x e−c1)
x

3 Solution by Mathematica
Time used: 2.155 (sec). Leaf size: 25� �
DSolve[(1-x*y[x])*y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −W (−e−c1x)
x

y(x) → 0
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5.2 problem 3
5.2.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 405
5.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 408

Internal problem ID [3115]
Internal file name [OUTPUT/2607_Sunday_June_05_2022_03_22_14_AM_19060358/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

3y + (2y − 3x+ 5) y′ = −1− 2x

5.2.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = − 2X + 2x0 + 3Y (X) + 3y0 + 1

2Y (X) + 2y0 − 3X − 3x0 + 5

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 2X + 3Y (X)

2Y (X)− 3X
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In canonical form, the ODE is

Y ′ = F (X,Y )

= −2X + 3Y
2Y − 3X (1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2X + 3Y and N = −2Y + 3X are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −3u− 2

2u− 3
du
dX =

−3u(X)−2
2u(X)−3 − u(X)

X

Or
d

dX
u(X)−

−3u(X)−2
2u(X)−3 − u(X)

X
= 0

Or
2
(

d

dX
u(X)

)
Xu(X)− 3

(
d

dX
u(X)

)
X + 2u(X)2 + 2 = 0

Or
2 +X(2u(X)− 3)

(
d

dX
u(X)

)
+ 2u(X)2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − 2(u2 + 1)
X (2u− 3)
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Where f(X) = − 2
X

and g(u) = u2+1
2u−3 . Integrating both sides gives

1
u2+1
2u−3

du = − 2
X

dX

∫ 1
u2+1
2u−3

du =
∫

− 2
X

dX

ln
(
u2 + 1

)
− 3 arctan (u) = −2 ln (X) + c2

The solution is

ln
(
u(X)2 + 1

)
− 3 arctan (u(X)) + 2 ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(
Y (X)2

X2 + 1
)

− 3 arctan
(
Y (X)
X

)
+ 2 ln (X)− c2 = 0

Using the solution for Y (X)

ln
(
Y (X)2

X2 + 1
)

− 3 arctan
(
Y (X)
X

)
+ 2 ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes

ln
(
(y + 1)2

(x− 1)2
+ 1
)

− 3 arctan
(
y + 1
x− 1

)
+ 2 ln (x− 1)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
(y + 1)2

(x− 1)2
+ 1
)

− 3 arctan
(
y + 1
x− 1

)
+ 2 ln (x− 1)− c2 = 0
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Figure 94: Slope field plot

Verification of solutions

ln
(
(y + 1)2

(x− 1)2
+ 1
)

− 3 arctan
(
y + 1
x− 1

)
+ 2 ln (x− 1)− c2 = 0

Verified OK.

5.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −2x+ 3y + 1
2y − 3x+ 5

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ 3y + 1) (b3 − a2)

2y − 3x+ 5 − (2x+ 3y + 1)2 a3
(2y − 3x+ 5)2

−
(
− 2
2y − 3x+ 5 − 3(2x+ 3y + 1)

(2y − 3x+ 5)2
)
(xa2 + ya3 + a1)

−
(
− 3
2y − 3x+ 5 + 4x+ 6y + 2

(2y − 3x+ 5)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−6x2a2 + 4x2a3 + 4x2b2 − 6x2b3 − 8xya2 + 12xya3 + 12xyb2 + 8xyb3 − 6y2a2 − 4y2a3 − 4y2b2 + 6y2b3 − 20xa2 + 4xa3 + 13xb1 + 17xb2 + 7xb3 − 13ya1 − 17ya2 − 7ya3 − 20yb2 + 4yb3 − 13a1 − 5a2 + a3 − 13b1 − 25b2 + 5b3
(−2y + 3x− 5)2

= 0

Setting the numerator to zero gives

(6E)−6x2a2−4x2a3−4x2b2+6x2b3+8xya2−12xya3−12xyb2−8xyb3+6y2a2
+ 4y2a3 + 4y2b2 − 6y2b3 + 20xa2 − 4xa3 − 13xb1 − 17xb2 − 7xb3 + 13ya1
+ 17ya2 + 7ya3 + 20yb2 − 4yb3 + 13a1 + 5a2 − a3 + 13b1 + 25b2 − 5b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−6a2v21 + 8a2v1v2 + 6a2v22 − 4a3v21 − 12a3v1v2 + 4a3v22 − 4b2v21
− 12b2v1v2 + 4b2v22 + 6b3v21 − 8b3v1v2 − 6b3v22 + 13a1v2
+ 20a2v1 + 17a2v2 − 4a3v1 + 7a3v2 − 13b1v1 − 17b2v1 + 20b2v2
− 7b3v1 − 4b3v2 + 13a1 + 5a2 − a3 + 13b1 + 25b2 − 5b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−6a2 − 4a3 − 4b2 + 6b3) v21 + (8a2 − 12a3 − 12b2 − 8b3) v1v2
+ (20a2 − 4a3 − 13b1 − 17b2 − 7b3) v1 + (6a2 + 4a3 + 4b2 − 6b3) v22
+(13a1+17a2+7a3+20b2−4b3) v2+13a1+5a2−a3+13b1+25b2−5b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−6a2 − 4a3 − 4b2 + 6b3 = 0
6a2 + 4a3 + 4b2 − 6b3 = 0

8a2 − 12a3 − 12b2 − 8b3 = 0
13a1 + 17a2 + 7a3 + 20b2 − 4b3 = 0
20a2 − 4a3 − 13b1 − 17b2 − 7b3 = 0

13a1 + 5a2 − a3 + 13b1 + 25b2 − 5b3 = 0

Solving the above equations for the unknowns gives

a1 = −b3 − b2

a2 = b3

a3 = −b2

b1 = b3 − b2

b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
−2x+ 3y + 1
2y − 3x+ 5

)
(x− 1)

= −2x2 − 2y2 + 4x− 4y − 4
−2y + 3x− 5

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2−2y2+4x−4y−4
−2y+3x−5

dy

Which results in

S = ln (x2 + y2 − 2x+ 2y + 2)
2 +

(−3x+ 3) arctan
( 2+2y
2x−2

)
2x− 2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x+ 3y + 1
2y − 3x+ 5

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ 3y + 1
2x2 + 2y2 − 4x+ 4y + 4

Sy =
2y − 3x+ 5

2x2 + 2y2 − 4x+ 4y + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2 + 2y − 2x+ 2)
2 −

3 arctan
(
y+1
x−1

)
2 = c1

Which simplifies to
ln (y2 + x2 + 2y − 2x+ 2)

2 −
3 arctan

(
y+1
x−1

)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x+3y+1
2y−3x+5

dS
dR

= 0

R = x

S = ln (x2 + y2 − 2x+ 2y + 2)
2 −

3 arctan
(
y+1
x−1

)
2
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Summary
The solution(s) found are the following

(1)ln (y2 + x2 + 2y − 2x+ 2)
2 −

3 arctan
(
y+1
x−1

)
2 = c1

Figure 95: Slope field plot

Verification of solutions

ln (y2 + x2 + 2y − 2x+ 2)
2 −

3 arctan
(
y+1
x−1

)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 31� �
dsolve((2*x+3*y(x)+1)+(2*y(x)-3*x+5)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −1− tan
(
RootOf

(
3_Z+ ln

(
sec (_Z)2

)
+ 2 ln (x− 1) + 2c1

))
(x− 1)

3 Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 68� �
DSolve[(2*x+3*y[x]+1)+(2*y[x]-3*x+5)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
54 arctan

(
3y(x) + 2x+ 1
2y(x)− 3x+ 5

)
+ 18 log

(
4(x2 + y(x)2 + 2y(x)− 2x+ 2)

13(x− 1)2

)
+ 36 log(x− 1) + 13c1 = 0, y(x)

]
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5.3 problem 4
5.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 415

Internal problem ID [3116]
Internal file name [OUTPUT/2608_Sunday_June_05_2022_03_22_18_AM_69094642/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′ −
√

y2 + x2 = 0

5.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
√
x2 + y2

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
√
x2 + y2 (b3 − a2)

x
− (x2 + y2) a3

x2

−
(

1√
x2 + y2

−
√
x2 + y2

x2

)
(xa2 + ya3 + a1)−

y(xb2 + yb3 + b1)
x
√
x2 + y2

= 0

Putting the above in normal form gives

−
√
x2 + y2 x2a3 − b2

√
x2 + y2 x2 +

√
x2 + y2 y2a3 + x3a2 − x3b3 + x2yb2 − y3a3 + xyb1 − y2a1√

x2 + y2 x2

= 0

Setting the numerator to zero gives

(6E)−
√

x2 + y2 x2a3 + b2
√
x2 + y2 x2 −

√
x2 + y2 y2a3

− x3a2 + x3b3 − x2yb2 + y3a3 − xyb1 + y2a1 = 0

Simplifying the above gives

(6E)x
(
x2 + y2

)
b3 +

(
x2 + y2

)
ya3 −

√
x2 + y2 x2a3

+ b2
√

x2 + y2 x2 −
√

x2 + y2 y2a3 − x3a2 − x2ya3
− x2yb2 − x y2b3 +

(
x2 + y2

)
a1 − x2a1 − xyb1 = 0

Since the PDE has radicals, simplifying gives

−
√

x2 + y2 x2a3 + b2
√
x2 + y2 x2 −

√
x2 + y2 y2a3

− x3a2 + x3b3 − x2yb2 + y3a3 − xyb1 + y2a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
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The above PDE (6E) now becomes

(7E)−v31a2 − v3v
2
1a3 + v32a3 − v3v

2
2a3 − v21v2b2 + b2v3v

2
1 + v31b3 + v22a1 − v1v2b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(b3 − a2) v31 − v21v2b2 + (−a3 + b2) v21v3 − v1v2b1 + v32a3 − v3v
2
2a3 + v22a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0

−a3 = 0
−b1 = 0
−b2 = 0

−a3 + b2 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

x2 + y2

x

)
(x)

= y −
√

x2 + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y −
√
x2 + y2

dy

Which results in

S = − y2

2x2 − y
√
x2 + y2

2x2 −
ln
(
y +

√
x2 + y2

)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x2 + y2

x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −(−x2y − 4y3)
√
x2 + y2 + x4 − 3y2x2 − 4y4

2
√
x2 + y2

(
y +

√
x2 + y2

)
x3

Sy = −y
√
x2 + y2 + x2 + y2√

x2 + y2 x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

3
(
y
√
x2 + y2 + x2 + y2

)
2x

√
x2 + y2

(
y +

√
x2 + y2

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
y +

√
y2 + x2

)
x2 − y

(
y +

√
y2 + x2

)
2x2 = −3 ln (x)

2 + c1

Which simplifies to

− ln
(
y +

√
y2 + x2

)
x2 − y

(
y +

√
y2 + x2

)
2x2 = −3 ln (x)

2 + c1

Which gives

y =
x2(LambertW (x4e−4c1+1)− 1)

√
1

x2 LambertW
(
x4e−4c1+1)

2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

x2+y2

x
dS
dR

= − 3
2R

R = x

S =
− ln

(
y +

√
x2 + y2

)
x2 − y

(
y +

√
x2 + y2

)
2x2

Summary
The solution(s) found are the following

(1)y =
x2(LambertW (x4e−4c1+1)− 1)

√
1

x2 LambertW
(
x4e−4c1+1)

2
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Figure 96: Slope field plot

Verification of solutions

y =
x2(LambertW (x4e−4c1+1)− 1)

√
1

x2 LambertW
(
x4e−4c1+1)

2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 51� �
dsolve(x*diff(y(x),x)=sqrt(x^2+y(x)^2),y(x), singsol=all)� �

y(x)2 + y(x)
√

x2 + y (x)2 +
(
ln
(
y(x) +

√
x2 + y (x)2

)
− c1 − 3 ln (x)

)
x2

x2 = 0

3 Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 66� �
DSolve[x*y'[x]==Sqrt[x^2+y[x]^2],y[x],x,IncludeSingularSolutions -> True]� �

Solve

12
y(x)

(√
y(x)2
x2 + 1 + y(x)

x

)
x

− log
(√

y(x)2
x2 + 1− y(x)

x

)= log(x)+c1, y(x)
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5.4 problem 5
5.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 423

Internal problem ID [3117]
Internal file name [OUTPUT/2609_Sunday_June_05_2022_03_22_21_AM_13020875/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 −
(
x3 − yx

)
y′ = 0

5.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

x (−x2 + y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y2(b3 − a2)
x (−x2 + y) −

y4a3

x2 (−x2 + y)2

−
(

y2

x2 (−x2 + y) −
2y2

(−x2 + y)2
)
(xa2 + ya3 + a1)

−
(
− 2y
x (−x2 + y) +

y2

x (−x2 + y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6b2 − 4x4yb2 + 2x3y2a2 − x3y2b3 + 3x2y3a3 − 2x3yb1 + 3x2y2a1 + 2x2y2b2 − 2y4a3 + x y2b1 − y3a1

x2 (x2 − y)2
= 0

Setting the numerator to zero gives

(6E)x6b2 − 4x4yb2 + 2x3y2a2 − x3y2b3 + 3x2y3a3 − 2x3yb1
+ 3x2y2a1 + 2x2y2b2 − 2y4a3 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
6
1 + 2a2v31v22 + 3a3v21v32 − 4b2v41v2 − b3v

3
1v

2
2 + 3a1v21v22

− 2a3v42 − 2b1v31v2 + 2b2v21v22 − a1v
3
2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1 − 4b2v41v2 + (2a2 − b3) v31v22 − 2b1v31v2 + 3a3v21v32

+ (3a1 + 2b2) v21v22 + b1v1v
2
2 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2a3 = 0
3a3 = 0

−2b1 = 0
−4b2 = 0

3a1 + 2b2 = 0
2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(
− y2

x (−x2 + y)

)
(x)

= 2x2y − 3y2
x2 − y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2y−3y2
x2−y

dy

Which results in

S = − ln (−2x2 + 3y)
6 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

x (−x2 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 2x
6x2 − 9y

Sy =
x2 − y

2x2y − 3y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (−2x2 + 3y)
6 + ln (y)

2 = − ln (x)
3 + c1

Which simplifies to

− ln (−2x2 + 3y)
6 + ln (y)

2 = − ln (x)
3 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

x(−x2+y)
dS
dR

= − 1
3R

R = x

S = − ln (−2x2 + 3y)
6 + ln (y)

2

Summary
The solution(s) found are the following

(1)− ln (−2x2 + 3y)
6 + ln (y)

2 = − ln (x)
3 + c1
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Figure 97: Slope field plot

Verification of solutions

− ln (−2x2 + 3y)
6 + ln (y)

2 = − ln (x)
3 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �

429



3 Solution by Maple
Time used: 0.5 (sec). Leaf size: 211� �
dsolve(y(x)^2=(x^3-x*y(x))*diff(y(x),x),y(x), singsol=all)� �

y(x) =
c1

((
−x3 +

√
x6 − c31

) 2
3 + c1

)
x
(
−x3 +

√
x6 − c31

) 1
3

y(x) = −
c1

(
i
√
3
(
−x3 +

√
x6 − c31

) 2
3 − i

√
3 c1 +

(
−x3 +

√
x6 − c31

) 2
3 + c1

)
2x
(
−x3 +

√
x6 − c31

) 1
3

y(x) = −
c1

(
−i

√
3
(
−x3 +

√
x6 − c31

) 2
3 + i

√
3 c1 +

(
−x3 +

√
x6 − c31

) 2
3 + c1

)
2x
(
−x3 +

√
x6 − c31

) 1
3
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3 Solution by Mathematica
Time used: 60.13 (sec). Leaf size: 820� �
DSolve[y[x]^2==(x^3-x*y[x])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → x2

− 9x2

9
3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

x6 cosh
(

3c1
8

)
+x6 sinh

(
3c1
8

)
−1

− 9

3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

+ 9

y(x) → x2

− 18x2

9i
(√

3+i
) 3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

x6 cosh
(

3c1
8

)
+x6 sinh

(
3c1
8

)
−1

+ 9+9i
√
3

3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

+ 18

y(x) → x2

− 18x2

−
9i
(√

3−i
) 3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

x6 cosh
(

3c1
8

)
+x6 sinh

(
3c1
8

)
−1

+ 9−9i
√
3

3

√√√√x12
(
− cosh

(
3c1
4

))
− x12 sinh

(
3c1
4

)
+ 2x6 cosh

(
3c1
8

)
+ 2x6 sinh

(
3c1
8

)
+

√
x6
(
cosh

(
15c1
16

)
+ sinh

(
15c1
16

))(
(x6 − 1) cosh

(
3c1
16

)
+ (x6 + 1) sinh

(
3c1
16

))
3 − 1

+ 18
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5.5 problem 6
Internal problem ID [3118]
Internal file name [OUTPUT/2610_Sunday_June_05_2022_03_22_25_AM_64609755/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

y3 + y −
(
y2x3 − x

)
y′ = −x2

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve((x^2+y(x)^3+y(x))=(x^3*y(x)^2-x)*diff(y(x),x),y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(x^2+y[x]^3+y[x])==(x^3*y[x]^2-x)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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5.6 problem 8
5.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 435
5.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 437
5.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 441
5.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 445

Internal problem ID [3119]
Internal file name [OUTPUT/2611_Sunday_June_05_2022_03_22_28_AM_67308557/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = cos (x)x

5.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = cos (x)

Hence the ode is

y′ + y

x
= cos (x)

The integrating factor µ is

µ = e
∫ 1

x
dx

= x
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The ode becomes

d
dx(µy) = (µ) (cos (x))
d
dx(xy) = (x) (cos (x))

d(xy) = (cos (x)x) dx

Integrating gives

xy =
∫

cos (x)x dx

xy = x sin (x) + cos (x) + c1

Dividing both sides by the integrating factor µ = x results in

y = x sin (x) + cos (x)
x

+ c1
x

which simplifies to

y = x sin (x) + cos (x) + c1
x

Summary
The solution(s) found are the following

(1)y = x sin (x) + cos (x) + c1
x
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Figure 98: Slope field plot

Verification of solutions

y = x sin (x) + cos (x) + c1
x

Verified OK.

5.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + cos (x)x
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 49: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + cos (x)x
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= cos (x)x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cos (R)R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cos (R) + sin (R)R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x sin (x) + cos (x) + c1

Which simplifies to

yx = x sin (x) + cos (x) + c1

Which gives

y = x sin (x) + cos (x) + c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+cos(x)x
x

dS
dR

= cos (R)R

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = x sin (x) + cos (x) + c1
x
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Figure 99: Slope field plot

Verification of solutions

y = x sin (x) + cos (x) + c1
x

Verified OK.

5.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (−y + cos (x)x) dx
(y − cos (x)x) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − cos (x)x
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y − cos (x)x)

= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1

442



Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − cos (x)x dx

(3)φ = xy − cos (x)− x sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = xy − cos (x)− x sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy − cos (x)− x sin (x)
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The solution becomes

y = x sin (x) + cos (x) + c1
x

Summary
The solution(s) found are the following

(1)y = x sin (x) + cos (x) + c1
x

Figure 100: Slope field plot

Verification of solutions

y = x sin (x) + cos (x) + c1
x

Verified OK.
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5.6.4 Maple step by step solution

Let’s solve
xy′ + y = cos (x)x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ cos (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
cos(x)xdx+c1

x

• Evaluate the integrals on the rhs
y = x sin(x)+cos(x)+c1

x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(x*diff(y(x),x)+y(x)=x*cos(x),y(x), singsol=all)� �

y(x) = x sin (x) + cos (x) + c1
x

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 18� �
DSolve[x*y'[x]+y[x]==x*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x sin(x) + cos(x) + c1
x
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5.7 problem 9
5.7.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 447
5.7.2 Solving as first order ode lie symmetry calculated ode . . . . . . 449
5.7.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 454

Internal problem ID [3120]
Internal file name [OUTPUT/2612_Sunday_June_05_2022_03_22_30_AM_99694529/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

(
yx− x2) y′ − y2 = 0

5.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
u(x)x2 − x2) (u′(x)x+ u(x))− u(x)2 x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u

x (u− 1)
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Where f(x) = 1
x
and g(u) = u

u−1 . Integrating both sides gives

1
u

u−1
du = 1

x
dx

∫ 1
u

u−1
du =

∫ 1
x
dx

u− ln (u) = ln (x) + c2

The solution is
u(x)− ln (u(x))− ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Figure 101: Slope field plot
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Verification of solutions
y

x
− ln

(y
x

)
− ln (x)− c2 = 0

Verified OK.

5.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (y − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
y2(b3 − a2)
x (y − x) − y4a3

x2 (y − x)2
−
(
− y2

x2 (y − x) +
y2

x (y − x)2
)
(xa2+ya3+a1)

−
(

2y
x (y − x) −

y2

x (y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1

x2 (−y + x)2
= 0
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Setting the numerator to zero gives

(6E)x4b2 − x2y2a2 + x2y2b3 − 2x y3a3 + 2x2yb1 − 2x y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
1v

2
2 − 2a3v1v32 + b2v

4
1 + b3v

2
1v

2
2 − 2a1v1v22 + a1v

3
2 + 2b1v21v2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
4
1 + (b3 − a2) v21v22 + 2b1v21v2 − 2a3v1v32 + (−2a1 − b1) v1v22 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−2a3 = 0
2b1 = 0

−2a1 − b1 = 0
b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

y2

x (y − x)

)
(x)

= xy

−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy
−y+x

dy

Which results in

S = ln (y)− y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (y − x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x2

Sy =
−y + x

xy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)x− y

x
= c1

Which simplifies to

ln (y)x− y

x
= c1

Which gives

y = e−LambertW
(
− ec1

x

)
+c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(y−x)
dS
dR

= 0

R = x

S = ln (y)x− y

x

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− ec1

x

)
+c1
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Figure 102: Slope field plot

Verification of solutions

y = e−LambertW
(
− ec1

x

)
+c1

Verified OK.

5.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + xy

)
dy =

(
y2
)
dx(

−y2
)
dx+

(
−x2 + xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y2

N(x, y) = −x2 + xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y2

)
= −2y

And
∂N

∂x
= ∂

∂x

(
−x2 + xy

)
= −2x+ y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = −y2 and N = yx− x2 by this integrating factor the ode
becomes exact. The new M,N are

M = − y

x2

N = yx− x2

x2y

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
−x2 + xy

x2y

)
dy =

( y

x2

)
dx(

− y

x2

)
dx+

(
−x2 + xy

x2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − y

x2

N(x, y) = −x2 + xy

x2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
− y

x2

)
= − 1

x2

And
∂N

∂x
= ∂

∂x

(
−x2 + xy

x2y

)
= − 1

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− y

x2 dx

(3)φ = y

x
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x2+xy
x2y

. Therefore equation (4) becomes

(5)−x2 + xy

x2y
= 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y

x
− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
y

x
− ln (y)

The solution becomes

y = e−LambertW
(
− e−c1

x

)
−c1

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
− e−c1

x

)
−c1
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Figure 103: Slope field plot

Verification of solutions

y = e−LambertW
(
− e−c1

x

)
−c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 17� �
dsolve((x*y(x)-x^2)*diff(y(x),x)=y(x)^2,y(x), singsol=all)� �

y(x) = −xLambertW
(
−e−c1

x

)
3 Solution by Mathematica
Time used: 2.286 (sec). Leaf size: 25� �
DSolve[(x*y[x]-x^2)*y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW

(
−e−c1

x

)
y(x) → 0

460



5.8 problem 10
5.8.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 461
5.8.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 464

Internal problem ID [3121]
Internal file name [OUTPUT/2613_Sunday_June_05_2022_03_22_33_AM_29737813/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

(
ex − 3y2x2) y′ + exy − 2xy3 = 0

5.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

ex − 3y2x2) dy =
(
−exy + 2x y3

)
dx(

−2x y3 + exy
)
dx+

(
ex − 3y2x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x y3 + exy
N(x, y) = ex − 3y2x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x y3 + exy

)
= ex − 6x y2

And
∂N

∂x
= ∂

∂x

(
ex − 3y2x2)

= ex − 6x y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x y3 + exy dx

(3)φ = y
(
−y2x2 + ex

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex − 3y2x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex − 3y2x2. Therefore equation (4) becomes

(5)ex − 3y2x2 = ex − 3y2x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y
(
−y2x2 + ex

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y
(
−y2x2 + ex

)
Summary
The solution(s) found are the following

(1)y
(
−y2x2 + ex

)
= c1
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Figure 104: Slope field plot

Verification of solutions

y
(
−y2x2 + ex

)
= c1

Verified OK.

5.8.2 Maple step by step solution

Let’s solve
(ex − 3y2x2) y′ + exy − 2xy3 = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
ex − 6x y2 = ex − 6x y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2x y3 + exy) dx+ f1(y)

• Evaluate integral
F (x, y) = exy − y3x2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
ex − 3y2x2 = ex − 3y2x2 + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = exy − y3x2

• Substitute F (x, y) into the solution of the ODE
exy − y3x2 = c1

• Solve for y
y =

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3

6x + 2 ex

x

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3
, y = −

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3

12x − ex

x

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3
−

I
√
3


(
−108c1x+12

√
81c21x

2−12(ex)3
) 1

3

6x − 2 ex

x

(
−108c1x+12

√
81c21x

2−12(ex)3
) 1

3


2 , y = −

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3

12x − ex

x

(
−108c1x+12

√
81c21x2−12(ex)3

) 1
3
+

I
√
3


(
−108c1x+12

√
81c21x

2−12(ex)3
) 1

3

6x − 2 ex

x

(
−108c1x+12

√
81c21x

2−12(ex)3
) 1

3


2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 278� �
dsolve((exp(x)-3*x^2*y(x)^2)*diff(y(x),x)+y(x)*exp(x)=2*x*y(x)^3,y(x), singsol=all)� �
y(x) =

(
108c1x+ 12

√
81c21x2 − 12 e3x

) 2
3 + 12 ex

6
(
108c1x+ 12

√
81c21x2 − 12 e3x

) 1
3
x

y(x)

=
−i

√
3
(
108c1x+ 12

√
81c21x2 − 12 e3x

) 2
3 + 12iex

√
3−

(
108c1x+ 12

√
81c21x2 − 12 e3x

) 2
3 − 12 ex

12
(
108c1x+ 12

√
81c21x2 − 12 e3x

) 1
3
x

y(x) =

−
−i

√
3
(
108c1x+ 12

√
81c21x2 − 12 e3x

) 2
3 + 12iex

√
3 +

(
108c1x+ 12

√
81c21x2 − 12 e3x

) 2
3 + 12 ex

12
(
108c1x+ 12

√
81c21x2 − 12 e3x

) 1
3
x
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3 Solution by Mathematica
Time used: 48.841 (sec). Leaf size: 364� �
DSolve[(Exp[x]-3*x^2*y[x]^2)*y'[x]+y[x]*Exp[x]==2*x*y[x]^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
2 3
√
3exx2 + 3

√
2
(
9c1x4 +

√
−12e3xx6 + 81c12x8

) 2/3

62/3x2 3
√
9c1x4 +

√
−12e3xx6 + 81c12x8

y(x) →
i
(√

3 + i
) 3
√

9c1x4 +
√
−12e3xx6 + 81c12x8

2 3
√
232/3x2

−
(√

3 + 3i
)
ex

22/335/6 3
√

9c1x4 +
√
−12e3xx6 + 81c12x8

y(x) →
(
−1− i

√
3
) 3
√
9c1x4 +

√
−12e3xx6 + 81c12x8

2 3
√
232/3x2

−
(√

3− 3i
)
ex

22/335/6 3
√

9c1x4 +
√
−12e3xx6 + 81c12x8
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5.9 problem 12
5.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 468
5.9.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 470
5.9.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 471
5.9.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 475
5.9.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 480

Internal problem ID [3122]
Internal file name [OUTPUT/2614_Sunday_June_05_2022_03_22_37_AM_79544205/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

−xy′ + y = −x2

5.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
x

q(x) = x

Hence the ode is

y′ − y

x
= x
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The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes

d
dx(µy) = (µ) (x)

d
dx

(y
x

)
=
(
1
x

)
(x)

d
(y
x

)
= dx

Integrating gives

y

x
=
∫

dx
y

x
= x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

y = c1x+ x2

which simplifies to

y = x(x+ c1)

Summary
The solution(s) found are the following

(1)y = x(x+ c1)

469



Figure 105: Slope field plot

Verification of solutions

y = x(x+ c1)

Verified OK.

5.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−x(u′(x)x+ u(x)) + u(x)x = −x2

Integrating both sides gives

u(x) =
∫

1 dx

= x+ c2

Therefore the solution y is

y = ux

= x(x+ c2)

470



Summary
The solution(s) found are the following

(1)y = x(x+ c2)

Figure 106: Slope field plot

Verification of solutions

y = x(x+ c2)

Verified OK.

5.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
dy

Which results in

S = y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

x2

Sy =
1
x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x
= x+ c1

Which simplifies to
y

x
= x+ c1

Which gives

y = x(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2+y
x

dS
dR

= 1

R = x

S = y

x

Summary
The solution(s) found are the following

(1)y = x(x+ c1)
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Figure 107: Slope field plot

Verification of solutions

y = x(x+ c1)

Verified OK.

5.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x) dy =
(
−x2 − y

)
dx(

x2 + y
)
dx+(−x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y

N(x, y) = −x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + y

)
= 1

And
∂N

∂x
= ∂

∂x
(−x)

= −1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= −1

x
((1)− (−1))

= −2
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 + y

)
= x2 + y

x2

And

N = µN

= 1
x2 (−x)

= −1
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 + y

x2

)
+
(
−1
x

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y

x2 dx

(3)φ = x− y

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
x
. Therefore equation (4) becomes

(5)−1
x
= −1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x− y

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− y

x
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The solution becomes
y = −(−x+ c1)x

Summary
The solution(s) found are the following

(1)y = −(−x+ c1)x

Figure 108: Slope field plot

Verification of solutions

y = −(−x+ c1)x

Verified OK.
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5.9.5 Maple step by step solution

Let’s solve
−xy′ + y = −x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)xdx+ c1

• Solve for y

y =
∫
µ(x)xdx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫

1dx+ c1
)

• Evaluate the integrals on the rhs
y = x(x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve((x^2+y(x))=x*diff(y(x),x),y(x), singsol=all)� �

y(x) = (c1 + x)x

3 Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 11� �
DSolve[(x^2+y[x])==x*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(x+ c1)
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5.10 problem 13
5.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 482
5.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 484
5.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 488
5.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 492

Internal problem ID [3123]
Internal file name [OUTPUT/2615_Sunday_June_05_2022_03_22_39_AM_13834837/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

xy′ + y = x2 cos (x)

5.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x

q(x) = cos (x)x

Hence the ode is

y′ + y

x
= cos (x)x

The integrating factor µ is

µ = e
∫ 1

x
dx

= x
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The ode becomes

d
dx(µy) = (µ) (cos (x)x)
d
dx(xy) = (x) (cos (x)x)

d(xy) =
(
x2 cos (x)

)
dx

Integrating gives

xy =
∫

x2 cos (x) dx

xy = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1

Dividing both sides by the integrating factor µ = x results in

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x
x

+ c1
x

which simplifies to

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Summary
The solution(s) found are the following

(1)y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x
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Figure 109: Slope field plot

Verification of solutions

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Verified OK.

5.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y + x2 cos (x)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x

dy

Which results in

S = xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y + x2 cos (x)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y

Sy = x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x2 cos (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R2 cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2 sin (R)− 2 sin (R) + 2R cos (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1

Which simplifies to

yx = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1

Which gives

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y+x2 cos(x)
x

dS
dR

= R2 cos (R)

R = x

S = xy

Summary
The solution(s) found are the following

(1)y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

487



Figure 110: Slope field plot

Verification of solutions

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Verified OK.

5.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy =
(
−y + x2 cos (x)

)
dx(

y − x2 cos (x)
)
dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − x2 cos (x)
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y − x2 cos (x)

)
= 1

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y − x2 cos (x) dx

(3)φ =
(
−x2 + 2

)
sin (x) + x(−2 cos (x) + y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x. Therefore equation (4) becomes

(5)x = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
−x2 + 2

)
sin (x) + x(−2 cos (x) + y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
−x2 + 2

)
sin (x) + x(−2 cos (x) + y)
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The solution becomes

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Summary
The solution(s) found are the following

(1)y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Figure 111: Slope field plot

Verification of solutions

y = x2 sin (x)− 2 sin (x) + 2 cos (x)x+ c1
x

Verified OK.
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5.10.4 Maple step by step solution

Let’s solve
xy′ + y = x2 cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

x
+ cos (x)x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

x
= cos (x)x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + y

x

)
= µ(x) cos (x)x

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x

• Solve to find the integrating factor
µ(x) = x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x)xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x)xdx+ c1

• Solve for y

y =
∫
µ(x) cos(x)xdx+c1

µ(x)

• Substitute µ(x) = x

y =
∫
x2 cos(x)dx+c1

x

• Evaluate the integrals on the rhs

y = x2 sin(x)−2 sin(x)+2 cos(x)x+c1
x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(x*diff(y(x),x)+y(x)=x^2*cos(x),y(x), singsol=all)� �

y(x) = sin (x)x2 − 2 sin (x) + 2x cos (x) + c1
x

3 Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 25� �
DSolve[x*y'[x]+y[x]==x^2*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x2 − 2) sin(x) + 2x cos(x) + c1
x
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5.11 problem 14
5.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 494

Internal problem ID [3124]
Internal file name [OUTPUT/2616_Sunday_June_05_2022_03_22_42_AM_16397768/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

4y + (3x+ 2y + 2) y′ = −3− 6x

5.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −6x+ 4y + 3
3x+ 2y + 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(6x+ 4y + 3) (b3 − a2)

3x+ 2y + 2 − (6x+ 4y + 3)2 a3
(3x+ 2y + 2)2

−
(
− 6
3x+ 2y + 2 + 18x+ 12y + 9

(3x+ 2y + 2)2
)
(xa2 + ya3 + a1)

−
(
− 4
3x+ 2y + 2 + 12x+ 8y + 6

(3x+ 2y + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

18x2a2 − 36x2a3 + 9x2b2 − 18x2b3 + 24xya2 − 48xya3 + 12xyb2 − 24xyb3 + 8y2a2 − 16y2a3 + 4y2b2 − 8y2b3 + 24xa2 − 36xa3 + 14xb2 − 21xb3 + 14ya2 − 21ya3 + 8yb2 − 12yb3 + 3a1 + 6a2 − 9a3 + 2b1 + 4b2 − 6b3
(3x+ 2y + 2)2

= 0

Setting the numerator to zero gives

(6E)18x2a2 − 36x2a3 + 9x2b2 − 18x2b3 + 24xya2 − 48xya3 + 12xyb2 − 24xyb3
+ 8y2a2 − 16y2a3 + 4y2b2 − 8y2b3 + 24xa2 − 36xa3 + 14xb2 − 21xb3
+ 14ya2 − 21ya3 + 8yb2 − 12yb3 + 3a1 + 6a2 − 9a3 + 2b1 + 4b2 − 6b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)18a2v21 +24a2v1v2 +8a2v22 − 36a3v21 − 48a3v1v2 − 16a3v22 +9b2v21 +12b2v1v2
+ 4b2v22 − 18b3v21 − 24b3v1v2 − 8b3v22 + 24a2v1 + 14a2v2 − 36a3v1 − 21a3v2
+ 14b2v1 + 8b2v2 − 21b3v1 − 12b3v2 + 3a1 + 6a2 − 9a3 + 2b1 + 4b2 − 6b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(18a2 − 36a3 + 9b2 − 18b3) v21 + (24a2 − 48a3 + 12b2 − 24b3) v1v2
+ (24a2 − 36a3 + 14b2 − 21b3) v1 + (8a2 − 16a3 + 4b2 − 8b3) v22
+ (14a2 − 21a3 + 8b2 − 12b3) v2 + 3a1 + 6a2 − 9a3 + 2b1 + 4b2 − 6b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

8a2 − 16a3 + 4b2 − 8b3 = 0
14a2 − 21a3 + 8b2 − 12b3 = 0
18a2 − 36a3 + 9b2 − 18b3 = 0
24a2 − 48a3 + 12b2 − 24b3 = 0
24a2 − 36a3 + 14b2 − 21b3 = 0

3a1 + 6a2 − 9a3 + 2b1 + 4b2 − 6b3 = 0

Solving the above equations for the unknowns gives

a1 = a1

a2 =
3a3
2

a3 = a3

b1 = −3a1
2

b2 = −3a3
b3 = −2a3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1

η = −3
2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −3
2 −

(
−6x+ 4y + 3
3x+ 2y + 2

)
(1)

= 3x+ 2y
6x+ 4y + 4

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x+2y
6x+4y+4

dy

Which results in

S = 2y + 2 ln (3x+ 2y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −6x+ 4y + 3
3x+ 2y + 2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 6
3x+ 2y

Sy = 2 + 4
3x+ 2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −4R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2y + 2 ln (3x+ 2y) = −4x+ c1

Which simplifies to

2y + 2 ln (3x+ 2y) = −4x+ c1

Which gives

y = −3x
2 + LambertW

(
e−x

2+
c1
2

2

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −6x+4y+3
3x+2y+2

dS
dR

= −4

R = x

S = 2y + 2 ln (3x+ 2y)

Summary
The solution(s) found are the following

(1)y = −3x
2 + LambertW

(
e−x

2+
c1
2

2

)
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Figure 112: Slope field plot

Verification of solutions

y = −3x
2 + LambertW

(
e−x

2+
c1
2

2

)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 15� �
dsolve((6*x+4*y(x)+3)+(3*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −3x
2 + LambertW

(
c1e−

x
2
)

3 Solution by Mathematica
Time used: 4.333 (sec). Leaf size: 34� �
DSolve[(6*x+4*y[x]+3)+(3*x+2*y[x]+2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −3x
2 +W

(
−e−

x
2−1+c1

)
y(x) → −3x

2
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5.12 problem 15
5.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 502
5.12.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 508
5.12.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 512

Internal problem ID [3125]
Internal file name [OUTPUT/2617_Sunday_June_05_2022_03_22_44_AM_15140119/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _exact]

cos (y + x)− x sin (y + x)− x sin (y + x) y′ = 0

5.12.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x sin (y + x) + cos (y + x)
x sin (y + x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(−x sin (y + x) + cos (y + x)) (b3 − a2)

x sin (y + x)

− (−x sin (y + x) + cos (y + x))2 a3
x2 sin (y + x)2

−
(
−2 sin (y + x)− x cos (y + x)

x sin (y + x) − −x sin (y + x) + cos (y + x)
x2 sin (y + x)

− (−x sin (y + x) + cos (y + x)) cos (y + x)
x sin (y + x)2

)
(xa2 + ya3 + a1)

−
(
−x cos (y + x)− sin (y + x)

x sin (y + x)

− (−x sin (y + x) + cos (y + x)) cos (y + x)
x sin (y + x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

cos (y + x)2 x2a2 + cos (y + x)2 x2b2 + cos (y + x)2 xya3 + cos (y + x)2 xyb3 + 2 sin (y + x)2 x2a2 − sin (y + x)2 x2a3 + 2b2x2 sin (y + x)2 − sin (y + x)2 x2b3 + sin (y + x)2 xya3 + sin (y + x)2 xyb3 + cos (y + x)2 xa1 + cos (y + x)2 xb1 + 2 cos (y + x) sin (y + x)xa3 + cos (y + x) sin (y + x)xb3 + cos (y + x) sin (y + x) ya3 + sin (y + x)2 xa1 + sin (y + x)2 xb1 − cos (y + x)2 a3 + cos (y + x) sin (y + x) a1
x2 sin (y + x)2

= 0

Setting the numerator to zero gives

(6E)

cos (y+x)2 x2a2+cos (y+x)2 x2b2+cos (y+x)2 xya3+cos (y+x)2 xyb3
+ 2 sin (y + x)2 x2a2 − sin (y + x)2 x2a3 + 2b2x2 sin (y + x)2

− sin (y + x)2 x2b3 + sin (y + x)2 xya3 + sin (y + x)2 xyb3
+ cos (y + x)2 xa1 + cos (y + x)2 xb1 + 2 cos (y + x) sin (y + x)xa3
+cos (y+ x) sin (y+ x)xb3 +cos (y+ x) sin (y+ x) ya3 +sin (y+ x)2 xa1
+ sin (y + x)2 xb1 − cos (y + x)2 a3 + cos (y + x) sin (y + x) a1 = 0
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Simplifying the above gives

(6E)

−a3
2 + xya3 + xyb3 −

a3 cos (2x+ 2y)
2 + a1 sin (2x+ 2y)

2 + 3x2a2
2

− x2a2 cos (2x+ 2y)
2 + 3x2b2

2 − x2b2 cos (2x+ 2y)
2 − x2a3

2
+ x2a3 cos (2x+ 2y)

2 − x2b3
2 + x2b3 cos (2x+ 2y)

2 + xa1 + xb1

+ ya3 sin (2x+ 2y)
2 + xa3 sin (2x+ 2y) + xb3 sin (2x+ 2y)

2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (2x+ 2y) , sin (2x+ 2y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (2x+ 2y) = v3, sin (2x+ 2y) = v4}

The above PDE (6E) now becomes

(7E)
−1
2a3 + v1v2a3 + v1v2b3 −

1
2a3v3 +

1
2a1v4 +

3
2v

2
1a2

− 1
2v

2
1a2v3 +

3
2v

2
1b2 −

1
2v

2
1b2v3 −

1
2v

2
1a3 +

1
2v

2
1a3v3 −

1
2v

2
1b3

+ 1
2v

2
1b3v3 + v1a1 + v1b1 +

1
2v2a3v4 + v1a3v4 +

1
2v1b3v4 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−a3
2 + (a1 + b1) v1 −

a3v3
2 + a1v4

2 +
(
3a2
2 + 3b2

2 − a3
2 − b3

2

)
v21

+(a3+ b3) v2v1+
(
−a2

2 − b2
2 + a3

2 + b3
2

)
v3v

2
1 +

v2a3v4
2 +

(
a3+

b3
2

)
v4v1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a1
2 = 0

−a3
2 = 0
a3
2 = 0

a1 + b1 = 0
a3 + b3 = 0

a3 +
b3
2 = 0

−a2
2 − b2

2 + a3
2 + b3

2 = 0
3a2
2 + 3b2

2 − a3
2 − b3

2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b2

a3 = 0
b1 = 0
b2 = b2

b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
−x sin (y + x) + cos (y + x)

x sin (y + x)

)
(−x)

= cos (x) cos (y)− sin (x) sin (y)
cos (x) sin (y) + sin (x) cos (y)

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

cos(x) cos(y)−sin(x) sin(y)
cos(x) sin(y)+sin(x) cos(y)

dy

Which results in

S = − ln (cos (x) cos (y)− sin (x) sin (y))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x sin (y + x) + cos (y + x)
x sin (y + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = cos (x) sin (y) + sin (x) cos (y)
cos (x) cos (y)− sin (x) sin (y)

Sy =
cos (x) sin (y) + sin (x) cos (y)
cos (x) cos (y)− sin (x) sin (y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (cos (x) cos (y)− sin (x) sin (y)) = ln (x) + c1

Which simplifies to

− ln (cos (x) cos (y)− sin (x) sin (y)) = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x sin(y+x)+cos(y+x)
x sin(y+x)

dS
dR

= 1
R

R = x

S = − ln (cos (x) cos (y)− sin (x) sin (y))
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Summary
The solution(s) found are the following

(1)− ln (cos (x) cos (y)− sin (x) sin (y)) = ln (x) + c1

Figure 113: Slope field plot

Verification of solutions

− ln (cos (x) cos (y)− sin (x) sin (y)) = ln (x) + c1

Verified OK.

5.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x sin (y + x)) dy = (− cos (y + x) + x sin (y + x)) dx
(−x sin (y + x) + cos (y + x)) dx+(−x sin (y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x sin (y + x) + cos (y + x)
N(x, y) = −x sin (y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−x sin (y + x) + cos (y + x))

= −x cos (y + x)− sin (y + x)

509



And
∂N

∂x
= ∂

∂x
(−x sin (y + x))

= −x cos (y + x)− sin (y + x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x sin (y + x) + cos (y + x) dx

(3)φ = x cos (y + x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x sin (y + x) + f ′(y)

But equation (2) says that ∂φ
∂y

= −x sin (y + x). Therefore equation (4) becomes

(5)−x sin (y + x) = −x sin (y + x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x cos (y + x) + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x cos (y + x)

Summary
The solution(s) found are the following

(1)x cos (y + x) = c1

Figure 114: Slope field plot

Verification of solutions

x cos (y + x) = c1

Verified OK.
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5.12.3 Maple step by step solution

Let’s solve
cos (y + x)− x sin (y + x)− x sin (y + x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
−x cos (y + x)− sin (y + x) = −x cos (y + x)− sin (y + x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x sin (y + x) + cos (y + x)) dx+ f1(y)

• Evaluate integral
F (x, y) = −y cos (y + x) + (y + x) cos (y + x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−x sin (y + x) = y sin (y + x)− (y + x) sin (y + x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −x sin (y + x)− y sin (y + x) + (y + x) sin (y + x)

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −y cos (y + x) + (y + x) cos (y + x)
• Substitute F (x, y) into the solution of the ODE

−y cos (y + x) + (y + x) cos (y + x) = c1

• Solve for y
y = −x+ arccos

(
c1
x

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve(cos(x+y(x))-x*sin(x+y(x))=x*sin(x+y(x))*diff(y(x),x),y(x), singsol=all)� �

y(x) = −x+ arccos
(c1
x

)
3 Solution by Mathematica
Time used: 10.102 (sec). Leaf size: 35� �
DSolve[Cos[x+y[x]]-x*Sin[x+y[x]]==x*Sin[x+y[x]]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x− arccos
(
−c1

x

)
y(x) → −x+ arccos

(
−c1

x

)
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5.13 problem 17
5.13.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 514
5.13.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 517

Internal problem ID [3126]
Internal file name [OUTPUT/2618_Sunday_June_05_2022_03_22_49_AM_71482201/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

y2eyx + (eyx + eyxyx) y′ = − cos (x)

5.13.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(exy + y exyx) dy =
(
−y2exy − cos (x)

)
dx(

y2exy + cos (x)
)
dx+(exy + y exyx) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2exy + cos (x)
N(x, y) = exy + y exyx

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y2exy + cos (x)

)
= y exy(xy + 2)

And
∂N

∂x
= ∂

∂x
(exy + y exyx)

= y exy(xy + 2)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2exy + cos (x) dx

(3)φ = y exy + sin (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= exy + y exyx+ f ′(y)

= exy(xy + 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= exy + y exyx. Therefore equation (4) becomes

(5)exy + y exyx = exy(xy + 1) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y exy + sin (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y exy + sin (x)

The solution becomes

y = LambertW (x(c1 − sin (x)))
x
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Summary
The solution(s) found are the following

(1)y = LambertW (x(c1 − sin (x)))
x

Figure 115: Slope field plot

Verification of solutions

y = LambertW (x(c1 − sin (x)))
x

Verified OK.

5.13.2 Maple step by step solution

Let’s solve
y2eyx + (eyx + eyxyx) y′ = − cos (x)

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2y exy + exyx y2 = 2y exy + exyx y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y2exy + cos (x)) dx+ f1(y)

• Evaluate integral
F (x, y) = y exy + sin (x) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
exy + y exyx = exy + y exyx+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = y exy + sin (x)

• Substitute F (x, y) into the solution of the ODE
y exy + sin (x) = c1

• Solve for y
y = LambertW (x(c1−sin(x)))

x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve((y(x)^2*exp(x*y(x))+cos(x))+(exp(x*y(x))+x*y(x)*exp(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = LambertW (−x(sin (x) + c1))
x

3 Solution by Mathematica
Time used: 60.266 (sec). Leaf size: 19� �
DSolve[(y[x]^2*Exp[x*y[x]]+Cos[x])+(Exp[x*y[x]]+x*y[x]*Exp[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → W (x(− sin(x) + c1))
x
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5.14 problem 18
5.14.1 Solving as first order ode lie symmetry calculated ode . . . . . . 520
5.14.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 526
5.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 530

Internal problem ID [3127]
Internal file name [OUTPUT/2619_Sunday_June_05_2022_03_22_53_AM_32827643/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _exact , _dAlembert]

y′ ln (−y + x)− ln (−y + x) = 1

5.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 1 + ln (−y + x)
ln (−y + x)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

520



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(1 + ln (−y + x)) (b3 − a2)

ln (−y + x) − (1 + ln (−y + x))2 a3
ln (−y + x)2

−
(

1
(−y + x) ln (−y + x) −

1 + ln (−y + x)
ln (−y + x)2 (−y + x)

)
(xa2 + ya3 + a1)

−
(
− 1
(−y + x) ln (−y + x) +

1 + ln (−y + x)
ln (−y + x)2 (−y + x)

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (−y + x)2 xa2 + ln (−y + x)2 xa3 − b2 ln (−y + x)2 x− ln (−y + x)2 xb3 − ln (−y + x)2 ya2 − ln (−y + x)2 ya3 + b2 ln (−y + x)2 y + ln (−y + x)2 yb3 + ln (−y + x)xa2 + 2 ln (−y + x)xa3 − ln (−y + x)xb3 − ln (−y + x) ya2 − 2 ln (−y + x) ya3 + ln (−y + x) yb3 − xa2 + xa3 + xb2 − 2ya3 + yb3 − a1 + b1

ln (−y + x)2 (−y + x)
= 0

Setting the numerator to zero gives

(6E)
− ln (−y + x)2 xa2 − ln (−y + x)2 xa3 + b2 ln (−y + x)2 x
+ ln (−y + x)2 xb3 + ln (−y + x)2 ya2 + ln (−y + x)2 ya3
− b2 ln (−y + x)2 y − ln (−y + x)2 yb3 − ln (−y + x)xa2
− 2 ln (−y+ x)xa3 + ln (−y+ x)xb3 + ln (−y+ x) ya2 +2 ln (−y+ x) ya3
− ln (−y + x) yb3 + xa2 − xa3 − xb2 + 2ya3 − yb3 + a1 − b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (−y + x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (−y + x) = v3}

The above PDE (6E) now becomes

(7E)−v23v1a2 + v23v2a2 − v23v1a3 + v23v2a3 + b2v
2
3v1 − b2v

2
3v2 + v23v1b3

− v23v2b3 − v3v1a2 + v3v2a2 − 2v3v1a3 + 2v3v2a3 + v3v1b3
− v3v2b3 + v1a2 − v1a3 + 2v2a3 − v1b2 − v2b3 + a1 − b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−a2 − a3 + b2 + b3) v1v23 + (−a2 − 2a3 + b3) v1v3 + (a2 − a3 − b2) v1
+ (a2 + a3 − b2 − b3) v2v23 + (a2 + 2a3 − b3) v2v3 + (2a3 − b3) v2 + a1 − b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 − b1 = 0
2a3 − b3 = 0

−a2 − 2a3 + b3 = 0
a2 − a3 − b2 = 0
a2 + 2a3 − b3 = 0

−a2 − a3 + b2 + b3 = 0
a2 + a3 − b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = −b2

b1 = b1

b2 = b2

b3 = −2b2
Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(
1 + ln (−y + x)
ln (−y + x)

)
(1)

= − 1
ln (−y + x)

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− 1
ln(−y+x)

dy

Which results in

S = (−y + x) ln (−y + x) + y − x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1 + ln (−y + x)
ln (−y + x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = ln (−y + x)
Sy = − ln (−y + x)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(ln (−y + x)− 1) (−y + x) = −x+ c1

Which simplifies to

(−y + x) ln (−y + x) + y − c1 = 0

Which gives

y = −eLambertW
(
(−x+c1)e−1)+1 + x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1+ln(−y+x)
ln(−y+x)

dS
dR

= −1

R = x

S = (ln (−y + x)− 1) (−y + x)

Summary
The solution(s) found are the following

(1)y = −eLambertW
(
(−x+c1)e−1)+1 + x
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Figure 116: Slope field plot

Verification of solutions

y = −eLambertW
(
(−x+c1)e−1)+1 + x

Verified OK.

5.14.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ln (−y + x)) dy = (1 + ln (−y + x)) dx
(−1− ln (−y + x)) dx+(ln (−y + x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1− ln (−y + x)
N(x, y) = ln (−y + x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−1− ln (−y + x))

= 1
−y + x
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And

∂N

∂x
= ∂

∂x
(ln (−y + x))

= 1
−y + x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1− ln (−y + x) dx

(3)φ = (y − x) ln (−y + x)− y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (−y + x)− y − x

−y + x
− 1 + f ′(y)

= ln (−y + x) + f ′(y)

But equation (2) says that ∂φ
∂y

= ln (−y + x). Therefore equation (4) becomes

(5)ln (−y + x) = ln (−y + x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (y − x) ln (−y + x)− y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y − x) ln (−y + x)− y

The solution becomes
y = −eLambertW

(
−(x+c1)e−1)+1 + x

Summary
The solution(s) found are the following

(1)y = −eLambertW
(
−(x+c1)e−1)+1 + x

Figure 117: Slope field plot

Verification of solutions

y = −eLambertW
(
−(x+c1)e−1)+1 + x

Verified OK.
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5.14.3 Maple step by step solution

Let’s solve
y′ ln (−y + x)− ln (−y + x) = 1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1

−y+x
= 1

−y+x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−1− ln (−y + x)) dx+ f1(y)

• Evaluate integral
F (x, y) = −(−y + x) ln (−y + x)− y + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
ln (−y + x) = ln (−y + x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −(−y + x) ln (−y + x)− y

• Substitute F (x, y) into the solution of the ODE
−(−y + x) ln (−y + x)− y = c1

• Solve for y

y = −eLambertW
(
−x+c1

e

)
+1 + x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 32� �
dsolve(diff(y(x),x)*ln(x-y(x))=1+ln(x-y(x)),y(x), singsol=all)� �

y(x) = xLambertW ((c1 − x) e−1)− c1 + x

LambertW ((c1 − x) e−1)

3 Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 26� �
DSolve[y'[x]*Log[x-y[x]]==1+Log[x-y[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve[(x− y(x))(− log(x− y(x)))− y(x) = c1, y(x)]
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5.15 problem 19
5.15.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 532
5.15.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 534
5.15.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 538
5.15.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 543

Internal problem ID [3128]
Internal file name [OUTPUT/2620_Sunday_June_05_2022_03_22_55_AM_39789059/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2yx = e−x2

5.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
q(x) = e−x2

Hence the ode is

y′ + 2yx = e−x2

The integrating factor µ is

µ = e
∫
2xdx

= ex2
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The ode becomes
d
dx(µy) = (µ)

(
e−x2

)
d
dx

(
ex2

y
)
=
(
ex2
)(

e−x2
)

d
(
ex2

y
)
= dx

Integrating gives

ex2
y =

∫
dx

ex2
y = x+ c1

Dividing both sides by the integrating factor µ = ex2 results in

y = x e−x2 + c1e−x2

which simplifies to

y = e−x2(x+ c1)
Summary
The solution(s) found are the following

(1)y = e−x2(x+ c1)

Figure 118: Slope field plot
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Verification of solutions

y = e−x2(x+ c1)

Verified OK.

5.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy + e−x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = e−x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2 dy

Which results in

S = ex2
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy + e−x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2x ex2

y

Sy = ex2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ex2 = x+ c1

Which simplifies to

y ex2 = x+ c1

Which gives

y = e−x2(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy + e−x2 dS
dR

= 1

R = x

S = ex2
y

Summary
The solution(s) found are the following

(1)y = e−x2(x+ c1)
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Figure 119: Slope field plot

Verification of solutions

y = e−x2(x+ c1)

Verified OK.

5.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−2xy + e−x2

)
dx(

2xy − e−x2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy − e−x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2xy − e−x2

)
= 2x

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((2x)− (0))
= 2x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
2xdx

The result of integrating gives

µ = ex
2

= ex2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
(
2xy − e−x2

)
= 2x ex2

y − 1

And

N = µN

= ex2(1)
= ex2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

2x ex2
y − 1

)
+
(
ex2
) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x ex2

y − 1 dx

(3)φ = −x+ ex2
y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex2 . Therefore equation (4) becomes

(5)ex2 = ex2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ ex2
y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ ex2
y
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The solution becomes
y = e−x2(x+ c1)

Summary
The solution(s) found are the following

(1)y = e−x2(x+ c1)

Figure 120: Slope field plot

Verification of solutions

y = e−x2(x+ c1)

Verified OK.
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5.15.4 Maple step by step solution

Let’s solve
y′ + 2yx = e−x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2yx+ e−x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2yx = e−x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + 2yx) = µ(x) e−x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + 2yx) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

• Solve to find the integrating factor
µ(x) = ex2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e−x2

dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e−x2

dx+ c1

• Solve for y

y =
∫
µ(x)e−x2dx+c1

µ(x)

• Substitute µ(x) = ex2

y =
∫
e−x2ex2dx+c1

ex2

• Evaluate the integrals on the rhs
y = x+c1

ex2

• Simplify
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y = e−x2(x+ c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)+2*x*y(x)=exp(-x^2),y(x), singsol=all)� �

y(x) = (c1 + x) e−x2

3 Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 17� �
DSolve[y'[x]+2*x*y[x]==Exp[-x^2],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x2(x+ c1)
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5.16 problem 20
5.16.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 545
5.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 547
5.16.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 553

Internal problem ID [3129]
Internal file name [OUTPUT/2621_Sunday_June_05_2022_03_22_57_AM_39946048/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 − 3yx−
(
x2 − yx

)
y′ = 2x2

5.16.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)2 x2 − 3u(x)x2 −
(
x2 − u(x)x2) (u′(x)x+ u(x)) = 2x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −2(u2 − 2u− 1)
x (u− 1)
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Where f(x) = − 2
x
and g(u) = u2−2u−1

u−1 . Integrating both sides gives

1
u2−2u−1

u−1
du = −2

x
dx

∫ 1
u2−2u−1

u−1
du =

∫
−2
x
dx

ln (u2 − 2u− 1)
2 = −2 ln (x) + c2

Raising both side to exponential gives
√
u2 − 2u− 1 = e−2 ln(x)+c2

Which simplifies to
√
u2 − 2u− 1 = c3

x2

Which simplifies to √
u (x)2 − 2u (x)− 1 = c3ec2

x2

The solution is √
u (x)2 − 2u (x)− 1 = c3ec2

x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form√

y2

x2 − 2y
x

− 1 = c3ec2
x2√

y2 − 2yx− x2

x2 = c3ec2
x2

Summary
The solution(s) found are the following

(1)
√

y2 − 2yx− x2

x2 = c3ec2
x2
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Figure 121: Slope field plot

Verification of solutions √
y2 − 2yx− x2

x2 = c3ec2
x2

Verified OK.

5.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −−2x2 − 3xy + y2

x (y − x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(−2x2 − 3xy + y2) (b3 − a2)

x (y − x) − (−2x2 − 3xy + y2)2 a3
x2 (y − x)2

−
(
−−4x− 3y

x (y − x) + −2x2 − 3xy + y2

x2 (y − x) − −2x2 − 3xy + y2

x (y − x)2
)
(xa2 + ya3 + a1)

−
(
−−3x+ 2y

x (y − x) + −2x2 − 3xy + y2

x (y − x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4a2 − 4x4a3 + 6x4b2 − 2x4b3 − 4x3ya2 − 12x3ya3 − 4x3yb2 + 4x3yb3 − 2x2y2a2 − 10x2y2a3 + 2x2y2b2 + 2x2y2b3 + 8x y3a3 − 2y4a3 + 5x3b1 − 5x2ya1 − 2x2yb1 + 2x y2a1 + x y2b1 − y3a1

x2 (−y + x)2
= 0

Setting the numerator to zero gives

(6E)2x4a2 − 4x4a3 + 6x4b2 − 2x4b3 − 4x3ya2 − 12x3ya3 − 4x3yb2
+ 4x3yb3 − 2x2y2a2 − 10x2y2a3 + 2x2y2b2 + 2x2y2b3 + 8x y3a3
− 2y4a3 + 5x3b1 − 5x2ya1 − 2x2yb1 + 2x y2a1 + x y2b1 − y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v41 − 4a2v31v2 − 2a2v21v22 − 4a3v41 − 12a3v31v2 − 10a3v21v22 + 8a3v1v32
− 2a3v42 + 6b2v41 − 4b2v31v2 + 2b2v21v22 − 2b3v41 + 4b3v31v2 + 2b3v21v22
− 5a1v21v2 + 2a1v1v22 − a1v

3
2 + 5b1v31 − 2b1v21v2 + b1v1v

2
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(2a2 − 4a3 + 6b2 − 2b3) v41 + (−4a2 − 12a3 − 4b2 + 4b3) v31v2 + 5b1v31
+ (−2a2 − 10a3 + 2b2 + 2b3) v21v22 + (−5a1 − 2b1) v21v2
+ 8a3v1v32 + (2a1 + b1) v1v22 − 2a3v42 − a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a1 = 0
−2a3 = 0
8a3 = 0
5b1 = 0

−5a1 − 2b1 = 0
2a1 + b1 = 0

−4a2 − 12a3 − 4b2 + 4b3 = 0
−2a2 − 10a3 + 2b2 + 2b3 = 0

2a2 − 4a3 + 6b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−−2x2 − 3xy + y2

x (y − x)

)
(x)

= 2x2 + 4xy − 2y2
−y + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2+4xy−2y2
−y+x

dy

Which results in

S = ln (−x2 − 2xy + y2)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−2x2 − 3xy + y2

x (y − x)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y + x

2x2 + 4xy − 2y2

Sy =
−y + x

2x2 + 4xy − 2y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1

Which simplifies to

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2x2−3xy+y2

x(y−x)
dS
dR

= − 1
2R

R = x

S = ln (−x2 − 2xy + y2)
4

Summary
The solution(s) found are the following

(1)ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1
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Figure 122: Slope field plot

Verification of solutions

ln (y2 − 2yx− x2)
4 = − ln (x)

2 + c1

Verified OK.

5.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + xy

)
dy =

(
2x2 + 3xy − y2

)
dx(

−2x2 − 3xy + y2
)
dx+

(
−x2 + xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2x2 − 3xy + y2

N(x, y) = −x2 + xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−2x2 − 3xy + y2

)
= −3x+ 2y

And
∂N

∂x
= ∂

∂x

(
−x2 + xy

)
= −2x+ y

554



Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (−y + x)((−3x+ 2y)− (−2x+ y))

= 1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
−2x2 − 3xy + y2

)
= −2x3 − 3x2y + x y2

And

N = µN

= x
(
−x2 + xy

)
= −x2(−y + x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x3 − 3x2y + x y2
)
+
(
−x2(−y + x)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x3 − 3x2y + x y2 dx

(3)φ = −1
2x

4 − x3y + 1
2y

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x3 + x2y + f ′(y)

= −x2(−y + x) + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2(−y + x). Therefore equation (4) becomes

(5)−x2(−y + x) = −x2(−y + x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −1
2x

4 − x3y + 1
2y

2x2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
2x

4 − x3y + 1
2y

2x2

Summary
The solution(s) found are the following

(1)−x4

2 − yx3 + y2x2

2 = c1

Figure 123: Slope field plot

Verification of solutions

−x4

2 − yx3 + y2x2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 59� �
dsolve((y(x)^2-3*x*y(x)-2*x^2)=(x^2-x*y(x))*diff(y(x),x),y(x), singsol=all)� �

y(x) = c1x
2 −

√
2c21x4 + 1

c1x

y(x) = c1x
2 +

√
2c21x4 + 1

c1x

3 Solution by Mathematica
Time used: 0.701 (sec). Leaf size: 99� �
DSolve[(y[x]^2-3*x*y[x]-2*x^2)==(x^2-x*y[x])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2x4 + e2c1

x

y(x) → x+
√
2x4 + e2c1

x

y(x) → x−
√
2
√
x4

x

y(x) →
√
2
√
x4

x
+ x
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5.17 problem 21
5.17.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 559
5.17.2 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 561
5.17.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 563
5.17.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 567
5.17.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 571

Internal problem ID [3130]
Internal file name [OUTPUT/2622_Sunday_June_05_2022_03_23_00_AM_414119/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

2yx+
(
x2 + 1

)
y′ = 4x3

5.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2x
x2 + 1

q(x) = 4x3

x2 + 1

Hence the ode is

y′ + 2xy
x2 + 1 = 4x3

x2 + 1
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The integrating factor µ is

µ = e
∫ 2x

x2+1dx

= x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
4x3

x2 + 1

)
d
dx
((
x2 + 1

)
y
)
=
(
x2 + 1

)( 4x3

x2 + 1

)
d
((
x2 + 1

)
y
)
=
(
4x3) dx

Integrating gives (
x2 + 1

)
y =

∫
4x3 dx(

x2 + 1
)
y = x4 + c1

Dividing both sides by the integrating factor µ = x2 + 1 results in

y = x4

x2 + 1 + c1
x2 + 1

which simplifies to

y = x4 + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = x4 + c1
x2 + 1
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Figure 124: Slope field plot

Verification of solutions

y = x4 + c1
x2 + 1

Verified OK.

5.17.2 Solving as differentialType ode

Writing the ode as

y′ = −2yx+ 4x3

x2 + 1 (1)

Which becomes

0 =
(
−x2 − 1

)
dy +

(
2x
(
2x2 − y

))
dx (2)

But the RHS is complete differential because

(
−x2 − 1

)
dy +

(
2x
(
2x2 − y

))
dx = d

(
(−2x2 + y)2

4 − y2

4 − y

)
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Hence (2) becomes

0 = d

(
(−2x2 + y)2

4 − y2

4 − y

)

Integrating both sides gives gives these solutions

y = x4 + c1
x2 + 1 + c1

Summary
The solution(s) found are the following

(1)y = x4 + c1
x2 + 1 + c1

Figure 125: Slope field plot

Verification of solutions

y = x4 + c1
x2 + 1 + c1

Verified OK.
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5.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2x(−2x2 + y)
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2+1

dy

Which results in

S =
(
x2 + 1

)
y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2x(−2x2 + y)
x2 + 1

564



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 4x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 4R3

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in (

x2 + 1
)
y = x4 + c1

Which simplifies to (
x2 + 1

)
y = x4 + c1

Which gives

y = x4 + c1
x2 + 1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2x
(
−2x2+y

)
x2+1

dS
dR

= 4R3

R = x

S =
(
x2 + 1

)
y

Summary
The solution(s) found are the following

(1)y = x4 + c1
x2 + 1
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Figure 126: Slope field plot

Verification of solutions

y = x4 + c1
x2 + 1

Verified OK.

5.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy =

(
4x3 − 2xy

)
dx(

−4x3 + 2xy
)
dx+

(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x3 + 2xy
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4x3 + 2xy

)
= 2x

And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x3 + 2xy dx

(3)φ = −(2x2 − y)2

4 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 − y

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 1. Therefore equation (4) becomes

(5)x2 + 1 = x2 − y

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

2 + 1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (y
2 + 1

)
dy

f(y) = 1
4y

2 + y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −(2x2 − y)2

4 + y2

4 + y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −(2x2 − y)2

4 + y2

4 + y

The solution becomes

y = x4 + c1
x2 + 1

Summary
The solution(s) found are the following

(1)y = x4 + c1
x2 + 1

Figure 127: Slope field plot
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Verification of solutions

y = x4 + c1
x2 + 1

Verified OK.

5.17.5 Maple step by step solution

Let’s solve
2yx+ (x2 + 1) y′ = 4x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − 2xy

x2+1 +
4x3

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2xy

x2+1 = 4x3

x2+1

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + 2xy

x2+1

)
= 4µ(x)x3

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = x2 + 1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ 4µ(x)x3

x2+1 dx+ c1

• Evaluate the integral on the lhs

µ(x) y =
∫ 4µ(x)x3

x2+1 dx+ c1

• Solve for y

y =
∫ 4µ(x)x3

x2+1 dx+c1

µ(x)

• Substitute µ(x) = x2 + 1
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y =
∫
4x3dx+c1
x2+1

• Evaluate the integrals on the rhs
y = x4+c1

x2+1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((1+x^2)*diff(y(x),x)+2*x*y(x)=4*x^3,y(x), singsol=all)� �

y(x) = x4 + c1
x2 + 1

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 19� �
DSolve[(1+x^2)*y'[x]+2*x*y[x]==4*x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x4 + c1
x2 + 1
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5.18 problem 22
5.18.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 573
5.18.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 576

Internal problem ID [3131]
Internal file name [OUTPUT/2623_Sunday_June_05_2022_03_23_03_AM_57615570/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

ex sin (y)− y sin (yx) + (cos (y) ex − x sin (yx)) y′ = 0

5.18.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(cos (y) ex − x sin (xy)) dy = (− sin (y) ex + y sin (xy)) dx
(sin (y) ex − y sin (xy)) dx+(cos (y) ex − x sin (xy)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sin (y) ex − y sin (xy)
N(x, y) = cos (y) ex − x sin (xy)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(sin (y) ex − y sin (xy))

= cos (y) ex − sin (xy)− y cos (xy)x

And
∂N

∂x
= ∂

∂x
(cos (y) ex − x sin (xy))

= cos (y) ex − sin (xy)− y cos (xy)x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sin (y) ex − y sin (xy) dx

(3)φ = sin (y) ex + cos (xy) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (y) ex − x sin (xy) + f ′(y)

But equation (2) says that ∂φ
∂y

= cos (y) ex − x sin (xy). Therefore equation (4) becomes

(5)cos (y) ex − x sin (xy) = cos (y) ex − x sin (xy) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = sin (y) ex + cos (xy) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = sin (y) ex + cos (xy)

Summary
The solution(s) found are the following

(1)ex sin (y) + cos (yx) = c1
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Figure 128: Slope field plot

Verification of solutions

ex sin (y) + cos (yx) = c1

Verified OK.

5.18.2 Maple step by step solution

Let’s solve
ex sin (y)− y sin (yx) + (cos (y) ex − x sin (yx)) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
cos (y) ex − sin (xy)− y cos (xy)x = cos (y) ex − sin (xy)− y cos (xy)x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(sin (y) ex − y sin (xy)) dx+ f1(y)

• Evaluate integral
F (x, y) = sin (y) ex + cos (xy) + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
cos (y) ex − x sin (xy) = cos (y) ex − x sin (xy) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = sin (y) ex + cos (xy)

• Substitute F (x, y) into the solution of the ODE
sin (y) ex + cos (xy) = c1

• Solve for y
y = RootOf (_Zx− arccos (− sin (_Z) ex + c1))
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.265 (sec). Leaf size: 16� �
dsolve((exp(x)*sin(y(x))-y(x)*sin(x*y(x)))+(exp(x)*cos(y(x))-x*sin(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

ex sin (y(x)) + cos (xy(x)) + c1 = 0

3 Solution by Mathematica
Time used: 0.58 (sec). Leaf size: 19� �
DSolve[(Exp[x]*Sin[y[x]]-y[x]*Sin[x*y[x]])+(Exp[x]*Cos[y[x]]-x*Sin[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[ex sin(y(x)) + cos(xy(x)) = c1, y(x)]
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5.19 problem 24
5.19.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 579
5.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 583

Internal problem ID [3132]
Internal file name [OUTPUT/2624_Sunday_June_05_2022_03_23_11_AM_89760593/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

(
x ey + y − x2) y′ − 2yx+ ey = −x

5.19.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x ey + y − x2) dy = (2xy − ey − x) dx
(−2xy + ey + x) dx+

(
x ey + y − x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2xy + ey + x

N(x, y) = x ey + y − x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−2xy + ey + x)

= ey − 2x

And
∂N

∂x
= ∂

∂x

(
x ey + y − x2)

= ey − 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2xy + ey + x dx

(3)φ = x ey −
(
y − 1

2

)
x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x ey − x2 + f ′(y)

= x(ey − x) + f ′(y)

But equation (2) says that ∂φ
∂y

= x ey + y − x2. Therefore equation (4) becomes

(5)x ey + y − x2 = x(ey − x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x ey −
(
y − 1

2

)
x2 + y2

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x ey −
(
y − 1

2

)
x2 + y2

2

Summary
The solution(s) found are the following

(1)x ey −
(
y − 1

2

)
x2 + y2

2 = c1

Figure 129: Slope field plot

Verification of solutions

x ey −
(
y − 1

2

)
x2 + y2

2 = c1

Verified OK.
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5.19.2 Maple step by step solution

Let’s solve
(x ey + y − x2) y′ − 2yx+ ey = −x

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
ey − 2x = ey − 2x

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−2xy + ey + x) dx+ f1(y)

• Evaluate integral
F (x, y) = −x2y + x ey + x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x ey + y − x2 = −x2 + x ey + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = y

• Solve for f1(y)

f1(y) = y2

2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = −x2y + x ey + x2

2 + y2

2

• Substitute F (x, y) into the solution of the ODE

−x2y + x ey + x2

2 + y2

2 = c1

• Solve for y
y = RootOf

(
2x2_Z− 2 e_Zx− _Z2 − x2 + 2c1

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve((x*exp(y(x))+y(x)-x^2)*diff(y(x),x)=(2*x*y(x) -exp(y(x))-x),y(x), singsol=all)� �

−x2y(x) + ey(x)x+ x2

2 + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.315 (sec). Leaf size: 35� �
DSolve[(x*Exp[y[x]]+y[x]-x^2)*y'[x]==(2*x*y[x] -Exp[y[x]]-x),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2(−y(x)) + x2

2 + xey(x) + y(x)2
2 = c1, y(x)

]
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5.20 problem 25
5.20.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 585

Internal problem ID [3133]
Internal file name [OUTPUT/2625_Sunday_June_05_2022_03_23_15_AM_43739337/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

−(x ex − eyy) y′ = −ex(x+ 1)

5.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

585



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−x ex + y ey) dy = (−ex(x+ 1)) dx
(ex(x+ 1)) dx+(−x ex + y ey) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = ex(x+ 1)
N(x, y) = −x ex + y ey

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(ex(x+ 1))

= 0

And
∂N

∂x
= ∂

∂x
(−x ex + y ey)

= ex(−x− 1)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x ex − y ey ((0)− (−x ex − ex))

= − ex(x+ 1)
x ex − y ey
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= e−x

x+ 1((−x ex − ex)− (0))

= −1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
−1 dy

The result of integrating gives

µ = e−y

= e−y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= e−y(ex(x+ 1))
= (x+ 1) e−y+x

And

N = µN

= e−y(−x ex + y ey)
= −x e−y+x + y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

(x+ 1) e−y+x
)
+
(
−x e−y+x + y

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(x+ 1) e−y+x dx

(3)φ = x e−y+x + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x e−y+x + f ′(y)

But equation (2) says that ∂φ
∂y

= −x e−y+x + y. Therefore equation (4) becomes

(5)−x e−y+x + y = −x e−y+x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(y) dy

f(y) = y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x e−y+x + y2

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x e−y+x + y2

2

Summary
The solution(s) found are the following

(1)x e−y+x + y2

2 = c1

Figure 130: Slope field plot

Verification of solutions

x e−y+x + y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 20� �
dsolve(exp(x)*(1+x)=(x*exp(x)-y(x)*exp(y(x)))*diff(y(x),x),y(x), singsol=all)� �

x ex−y(x) + y(x)2

2 + c1 = 0

3 Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 26� �
DSolve[Exp[x]*(1+x)==(x*Exp[x]-y[x]*Exp[y[x]])*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
−1
2y(x)

2 − xex−y(x) = c1, y(x)
]
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