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cd B R &

Internal problem ID [3080]
Internal file name [OUTPUT/2572_Sunday_June_05_2022_03_20_04_AM_84551471/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 1.a.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _Bernoulli]

—y’ +ayy = -2

1.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
—u(z)’ 2 + 2u(z) (v (2) z + u(z)) = —z?
In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
__ !

ux



Where f(z) = —1 and g(u) = L. Integrating both sides gives

1

1
1 1

2

U
5 = —In(z) +c

The solution is
u(z)’

5 +In(z) —c2=0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

y?
ﬁ'Fln(fE)—Cg:O
y?
ﬁ'Fln(IE)—CQ:O
Summary

The solution(s) found are the following

%
ﬁ-l—ln(x)—@:O (1)
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Figure 1: Slope field plot

Verification of solutions

y2
2—x2+ln(x)—62=0

Verified OK.

1.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, —x2+y2
Ty
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fx) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(r,y) = " (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
Y
Which results in
_ v
212

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sp+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

a2 4 y?
wz,y) = ———
Ty
Evaluating all the partial derivatives gives
R, =1
R,=0
__¥
_ Y
Sy = o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

o 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

—In (R) + C1

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

gives
S(R)

results in

v

212
Which simplifies to

v

212

—In(z)+¢a

—In(z) 4+

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . i ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R,S)
transformation ’
dy _ —a?+y? s _ _ 1
dz Ty dR~ R
NNV VWt v v w7 7 AN N e e e
NNV VA et A BN
B e S e B e Rttt O Al s AR S
A7~ N\ i i ; ; ;///wa,\s\\ »»/»/v/v/"//’; §\\\A\\\s\a\s\>
AN T~ A >~ v v v 7 Vd A I S SN
//4///4)&)@34 W72 A7~ NN\ »»»»/ﬂﬁlﬁ/f A S
P22 777NN 2 7NN —ror o AP NN s
PEEE 777N 2NNV DEtpiptatetetetmA RN R iy
PEErr 7 7=\ = NNV by R==zx Sttt A LN R Ry
I = W rorrrr v 22 2 HL NS
T i =7 Bt y? e e Tl NS S s
VIVEVNNN— s At f — Ot LINRCR SR
VANNNN S N R 212 nttatetatat e I
RS f_%w NS S LS ] »»»»»»»M_;A AR
NN m A S E L\ e T A A R eatata e O AV I BNV NONC S
ARV T B 1 IR T e w w7 A AN N e e
P Al A A 2 N e w w7 7 AL N e e e e
SRS T .0 I I 1 S5 S N N VN ittt O IR e
e 2 2 2P EHE AN N N e N
Summary
The solution(s) found are the following
y?
- =—In(x) +¢ 1
;= —ln(@) @)
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Figure 2: Slope field plot

Verification of solutions

Verified OK.

1.1.3 Solving as bernoulli ode

In canonical form, the ODE is

~

Y = F(z,y)
— 12 4

= poy

This is a Bernoulli ODE. 1 1

y=_y-a_ (1)
z Y
The standard Bernoulli ODE has the form
y' = fo(x)y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives

j—; = hol@y' ™ + fi(2) 3)



The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) = -
filz) = -z
n=-—1

Dividing both sides of ODE (1) by y" = , gives

[\

Py
-7 _ 4
yy="_-z (4)
Let
w = 1-n
=y’ (5)

Taking derivative of equation (5) w.r.t  gives
w' = 2yy/ (6)

Substituting equations (5) and (6) into equation (4) gives

2 =y 7
2w
=22 _9 7
w - x (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(r)w(z) = q(z)

Where here
2
p(x) = T
q(z) = =2z

10



Hence the ode is

The integrating factor u is

The ode becomes

Integrating gives
EE
% =—-2In(z)+
Dividing both sides by the integrating factor u = z% results in
w(z) = —21n (z) 2% + c;2°
which simplifies to

w(z) = 22(=21n () + ¢;)
Replacing w in the above by 3? using equation (5) gives the final solution.
y* = 2?(=2In (2) + ¢;)

Solving for y gives

y(x) =+v/2In(z)+cx
y(z) =—v/2In(z)+ 1z

11



Summary

The solution(s) found are the following

—2In(z)+cz

y:

—2ln(z)+cz
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Figure 3: Slope field plot

Verification of solutions

8 Y
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Verified OK.

Verified OK.
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1.1.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(zy)dy = (—2* + y*) dz
(2" — y?) dz +(zy)dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(xay) :x2_y2
N(z,y) = zy

13



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0 ,, ,
ay - ay (.’L‘ Yy )
And
ON 0
or g(l”y)
=Y

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N Oy oz
- é((—zy) ~ W)
__3

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ad
_ftd
The result of integrating gives
O
_ 1
23

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

14



And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

~dy
dz

(55)+ @) g =0

The following equations are now set up to solve for the function ¢(z,y)

M+N-=>=0

0p —
b _~
5 = 2)

Integrating (1) w.r.t. z gives

b= s +In (@) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 _ Yy o

- =L 4

L) (@)
But equation (2) says that a¢ = %. Therefore equation (4) becomes

Y Y

22 f'y) ()

15



Solving equation (5) for f'(y) gives
flly)=0
Therefore
fy)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
y?
=_"—+In(z)+c
¢ 572 (z) +a
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

y2

cl=2—x2—|—ln(x)
Summary
The solution(s) found are the following
y2
942 +In(z)=¢ (1)
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Figure 4: Slope field plot
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Verification of solutions

2—x2+ln(33)=C1

Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

Ldsolve((x“2-y(x)“2)+x*y(x)*diff(y(x),x)=0,y(x), singsol=all) J

y(z)=+v—-2In(z)+cazx
y(x) =—v/2In(z)+cz

v/ Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 36

LDSolve[(x‘Z-y[X]‘2)+x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = —z1/-2log(z) + &1
y(x) = z+/—2log(z) + c1

17



1.2 problem 1.b

1.2.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. 18]
1.2.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 201
1.2.3 Solving as bernoulliode . . . .. ... ... ... ... ..... 27
1.24 Solvingasexactode . . ... ... ... ... ... ..... 28]
1.2.5 Solving asriccatiode . . . . . . ... ... oL

Internal problem ID [3081]
Internal file name [OUTPUT/2573_Sunday_June_05_2022_03_20_07_AM_1694912/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 1.b.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_ order_ ode_ lie sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _rational, _Bernoulli]

yz? —2yx —2y° =0

1.2.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)
(' (z) z + u(z)) 22 — 2u(z) 22 — 2u(z)’ 22 = 0

In canonical form the ODE is

18



Where f(z) = % and g(u) = 2u® + u. Integrating both sides gives

T

1

Raising both side to exponential gives
e

Which simplifies to

u+1 "
Therefore the solution y is
Yy =zu
B x’cs
2c3x — 1
Summary
The solution(s) found are the following
__ T
y= 203.’E -1

19

2u2+udu=5dx

1
/2u2+udu_/x

—In(2u+1)+In(u) =In(z) + ¢

—In(2u+1)+In(u) _ eln(z)+cz
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Figure 5: Slope field plot

Verification of solutions

x%cs

_2C3$ -1

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

, 2y(y + )
Y 2
i
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —wz§ — wyn =10 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7

20



Table 3: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(z,y) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

21



canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2y(y + x)
wla,y) = LT
Evaluating all the partial derivatives gives
R,=1
Ry =0
5o 2
()
2
x
S ==
v

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

2 (2A)

2

22



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

S(R) = 2R+Cl

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

—w—=2x+cl

gives
results in
2
Y
Which simplifies to
2
Yy
Which gives
y =

2r + ¢

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. ) ) ; ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ 2y(y+z) as _ 9
de ~— x2 dR

AR I, PRIPPIIPIINI PP
s VN RN IR SN, PRIPIIIPLINIP PP
s N AR NN, RN VNN NENY,
SeaaatA AR R R R Y N Y Y L,
N Sa a7
\\\\»Aﬂéf bttt rrrss fffff/%@fff/ff/fffff
SO A (IR B RN PRIPIIIIIINIIILLIILT
ROV R 1T I B I PRIPPILPLINIP PP
SRUCERRWINEAS L D D P R=x FEIPIPILINELIIIL LAY
e R ) et PIPLPLI PPN PP LT
el e e e 2 FIRF T I AP PR PP A F 777
R AR I SRR C N - PEFIILEIIANI PP IR
R RSN y PRIPIIIPIANIPIPPISIILT
AAZAPE LA A PRPPPILPLRNI PP
AR R RN RSSO PRPPIIIPFINIPPPILLPIL?
FAPEEEEEE L S ress PRIPIIIPINIIIIILIILT
NS EERE IR S PSRN PRIPIIIPIIANI PPN
PEEEEEI M e PRIPIILPIMAP PP
RN EEE R RN PRPPPIPPPANPPPPPPPPILD
SRR EEEREIEEE NS PRIPIIIPINILIPLILIILL
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
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Figure 6: Slope field plot

1.2.3 Solving as bernoulli ode

In canonical form, the ODE is

This is a Bernoulli ODE.

. Xz
vy= 2x 4+ ¢
Yy =F(z,y)

2y(y + )
1,'2
2 2
Y =-y+ =y
X

24
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The standard Bernoulli ODE has the form
y' = fo(z)y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives

Y _ fh@y "+ i) 3)

<

The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) =2
fl(x):%
n=2

Dividing both sides of ODE (1) by y™ = y? gives
12 2

=" 4= 4
VP Ty @ @
Let
w = yl—n
1
== 3
” (5)
Taking derivative of equation (5) w.r.t  gives
1
w=—=19 6
)2 (6)
Substituting equations (5) and (6) into equation (4) gives
2w(z) 2
/ P J—
w'(z) = . + =~
2w 2
/
=———-= 7
v T 2 (7)

The above now is a linear ODE in w(z) which is now solved.
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Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

Where here
2
p(z) = o
2
q(z) = )
Hence the ode is
2w(z) 2
/ —
w(z) + z 2
The integrating factor u is
b= ef %dm
= x2
The ode becomes
2
3z ) = (1) (—;)
d, o 9 2
) = @) (-5)
d(:c2w) = —-2dz
Integrating gives
?w = / —2dzx
2w = -2z + ¢

Dividing both sides by the integrating factor u = z? results in

2 C1
wz) ==+
which simplifies to
—2x 4+ ¢,
w(z) = —

Replacing w in the above by 311 using equation (5) gives the final solution.

1 _ —2r 4+

Y x?
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
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Figure 7: Slope field plot
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1.2.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z*) dy = (2zy +2¢°) d=
(—2zy — 2y°) dz+(2*) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —2zy — 2y°
N(z,y) = 2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
—— = (=2zy — 2°
oy ay( zy — 2y°)
=—2x—4y
And
ON 0, ,
oz ")
=2z

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2o

- N Oy oz
1
= —((~25— 49) - (22))
—4x — 4y
e

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g 1(ON _om
- M\ oz Jy

1
= _W(@x) — (—2z — 4y))
_ 2
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— edey

= ef_%dy

I

29



The result of integrating gives

= 6_2 In(y)

1
u2

Y

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

K?+N@g=0
dzx

—2y — 2z 2\ dy
< y >+<f>dx_0

The following equations are now set up to solve for the function ¢(z,y)

0p —
¢ _~

Integrating (1) w.r.t. = gives
@ dx = / M dx
ox

%dx:/ﬂdx
ox Y

6= —@ T i) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

%__2_x+x(x+2y)

(4)

= +f(y
dy y Y W)
2
x
=2 + f'(y)
But equation (2) says that ‘g—‘z = Z—; Therefore equation (4) becomes
72 2
7 = 7 + f'(y)
Solving equation (5) for f’(y) gives
f'y) =0
Therefore
fy) =a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
(T + 2
b= ( ! y) te

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

z(z + 2y)
g =——""
Y
The solution becomes
y 2 + ¢
Summary
The solution(s) found are the following
y= 2z + ¢y
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Figure 8: Slope field plot

Verification of solutions

B T
v= 2x 4+ ¢
Verified OK.
1.2.5 Solving as riccati ode
In canonical form the ODE is
y = F(z,y)
_ 2y(y+ =)
- 3

This is a Riccati ODE. Comparing the ODE to solve

, 2y

292
T x2

With Riccati ODE standard form

y' = folz) + fi(z)y + fo(z)y?
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Shows that fo(z) =0, fi(z) = 2 and fy(z) = 3. Let

= 2w (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
4
fo= 3
b=
fafo=0

Substituting the above terms back in equation (2) gives

2u”(x)

2 =0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) =z + ¢

The above shows that
' (z) =

Using the above in (1) gives the solution

c1z2
Y=—"5/ 1.
2 (clx + Cg)
Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
1

C3T
2631,' +2
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.
Maple trace
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/
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Figure 9: Slope field plot

C3T
o 263.’1,' + 2

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

<- Bermoulli successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(x“2*diff (y(x),x)-2%x*y (x)-2*y (x) ~2=0,y(x), singsol=all) J
2
X
y(z) = —_ e

v Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 22

LDSolve [x~2xy' [x] -2*x*y [x] -2*y [x] "2==0,y[x] ,x,IncludeSingularSolutions -> True}]

CL’2

y(z) — T ie
y(z) =0
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1.3 problem 1.c

1.3.1 Solving as homogeneousTypeD2ode . .. ... .. ... .. .. 36l
1.3.2 Solving as first order ode lie symmetry calculated ode . . . . . . 38}

Internal problem ID [3082]
Internal file name [OUTPUT/2574_Sunday_June_05_2022_03_20_10_AM_25744284/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 1.c.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_ or-
der__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

y'z? — 3(y* + 2?) arctan <g> —yr =0
T

1.3.1 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(u'(z)  + u(z)) 2* — 3(u(alc)2 z® + z°) arctan (u(z)) — u(z) 2> = 0

In canonical form the ODE is

= f(z)g(u)
(u? + 1) arctan (u)

Where f(z) = 2 and g(u) = arctan (u) (u® + 1). Integrating both sides gives

1 3
arctan (u) (u? + 1) du = T dz

1 3
/ arctan (u) (u?2 + 1) du = / T de
In (arctan (u)) = 31n (x) + c2
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(1)

e3 In(z)+c2

z tan (cze™z?)
z tan (cze™z?)

Iu

arctan (u) = c3x®

Y

arctan (u)
)

N 7

T T == I

\\\\\ — 7 \ / N S ——
—_—— == = _~ 7 \ \ / / N S —~—— B
—_———— =~ 7 ] \ ./ NN N s —— |

Raising both side to exponential gives
The solution(s) found are the following

Which simplifies to
Therefore the solution y is

Summary

T T T T T T T
on N — ) — N on

\\\\\\\l\'l

\ G e e

X

z tan (czez’)
37

Figure 10: Slope field plot
Y

Verification of solutions

Verified OK.



1.3.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as
_ 3arctan (¥) 2% + 3arctan (£) y* + zy

/ T

y_

72
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2§y —wz —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, n then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zay + yaz + ay (1E)
1 = xbs + ybs + by (2E)

Where the unknown coefficients are

{al, as, as, by, by, b3}

Substituting equations (1E,2E) and w into (A) gives

(3arctan (¥) 2? + 3arctan (¥) ¥ + zy) (bs — as)
2
(3arctan (%) 22 + 3arctan (%) y* + ony)2 as
o
_yj’il + 6z arctan (¥) — > (‘?;H) +y

2 x? (5E)

o +

x

2 Y) z? 2y
B (3arctan (¥) z +jgarctan (2)y* +oy) (zaz +yaz + aq)

3z 3y2
(5:3+1 + z( %’H) + 6 arctan (%) y+ x) (zby + ybs + by)

=0

xr2

Putting the above in normal form gives

9arctan (%)2 z*as + 18 arctan (%)2 z%y%a3 + 9 arctan (3)2 yas + 3arctan (£) z'a; — 3arctan (¥) zbs

T

=0
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Setting the numerator to zero gives

<

2
—9arctan (y) ztas — 18 arctan <—> z?y%as — 9arctan

<Q
x x
— 3arctan ( > T*as + 3arctan (Q) 4hy — 6 arctan (g) T yas
T
(Q
T

[N
(3]
N
Q
w

(6E)

— 6arctan ( ) x3yby + 3arctan —) z?y?a, — 3arctan

/\/—\H
SENES

— 6arctan ( ) T yb1 + 6 arctan ) xy2a1 — 3byz?

+ 3z3yay — 323ybs + 32°yas — 423b; + 4xya; =0

Simplifying the above gives

N

—27 arctan (

SHRSS

N N

N— —

2
z*y?as — 27 arctan <%> z2ytas
zyas — 6 arctan (%) x5yby — 6 arctan (%) z3ytas

— 6arctan

7~ N7 N

239%by 4+ 3arctan <y> z?y*ay — 3arctan (Q) z2ytbs
x

(6E)

— 6arctan zlyb, + 6 arctan ( ) z3y?a; — 6 arctan (g) z2y3b,
x

2
+ 6 arctan < zy*a; — 9arctan < ) z%a3 — 9arctan <y> ylas
x

SHESS
~—

— Jarctan <%> T’ae + 3arctan <z> x8b3 — 3250y — 4250,

+ 3z5ya, — 32°ybs + 3zty’as — 3zty?b, + 3233 a2
— 323y3b3 + 322ytas + d2tyar — 423y%by + 42yPa; = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{ (2))
z,y,arctan ( —
T

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{7 =0y = va,arctan () = s
T =1,y = Ug,arctan (| = | = vs
T

39



The above PDE (6E) now becomes

2,6 2,4,2 2,2 4 2,6 6 2,4
—9u3vias — 27Tv3viv5a3 — 2Tv3viv5a3 — QU3Vsa3 — 3Usviag + U3V Va0

— 6?)31);—’1)2(13 — 6vgvi‘v§’a3 — 6vgv§02b2 — 61}31}{’1}31)2 + 31131)?b3

— 3ugvvibs + 6vsvivia; 4 6usvivaa; + 3vdvaay + 3vivia,

+ 3vivias + 3vivsas — 6vsviveby — Busvivib; — 3vSby — vivib,
— 3v3ugbs — 3v3vdbs + dvivea; + 4vivia; — 4vSby — dvivdb, =0

Collecting the above on the terms v; introduced, and these are
{Ul) V2, U3}

Equation (7E) now becomes

—9uiviaz + (—3ay + 3b3) vivs — 3v8by + (—6az — 6by) V3Vyv3
+ (3ag — 3b3) vivy — 4viby — 2Tvavivias + (3as — 3by) vivs
— 6sviveh; + 4vivaa; + (—6as — 6by) viv3vs + (3ay — 3b3) vivs
+ 6ugvivia; — 4vdvib, — 2Tvavivsas + (3ay — 3b3) vivjus
+ 3vivias — 6usvividy + 4vivia; + 6vsvivsa; — Jvivsas = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

4a; =0

6a; =0

—27a3 =0
—9a3 =0

3a3 =0

—6b; =0

—4b; =0

—3by =0

—3ay +3b3 =0
3a; —3b3 =0
—6az — 6by =0
3az —3by =0

40
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Solving the above equations for the unknowns gives

a; =0
as = b3
a3 =0
by=0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

§=1
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(y)¢
3arctan z? + 3arctan Y-+ oy
-y (pamen ) D7)

2
—3arctan (£) 22 — 3arctan (¥) y?

T

§£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx dy
&

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

= dS (1)

S is found from

W
Il

Il
——

dy

I |~

—3arctan (¥)x?— 3abrcta.n(%)y2 dy
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Which results in
In (arctan (%))
3

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S=-—

ﬁ _ Sx +W($,y)Sy
dR R, + w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(2)

3arctan (¥) 22 + 3arctan (¥) y? + zy

w(z,y) = p
Evaluating all the partial derivatives gives
R, =1
R,=0
S, = Y
© 3(2?+y?)arctan (¥)
S, =— °

3 (22 + y?) arctan ()
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dsS 1

D 2A

dR x (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—In(R) + ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In (arctan (%))

— 3 =—In(z)+ ¢
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Which simplifies to

In (arctan (%))

3
Which gives

=—In(z)+ca

y = tan (e_?’Cl x3) x

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) ) )
. . ) ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, )
transformation ’

dy _ 3arctan(¥)z?+3arctan(¥)y?+zy ds _ 1

dr — z2 dR~ R
VAV bbb bbb trtrrtrtt B e VY N ANENCNCC I CTEN
A trrrttrttt s e w7 7 A (N a e
R e RN S S P YD R IO IO
L
v T _T, NN A e e e
\\\q\\glytxﬁ“ ttttrrrry »»»»)ﬂ@@/’f&\\\\\\\\ﬁ
AR R EERE IR B e T P I
NMNNNYN YV LY ttrrrrzA2AA” B Bt O W | AN NCNCS OV CC VN
\\\\\\\\\b f;f/////// R=zx ,.,uw)/m/v;; it\\\m\m\ﬂ
— e A ~a A Na Ny P > e v v v 7 A A i
S el w e 7y A S LN N e m—ap—as Y g e r 7y A7 AU N Ny m
//:3/,/,/,—‘/{}, f b \,?\\\3\\ _ _ln (arctan (x)) »»j»»/g// f x\\\f\ i
AAAAAEE LV AN NN NN 3 N | DN
AR 0= IR RN et | I
frEAEEEEEY PEE VYV NN ettty I BN
b A o o A A O O A A A A A W W e rr o r 7 7NN e
eI R EEE R R D et A L D
A A A A A A = I Y A A A A S v m e 7 A AL N N e
[ O A A I A A A ettt N
[ A O A I A A A A —wrrr e r 7 AN N e e

Summary

The solution(s) found are the following

y = tan (e_3‘31x3) x
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Figure 11: Slope field plot

Verification of solutions

tan (e7°2°) z

y:

Verified OK.

Maple trace

“Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

Ldsolve(x‘2*diff(y(x),x)=3*(x“2+y(x)‘2)*arctan(y(x)/x)+x*y(x),y(x), singsol=a}})

y(z) = tan (c12°) z

v/ Solution by Mathematica
Time used: 0.179 (sec). Leaf size: 37

LDSolve [x~2xy' [x]==3*(x"2+y[x] "2) *Arctan[y[x]/x]+x*y[x],y[x],x, IncludeSingularﬁSolutions -> Tr

y(x)

dK[1] = 3log(z) + c1, y(z)

Solve [ / 1

1 Arctan(K[1]) (K[1]>2+1)
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1.4 problem 1.d

1.4.1 Solving as homogeneousTypeD ode . . . . . . ... ... .. .. 46l
1.4.2 Solving as homogeneousTypeD2ode . .. ... ... .. .... [48]
1.4.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 0!
1.44 Solvingasexactode . ... ... ... ... . .......... %!

Internal problem ID [3083]
Internal file name [OUTPUT/2575_Sunday_June_05_2022_03_20_14_AM_70604598/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 1.d.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_ order_ ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _dAlembert]

sin(=)yx—sin|(=|y==x
z x

1.4.1 Solving as homogeneousTypeD ode

Writing the ode as

)Y 1
-2 A
V=t sm ) )
The given ode has the form
Y Y\m
v =249 f (b)) (1)

Where b is scalar and g(z) is function of x and n, m are integers. The solution is given
in Kamke page 20. Using the substitution y(z) = u(z) z then
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Hence the given ode becomes

Wt u=utgla) f(bu)

dz
W = ~g(z) f(ou)* 2

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(z) =1
b=1
f b_x = sin <y>
Y x
Substituting the above in (2) results in the u(z) ode as

. 1
wiw) = zsin (u (z))

Which is now solved as separable In canonical form the ODE is

Where f(z) = L and g(u) = Integrating both sides gives

sm(u)
1 1
—du = — d:c

sin(u)

/ / dx
sm(u)

—cos(u) =In(z) + ¢

The solution is
—cos(u(z)) —In(z) —c1 =0

Therefore the solution is found using y = ux. Hence

—cos(%) —In(z) —c; =0
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Summary

The solution(s) found are the following

1)

)—ln(z)—cl=0

(y
—cos | =
T
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Figure 12: Slope field plot

Verification of solutions

— cos (%) —In(z)—c, =0

Verified OK.

1.4.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

sin (u(z)) (v'(z) z + u(z)) z — sin (u(z)) u(z) z = =

In canonical form the ODE is

F(z,u)

u =

f(x)g(w)

1
sin (u) x
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. Integrating both sides gives

1
sin(u)

and g(u) =

1
T

Where f(z) =

The solution is

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

o o
I I
(] (]
O QO
_ _
~~ ~~
8 8
N— N~—"
= =
— —
[ _
D 8> 8
N—" —

— COS

— COS

Summary
The solution(s) found are the following

(1)

— cos (%) —In(z) —cp=0
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Figure 13: Slope field plot
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Verification of solutions

— cos (%) —In(z) —cp=0
Verified OK.

1.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y,_sin(%)erw

Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —we —wyn =0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(x,y) = 2

n(z,y) = oy

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy _n
de &
Ty
T2

This is easily solved to give
Yy=ocz

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating
s _ S +w(z,y)S, @)
dR R;+w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

sin (4)y+ =z
W(IB,y): (x)y

sin (%) x
Evaluating all the partial derivatives gives
R, = -
1
R, = -
5o 1
Sy, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds _sin(2)
B- 2 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

JR- T sin (R) S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢;e°=R) (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

_ clecos(%)
x
Which simplifies to

1
—_— = Clecos(%)
T

(n(=22))
y=arccos (In| —— | |z
1T

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Summary

The solution(s) found are the following

1)

))s

(= (-2,
arccos [ In | —
C1x

y:
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Figure 14: Slope field plot
arccos <ln (—

d
M(w,y)+N(x,y)£=0

Y

PP P P i e e e et N N S

N R

Entering Exact first order ODE solver. (Form one type)

1.4.4 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. x gives

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
Hence

To solve an ode of the form

Verification of solutions

Verified OK.



Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz +N(z,y)dy =0 (1A)

e (2)) = (5 (2) )

(— sin (%) y— 3:> do +<sin (Q) x) dy=0 (2A)

T

Therefore

Comparing (1A) and (2A) shows that

M(z,y) = —sin (%)y—x
N(z,y) = sin (%) x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0 . (Y
By =5y (y)v—2)

__cos (%) y sin <y>

Z T
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And

% =502 (3)2)

_ o)y g (Y)
xr T

Since %i; # 9 “then the ODE is not exact. Since the ODE is not exact, we will try to

Bz )
find an integrating factor to make it exact. Let

1 /0M ON
- 3(-2)

ol (22 2)
__2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

= el Ade
_J-td
The result of integrating gives
= =2
_ 1
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

- A(-n(2)y-

_ —sin (Y)y—=z

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N:—Z=0
(=) (=)

The following equations are now set up to solve for the function ¢(z,y)

8¢
¢ -

Integrating (1) w.r.t. z gives

0¢ [
a—wdx—/Md:c

6¢ /—sin(%)y—xdx

3x 2

¢=ln<£)—cos< )+f() 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

@_sin(g)
oy =z

+ () (4)

sin(¥)

But equation (2) says that % . Therefore equation (4) becomes

T T

Solving equation (5) for f'(y) gives

Therefore
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Figure 15: Slope field plot

PP e e O N N

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

Summary

T T T T T T T
on N — (=) — N on

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

Ldsolve(x*sin(y(x) /x)*diff (y(x),x)=y(x)*sin(y(x)/x)+x,y(x), singsol=all) J

y(z) = (m + 2arcsin (21n () + 1))z

v/ Solution by Mathematica
Time used: 0.435 (sec). Leaf size: 34

LDSolve[x*Sin[y[x]/x]*y'[x]==y[x]*Sin[y[x]/x]+x,y[x],x,IncludeSingularSolutiop% -> True]

y(x) = —zxarccos(— log(z) — ¢1)
y(x) — zarccos(—log(z) — ¢1)
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1.5 problem 1.

1.5.1 Solving as homogeneousTypeD ode . . . . . . ... ... .. .. 611
1.5.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 631
1.5.3 Solving as first order ode lie symmetry lookup ode . .. .. .. 65

Internal problem ID [3084]
Internal file name [OUTPUT/2576_Sunday_June_05_2022_03_20_17_AM_58252680/index . tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 1..

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_ order__ode__lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, ~class D"]]

zy —y—2e = =0

1.5.1 Solving as homogeneousTypeD ode
Writing the ode as

Y 2e =
y=_+t— (A)
The given ode has the form
Y Yy
v =249 f(b2) (1)

Where b is scalar and g(z) is function of x and n, m are integers. The solution is given
in Kamke page 20. Using the substitution y(z) = u(x) z then
dy du

Hence the given ode becomes

Mo+ u=ut () f(bu)*
o = g(a) f(bu)" 2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g9(z) =
b
i)

Substituting the above in (2) results in the u(z) ode as

=8N

Il
@
8l

) —u(x)
W) = =

12

Which is now solved as separable In canonical form the ODE is

v = F(z,u)
= f(z)g(u)

_ 2e7¢

xr2

Where f(z) = % and g(u) = e Integrating both sides gives

1 2

e x

1 2

e T
e":———l—cl

The solution is

2
@4+ Z =0
x
Therefore the solution is found using y = ux. Hence
2
e% + - — C1 = 0
x

Summary
The solution(s) found are the following

y 2
65+E—01=0 (1)
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Figure 16: Slope field plot

Verification of solutions

2
er+-—c =0
x

Verified OK.

1.5.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(v (z) z 4+ u(z)) —u(z)z — 274 =0
In canonical form the ODE is

u = F(z,u)
= f(z)g(u)

_ 2e7 ¢

xr2

Where f(z) = % and g(u) = e™. Integrating both sides gives

1 2
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(1)

2
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2
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2
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Replacing u(z) in the above solution by £ results in the solution for y in implicit form

The solution(s) found are the following

The solution is
Summary

N ————————
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Figure 17: Slope field plot
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Verification of solutions

xe%—02x+2=0

X

Verified OK.

1.5.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Yy

y' _ y+2e =
Xz
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - Ex) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

&(x,y) = 2

n(z,y) = oy

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore

dy _n
dr &
Ty
T2
Y

x
This is easily solved to give

Yy=cz

Where now the coordinate R is taken as the constant of integration. Hence

And S is found from

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,
Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y+2e =
wla,y) =L

Evaluating all the partial derivatives gives

)
sz_;
1
Ry=5
1
5. =
S, =0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS e=
-~ 2A
dR 2 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds _eF
dR 2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ? +C (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1 e= n
—_—— = C
T 2 !
Which simplifies to
L e +c
r 2 !

Which gives
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
Yy

dy _ y+2e’ = das _ ef

de ~ T dR 2
R R R R R EII R e et e O PVl A S B O
A O O N R A A . L B A A p P
A R N O A A R A A A A ol o N B —— e fpf
NNNNVN VLUt rrr s OSSN S
NN £ R R Ao N By AL
\\\\\Mugw/‘/////// »»»»»» oA f bt
ARRARREERE I IRt B G A A I
SMNNNNNNV VA y | e el A A A
SONNNNN N L A e R== | e S R
S aNNNNV WP A A T b w A T AP}
TS NN F A 1 e A % N
e e e G L I R A I e S_ ******** "/"/'/fferff
»»»»»»» //f f P A A _ — e e f f* f f
_.#,,,,,/,,///_%A $ e r | e oy A
D e, e L e S CU
Gttt e S N B Eeeey s R R RS
A L O B e K B gt AB R RN
N o S N e R AR S R
AR R R R R L e e I REE
I L I I e AR

Summary

The solution(s) found are the following

X
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Figure 18: Slope field plot

Verification of solutions

y==zln (—

Verified OK.
Maple trace

2(6133 + 1)
X

)

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

Ldsolve(x*diff(y(x),x)=y(x)+2*exp(— y(x)/x),y(x), singsol=all) J

y(z) = (111 2) +1In (C””x‘ 1)) z

v Solution by Mathematica
Time used: 0.618 (sec). Leaf size: 16

LDSolve [x*y' [x]==y [x]+2*Exp[- y[x]/x],y[x],x,IncludeSingularSolutions -> True]J

2
y(x) — zlog <—5 + cl)

71



1.6 problem 3.a

1.6.1 Solving as homogeneousTypeCode . . . . .. ... ... .... [72]
1.6.2 Solving as first order ode lie symmetry lookup ode . .. .. .. [74
1.6.3 Solving asriccatiode. . . . .. .. ... ... ... ..., 78]

Internal problem ID [3085]
Internal file name [OUTPUT/2577_Sunday_June_05_2022_03_20_19_AM_9450860/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 3.a.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeC",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class C ], _Riccatil

Yy~ (y+z)’=0

1.6.1 Solving as homogeneousTypeC ode

Let
z=y+a (1)
Then
Z(z)=y +1
Therefore
y =2 (z) -1

Hence the given ode can now be written as

Z(x) —1 =22
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1)

1
22 +1

/

z + ¢; = arctan (2)

y=—x+tan(zx +c)
y=—x+tan(z+ c)

y=—z+tan(z +c1)

K

This is separable first order ode. Integrating
Replacing z back by its value from (1) then the above gives the solution as

The solution(s) found are the following

Summary

===\
111111111111 NN
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Figure 19: Slope field plot
y=—z+tan(z +c1)
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Verification of solutions

Verified OK.



1.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Y =(y+a)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type homogeneous Type C. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find &, 7

Table 9: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz
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The above table shows that

{(z,y)=1
n(z,y) = -1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, =4 1)

The above comes from the requirements that ({ 2+ n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _n
dr ¢
-1
1
=—1
This is easily solved to give
y=—x+c

Where now the coordinate R is taken as the constant of integration. Hence
R=y+=zx

And S is found from

Integrating gives
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Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = (y + z)°

Evaluating all the partial derivatives gives

R, =1
R,=1
S, =1
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
dR 1+ (y+2)’

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR  R2+1
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

(24)

S(R) = arctan (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

x =arctan (y + ) + ¢
Which simplifies to

x = arctan (y + z) + ¢
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Which gives
y=—x—tan(—x +¢)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R, S)

transformation
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Summary
The solution(s) found are the following

y=—x—tan(—z+¢) (1)
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Figure 20: Slope field plot

Verification of solutions

y=—z—tan(—z+c;)

Verified OK.

1.6.3 Solving as riccati ode

In canonical form the ODE is

Yy =F(z,y)

= (y+2)°

This is a Riccati ODE. Comparing the ODE to solve

y' =2’ + 2zy + ¢

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®
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Shows that fo(z) = 22, fi(z) = 2z and fa(z) = 1. Let

y =
fou
_ul

- M

u

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
fo=0
fifo=2z
f22f0 = z?

Substituting the above terms back in equation (2) gives
u'(z) — 2z (z) + 2%u(z) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

22

u(z) = e7 (¢ cos (z) + co8in (z))
The above shows that
u'(z) = eé((clx + ¢2) cos (z) + sin (z) (c2x — 1))
Using the above in (1) gives the solution

(c1z + c2) cos (z) + sin (z) (cox — c1)
c1 cos (z) + ¢ sin (z)

Dividing both numerator and denominator by c; gives, after renaming the constant
2 = c3 the following solution

(—csx — 1) cos (z) —sin (z) (—c3 + )
¢z cos (z) + sin (z)
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Summary

The solution(s) found are the following

(1)

(—cgz — 1) cos (z) — sin (x) (—c3 + )

c3 cos (x) + sin (z)
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Figure 21: Slope field plot

Verification of solutions
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Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

|dsolve(diff (y(x),x)=(x+y(x))"2,y(x), singsol=all)

y(z) = —z — tan (¢; — x)

v/ Solution by Mathematica
Time used: 0.735 (sec). Leaf size: 14

LDSolve[y'[x]==(x+y[x])“2,y[x],x,IncludeSingularSolutions -> Truel

y(x) = —x + tan(z + ¢;)
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1.7 problem 3.b

1.7.1  Solving as first order ode lie symmetry calculated ode . . . . . . 82

Internal problem ID [3086]
Internal file name [OUTPUT/2578_Sunday_June_05_2022_03_20_22_AM_29566835/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 3.b.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _dAlembert]

y —sin(z—y+1)>=0

1.7.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as
y =sin(z —y+1)
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —wf —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + o (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

by +sin (z —y + 1) (b3 — ag) —sin (z —y + 1)* as (5E)
—2sin(z —y+1)cos(x —y + 1) (zaz + yas + a1)
+2sin(z —y+1)cos(z —y+1)(xbs +ybs+ b)) =0

Putting the above in normal form gives

—sin (z —y +1)*as — 2sin (z — y 4 1) cos (z — y + 1) zay

+2sin(z —y+1)cos(z —y+ 1) zby — 2sin (z —y + 1) cos (z — y + 1) yas

+ 2sin(z —y+ 1) cos (x — y + 1) ybs — sin (z — y + 1)* ag + sin (z — y + 1)* bs
—2sin(z—y+1)cos(z—y+1)a;+2sin(z—y+1)cos(zx—y+1)by+b=0

Setting the numerator to zero gives

—sin (z —y +1)*ag — 2sin (z — y 4+ 1) cos (z — y + 1) zay

+2sin(z —y+1)cos (z —y+1) zby — 2sin (z —y+ 1) cos (z —y + 1) yaz (6E)
+ 2sin (x —y + 1) cos (z — y + 1) ybs — sin (z — y + 1) ay

+sin(z —y—+1)2bs — 2sin(z —y + 1) cos(z —y+ 1) a;

+2sin(x —y+1)cos(z—y+1)by+b2=0

Simplifying the above gives

3as ay b3y aszcos(2z —2y+2) ascos(4r —4y+4)
s 227 2 - 8
— zaysin (2z — 2y + 2) + zbysin (22 — 2y + 2) — yagsin (2z — 2y +2)  (6E)
2z — 2 2 b 2z — 2 2
+yb3sin(2x—2y+2)+a2cos( a:2 y+2) _ bycos( z2 y+2)

—ay8in (20 — 2y +2) + bysin(2z — 2y +2) =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y,cos (22 — 2y + 2) ,cos (4 — 4y + 4) ,sin (2z — 2y + 2)}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z = v1,y = vg,co8 (22 — 2y + 2) = vs3,cos (4 — 4y + 4) = vy, sin (22 — 2y + 2) = vs}
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The above PDE (6E) now becomes

b 5 L —|—1b +1 L V4 — V1G2VU5 + V1bov

——-a3— zaz+ = —Q3V3 — —A3V4 —

2 83 22 23 233 834 14205 102VUs5
1

—’l)ga3’v5+’l)2b3’l}5+§az’03—5b3?]3—a1’05+b1’05=0

Collecting the above on the terms v; introduced, and these are
{’Ula V2, U3, V4, US}

Equation (7E) now becomes

BT g

+ (—(11 -+ bl) Us + (—(12 -+ b2) UsU1 + (—a3 + b3) vsvg = 0

3a a b a a b asv
3 2+3+<3+2 3) 34

Setting each coefficients in (8E) to zero gives the following equations to solve

_% _

5 =

—a1+b1—0
—a2+b2=0
—a3 + b3 =

as =~ Q2 b3_

2 2 2 0
3(13 as b3_
b= —5t3 =0

Solving the above equations for the unknowns gives

ap=b;
a; =0
a3 =0
by =0b;
b, =0
bs =0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation
n=n-wxy)

=1— (sin(z—y+ 1)2) (1)

=1 —sin (z)? cos () cos (1)> — 2sin ()? cos (y) cos (1) sin (y) sin (1) 4 2sin () cos (y) cos (1)* cos () s
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =4S 1)

The above comes from the requirements that (f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n

B / 1 — sin (z)* cos (y)? cos (1) — 2sin (z)° cos (y) cos (1) sin (y) sin (1) + 2sin (z) cos (y) cos (1) cos (;

Which results in
S=—tan(z—y+1)
Now that R, S are found, we need to setup the ode in these coordinates. This is done

by evaluating

dS Sy +w(z,y)S,

dR ~ R, +w(z,y)R, @
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =sin(z -y +1)°
Evaluating all the partial derivatives gives

R,=1

R,=0

S, = —sec (z —y +1)°
S, =sec(z —y+1)°

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

-~ -1
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)= —R+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—tan(z —y+1)=—c+c
Which simplifies to

—tan(z —y+1)=—c+c
Which gives

y=2x+ 1+ arctan (—z + ¢;)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . i i ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _: 2 as __
@ =sin(z—y+1) .|

— AP AJ AN A s> A R N N N N Y
AP AF T e AJA o> I R e e N N N N N T Y
AA e AN _ode > AN v T AT R O A Y
Ao A oA AAFA o AJ A RN N N A N N N N Y
/»»//’/Iﬁ»//’/ﬂ»»////'A \\\\\\Q R AN N N N I N N
R T R I AR A T
B PPy RS RN AR N A T N N VN Y
AP AJ T e AA T v AN R e e N N N N N T Y
e N S e oo R AR T
e v AP A oo A A o A A x R A T
P I AR e Sy g % VP W W W W W WY A W S W W W VY
e AP A e A f A e e A f A e e S::_¢an@p_y4_n \\\\\\\\\\\\\\yﬁ\\\\
e APAA e e AA A oo A A o> T RN N A N N N N NN
AP A A AT Ao I RN N I T VAT T N N N N '
S B I OO NS RO N Y N
AT AJA S\ A e T R N R e e N T T T Y
o AAA oo > AN e A A R e e N N N N N Y
e LR OO NN R OO NN Y N
w A AP A e A e T RN N N A N N N N Y
AAS e AJA Ao e AAA v A A R N N N N Y

Summary
The solution(s) found are the following

y=1z+ 1+ arctan (—z + ¢;)

87




R A e A A A
Y A A A V4
e A Y S P4
I A e A V4
e ] T s 7 ] T
——— ) S ] T
— e ) ) ]
B Pl A A
D A A P e A
A e A A
'ﬂx) 0'/////—:—x)/-////'//*»—s)/-/
e A A A A A4
e A A Y A
i S PN S OV P D Y
e ] ] ] ] T
—— = ]
N s ) S
A A e
A A e A A Y
—H ST e ] ]

-3 -2 —1 0 1 2 3

Figure 22: Slope field plot

Verification of solutions

y=1z+ 1+ arctan (—z + ¢;)

Verified OK.
Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 13

Ldsolve(diff (y(x),x)=sin(x-y(x)+1)~2,y(x), singsol=all)

y(x) =z + 1+ arctan (¢; — x)

v/ Solution by Mathematica
Time used: 0.344 (sec). Leaf size: 33

LDSolve [y' [x]==Sin[x-y[x]+1]"2,y[x] ,x,IncludeSingularSolutions -> True]

Solve[2y(z) — 2(tan(—y(z) + z + 1) — arctan(tan(—y(z) + z + 1))) = ¢1, y(z)]
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1.8 problem 5.a
1.8.1 Solving as homogeneousTypeMapleCode . . . . . . ... .. .. 901
1.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 93]

Internal problem ID [3087]
Internal file name [OUTPUT/2579_Sunday_June_05_2022_03_20_34_AM_14083881/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 5.a.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, ~2nd type’,
class A~]]

p_Ttytd

=0
z—y—6

1.8.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + x, then the above is transformed to new ode in Y (X)

iY(X) _ X+zo+Y(X)+yt+4
dX —X—20+Y (X)+yo+6
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
To = 1
Yo=—9

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d X +Y(X)
ax Y X) = X +Y (X)
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In canonical form, the ODE is

— F(X,Y)
X+Y
SR 1
-X+Y (L)
An ode of the form Y’ = (())g ;,/)) is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

FEX,4"Y) = " f(X,Y)

In this case, it can be seen that both M = X +Y and N = X —Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is

homogeneous, it is converted to separable ODE using the substitution v = )—};, or
Y = uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du —u—1
axXtrE
du ;12%)__11 — u(X)
dx X
Or (X1
d a1 — wX)
x-——x =0
Or J J
2 —
(dX (X)) Xu(X) — (qu(X)> X +u(X)?+1=0
Or

.X(()—D(JQ(X»444XV+1=O

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

= F(X,u)
= f(X)g(u)
u? +1
X (u—1)
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Where f(X) = —+ and g(u) = “*L. Integrating both sides gives

1 1

u—1
1 1
u—1

2
@ +1) arctan (u) = —In (X) + ¢

2
The solution is

In (u(X)2 +1)
2

—arctan (u(X)) +In(X) —ce =0

Now u in the above solution is replaced back by Y using u = % which results in the

solution
i (16 +1)
2
Using the solution for Y (X)

1o (22 +1)
2

-t (Y29 13 0

- acan (1) 41 0) 0

And replacing back terms in the above solution using

Y=y+y

X =x4+x
Or

Y=9y-5

X=z+1

Then the solution in y becomes

2
In ((y+5> n 1) .
(x_; — arctan <&1> +In(z—1)—c=0
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Summary
The solution(s) found are the following

In (M#Ll) +5
(1) — arctan (y ) +In(z-1)-—c=0
2 z—1
K I e S S e VY
BSOS G e N i W WY
N O S S e N N N Vi N Y
B D e e e e N N N N N N WA
1 BN N NN D N N e N R VA
y(x) PR NN NN N N N NN
-1 e S G N V) V) W N W R NV \i
AAAAA e SN NG N W W W WY \1 \l \l \1
e \\\\\\\\\\\\\\\i\!
e ~=ONNN NN \ \1 \,
—3{ NN \1 \1 L
_|3 _|2 —1 0 1 2 3

Figure 23: Slope field plot

Verification of solutions

(y+5)°

In (=% +1
<(m_;)2 ) — arctan (&?) +In(z—1)—c=0

Verified OK.

1.8.2 Solving as first order ode lie symmetry calculated ode
Writing the ode as

y__Tty+4
- —z+4y+6

Y =w(z,y)
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The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - wzéy - wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zag +yaz + ay (1E)
1 = xbz + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b?, b3}

Substituting equations (1E,2E) and w into (A) gives

(ztyt+)(bs—a) (z+y+4)’as

b2

—z+y+6 (—z+y+6)°
1 r+y+4 ) (5E)
— (= - zxag +yaz + a
< —z4+y+6 (—z+y+6)° (vaz +yas + o)
1 z+y+4
— (= by +yb3 +b;) =0
< —r+y+6 (—x+y—|—6)2)(x2 Yo3 1)

Putting the above in normal form gives

_ 2%ay + 2%az + 2%y — 2%b3 — 2xyay + 2xyag + 2xyby + 22ybs — y?as — yPaz — y?by + y?bs — 12205 + 82
(z -

=0
Setting the numerator to zero gives

—12ay — 22a3 — 2°by + 22bs + 2zyas — 2xyas — 2xyby — 2xybs + ylay (6E)

+ y2a3 + y2b2 — y2b3 + 12zay — 8xaz — 2xby; — 10xby — 2xb3 + 2ya; + 10yas
+ 2ya3 + 12yb2 — Syb3 + 10a1 + 24&2 — 16&3 + 2b1 + 36b2 — 24b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y =02}

The above PDE (6E) now becomes

—afl)f + 2a21)1?)2 + CLQ’US — (13’1)% - 2(13’1)1’02 + ag’l)g — bz’U% — 2b2'01’l)2 + bQ’l)g (7E)
+ bgv% — 2b3’l)1’l)2 — bgvg + 2&1’1)2 + 12&2’01 + 100,2’02 - 8&3’01 + 2&302 - 2b1’l)1
- 10b2’01 + 12b2’l)2 — 2b3’01 - 8b3’l)2 + 10&1 + 24.&2 - 16&3 + 2b1 + 36b2 — 24.b3 =0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

(—ag — as — b2 + b3) ’U% + (2&2 — 2@3 — 2b2 — 2b3) V102 (SE)
+ (120,2 — 8asz — 2b; — 106, — 2b3) U1 + (az +az+ by — b3) ’U%
+ (20,1 + 10&2 +2a3 + 1262 - 8b3) Vg + 10(11 +24a2 - 16(13 +2b1 +36b2 — 24.b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—ag —az —by+b3=0
as+as+by,—b3=0

2a9 — 2a3 — 2by — 2b3 =0

2a1 + 10ag + 2a3 + 126, — 8b3 = 0

12a; — 8az — 2b; — 10by — 2b3 =0

10a; + 24ay — 16a3 + 2b; + 36by — 24b3 =0

Solving the above equations for the unknowns gives

a; = —bby — b3
az = b3

az = —by

by = —by + Hbs
by = by

bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x—-1
n=y+3

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

=y+5— (——_z+y+4)(x—1)

z+y+6
—x? —y* + 2z — 10y — 26
N z—y—06
E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& 0

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n

1
_/ —z2—y2+2z—10y—26 dy

z—y—6

S is found from

Which results in
In (2 +y? — 22+ 10y +26) 2(1 — ) arctan (2£22)
2 22 — 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

z+y+4

o) == v

Evaluating all the partial derivatives gives

R, =1

R,=0
r+y+4

22+ 92 — 2z + 10y + 26
—x+y+6

Sy =
z2 4+ y2 — 2z + 10y + 26

Sg =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0 (2A)
0

gives
S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1 2 2410y — 2 2
n(y*+x +20y z + 26) _ arctan (&i’) =
x_

In (y? + x2 + 10y — 2z + 26) y+5
2 — arctan — =cC

Which simplifies to
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) ) .
o _ _ ] ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _ z+y+d 48 =0
der — —z+y+6 dR
e N O VR W
SRR NENENENENENE NN *
e e S N A NV VRN 1: t: : §
a0 N NN NN )
ﬂ»»\\y@Q\\\\\\\\\\x¥ S
R S S S N e N L U WY “
OSSR NNNNINNEN, R=x
AL SESSEN NA n(x — 2T + =1 =7 2 2
e S NI = (=" +y i R
B e S A N e N S U N A ¢ 2
~r v N N Vyb LTt 2]
A e g\ PSS -
AAAAAAAFA A AN LS )
Vil Al il A AV VL VA
Summary
The solution(s) found are the following
In (y? + 2% + 10y — 2z + 26) y+5
5 — arctan 1 =C (1)
x —
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Verification of solutions

B e S S R R N N R NN
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Figure 24: Slope field plot

2 2 _ 5
In (y* + 2% + 10y 2:c+26)_arctan(y+ )ch

Verified OK.

2 rz—1
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N\ J

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

Ldsolve(diff(y(x),x)=(x+y(x)+4)/(x—y(x)-6),y(x), singsol=all) J

y(z) = —5 — tan (RootOf (2_Z+1In (sec (_2)%) +2In(z — 1) +2¢1)) (z — 1)

v Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 58

LDSolve[y'[x]==(x+y[x]+4)/(x—y[x]-6),y[x],x,IncludeSingularSolutions -> True] J

Solve [2 arctan (M)

ylx) —x+6
2 2 _
4 log z® + y(x)* + 10y(x) — 2z + 26
2(x —1)2

) +2log(z — 1) + ¢ = O,y(w)]
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1.9 problem 5.b
1.9.1 Solving as first order ode lie symmetry calculated ode . . . . . . 107

Internal problem ID [3088]
Internal file name [OUTPUT/2580_Sunday_June_05_2022_03_20_38_AM_82893986/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 7, page 37

Problem number: 5.b.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, ~2nd type’,
class A-1]]

,_w+y+4_0
z+y—=6

1.9.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,_:p—l—y+4
y z+y—=6
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —we§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + o (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(e+y+4) (s—as) (z+y+4) as

by +
2 z+y—6 (x+y —6)°
1 x+y+4) (5E)
- - Tas + yas + a
<m+y—6 Cry—gp) TR Tyt
1 x+y+4)
— — xby +ybs +b1) =0
<x+y—6 (x+y—6)2 ( 2 T Y03 1)

Putting the above in normal form gives

_x2a2 + 22a3 — 2%by — 22bs + 2zyas + 2xyas — 2xyby — 2xybs + y2as + y2ag — y2by — y2bs — 12zas + 8
(+y—6)

=0

Setting the numerator to zero gives

—z2ay — 22ag + 2°by + 22b3 — 2xyas — 2zyas + 2xybs + 2zxybs — y2as (6E)
— y%as + y°by + y?bs + 12xay — 8zas — 2xby — 22bs + 2yas + 2yas
- 12yb2 —|— 8yb3 —+— 10(11 + 24(12 —_ 16(13 —|— ].Obl —|— 36b2 —_ 24b3 = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—agvf — 2a9v1V9 — agvg — G{),’U% — 2a3v1vy — a3v§ + bQ'U% + 2byv1v9 (TE)
+ bz’Ug + b3’U% + 2b3’l}1’l)2 + b3’Ug + 120,2’01 + 2&2’1)2 - 8&3’01 + 2a3v2 — 2b2’01
— ].2b2’02 - 2b3’01 + 8b3’l}2 + 10a1 + 24&2 - 16&3 + ].Obl + 36b2 - 24b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—a2 —as + b2 + b3) ’U% + (—2a2 - 2a3 + 2b2 + 2b3) V1V (8E)
+ (12&2 — 8a3 - 2b2 - 2b3) U1 + (—02 —as + bz + b3) ’U%
+ (2a2 + 2&3 — 12b2 + 8b3) Vg + 10(11 + 24a2 - 16&3 + 10b1 + 36b2 — 24b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—2ay — 2a3 + 2by + 2b3 = 0
—ag—az3+by+b3=0

2ay + 2a3 — 12by + 8b3 =0

12a; — 8az — 2by — 2b3 =0

10a; + 24ay — 16a3 + 10b; + 36by — 24b35 = 0

Solving the above equations for the unknowns gives

a; = —2bs — by
as = b3
as = b
by =b
by = b3
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=-1
n=1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)¢
=1— (w) (1)

z+y—=6
2z +2y—2
- r+y—6
£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n
1
Z/mdﬁl

z+y—6

S is found from

Which results in

S_g_5ln(x—1—|—y)
2 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y)

Evaluating all the partial derivatives gives

_ztyt4
x4 y—6

R, =1
R,=0
_ )
T 2z 42y —2
_z+y—=6
Y 2w 42y —2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
R 2A
dR 2 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1

dR 2
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = g +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

— =__|_cl

y Shy+z-1) =
2 2 2

Which simplifies to

y Shh(y+z-1) =
2 2 A
Which gives
e_%z"'%_z%
y = —5 LambertW (‘T) —z+1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

z+y+4

8
+
T
[=2)

o o e e

K 5 a e e

———s~aa>a N N\ 9&‘
——e—s—aaaNa N N\
—e—e—s—a—aa A Na Na

Pt e

.

L\ o o amama—a—a——s
&l e

——V—bﬁ—b—b‘s_‘?\\\o

4
¢
¥ K|t
S
e e—e————b—s—s
»n X
Il

e 8

— > —b—b b a

"
¢
¥
r's

> > —>—b—s—s—p—aal~a A N N\

Gt s« I WA

f
f
f
f
t
t
v
¥
b
y
M
\
\
N
N

o> > > s> —b—n~a~aaa N

N K a e et ——s—p—b—b—ba
o e a e bbb —a—aa

v e p—s—b—b—b—>—a~aa a Na N\
v v v r > > > pgas—b—s—aaaa a
o v v e v > b s> b >—b—s—p—a~a A a u

oW e o o b >—b—b—s—b—s A A Na Na

_ S5In(z -

1+y)

das __
dR —
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Summary
The solution(s) found are the following

—5 LambertW
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Verification of solutions

y = —5 LambertW (—

Verified OK.

0 1 2

Figure 25: Slope field plot
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

‘dsolve(diff(y(x),x)=(x+y(x)+4)/(x+y(x)—6),y(x), singsol=all)

_2w 41
y(z) = —x — 5 LambertW (—%) +1

v Solution by Mathematica
Time used: 4.019 (sec). Leaf size: 35

e N

LDSolve[y'[x]==(x+y[x]+4)/(x+y[x]—6),y[x],x,IncludeSingularSolutions -> True] J

y(z) = —5W <—e_2?x_1+cl> —z+1
ylz) > 1—=x
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2 Chapter 2, section 8, page 41

2.1 problem 1
2.2 problem 2
2.3 problem 3
2.4 problem 4
2.5 problem 5
2.6 problem 6
2.7 problem 7
2.8 problem 8
2.9 problem 9
2.10 problem 10
2.11 problem 11
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2.1 problem 1

2.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 1101
2.1.2 Solvingasexactode . .. ... ... ... ... ... ... 115l
2.1.3 Maple step by step solution . . . . ... ... ... 119l

Internal problem ID [3089]
Internal file name [OUTPUT/2581_Sunday_June_05_2022_03_20_40_AM_2961885/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first__order__ode__lie_ sym-
metry__calculated"
Maple gives the following as the ode type

[[_homogeneous, “class G'], _exact, _rational, [_Abel, ~2nd
type”, “class B ]]

2
(x+—)y'+y=0
Y

2.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

) y?

_xy + 2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - é..’ll) - w2£y — we€ — wyn =10 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{a'la aq, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

y’(bs —az)  ylaz  y(zas +yaz +a)
Ty + 2 (zy +2)° (zy +2)° (5E)

2y vz )
— (- + by + ybs + b)) = 0
(:w+ﬂ (zy + 2)° (2b2 + ybs +b)

by —

Putting the above in normal form gives

2z2y?by — 2y'as + 2 y?b1 — yPa1 + 8zybs + 2y%as + 2y?bs + dyby + 4by

2 =0
(zy +2)

Setting the numerator to zero gives
22%y%by — 2ytas + zy?by — y2a; + Sxyby + 2y2ay + 2y>bs + 4yb; + 4b, =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =2}
The above PDE (6E) now becomes
—2a3v§ + 2bzva§ — alvg + blvlvg + 2azv§ + 8byvive + 2b3v§ + 4bjvy +4by =0 (7E)
Collecting the above on the terms v; introduced, and these are
{v1, 02}
Equation (7E) now becomes

2b,0°v2 + byv1v3 + 8byv1vy — 2a3vy — a1vs + (2ag + 2b3) v + 4bjvy + 4by =0 (SE)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—a; =0
—2a3 =0
4b; =0

20 =0

4by =0

8b =0

2as + 2b5 =0

Solving the above equations for the unknowns gives

a; =0
as = —bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=z
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

Y <_zyy—2|— 2) (=2)

2y
oy 42
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ 6% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=zx

1
S=/—dy
n
_ 1

_/ 5 dy

Ty+2

S is found from

Which results in

S=%+ln(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

_ Y
Evaluating all the partial derivatives gives
R, =1
R,=0
)
Sy =2
2
z 1
Sy=—-+4+-
Y 2 y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
= -0 2A
iR (24)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

% +In(y) =a
Which simplifies to
Gt =a
Which gives
yoe LambertW (€52 ) +e1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _ _y? a3 —

dx zy+2 dR
AZZZZE LTV N N NN NN
AZZZAZE VNN NN
AZZ7 77T VNN N N N NN 4
///;;;ffgtéééé\\\\\\
AR NN N NN e ~
/////fJ/;";H Y IRV S(R]
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Summary
The solution(s) found are the following

y = ¢ LambertW (£52)+a 1)
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Figure 26: Slope field plot

Verification of solutions

y = e— LambertW ( 6621 z ) +c1

Verified OK.

2.1.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,0) + N(z,y) ¥ = 0 (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

09 Opdy
oz " oydr 0 (B)
Comparing (A,B) shows that
09
5 =
99
dy
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
By Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
2
(x + —) dy = (—y)dz
)
2
(v) dx—i—(w + &) dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y
2
N(z,y) =z + ’

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON
dy oz
Using result found above gives
oM 0
8_y = 6_y(y)
=1
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And

ON _ o[ 2
or oz \” Y
=1

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
gE_M (1)
¢ _

5y =N 2)

Integrating (1) w.r.t. z gives

0¢ _
%dz—/de

o .
a—wdz— /ydx

¢ =zy+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /
a—y=$+f(y) (4)

But equation (2) says that g—‘z =z+ % Therefore equation (4) becomes
2 /
p4 =2+ ) (5)
Solving equation (5) for f'(y) gives
2
fly) =~
() y
Integrating the above w.r.t y gives

Jrow=[ ()

fly)=2In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢p=zy+2n(y) +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢ =zy+2In(y)

The solution becomes
c1
— LambertW < e > +3

y=e

Summary
The solution(s) found are the following

— LambertW <“”627> + %1

y=¢e
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Figure 27: Slope field plot
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Verification of solutions

‘1
- Lambertw<“7 > +%

y=e
Verified OK.

2.1.3 Maple step by step solution

Let’s solve
(w + %) yY+y=0

° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F(z,y)=0

o Compute derivative of lhs
F'(z,y) + (,%F(w,y)) Y =0

o Evaluate derivatives
1=1

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,y) = $F ()]
° Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ydz + fi(y)
° Evaluate integral
F(z,y) = zy + f(y)
° Take derivative of F'(x,y) with respect toy
N(z,y) = 5.F(z,y)
° Compute derivative

T+ =z+ 3 hy)
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o Isolate for %f 1(y)
d%f 1(y) = %

° Solve for f1(y)
fily) =2In(y)

o Substitute f(y) into equation for F'(z,y)
F(z,y) = zy +2In(y)
) Substitute F'(z,y) into the solution of the ODE

zy+2In(y) =

° Solve for y

‘1
—LambertW(ze;)—i-czl
y=¢e

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

‘dsolve((x+2/y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)

J(&) = 2 LambertW (%)

T
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v/ Solution by Mathematica
Time used: 10.621 (sec). Leaf size: 58

kDSolve [(x+2/y[x])*y' [x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) = -
y(z) — 2W< - )
y(z) =0
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2.2 problem 2
2.2.1 Solvingasexactode . .. ... ... ... ... ... ... 1221

Internal problem ID [3090]
Internal file name [OUTPUT/2582_Sunday_June_05_2022_03_20_43_AM_35899133/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[y=_G(x,y") "]

sin (z) tan (y) + cos (z) sec (y)> ¢/ = —1

2.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox  Oydr 0 (B)

Comparing (A,B) shows that

0

9 M

0

3 =
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But since % = % then for the above to be valid, we require that
Y yox
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(cos () sec (y)2) dy = (—sin(z)tan (y) — 1)dz
(sin (z) tan (y) + 1) dz +(cos (z) sec (y)?) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =sin (z) tan (y) + 1
N(z,y) = cos () sec (y)*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz
Using result found above gives
oM 0
o a—y(sin (x)tan (y) + 1)
= sin () sec (y)
And
ON 0
% = B2 (cos (z) sec (y)?)

= —sin (z) sec (y)°

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 o)

- N Oy Oz
= sec (z) cos ()” ((sin (2) (1 + tan ()*)) — (—sin () sec (y)°))
= 2tan (z)
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e [Adz
— ethan(x) dz
The result of integrating gives
b= e—21n(cos(z))

= sec ()
M and N are mult_iplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M = uM
= sec (z)° (sin (z) tan (y) + 1)
= (sin (z) tan (y) + 1) sec (z)?
And

= sec ()’ (cos () sec (y)z)
= sec (z) sec (y)?
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

_ _dy
M — =0
+ dz

((sin () tan (y) + 1) sec (z)*) + (sec (z) sec (y)°) j—z =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
b~
5y =N 2)

Integrating (1) w.r.t. z gives

@dx = /de
or

% dr = / (sin () tan (y) + 1) sec (z)* dz

¢ = sec (z) tan (y) + tan (z) + f(y) 3)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—z = sec (z) (1 +tan (y)?) + f'(y) (4)

= sec (z) sec (y)2 + f'(y)

But equation (2) says that g—‘z = sec (z) sec (y)?. Therefore equation (4) becomes

sec (z) sec (y)” = sec (z) sec (1)° + £/(4) 5)
Solving equation (5) for f'(y) gives

fly)=0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = sec (z) tan (y) + tan (z) + ¢,

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢; = sec (z) tan (y) + tan (x)

Summary
The solution(s) found are the following

sec (z) tan (y) + tan (z) = ¢ (1)
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Figure 28: Slope field plot

sec (z) tan (y) +tan (z) = ¢
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Maple trace

-

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

--- Trying Lie symmetry methods, 1st order ---

*, "> Computing symmetries using: way = 3
*, “-> Computing symmetries using: way = 4
*, ~-> Computing symmetries using: way = 5

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]

, —> Computing symmetries using: way = HINT

-> Calling odsolve with the ODE, diff(y(x), x)+2*y(x)/sin(2*x), y(x)°
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
-> Calling odsolve with the ODE", diff(y(x), x)+y(x)*sin(x)/cos(x), y(x)°

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

» —> Computing symmetries using: way = HINT

-> trying a symmetry pattern of the form [F(x),G(x)]

symmetry pattern of the fff? [F(y),G(y)]

-> trying a
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
a

-> trying a symmetry pattern of the form [0, F(x)+G(y)]

~ . e g e a4 m FemsZ N o~ N, _aTT/7__\1

***x Sublevel

*%% Sublev



X Solution by Maple

Ldsolve((sin(x)*tan(y(x))+1)+(cos(x)*sec(y(x))‘2)*diff(y(x),x)=0,y(x), singso;%all)

No solution found

v Solution by Mathematica
Time used: 2.318 (sec). Leaf size: 54

LDSolve [(Sin[x]*Tan[y[x]1]1+1)+(Cos[x]*Sec[y[x]]1~2)*y' [x]==0,y[x],x, IncludeSingujLarSolut ions ->

y(z) — — arctan(sin(z) + ¢; cos(x))

y(x) — —%m/cosQ(x) sec(z)
y(x) — %7(‘\/0082(.7}) sec(z)
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2.3 problem 3

2.3.1 Solving as differentialTypeode . . ... ... ... ... .... 129
232 Solvingasexactode . . ... ... ... ... ... .. ... 131
2.3.3 Maple step by step solution . . . . ... ... ... ... ... 134

Internal problem ID [3091]
Internal file name [OUTPUT/2583_Sunday_June_05_2022_03_20_59_AM_88936391/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type

[ _exact, _rationall

y+ (z+y°)y =2°

2.3.1 Solving as differentialType ode

Writing the ode as

! -y + -'L'3
- _J 1
V= (1)
Which becomes
(v*) dy = (—z)dy + (2* —y) dz (2)

But the RHS is complete differential because

(—2)dy + (c° — y) dw = d(iﬁ - xy>

Hence (2) becomes

(v?) dy = d(iaf* _ a:y)

129



Integrating both sides gives gives the solution as

yi_ ot T+

= = C

4 4 Y 1
Summary

The solution(s) found are the following
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Figure 29: Slope field plot

Verification of solutions

Verified OK.
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2.3.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(y*+2)dy = (z° —y) dz
(—2°+y)dz+(y* +2)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(.’L’,y) = —.’173+y
N(z,y) =y’ +z
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0 3
o~y Y
=1
And
ON 0,4
o " e T
=1
Since %i; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
9 (1)
09
— =N 2
5 e

Integrating (1) w.r.t. z gives

%dxz/Mdm
or

@dx=/—x3+ydx
or

b=z +ay+ ) ®

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99 _ /
3—y—w+f(y) (4)

But equation (2) says that g—i = y3 + . Therefore equation (4) becomes

v’ +z =1+ f(y) (5)
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Solving equation (5) for f'(y) gives
Fly)=v°

Integrating the above w.r.t y gives

/ﬂ@@=/@ﬂy

4

f(y)=yz+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
L4 L 4
o= 1Z +a:y+4y +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

1 1
1= —Zx4 + xy + Z?f
Summary
The solution(s) found are the following

4

4
xr
yZ—Z-FySL':Cl (1)
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Figure 30: Slope field plot

Verification of solutions

Z
yZ—Z‘Fyﬂ?:Cl

Verified OK.

2.3.3 Maple step by step solution

Let’s solve

y+@+y’)y =2°
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F(z,y)=0

o Compute derivative of lhs

F'(z,y) + (B%F(w,y)) y =0
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(¢]

Evaluate derivatives

1=1

Condition met, ODE is exact

Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,9) = $F ()]
Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y) = [ (=2° +y) dz + fi(y)

Evaluate integral

F(z,y) = =5 + 2y + fi(y)

Take derivative of F'(x,y) with respect toy
N(z,y) = 5. F(z,y)

Compute derivative

Y+z=z+ Lfiy)

Isolate for % fi(y)

wh) =9

Solve for fi(y)

hly) =%

Substitute f(y) into equation for F'(z,y)
F(z,y) = —z2* + zy + 39

Substitute F'(z,y) into the solution of the ODE
—zttay+iyt=o

Solve for y

y = RootOf (_Z" — z* + 4_Zz — 4cy)
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

‘dsolve((y(x)-x‘3)+(x+y(x)‘3)*diff(y(x),x)=0,y(x), singsol=all)

4 4
—% + zy(z) + y(z)

+01=0
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v/ Solution by Mathematica
Time used: 60.173 (sec). Leaf size: 1210

kDSolve [(y[x]-x"3)+(x+y[x]~3)*y' [x]==0,y[x],x,IncludeSingularSolutions -> True}]

y(z) —
3 4
</9:L’2 + \/g\/27£lf4 + (11;4 + 401) 3 _ \/g(w +4c1) n
922 + VBT + @+ o) J {0z 4 V32Tt
y(z)
e 3 VNN
3\/9332 +V31/27at + (at + 4er) - VB(sraer)
3\/9302 + V312724 + (24 + 4cy) 3
_)
y(z)
</95(;2 + \/g\/27£(34 + (1174 + 401) 3 _ \/§($4+4C1) |
/00 + VB\2TE T (@ 1 4er)? J /o 4 /3 2Ta
%
y(z)
3
f/ 922 + v/3/27zt + (z* + 4c;) 3 — V3@t 14c1) Ll
{02 + By 270 + (@ +40r)? J ot 1 Vay TR
_>
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2.4 problem 4

Internal problem ID [3092]
Internal file name [OUTPUT/2584_Sunday_June_05_2022_03_21_02_AM_23832912/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_rational, [_Abel, "2nd type , ~class B~]]

Unable to solve or complete the solution.

2y — (4— 2y +4yz)y =4 —5

Unable to determine ODE type.
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Maple trace

-

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

Looking for potential symmetries

Looking for potential symmetries

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order --—-

*, “—-> Computing symmetries using: way = 3
*, "> Computing symmetries using: way = 4
*, ~=> Computing symmetries using: way = 2

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]

-> trying a symmetry pattern of the form [F(x),G(x)]

-> trying a symmetry pattern of the form [F(y),G(y)]

-> trying a symmetry pattern of the form [F(x)+G(y), O]

-> trying a symmetry pattern of the form [0, F(x)+G(y)]

-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
a

-> trying a symmetry pattern of conformal type"
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X Solution by Maple

Ldsolve((2*y(x)‘2—4*x+5)=(4-2*y(x)+4*x*y(x))*diff(y(x),x),y(x), singsol=all) J

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[(2*y[x]“2—4*x+5)==(4—2*y[x]+4*x*y[x])*y'[x],y[x],x,IncludeSingularSolg}ions -> True]

Not solved
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2.5 problem 5

25.1
2.5.2
2.5.3
254
2.5.5
2.5.6
2.5.7

Solving as separableode . . . . . . ... ... oL, 141
Solving as linearode . . . . . . . .. ... ... ... .. 143]
Solving as homogeneousTypeD2ode . . ... ... ... .... 144
Solving as differentialTypeode . . ... ... ... ... .... 146}
Solving as first order ode lie symmetry lookup ode . . ... .. 147
Solving asexactode . . . . .. ... ... ... 151
Maple step by step solution . . . . ... ... ... ... .. .. 155]

Internal problem ID [3093]
Internal file name [OUTPUT/2585_Sunday_June_05_2022_03_21_08_AM_57565474/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971

Section: Chapter 2, section 8, page 41
Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"differentialType", "homogeneousTypeD2", "first_ order__ode_ lie_ symme-

try_ lookup"

Maple gives the following as the ode type

[_separable]

y +ycos (yz) + (z + z cos (yx))y' =0

2.5.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)

= f(z)g(y)
y

X
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Where f(z) = —1 and g(y) = y. Integrating both sides gives

In(y)=—In(z) + ¢

y:e—ln(m)—f-cl
_a
oz
Summary
The solution(s) found are the following
_a
y="2 1)
H77777 7000100V V NV VNN NN
77777770000V NNNN
277777710100V VNN NN
H7777777 7111V VN NN
27777771011V NNNNNNN
sz 72777 7 1T NN
1 o777 7 T NN NN
e 7 7 7 TN NN N S~~~
»»»»»» R A I S
y(x) 0 e ~\/
~~~~~N\N\\\\ /s
—1 ~~~~\N\\\\\\\1/ /s
SSNNNNN\N\\N\\ V1 /s
~N\N\N\N\\\\\N V11
—“2AANNN\\\\\N\N\N V1111
NNNNNNN\NNN Vs
NNNN\NNNNNVH 7
=3ANNNNNNNNN VY77
-3 -2 -1 0 1 2 3
X

Figure 31: Slope field plot

Verification of solutions

Verified OK.
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2.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = -
q(z) =0
Hence the ode is
y+2=0
T
The integrating factor u is
p=e I idm
=z
The ode becomes
d
dz my
d
@ =0
Muw
Integrating gives
TYy =01

Dividing both sides by the integrating factor y = x results in

€1
y=—
T
Summary
The solution(s) found are the following
C1
y=_
x
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AN77777 770100V NNNANN
777777700100V VNNNNN
277777701V VNN

H7777777 711 1V VN NNNNNN
777777 7 01V VNN
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Figure 32: Slope field plot

Verification of solutions

Verified OK.

2.5.3 Solving as homogeneousTypeD2 ode

In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
2u

T

144

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

u(z) z + u(z) z cos (u(z) 2*) + (z + z cos (u(z) 2%)) (W' (z) z + u(z)) =0




Where f(z) = —2 and g(u) = u. Integrating both sides gives

1 2
—du=——dx
u iy

/ldu:/—gdx
U z

In(u) = —2In(z) + ¢
U= e—21n(z)+cz

(&)

T 22

Therefore the solution y is

Summary
The solution(s) found are the following

Q
)

(1)

<
I
|

T

397777777100V VNNNANN
777777700 VNN
27777770101V NNNNN
H77 77777 701 1V VN NN
s777777 7111V NNNNNN
o777 7 7 1LV NN
H-—--77771 HRR R RSN
o277 71NN N =~
e A AN
AAAAAA ))// \\\\\ﬂﬂﬂ_x_x_x
y(X) O ~\\/
~~~~~~\\\\/ /s
“Has~~\\\\ V[V /i
~s~\~\N\\\\\N\\1 /777777
SNNN\N\\\\N\N V11
—2INNN\N\\\\N\N\N V1S
NNNNNN\NN\NNN Vs
NNNNNNN\NNNVH 7
=3 ANNNNNNNNN V777
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X

Figure 33: Slope field plot
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Verification of solutions

Verified OK.

2.5.4 Solving as differentialType ode
Writing the ode as

= —Y—ycos (yr)
x + x cos (yx)

Which becomes
0= (—z)dy+ (—y)dx
But the RHS is complete differential because
(—z)dy + (—y) dz = d(—zy)

Hence (2) becomes

0 = d(—zy)
Integrating both sides gives gives these solutions

y="+a

Summary
The solution(s) found are the following

y=—+a
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NNNNNNN\N\NN Vs
NNNNNNNNV V777
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Figure 34: Slope field plot

Verification of solutions

Verified OK.

2.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2§y —wz§ —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 13: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
wwy) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=xz

S is found from

9}
I
—

8lm = 3|
Q
<

I
—

I
<

Which results in
S=uxy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +W($,y)5y (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Yy
w(z,y) = —

Evaluating all the partial derivatives gives

R, =1
R,=0
Se =y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as _
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

0 (2A)

0
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yr=a
Which simplifies to
yr=ac
Which gives
C1
y=—
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _y s _
dr = z dR ~—
A2 PPV VNN NN NN
A7 LV VNN N N e
AAZ222 ALV VNN N NN 4
//////ff;;tté\\\\\\\
AAAAAN NN N N N e
/v/'////yixff FIL Y N N N N e S(R]
rrm A A7 L AT NN N e 24
> o v > v v A f \ ARV T 5 e e S S
et s D s R =
-..-‘,_—n—..wﬂ_:{::\\\? /;j:::z»».»_zf_»_. g - - 5 T
i e S S N W \, f / //’/"x/v/v//v,v - xy R
~~aSata NN\ \_%‘f PAAAA A o >
S NNNNN\NY A
~NNNNNNNVN WA A
SNNNNNNNVE A A
SNSNNNNNNN At A ¥
SNNNNNNNV AP
NYNNNNNNNN WY A
Summary
The solution(s) found are the following
1
= — 1
y= (1)

150



3977777770010V VY VNN
777777700100V VNNNNN
277777701V VNN
H7777777 711 1V VN NNNNNN
777777 7 01V VNN
7777 7 11 VNN
H==7 77777 71 1 VNN S~
e 7 7 7 TN NN N S N~
__»__s—_s__s,»)))// \ N —A— A A s s
y(x) 0 -\
—~ e\ \, 7 ]S

—1 ~~~~~\\\\\\1/ /s
~SssN\N\\\\\\ (17777 rrs
SNNNN\\\\\N V11
—“2ANNN\N\\\\N\N\N\VT1111 s
NNNNNNN\N\NN Vs
NNNNNNNNV V777
=HANNNNNNNNNV V77
-3 -2 —1 0 1 2 3

Figure 35: Slope field plot

Verification of solutions

Verified OK.

2.5.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
R ——y =
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—%) dz + (—i) dy =0 (2A)

Comparing (1A) and (2A) shows that

1

M(l’,y) :_5
1

N(z,y) = ——
(z.9) =—

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0
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And

oN _ 0 (1
N A
=0

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
g—gC_M (1)
¢ _

5y =N 2)

Integrating (1) w.r.t. z gives

oo .
a—mdx—/de

0¢ 1
¢ =—In(z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢
=0 ! 4
=0+ 1) @
But equation (2) says that g—‘z = —i. Therefore equation (4) becomes
1 /
—==0+f(y) (5)
)
Solving equation (5) for f'(y) gives
1
fly)=—=
W) =

Integrating the above w.r.t y gives

[ o= (L)

fly)=-In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—In(z) -In(y) + o

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

g =—In(z) —In(y)

The solution becomes

e
y =
x
Summary
The solution(s) found are the following
e
y=— (1)
3977777700010V VY Y NNNNN
7777777 0T VYN VNNNANN
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_P\\\\\\\\\\ff////////
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—“2IN\NN\\\\\N\N V111
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=31 NN\ \\\\\L1I////////
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Figure 36: Slope field plot
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Verification of solutions

Verified OK.

2.5.7 Maple step by step solution

Let’s solve
y+ycos(yz) + (x +zcos(yz))y =0
° Highest derivative means the order of the ODE is 1

/

Y
° Integrate both sides with respect to z

[ (y+ycos(yz) + (z + zcos (yz)) y') dz = [ 0dz + ¢
° Evaluate integral

yx + sin (yz) = ¢1

Maple trace

“Classification methods on request
Methods to be used are: [exact]

* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact

<- exact successful”

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

Ldsolve((y(x)+y(x)*cos(x*y(x)))+(x+x*cos(x*y(x)))*diff(y(x),x)=0,y(x), singso;%all)
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v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 49

-

kDSolve [(y[x]+y [x]*Cos [x*y [x]])+(x+x*Cos [x*y [x]]) *y' [x]==0,y[x],x, IncludeSingu}LarSolut ions ->

y(z) — —g
y(z) - ;—r
y(z) — (;—1
y(z) - —g

y(z) = ;—r
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2.6 problem 6

2.6.1 Solving as separableode . . . . . .. ... ... Lo 157
2.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 159
2.6.3 Solvingasexactode .. ... ... ... ... .......... 163]
2.6.4 Maple step by step solution . . . .. .. ... ... ... ... 167

Internal problem ID [3094]
Internal file name [OUTPUT/2586_Sunday_June_05_2022_03_21_10_AM_67179578/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

/

cos () cos (y)* + 2sin (z) sin (y) cos (y) ' = 0

2.6.1 Solving as separable ode

In canonical form the ODE is

Yy =F(z,9)
= f(z)9()
__cos (x) cot (y)

2sin ()

Where f(z) = cos(2). and g(y) = cot (y). Integrating both sides gives

" 2sin(z)

1 _ cos(z)

cot (y) Y= Tosin (x)

1 _ [ cos(z) i
/ cot (y) dy = / 2sin () d
In (sin (x))
—— 5 ta

—In (cos (y)) =
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Raising both side to exponential gives

1 _ e_ln(si;(m)) teo
cos (y)
Which simplifies to
sec () = —=
sin (z)

Which simplifies to

Co€e?
y = arcsec | ————
( \/sin () >

Summary
The solution(s) found are the following

coe™t
y = arcsec | ———
( V/sin (z) >

AT T 7NNV V7NN
[ 177NNV 77==~\\ |
| 77====NN\\ [ /7=
A e A WA NAY

W

AN\ N
\\ N~ AN N/
WANNS=—=77 1\ \N~——er s 7
PAANNSNZ PP VANNS~7 ]
[ 177NNV VT 7oNNV L
[ 7 77==NN )V 77 7==~N\\ |
| 77—\ [/ mm—=—N)
-1y e A A gt D

2\ N s AN
VNN AN
LANNSN——=—~7 7 1\ N\ ==/ [

=3H VNN TP VNNSNA7 T
-3 -2 -1 0 1 2 3

Figure 37: Slope field plot
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Verification of solutions

coe™t
y = arcsec | ——
( V/sin (z) >
Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

) _ _ cos (x) cos (y)
2sin (z) sin (y)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wz§ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 16: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
2sin (z)
g(fL‘,y) - cos (1')
n(z,y) =0 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dz _dy _

ds
§ n

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

1
S=/—dm
¢
1
= [ g

cos(z)

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS Sy +w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ cos (z) cos (y)
2sin (z) sin (y)

Evaluating all the partial derivatives gives

w(m’y) =

R,=0
R,=1

_ cot(x)
Sy =— 5
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

-5 = tan (y) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
TR = tan (R)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

results in

Which simplifies to

S(R) = —In(cos (R)) + 1

_In(sin(z)) (Si; (z)) = —In(cos (y)) + &1

—w = —In(cos (y)) + &1

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . . )

. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ cos(z)cos(y) s _
dr —  2sin(z)sin(y) dR — tan (R)

AT P T s a T b P AN VN~ N
b T bbb _F| bbb _F ~a——b—> ! \J\\»/ f x\\,»/ f A 4 f \
e A D e A D ey R N N AR '
A R A g R B T I e B e g R I AR
S I AR

N ~a T e a T e —~ —al—o ~
IS SRS, [ NSO SN P AN A VN 7\ N~
e T bbb T a > _T ~a——>— P AN VN~ N
e e [\ e £\ e R=y PANS—= A AN 2 AN
S~ At N A N A L N _ PANS = P ANk AN
o AR A In (sin (z)) ARt PNE AR NN 1A
b Na T P bbb AT bt T b - 2 IR el R S A \R\‘;»/ 7\
—— e T N> T > T s> /‘ \J\\s»/ f x\_?/‘?/ f \a\\»/’ f Sa
S | A FAN—— 7 P ANS S N
SO RN R R S R PN AN N
BOARS TSGR SAaal § 3ot AR R A

——a A~ Ad f T s ~— Al —> e
b~ T B —b b T bbb ~a_T > f \, N e A f x N\ s~ A f \a N~ A f \a
—,— e TNy TN\ s> > _T a—b—>—> P AN VN~ 7\ N

Summary

The solution(s) found are the following

_In (sin (z))
2

= —In(cos(y)) + 1

162

1)




BT 7NNV LT 72NNV L
[ 177NN\ [/ 77==~\\ )
[ IR

I A et/

\‘\\\—x—-»//// \‘\\\—*——*/’//7
FANNS=—=7 7 1 VNN~ 7 7
PANNSNZ T VNN~ ]
{17 7NNV DT 72NNV
[ ] 77NN\ [ 7 77==~\\)
[ N B S A
T N\ e

2\ N S\ N
FANSN=— 77 1 |\ N~ 7]
3P VNNSNAZ VNN

3 -2 -1 o0 1 2 3

Figure 38: Slope field plot

Verification of solutions

_w = —1In(cos (y)) + 1

Verified OK.

2.6.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 04d
Yy _
Oox + oydr 0 (B)
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Comparing (A,B) shows that

09
h N /s
ox
9 _ n
Oy
But since %gy = ;: g’x then for the above to be valid, we require that
oM _ oN
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = 8‘9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

(Lm0 (282)
(o) e () =0 a8

Comparing (1A) and (2A) shows that

Therefore

M) =50
Vo) =567

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz

Using result found above gives

oM 8 (_Cos(:v))

Ay \ sin (z)

6_y_6y
=0
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And

R (‘Q;i: 553’)
=0

Since 24 = 2N then the ODE is exact The following equations are now set up to solve
oy or

for the function ¢(z,y)

0p
—gx =M (1)
¢_N

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

%dx = /—COS (z) dx

or = sin (z)

¢ = —In(sin (2)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

99 :
= 4
=0+ 1 (@)
But equation (2) says that g—ﬁ = —QCiisn(;y)). Therefore equation (4) becomes
2sin (y) :
— = )
om0+ ) )
Solving equation (5) for f'(y) gives
oy 2sin(y)
f (y) - coS (y)
= —2tan (y)
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Integrating the above w.r.t y results in

/f dy—/ —2tan (y)) dy

f(y) = 2In(cos (y)) + 1

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
¢ =—In(sin(z)) +2In(cos (y)) + &1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢1 = —In (sin (z)) + 21In (cos (y))

Summary
The solution(s) found are the following

—In (sin (z)) + 21n (cos (y)) = 1 (1)
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Figure 39: Slope field plot
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Verification of solutions

—In(sin (z)) + 2In(cos (y)) =
Verified OK.

2.6.4 Maple step by step solution

Let’s solve
cos () cos (y)* + 2sin (z) sin (y) cos (y) ¥’ = 0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables

y'sin(y) __ cos(z)

cos(y)  2sin(z)
° Integrate both sides with respect to x
in(y) 4 (z)

f ycss(yl)l f 20;3;(“’;) dz + ¢

° Evaluate integral

—In (cos (y)) = ——ln(Si; @) 4 ¢

° Solve for y

e°1 sin(z)

i €2°1 sin(zx)
{y = 7T — arccos <e2—cl> y Yy = arccos (eg—cl

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.25 (sec). Leaf size: 31

Ldsolve (cos(x)*cos (y(x)) "2+ (2*sin(x)*sin(y(x))*cos(y(x)))*diff (y(x),x)=0,y(x) ,J singsol=all)

y(z) = g

y(x) = arccos ( ¢y sin (x))
y(z) = g + arcsin <\/m>

v Solution by Mathematica
Time used: 5.526 (sec). Leaf size: 73

-

LDSolve [Cos [x] *Cos [y [x]]~2+(2*Sin[x] *Sin[y[x]]*Cos [y [x]])*y' [x]==0,y[x],x, Incl}deSingularSolu

y(z) — —g

y(z) = g

y(z) = — arccos (—}lcl \/m)
y(z) — arccos (—lecl \/m)

T

_> _—

y(x) 5
e

y(z) — 2
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2.7 problem 7
2.7.1 Solvingasexactode . .. ... ... ... ... ... ... 169
2.7.2 Mabple step by step solution . . . . ... ... 1721

Internal problem ID [3095]
Internal file name [OUTPUT/2587_Sunday_June_05_2022_03_21_13_AM_3875844/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

(sin (z)sin (y) —ze)y’ —e¥ —cos(z) cos (y) =0

2.7.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

3 =
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(sin (z)sin (y) — ze¥) dy = (e + cos (x) cos (y)) dx
(—e¥ — cos (z) cos (y)) dz +(sin (z) sin (y) —ze?)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —e¥ — cos (z) cos (y)
N(z,y) =sin(x)sin (y) — z €Y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives

oM o,
o - 8_y(_e — cos (z) cos (y))

= cos (z) sin (y) — €Y

And
ON 0
= %(sin (x)sin (y) — ze¥)
= cos (z) sin (y) — €Y
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
— =N 2
o )
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Integrating (1) w.r.t. z gives

@dx:/de
or

% dr = / —e¥ — cos () cos (y) dx

¢ = —sin () cos (y) — e’ + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—i = sin (z) sin (y) — z e’ + f'(y) (4)

But equation (2) says that 22 = sin (z) sin (y) — z €. Therefore equation (4) becomes
9y

sin (z) sin (y) — ze? = sin (z) sin (y) — ze¥ + f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =—sin(z)cos(y) —ze’ + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢ = —sin (z)cos (y) — x €Y

Summary
The solution(s) found are the following

—sin (z)cos (y) —ze¥ = ¢ (1)
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Figure 40: Slope field plot

Verification of solutions

—sin (z)cos (y) —ze¥ = ¢
Verified OK.

2.7.2 Maple step by step solution

Let’s solve
(sin (z)sin (y) —ze¥)y —e¥ — cos (z)cos (y) =0

° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs

1W%M+(%F@w»y=0
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o Evaluate derivatives
cos () sin (y) — e¥ = cos () sin (y) — ¥
o Condition met, ODE is exact

Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,9) = $F ()]

Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y) = [ (—e — cos (z) cos (y)) dz + f1(y)
Evaluate integral

F(z,y) = —sin (z) cos (y) — e’ + fi(y)

Take derivative of F'(x,y) with respect toy

N(z,y) = 5, F(z,y)

Compute derivative

sin (z) sin (y) — re¥ = sin (z) sin (y) — ze¥ + d%ﬁ(y)
Isolate for % fi(y)

d%f 1(y) =0

Solve for fi(y)

fily) =0

Substitute f;(y) into equation for F(z,y)

F(z,y) = —sin (z)cos (y) — x e¥

Substitute F'(z,y) into the solution of the ODE
—sin(z)cos (y) —ze¥ = ¢

Solve for y

Yy = ROOtOf (_Z_ In (_Sin(z) COS:E—Z)"’CI ))
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 16

‘dsolve((sin(x)*sin(y(x))—x*exp(y(x)))*diff(y(x),x)=exp(y(x))+cos(x)*cos(y(x))Ly(x), singsol-=

¢ + sin (z) cos (y(x)) + @z = 0

v/ Solution by Mathematica
Time used: 0.626 (sec). Leaf size: 21

‘DSolve[(Sin[x]*Sin[y[x]]—x*Exp[y[x]])*y'[x]==Exp[y[x]]+Cos[x]*Cos[y[x]],y[x],*,IncludeSingul

Solve[2 (:vey(’”) + sin(z) cos(y(z))) = c1, y(z)]
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2.8 problem 8

2.8.1 Solving as separableode . . . . . .. ... ... 175
2.8.2 Solving aslinearode . . . . ... ... ... ... ... 177
2.8.3 Solving as homogeneousTypeD2ode . . ... ... . ... ... 178}
2.8.4 Solving as first order ode lie symmetry lookup ode . . .. ... 179
2.8.5 Solvingasexactode . .. .. ... ... ... .. ... ..., 183}
2.8.6 Maple step by step solution . . . . . ... ... L. 187

Internal problem ID [3096]
Internal file name [OUTPUT/2588_Sunday_June_05_2022_03_21_22_AM_91288277/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

2.8.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)

= f(z)g(y)
Yy
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Where f(z) = 1 and g(y) = y. Integrating both sides gives

— dy = — dx
/ dy = / dx
In(y) =In(z) + ¢
y= eln(z)-i—cl
=T

Summary
The solution(s) found are the following

Y =CzT
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Figure 41: Slope field plot

Verification of solutions

Yy=cz

Verified OK.
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2.8.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
1
p(z) = Tz
q(z) =0
Hence the ode is
y -2 =0
T
The integrating factor u is
p= ef—%dz
1
oz
The ode becomes
d - _
dz ny
d (Q) _
dz \z
Integrating gives
Y_,
T

Dividing both sides by the integrating factor u = % results in
Yy=ocz

Summary
The solution(s) found are the following

Y=
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Figure 42: Slope field plot

Verification of solutions

Y=z
Verified OK.

2.8.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

_sm( ()> +sm( ()> (v (z) z + u(z))

u(z)x TU (ac)2

=0

Integrating both sides gives

u(z)= [ 0dzx
=y
Therefore the solution y is
Y =zU
= Cox
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Summary
The solution(s) found are the following

Y = CoT (1)
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Figure 43: Slope field plot

Verification of solutions

Y = CoT
Verified OK.

2.8.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

[
€ 8w

y
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - fﬂc) - w2€y - wxf — Wy = 0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 20: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(r,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

180



canonical coordinates, where S(R). Since £ = 0 then in this special case
R=x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +uw(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Yy
(AJ(CL‘,y) = 5

Evaluating all the partial derivatives gives

R, =1
R,=0
Y
Se= -
1
Sy =~

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

0 (2A)

0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S (R) =C (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Yy _

x
Which simplifies to

Y_,

x
Which gives

y=acazx

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _y a$s _
dr ~ =« dR —

NNNNNNNVNV W H A

NSNNNNNNNV AP AP A A

NSNYNNNNNNNYNYH A A 4
\\\\\\\\it;;;;//////

S~ N N NN AAAAAS -

\\\\\\J{EQ\ W r A A A A mm S(R)
SN\ A A e 2
——sw~wa NN\ Y tpAAA oo ”

i il ston F=z

RSP | N S G S - .

i B | N S Y S S
o o w77 AN VN N NS e e T

e v w T AAAA f_%¥ NONON N N N e o
b A A E T T N

m A2 22 A VNN N Y N

AAZZZ28 PPV VNN NN N

AAZ222 0 EHE LV YN N N 4

AAZZ2727 PPV VN NN NN Y

22277220 HE LV VNN NN N

Summary
The solution(s) found are the following
Y=z (1)
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Figure 44: Slope field plot

Verification of solutions

y=cz
Verified OK.

2.8.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

Yo *)

AH%M+JW%yLm

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence
09, 0pdy _
Oor Oydx
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Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

<—£> dx+<§) dy =0 (2A)

Comparing (1A) and (2A) shows that

1
M(x,y)z—;

N(z,y) =

<=

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0
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And

ON _ 0 (1
or  Ox\y

=0
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o )

Integrating (1) w.r.t. z gives

oo .
a—mdx—/de

0¢ 1
¢ =—In(z) + f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—‘z = zl/ Therefore equation (4) becomes
1 /
~=0+f(y) (5)
Y
Solving equation (5) for f'(y) gives
1
f'ly) =~
W)=

Integrating the above w.r.t y gives

[row=[(5)e

fly)=In(y) +a
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=—In(z)+In(y) +a

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1=—In(z)+1n(y)

The solution becomes

y=e%zx
Summary
The solution(s) found are the following
y=ex (1)
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Figure 45: Slope field plot

Verification of solutions

Verified OK.
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2.8.6 Maple step by step solution

Let’s solve
_sin5y> n zsiny(2y>y -0

° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x

() =Y g~ o

y2
° Evaluate integral

cos <§> =q
y

° Solve for y

_ z
y= arccos(ci)

Maple trace

“Classification methods on request
Methods to be used are: [exact]

* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact

<- exact successful"

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

Ldsolve (-1/y(x)*sin(x/y (x))+x/y(x) "2*sin(x/y (x) ) *diff (y (x) ,x)=0,y(x), singsol=%ll)
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v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 19

e

kDSolve [-1/y[x]*Sin[x/y [x]]+x/y[x]~2*Sin[x/y [x]]*y' [x]==0,y[x],x, IncludeSingul%arSolutions ->

y(z) =
y(z) — ComplexInfinity
y(x) — ComplexInfinity
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2.9 problem 9

2.9.1 Solving as separableode . . . . . .. ... ... 189
2.9.2 Solving aslinearode . . . . . . ... ... ... ... 191
2.9.3 Solving as homogeneousTypeD2ode . . ... ... ... .... 193]
2.9.4 Solving as homogeneousTypeMapleCode . . . . . . ... .. .. 194
2.9.5 Solving as first order ode lie symmetry lookup ode . . .. ...
29.6 Solvingasexactode . .. ... ... ... ... ... .. ... 2011
2.9.7 Maple step by step solution . . . . . ... ... ... ... 205]

Internal problem ID [3097]
Internal file name [OUTPUT/2589_Sunday_June_05_2022_03_21_24_AM_19231703/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 9.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_ order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_separable]

y+(1-z)y =-1

2.9.1 Solving as separable ode

In canonical form the ODE is

y =F(z,y)

= f(z)g(y)
_y+1
-1
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Where f(z) = -1 and g(y) = y + 1. Integrating both sides gives

1 1
y+1dy dx

rz—1
1
— dy= d
/ @ = /x—l ’
]

n(y+1)=ln(x—1)+cl

Raising both side to exponential gives

y + 1 — eln(a:—l)-}—cl
Which simplifies to

y+1=co(x—1)

Summary
The solution(s) found are the following

y = cpelt@ e _ 1 (1)
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Figure 46: Slope field plot
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Verification of solutions

y = C2eln(:c—1)—i-cl -1

Verified OK.

2.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
p(z) =~ i 1
q(z) = — i 1
Hence the ode is
gL -1
z—1 z-1
The integrating factor y is
f=e [—i5dz
1
z—1

The ode becomes

Integrating gives
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Dividing both sides by the integrating factor yu = ﬁ results in

Summary

y=—-1+c(z—-1)

The solution(s) found are the following

Verification of solutions

Verified OK.

y=—-1+c(z—-1)

Figure 47: Slope field plot

y=—-14c(z—-1)
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2.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)

u(r)z + (1 - z) (v'(7) z + u(z)) = -1
In canonical form the ODE is
v = F(z,u)

= f(z)g(u)
o u+l
S z(z—1)

Where f(z) = ﬁ and g(u) = u + 1. Integrating both sides gives

1 1
u+1du_z(z—1)dx

1 1
/u-l—ldu_/:v(z—l)dx

In(u+1)=ln(z—1)—In(z)+c

Raising both side to exponential gives

ud+1= eln(ac—l)—ln(a:)+02

Which simplifies to
ud1= c3eln(m—1)—ln(m)

Which simplifies to
C2
u(x) =c3 (ec2 - e_) -1

T

Therefore the solution y is

Summary
The solution(s) found are the following

C2
y:x(c3<ec2 _ e ) —1)
x
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Figure 48: Slope field plot

Verification of solutions

Verified OK.

2.9.4 Solving as homogeneousTypeMapleC ode

Let Y =y + yo and X = x + x then the above is transformed to new ode in Y (X)

d Y(X)+y+1
—Y(X) =
( ) X+Im—1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

$0=1
Yo=-1
Using these values now it is possible to easily solve for Y (X). The above ode now

becomes

d Y (X)
ax Y X) =%
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In canonical form, the ODE is
Y'=F(X,Y)
- — 1
~ M)

An ode of the form Y’ = %g}};)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

f(tnXa tny) = tnf(X> Y)

In this case, it can be seen that both M =Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = ¥

X Or
Y = uX. Hence

dY duw
- _ 7y
ax “ax
Applying the transformation Y = uX to the above ODE in (1) gives
du
du
ax ="
Or p
ZulX) =

Which is now solved as separable in u(X). Which is now solved in u(X). Integrating
both sides gives

u(X)z/O dx

Now u in the above solution is replaced back by Y using u = % which results in the
solution

Y(X) = X
Using the solution for Y (X)

Y(X) = Xe
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And replacing back terms in the above solution using

Y=y+y
XICC+.’I30

Y=y—-1
X=z+1

Then the solution in y becomes

y+1=co(z—1)

Summary
The solution(s) found are the following
y+1l=c(z—1) (1)
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Figure 49: Slope field plot

Verification of solutions

y+1l=cy(z—1)

Verified OK.
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2.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

,y+1
T r—1
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(ny — &) — w2§y —wz —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(@)y(z) + g(z) 0 el fde

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode Yy =9(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | ¥’ = (a + bz + cy)% 1 —g

Class C

homogeneous class D | ¥ = £ + g(z) F (%) x? zy

First order special | y = g(z) €M + f(z) | &2~ ! bf;?:;m_h(Z) fm)e” f;(;a;)dm—h(w)
form ID 1

polynomil ype ode | ¥ = Stheze D
Bernoulli ode v = f(z)y+g(z)y™ 0 e~ /(=D f(@)dzyn
Reduced Riccati v = fi(x)y + fox) y? 0 e~/ fide
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The above table shows that

§(z,y) =0
n(z,y) =z —1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=, =4 1)

The above comes from the requirements that (§ a% + n%) S(z,y) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
n
1
_/w—ldy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y+1
r—1

w(z,y) =

198



Evaluating all the partial derivatives gives

R, =1

R,=0

Sp=——1

T (@-1)
1

Sy_x—l

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

dR = (z — 1)2 (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR  (R-1)°

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
S(R) L 4 (4)
=—-———+c
R—1'"
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
Y 1

alc—lz_a:—l—‘_c1

Which simplifies to

—cazt+a+y+1

r—1 0

Which gives

y=cr—c —1

199



The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

L . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ y+1 ds _ 1
dr = z-1 dR (R—I)Q

ARARRRRARRR IED RN R e A e
ARRRARRREE IR R e et [ sttt
SNSNNNNNNNNMV VYA e ey o A B Bt
\\\\\\\\\étt;;;;;;// 4444»4»»»/;;;;/»»44»
SN N N NN \ ViVl — > -7 7 T b
\\\\\\\KEQ SNMy vt b rz A —»—»—»—»—»-gzﬁ»// I atatadacnsnd
~aaaaNaNNNEN LA I B B
N S S R L I A B I I B B
B O e A O B A R==2x B A B B
= wwww~uNN\\ | A _>_>_'>.»...>T,»/v/v/’ tt Vbt tmimn
*"*’:‘?:“’\‘\‘—Lz‘\’\\f)\ \ f/i/’/"//[r/v» y R sl f /2/»».1._,4
R ettt e P | RN e e i WA B Y S
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AAAA AL AL LV VY Y Y B e < I B Y S
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AAAA2272 20 HE LV Y VNN NN B e P IV B Y S

Summary

The solution(s) found are the following

y=cx—c —1
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Figure 50: Slope field plot
Verification of solutions
y=cx—c —1
Verified OK.
2.9.6 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (A)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%Qb(xa y) =0
Hence 96 9d
Yy _
or  Oydxr 0 (B)
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Comparing (A,B) shows that

09
h Y /s
oz
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘?: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—mil) dx+<?) dy =0 (24)

Comparing (1A) and (2A) shows that

<

1
M(z,y)=~-——
1
N(z,y) = ——
(z,y) J1 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM _0( 1
oy Oy\ z-—1
=0
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And

N _o( 1
or Oz \y+1
=0

Since %’I = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
g—x—M (1)
¢ _

5y =N 2)

Integrating (1) w.r.t. z gives

0¢ B
%dz—/de

%dxz/— 1 dz

or z—1
¢=-In(z—1)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ /() (4)

But equation (2) says that g—‘z = ﬁ Therefore equation (4) becomes

1
=0 / 5
10t () (5)
Solving equation (5) for f'(y) gives
1
, —
f'ly) = .|

Integrating the above w.r.t y gives

/f’(y) dy = / (ﬁ) dy

fly)=ln(y+1)+ac
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Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

dp=—In(z—1)+n({y+1)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

ca=—In(z—1)+In(y+1)

The solution becomes
y=ex—e?t—1

Summary
The solution(s) found are the following

y=e"z—e" -1 (1)
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Figure 51: Slope field plot

Verification of solutions

y=e2r—et—1

Verified OK.
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2.9.7 Maple step by step solution

Let’s solve
y+(l-z)y =-1
° Highest derivative means the order of the ODE is 1

Yy
° Separate variables
y  _ 1
—1-y -z
. Integrate both sides with respect to x

i _f/_ydx = [{=dz+c

° Evaluate integral
—In(-1-y)=—In(1—-2)+¢
° Solve for y
y=—-=a

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve((1+y(x))+(1—x)*diff(y(x),x)=0,y(x), singsol=all)

y(e) = -1+ a(z-1)
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v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 18

-

kDSolve [(1+y[x])+(1-x) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truel

—

yx) > —1+c(z—1)
y(z) - -1
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2.10 problem 10
2.10.1 Solvingasexactode . .. ... ... ... ... ... ... 207
2.10.2 Maple step by step solution . . . . . ... ... ... 210

Internal problem ID [3098]
Internal file name [OUTPUT/2590_Sunday_June_05_2022_03_21_26_AM_11054784/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact, [_1st_order, ~_with_symmetry_[F(x),G(x)*xy+H(x)] 1]

2zy° + cos (z) y + (3y°z® +sin(z)) ¢ =0

2.10.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) >= =0 (A)

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o¢

P M

o¢

3y N
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(3y°z” +sin (z)) dy = (—2zy* — cos (z) y) dz
(22 y® + cos (z) y) dz +(3y°z® + sin (z)) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =2zy> +cos(z)y
N(z,y) = 3y*z* + sin (z)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
M
68_y = %(Qx y* + cos (z) y)
= 6z y® + cos ()
And
ON 0 5.5, .
B = £(3y z® + sin (z))
= 6z y° + cos ()
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o¢
— =M 1
e (1)
o¢
— =N 2
o )
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Integrating (1) w.r.t. z gives

@dx:/de
or

%dx= /Qxy?’—l—cos(x)ydx

¢ =y(y’z® +sin (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a9

9y = 3y*z® + sin (z) + f'(y) (4)

But equation (2) says that g—‘z = 3y?z? + sin (z). Therefore equation (4) becomes

3y*x? + sin (z) = 3y*z? + sin (z) + £/ (y) (5)

Solving equation (5) for f'(y) gives
flly) =0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =y(y’s® +sin(z)) + &1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

a = y(y°z® +sin (z))

Summary
The solution(s) found are the following

y(y2m2 + sin (x)) =c (1)
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Verification of solutions

Verified OK.

Figure 52: Slope field plot

y(y’z* +sin (z)) =

2.10.2 Maple step by step solution

Let’s solve

2zy® + cos (z) y + (3yz? +sin (z)) y' =0

/

Y

F'(z,y)=0

Highest derivative means the order of the ODE is 1

Check if ODE is exact
ODE is exact if the lhs is the total derivative of a C? function

Compute derivative of lhs

F'(z,y) + (%F(x, y)) Y =0
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(e]

Evaluate derivatives

6z y2 + cos (z) = 6z y* + cos (z)

Condition met, ODE is exact

Exact ODE implies solution will be of this form

Fle,y) = e, M(z,1) = F'(z,9), N(z,9) = $F(2,9)

Solve for F'(z,y) by integrating M (z,y) with respect to
F(z,y) = [ 2xy® + cos (z) y) dz + f1(y)
Evaluate integral

F(z,y) =sin(z)y + y’z* + f1(y)

Take derivative of F(z,y) with respect toy
N(z,y) = 5. F(z,y)

Compute derivative

3y*a® + sin () = sin () + 3y’z*> + 1 fi(y)
Isolate for d% fi(y)

%f 1(y) =0

Solve for fi(y)

fily) =0

Substitute f;(y) into equation for F'(z,y)
F(z,y) =sin(2)y +y’z?

Substitute F'(z,y) into the solution of the ODE
sin (z)y + y312 = ¢

Solve for y
(

1

3
(12\/§ 27c2z2+4 sin(m)3+108clz) 2sin(z)

<y: 6x -
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Y

(12\/5 27222 44 sin(x)*

12z



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 302

Ldsolve((2*x*y(x)‘3+y(x)*cos(x))+(3*x‘2*y(x)‘2+sin(x))*diff(y(x),x)=0,y(x), singsol=all)

2
3
(12\/5 \/27c%x2 + 4sin (z)® — 10801x> — 12sin (z)

1
3
6z (12\/5 \/270%352 + 45sin (av)3 — 108clx>

%
iv/3 <12\/§ \/ 27c322 + 4sin (z)® — 108clx) + 12i4/3 sin (z) + (12\/5 \/ 27c3x? 4 4sin (z)® — 108

1
3
12z (12\/3 \/ 27c3x? 4 4sin (z)° — 10801z>

y(z)

%
i3 (12\/5 V276222 + dsin (2)° — 10801:6) +12iv/3 sin (z) — (12\/3 \/27¢3a? + 4sin (2)° — 108c2

3
12z (12\/3 \/ 27c2x? + 4sin (z)° — 108c1z)
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v/ Solution by Mathematica
Time used: 32.512 (sec). Leaf size: 339

LDSolve [(2*x*y [x]~3+y [x]*Cos [x] )+ (3*x "2y [x] "2+Sin[x]) *y' [x]==0,y[x] ,x, Include?ingularSolutio

2
</901$4 + \/123:6 sin®(x) + 81c;2x8 f/;sin(m)

\3/532/3%2
‘/9cizt + \/12m6 sin®(x) + 81¢;2z8

y(z) =

(14 iv/3) sin(z)

92/3 (’/2701354 + 3\/12:1:6 sin®(z) + 81¢;2z8

y(z) —

(1-1iv3) {’/ 27c T4 + \/ 10826 sin®(x) + 729¢; 228

6v/2x2
(1 — iv/3) sin(z)

22/3 §/27clx4 + 3\/123:6 sin®(z) + 81¢; 228

y(z) —

(1 + z\/g) §/27clz4 + \/108x6 sin3(x) + 729c;2z®
6/ 222
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2.11 problem 11

2.11.1 Solvingasexactode . . . .. ... ... ... ... ... .. 214
2.11.2 Solving asriccatiode . . . . . . . .. .. ... 218
2.11.3 Maple step by step solution . . . . . .. ... ... 220

Internal problem ID [3099]
Internal file name [OUTPUT/2591_Sunday_June_05_2022_03_21_32_AM_30495618/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 8, page 41

Problem number: 11.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati"

Maple gives the following as the ode type

[ _exact, _rational, _Riccatil]
Yy
1—y222  1— y22
2.11.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

dz

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 06d
R ——y =
Or Oydx 0 (B)
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Comparing (A,B) shows that

But since % = % then for the above to be valid, we require that
Y yox

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
T Yy
I S T A
( —y*z? + 1) W ( T ey 1) 4
Y z
1 - <Y — = A
( —y2z2+1)dx+( —y2x2+1) dy=0 (2A)
Comparing (1A) and (2A) shows that
-1_-_ Y
M(.’E,y)—l _y2$2+1
x
N@w) ==—pm i

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM _9o( Yy
dy Oy —y2z2 + 1

R !
(y?2? - 1)°
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And

ON_9( =
0xr Oz \ —y2a2+1
_ —yfa? -1
(y22? - 1)*
Since %iy/[ = %%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9¢
ox
9¢
Oy

Integrating (1) w.r.t. z gives

%dx=/de
ox

1)
(2)

0¢ y
b=z ln(azg+ 1) ln(a:g—l) L) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

g_j T2 (myx+ 1) Z:ny— 2 + W) (4)
= ﬁ +f'(y)
But equation (2) says that g—?‘f = — 7057 Lherefore equation (4) becomes
e e g L) (5)
Solving equation (5) for f'(y) gives
f'y)=0
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Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
In(zy+1) In(xy—1)

¢=.’IJ‘— 9 + 9 +Cl

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

In(zy+1) 4 In(zy — 1)

a=rmT 2
The solution becomes
e—2:1:+201 + 1
y= T (e—2m+2c1 _ 1)

Summary
The solution(s) found are the following

e—2w+2c1 +1
y==3 (e=20+2c1 — 1) 1)

£ T A I T T T A T A A A
IEEREEEEEEE R RN
0 A O O O A A A

7= T A A A A A T L T T A A A
A A A A A A AR T T R TR TR S A T
PAA 1177777 VNNV VYL
A1 L1177 77775NNNNN VN
177777 7==\N7=>=>""N\N\N\ N\

P e A B e N
——aaaNaN\G\{ J S
y(x) o \\\\\\\\i‘t ;;////////
777NN\ | 7 770NN\
TSI 77NNV 7SN
TAAT77=NV T 7=NN VLY
P17 7NV 7NNV VL
200NV L
PIrttrr/=VEr=vyyLihy
IR AR RN

st T I 0 B B A T Y R T O T A O
-3 -2 —1 0 1 2 3

Figure 53: Slope field plot
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Verification of solutions

e—2:v+2cl + 1
T (e—2z+2cl _ 1)

y=—-
Verified OK.

2.11.2 Solving as riccati ode

In canonical form the ODE is

y = F(z,y)
vz 4+y—1

T

This is a Riccati ODE. Comparing the ODE to solve

1
y=-zy? -4
Xz T

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fo(z)y®

Shows that fo(z) = 1, fi(z) = —1 and fo(z) = —z. Let

a f 2U
_u,

= (1)

—IU

Y

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" () = (f + fufa) w'(z) + f3 fou(z) = 0 (2)
But
fy=-1
fife=1
f22f0 =T

Substituting the above terms back in equation (2) gives

—zu(z) + zu(z) =0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c167° + c2€”

The above shows that
U (z) = —c1e™® + cpe”

Using the above in (1) gives the solution

—c1e7 " 4+ cpe”
z (c167% + c9€?)

Dividing both numerator and denominator by c; gives, after renaming the constant
£ = c3 the following solution

c1

2z

. e —C3
Y=3 (€22 + c3)
Summary
The solution(s) found are the following
¥ —c3
. 1
Y= o o) (1)
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Figure 54: Slope field plot

Verification of solutions

e2z —c3

z (e%* + c3)

Verified OK.

2.11.3 Maple step by step solution

Let’s solve

1

zy’

Y
1_y2x2

1—y2z2

Highest derivative means the order of the ODE is 1

Check if ODE is exact

O

ODE is exact if the lhs is the total derivative of a C? function

F'(z,y)

(¢]

0

Compute derivative of lhs

(¢]
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F'(z,y) + (%F(w,y)> y =0

Evaluate derivatives

1 2y>x? 1 21222

TP (—y2a241)2 T Rl (—y2a2+1)?

Condition met, ODE is exact

Exact ODE implies solution will be of this form

Fla,y) = o1, M(z,y) = F'(z,3), N(w,9) = 5 F ()]
Solve for F'(z,y) by integrating M (z,y) with respect to x
Fo,y) = [ (1- s ) do+ i)

Evaluate integral

F(z,y) =z — ln(wg+1) " ln(wg—l) + Aw)

Take derivative of F'(z,y) with respect to y

N(z,y) = & F(z,y)

Compute derivative

_ d
— =1 = 3y T 2@ T a1 (V)

Isolate for % fi(y)

d%fl(y) = _—y2;2+1 + 2(90;4-1) - 2(wZ—1)
Solve for fi(y)
fi(y) =0

Substitute f(y) into equation for F'(z,y)
F(l‘,y) -7 — ln(mg—l—l) + ln(zg—l)

Substitute F'(z,y) into the solution of the ODE
T — ln(zg+1) + ln(a:g—l) _

G
Solve for y
_ e72z+2c1+1
Y= z(e 227201 1)
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

Ldsolve(1=y(x)/(1—x‘2*y(x) ~2)+x/ (1-x"2xy (x) "2) *diff (y (x),x) ,y(x), singsol=all)J

e2:1) _'_ Cl

y(z) = m

v/ Solution by Mathematica
Time used: 0.153 (sec). Leaf size: 18

LDSolve[1==y[x]/(1—x‘2*y[x]*2)+x/(1—x“2*y[x]“2)*y'[x],y[x],x,IncludeSingularSg}utions -> True

tanh(z + icy)
T

y(z) —
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3 Chapter 2, section 10, page 47

3.1 problem 2(a) . . . ...
3.2 problem 2(b) . . . .. ...
3.3 problem 2(c) . . . ...
34 problem 4(a) . . . ...
3.5 problem 4(b) . . . ...
3.6 problem4(c) . .. ... ...
3.7 problem 4(d) . .. ... ..
3.8 problem 4(e) . . . .. ...
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3.1 problem 2(a)

3.1.1 Solving as homogeneousTypeD2ode . . ... ... ....... 224
3.1.2 Solving as first order ode lie symmetry calculated ode . . . . . . 226
3.1.3 Solvingasexactode ... ... ..................

Internal problem ID [3100]
Internal file name [OUTPUT/2592_Sunday_June_05_2022_03_21_35_AM_8164515/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

(32> — )y — 2yz =0

3.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)
(32% — u(z)? %) (v'(z) = + u(z)) — 2u(z) 2> = 0

In canonical form the ODE is

u' = F(z,u)
= f(z)g(u)
T (u? —3)

Where f(z) = —1 and g(u) = “3:3. Integrating both sides gives

u2

1 1
du = —=—dz

ud—u T
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/31 du=/—1dx
u®—u xT

uZ—3

—In(u+1)—In(u—1)+3n(u) =—In(z) + c

Raising both side to exponential gives

e~ In(u+1)—In(u—1)+3In(u) _ e~ In(z)+c2

Which simplifies to

The solution is

u(z)® 3

u(a:)2—1: x

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

Which simplifies to

y =
(y+a) o)
Summary
The solution(s) found are the following
3
- = @)

(—y+2)(y+2)

225



HNNNN |/ /NN 1 777
NNN\N\ V[ /7NN 777
NNNN\WN\ V| s\ VS

HNSNNNN\N\ [ /7==\ |\ [/ /777
~SsNN\N\\\V/s———~\ /s

~~~NN\\ | /—=~\ |/

N S S N B

N L NSNS S ————
N /N~ N\ NS
=77 N~/ 1 NN~
o777 7 AN~/ N NN

=217 7777 1 FNS==-7 1 L \NNNN
o777 1 T ANN~N—=—~77 ] VNN N\
777 T VNN~—=—=—~77 1\ AN\
=34 /777 1 1 \N\N~—=——~~77 ]\ \\\
3 -2 —1 0 ] 2 3

Figure 55: Slope field plot

Verification of solutions

Verified OK.

3.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

p_ 2yx
A
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - gac) - w2€y - wxf — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

2yz(bs — as) dy’rlas

b _
2 —3.’1)2 +y2 (—3$2 +y2)2
2y 12y z? (5E)
( =3z +y* (-3z2+ y2)2) (w2, +yas + a1)
21 dy’x
o = b bs+b;) =0
( St g (_3m2+y2)2> (2bs + ybs + 1)

Putting the above in normal form gives

3z, + 2y2x%az — 8x2y?by + 4z y2ay — 4w y3bs + 2ytas + yiby — 6236, + 622ya; — 22 %0, + 2y%a;
(322 — y?)*

=0
Setting the numerator to zero gives

3z%by + 2y%22as — 82%y?by + 4z yPas — 4z y3bs + 2yas (6E)
+ y*by — 62°b, + 62%ya; — 22 9%b; + 2y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{CB =0,y = UQ}

The above PDE (6E) now becomes

4ayv105 + 2a303v5 + 2a3v;s + 3byvi — 8byviva + bovs (7E)
— 4b3v11)§’ + 60,111%122 + 2a1v§’ — 6b1vi‘ — 2b1v1v§ =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

3()2’01L — 6b1’0§ + (2&3 — 8[)2) ’U%’Ug + 6(11’0%’02 (8E)
+ (4ay — 4b3) v1v5 — 2b,v1v5 + (2a3 + ba) v5 + 2a1v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

201 =0

6a; =0

—6b; =0
—2b; =0

3bp =0

4as — 4b3 =0
2a3 — 8by =0
2a3 +by =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é
2
“v- (gt

_ry—y’
3x2 — y?
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _
§ n

The above comes from the requirements that <£ 2+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

1
S=/—dy
n
1
=/mdy

32 —y2

S is found from

Which results in
S=—-In(y+z)—In(y—z)+3n(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
2yx

(.d(il?,y) = __3:1;2 +y2
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Evaluating all the partial derivatives gives

R, =1
R,=0

2z
T

1 1 3
S, = + +=

- y+x -—-y+zr y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s

E—O

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(y+z)—In(y—2)+3n(y) =a
Which simplifies to

—In(y+z)—In(y—2z)+3n(y) =a
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in the canonical coordinates space using the mapping shown.

The following diagram shows solution curves of the original ode and how they transform

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates
(R, 9)

PE e N

7
~~aNaN\ N\ bﬁ ]
\\\\\\y\ S
R e S VR f}i
e S S N W

—s—e—s—a—s—a~aa )

s —s—s—a—a

~t Ao o>
NS Ao

P e

R B et
e = SR AW
e v v ¥ 7 A f ~al
D Pl BN

S S e
S\ e e —s—s—b
=/ \ NN
— 7 1 N N N aaae

R—
S=—-In(y+z)—In

X

y_

A AL NN AN N N
PN RN ISR S NN
AP NN L N N #
AA2F P LN N 7 A N NN
A2 N N 7 A A N NN
Summary

The solution(s) found are the following

—In(y+z)—In(y—2)+3ln(y) =
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Verification of solutions

Figure 56: Slope field plot

—In(y+z)—In(y—2)+3ln(y) =

Verified OK.

3.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@whﬁ=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
E;M%y)_o
op  O¢dy _,
or  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(32° — y*) dy = (2zy) d=
(—2zy)dz + (32> —y*) dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —2xy
N(:L',y) = 31;2 - y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
T (-9
By 8y( zy)
= -2z
And
ox Oz (32" )
= 6x
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
4= %)
1
= ?mz—_yQ((—%) — (62))
8x

3x2 — y?

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

PEENCAY

T M\ oz Oy
1
— — 57 (60) = (=22)
__4
oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be y. Then

w= e/ Bdy
— oy
The result of integrating gives
= 6_4 In(y)
1
oy

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
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And

2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

2 2 _ .2
LN (v
y3 y? dz

0p —
P M (1)
0p
3y N (2)
Integrating (1) w.r.t. z gives
0p . [
op . 2x
7ot [ e
72
b=—pt f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

op  3x*
i A el 4
- (@)
But equation (2) says that g—z = 3””2—}?’2 Therefore equation (4) becomes
3z2 —y? 322
Rt L) 6)

235



Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f@Ny=/(—%>®

f(y)=$+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
|
p=——+-+a
Y Y

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

2 1
Cl = —— —
Ry
Summary
The solution(s) found are the following
z2 1
——+i=q 1
sy (1)
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Verification of solutions

Verified OK.
Maple trace

NNN\ N [ 77NN\ 77
NNN\N\ N [ /NN s
NNNN\N VS SN\
SNNN\N\ W\ /7s==~\\V /77
~SsNN\N\\\V/s———~\ /s
\\\\\\\1//\\L///////

N S S N B
AAAAAAAA N\ e
—_——— -~ = >~ ] \N—_——————e
e 7N NSNS S

V1—=—=—rrr 77 N~ N\ NN~

=77 N~/ 1 NN~
o777 7 AN~/ N NN

=217 7777 1 FNS==-7 1 L \NNNN
o777 1 T ANN~N—=—~77 ] VNN N\
777 T VNN~—=—=—~77 1\ AN\
=34 /777 1 1 \N\N~—=——~~77 ]\ \\\
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Figure 57: Slope field plot

"Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli
trying separable
trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 317

Ldsolve ((3*xx~2-y(x) "2)*diff (y(x) ,x)-2*x*y(x)=0,y(x), singsol=all) J

1+ + 2

(12\/?: z4/ 270%932 —4cy —1080%1:2 +8>

1
3
(12¢§ @y /27c2z2—4 1 —108c§x2+8)
2

ol

361

2
(1+1iv/3) (12\/5 o277 — de; — 108322 + 8) * 4iV/3— 4(12\/§ 2\/27372 — dey — 108222 -
12 (12\/5 2\/2T3T% — 4, — 10832 + 8) ‘o

y(z)
2
iv3—1) (12v32/2732% — 4¢; — 108222 +8)° — 4iv/3 4+ 4(12v/32/2732% — 4¢; — 108c322 + &
1 1 1

12 (12\/§ 2\/2732% — d¢; — 108322 + 8> o
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v/ Solution by Mathematica
Time used: 60.175 (sec). Leaf size: 458

kDSolve [(3*x~2-y[x]~2)*y' [x] -2*x*y[x]==0,y[x],x,IncludeSingularSolutions -> Trﬁ.\e]

1 f/ 27ec1z2 4 3v/81e2c1 4 — 12e4c142 — 2e3cr
3 V2

y(z) =

+ \3/56201
{'/ 27e132 + 3v/8le21 gt — 12et132 — 2e3
7,(\/3 + z) €/Q7eclx2 + 3v/8le2c1t — 12¢de1 42 — 2e3c1
6v/2
Z(\/g - 1/) 6201 ecl

— &t

y(z) —

3 22/3 {'/27601.152 + 3V/8le2eigt — 12ede172 — 2e3cr

i(v3—1) {’/ 27e13? + 3v/8le2i gt — 12ete132 — 2e3a1
6v/2
'L(\/§ + Z) e2a el

y(z) > —

+

3 92/3 {’/27601 22 4 3v/81e2c1 24 — 12etc12 — 2¢3cr
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3.2 problem 2(b)
3.2.1 Solvingasexactode . .. ... ... ... ... ... .. ... 240

Internal problem ID [3101]
Internal file name [OUTPUT/2593_Sunday_June_05_2022_03_21_38_AM_27792734/index. tex]|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[_rational, [_1st_order, "~ _with_symmetry_[F(x),G(x)]1 1, [_Abel,
“2nd type~, “class B ]]

yz+ (2 —yz)y =1

3.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
dy
dz

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

M(z,y) + N(z,y) o= =0 (A)

d
Hence 06 06d
vy _
Ox + oydr 0 (B)

Comparing (A,B) shows that

o9

P M

o

3y N
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8%¢ __ 9%

But since 5—- = 5= then for the above to be valid, we require that
Y yox
OM ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(2 —zy)dy = (—zy + 1) dz
(zy —1)dz+(2* —zy) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =zy—1
N(z,y) = 2* — zy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
By 8_y($y - 1)
=2z
And
ON 0
o = o )
=2r—y

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2 _omy

- N oy Oox
1
= m((w) - (2z —vy))

1
T
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p= efAda:
—e J —1l4g
The result of integrating gives
p=e" In(z)
1
oz

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

N =uN
1

- @ =)
=-y+z

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N3—z=0
zy—1 dy
< x >+(y+x)dx_0

The following equations are now set up to solve for the function ¢(z,y)

0p —
¢ _~
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Integrating (1) w.r.t. z gives
@ dxr = / Mdz
ox

@dz—/zy_ldx

or =~ T
¢ =zy—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

¢ /
8—y=$+f(y) (4)

But equation (2) says that 22 = —y + z. Therefore equation (4) becomes
oy

—y+z=z+f(y) (5)
Solving equation (5) for f'(y) gives
flly)=—y

Integrating the above w.r.t y gives

[ rway= [ (v

2

f(y)=—y§+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
2

¢=a:y—ln(:v)—'%+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

%
clzxy—ln(z)—E
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Summary
The solution(s) found are the following

2

yx—ln(x)—%=cl (1)

Nor o777 TN
o777 77 N7
s 77777 IN=77 1T VN
s 77771 \N—=~771 \V\\
77777 T N~~"/71 VNN \
o777 7 7 AN VNNNN
H===77 7777 1T L\ NN
////////;1 | I [N
——— 7] ] S
y(X) 0 __\))/»////] 1 1 ///////))
***** = V1 /77—
—~——~~~=- N\
— 17 SSNNNN NN\ /s
NNN\N\N SN\
NN\ S SosN\ s
=2N\\N\ 1)\
\\ 117N\
\ 117777\ 777777
=3 11777\
-3 -2 -1 0 1 2 3

X

Figure 58: Slope field plot

Verification of solutions

yr—In(z) — = =¢

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

Ldsolve((x*y(x)-1)+(x‘2—x*y(x))*diff (y(x),x)=0,y(x), singsol=all) J

y(z) =z — /22 — 2In(2) + 2¢,
y(r) =z + /22 — 2In(z) + 2¢;

v/ Solution by Mathematica
Time used: 0.46 (sec). Leaf size: 68

LDSolve[(x*y[x]-1)+(x”2-x*y[x])*y'[x]== ,y[x],x,IncludeSingularSolutions -> T??e]

y(x) >z + —i\/—x (2 — 2log(z) + 1)

y(z) = z+7 <_£)3/2 /=2 (@ = 21og(@) + &)
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3.3 problem 2(c)
3.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 246
3.3.2 Solvingasexactode . .. ... ... ... ... ... ... 252

Internal problem ID [3102]
Internal file name [OUTPUT/2594_Sunday_June_05_2022_03_21_40_AM_91788273/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rationall

(z+3y'2?)y' +y=0

3.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

=9
z (3z2y* + 1)

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —we —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zas + yas + a (1E)
n = xbs +ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

p_ Ybs—a) y’az
2 x (3x2y4 + 1) 2 (3x2y4 4+ 1)2
y 6y° (5E)
<x2 (3z2y* +1) + (3z2y* + 1)2) (zaz +yas + a1)
1 12y
R by +ybs+b) =0
( z(Ba2yt +1) | (3z2yt + 1)2) (w2 +ybs +b1)

Putting the above in normal form gives

9518, — 3zty by — 623yPay — 1223y5b3 — 9z%yPas — 9x3y*b, — 92%y5a; + 2b,2% — 2y%as + by — ya,
22 (3x2y4 + 1)°

=0
Setting the numerator to zero gives

925180, — 3ztytby — 623y5as — 1223y5bs — 92%yCas (6E)
— 9239*b, — 92%y°ay + 2b,x? — 2y%as + by —ya; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{CB =0,y = UQ}

The above PDE (6E) now becomes

90805 — 6agvdvs — 9azvivs — 3byuivs — 12bsvivd (7E)

— 9a1vag — 9b1vi’v§ — 2a3v§ + 2b2'U% —a1v9 +bjv; =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

90808 — 3byvivy + (—6ag — 12b3) v3vs — 9bv3v; (8E)
— 9a3v1v5 — 9a,viv5 + 2bov? + bivy — 2a3v5 — ajvy = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

—9a; =0

—a; =0

—9a3 =0

—2a3 =0

-9, =0

—3b, =0

20 =0

9, =0

—6a; — 12b3 =0

Solving the above equations for the unknowns gives

a; =0
as = —2bs
a3 =10
bp=0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=-2z
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)§
~v=(~zm)

_ 3y —y
3x2yt +1
£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
3 n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
Z/Wdy

3z2yt+1

S is found from

Which results in

In (3z%y* — 1)

S = 5 —In(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

Y

w(@:y) = 3zt + 1)
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Evaluating all the partial derivatives gives

R, =1
R,=0
Y
32yt —1
s, = 32yt +1
3x2y® —y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
o= 2A
dR =« (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =In(R) + & (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (3z2y* — 1)

5 —In(y) =ln(z) + ¢
Which simplifies to

In (3z%y* — 1)

5 —In(y)=In(z)+c
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ ] as _ 1
dz z(3z2y%+1) dR R
NN e e S R Pttt g
ol NN\
—> hof~a e e e S N P e g
T~ e e O N Pttt g
A ——a—a—aa N\ x f PAA A o>
SN ﬁ\‘\‘\s\:}t\’\ NI PO S
B AT ——a—a~a~a~aa % P AAA oo r
Bl B N e S N N Pt at et g
B A =2 e e e S N N B B P O O g
e r o AN e e e N VI lletatatadndnd
P BN pas SaSe e n@a*yt—1) ST
——b———b—r—s—s—a \|] s 2 n { o —emamama~aNa Nttt el
4444444%-—:5 oo e S S R N N Attt
NN | | SN e e S S N R N g atad
a7 e GOV W N P AAA oo r
~a|r S S R Y B B e e et g
—aopal > e e e S R N g
—sf e e O N Pttt g
— — e NN\ Y P AAAT oo o>

Summary
The solution(s) found are the following

In (3z%y* — 1)

5 —In(y)=In(z)+c
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Figure 59: Slope field plot

Verification of solutions

In (3z%y* — 1)

5 —In(y)=In(z) + ¢

Verified OK.

3.3.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(ZL‘,y)-I—N(:E,y)%

=0 (A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 8(15 3(;5 p
ay
oz ' dydr (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(3z°y* +z)dy = (—y)d=
(y)dz+(32z%y* + ) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y

N(z,y) = 32°y* +z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz

Using result found above gives

oM_ o

oy Oy y

=1

And

=9z%* +1
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
am L(2e oy
N\ 0y Oox
_ 1
C 3adyt4x
_ 9z y*
T 3ryt+ 1

((1) — (92%y* +1))

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

PEENLAY

T M\ oz Oy
:a@ﬁ¢+n—u»
— 9y3x2

Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

-
R is now checked to see if it is a function of only ¢ = xy. Therefore
% -5

(9z%y* +1) — (1)

2 (y) —y (BePyi + o)
__3

_xy

Replacing all powers of terms zy by t gives

R=-2
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be y then

— ¢/ Rt

— ef(_%) dt

W
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The result of integrating gives

= 6_3 In(¢)
1
Nz
Now t is replaced back with zy giving
1
B = 33

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = puM
1
$3_y3(y)
1
= Y2
And
N = uN

1
= (3z%y* + )
3zt 41
- z2y3
A modified ODE is now obtained from the original ODE, which is exact and can solved.

The modified ODE is

1 3x2y* +1\ d
y2a3 x2y3 dx
The following equations are now set up to solve for the function ¢(z,y)

o¢ W

8ac=M
9
6_y_N (2)
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Integrating (1) w.r.t. z gives

0p . [+
adx—/de

o [ 1
1
¢=—W+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 1 ’

A 4

o=t W @
But equation (2) says that g_f = 3””;3;; L. Therefore equation (4) becomes

32yt +1 1

223 o2 + () (5)

Solving equation (5) for f'(y) gives
f'y) =3y

Integrating the above w.r.t y gives

[rway=[eyay

2
f(y)=3%+01

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

! + 3’ +c
2y2x2 2 !

¢ =
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and

combining ¢; and c; constants into new constant c; gives the solution as

1 3y?
13
2122 2

C =
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Summary

The solution(s) found are the following

1 3y?
21222 2 “
=17\
— =1 |\~
AAAAAAA =~ 7 \ N——— e e
AAAAA —_——_= 1 \ N s s
__\__\__\__\__\__s)// 7 \ \\\ ﬂﬂﬂﬂﬂﬂ
_.\_.\_—s——s—))/// / \ \\\\\ ﬂﬂﬂﬂﬂ
__s__s__s——s)_)))// \\\ ﬂﬂﬂﬂﬂﬂﬂ
ﬂﬂﬂﬂﬂﬂﬂ \\\\\ ///))—-s—-s__s—_s—_s

Verification of solutions

Verified OK.

AAAAAA \\\\ \ ’ ///)_)_—s__s__s__s

ﬂﬂﬂﬂﬂﬂﬂ \\ \ 1 //)—_s__\__\__\__\__\

AAAAAAA \\\ \ 1 //——s—-\_—\_—\_—\_—\_\

AAAAAAAA \\ 1/)__;__\_\_\_\_\_\
V-
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X

Figure 60: Slope field plot

3y’

2

1
2y2x?
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.125 (sec). Leaf size: 133

Ldsolve((x+3*x‘3*y(x)‘4)*diff(y(x),x)+y(x)=0,y(x), singsol=all)

VB, fze: (- V2 +27)

y(z) = 6z
V6 \/zc; (z —y/12¢ + x2>
y(z) = -
\/_ ey < 12¢2 + x2>
y(x) - 6:601
V6 zcy ( 12¢2 + z‘2>
y(z) = -
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v/ Solution by Mathematica
Time used: 10.044 (sec). Leaf size: 166

kDSolve [(x+3*x~3*y[x] “4)*y' [x]+y[x]==0,y[x] ,x,IncludeSingularSolutions -> True}]

Vx2(3+c1222)
CL— 3

V3
\/Cl _ \/2?%(3+c1%2?)
22

y(z) = —

y(z) — 7
\/ VPEBFat?) |
y(z) = — .
V3
\/ wm
y(z) — 73
y(z) =0
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3.4 problem 4(a)
3.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 260
34.2 Solvingasexactode . .. ... ... ... ... ... .. ... 265]

Internal problem ID [3103]
Internal file name [OUTPUT/2595_Sunday_June_05_2022_03_21_43_AM_85572339/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 4(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _rationall

(z—-1-9y*)y —y=0

3.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y— Y
yv?—z+1

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - w2€y — wz§ — wyn =10 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + oz (1E)
1 = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala az,as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

by — y(bs —a2) y’as y(zaz + yas + a1)
ool (P-z+1) (P -z+1) (5E)
_(_ L L )(a;b+b+b)—0
Yo+l (_pt1)2) VRTINS

Putting the above in normal form gives

_ —y4b2 + 3x y2b2 — y3a2 + 2y3b3 + y2b1 — 2y2b2 + .’L‘b1 + .’EbQ —Yya; —yas — b1 — bg
(-y?+z—1)°

=0

Setting the numerator to zero gives
y'by — 3z y?by + yPaz — 2y°b3 — y?by + 2y%by — by — Tby +ya; +yas + by +by =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}
The above PDE (6E) now becomes
bz’l)gl + agvg’ — 3b2’l)1’l)§ — 2b3U§ — bl’l)g + 2b2’Ug +a1vV2 + asvy — bl’Ul - bz’Ul + bl + bg =0 (7E)

Collecting the above on the terms v; introduced, and these are
{v1,v2}

Equation (7E) now becomes

—3byv103 + (—by — by) v1 + by + (ag — 2b3) V3 (8E)
+ (=b, +2b2)v§ + (a1 +az)va+b1 +b2=0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b, =0

—3by =0

a1 +ay;=0
as —2b3 =0
—bi—by=0
—by +2by =0
by +b,=0

Solving the above equations for the unknowns gives

a; = —2bs
as = 2bs
az = as
by=0

by =0

bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=y
n=0
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)
()

y2

-2+ -1

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

F=, = 1)
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
- _Ldy
—y2+z—1
Which results in
-1
S:y+x

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
aS _ Sp+w(z,y)Sy ©)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

- __ ¥
W(l',y)— y2—$+1
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Sy =—
)
2
y“—z+1
Sy="—5—
)
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
— =0 2A

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

ar ="
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

v +z—1
)
Which simplifies to
yv¥+z—1
—_— =
)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
coordinates
transformation

ODE in canonical coordinates

Original ode in z,y coordinates (R, S)

B _ ___y a5 —

de

y2—z+1

B e e i e S e i e S

e e e e S N I S

e e e T S S e Y

e e e e e S N s

|

Y

B S S SIS

~aa e S N N NN N

—e e e A e ~a a
e e Y

———b—b—b—b—b—b—b

ER D R
S f el

N\ N s>

T T
—>—>—y > > >

= = 0]
NGNS SeS
— v P v v v v 7|
v ¥
— v o v v T ¥ _3
o > > > v _v_
R
B e
A e e

> > > > > > > o B

AP\ \x\\\\a\s
A2 PN NN
r e AN
v e 7 A AP
v v v v T T T
> T T T v v T T
B e g O
B B e g g

> > > > > > > > o> v

R==x

IS

P ta—1

Summary
The solution(s) found are the following
2
+z—1
o =a 1)
Y
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Figure 61: Slope field plot

Verification of solutions

y2+w—1_
Y

C1
Verified OK.

3.4.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,0)+ N(z,9) ¥ = o (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—y2 +x— 1) dy = (y)dz
(—y)dz+(—y*+2—1)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = -y

N(z,y)=—y*+z—1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_o,
0y Oy Y
=-1
And
ON 0 9
o gl Y T

266



Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] <8M 8N>

- N Oy ox
1
= m((—l) - (1)
2%
-y +z—1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

g 1(ON _om
- M\ oz Oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be y. Then

w= e/ Bdy
— el 3
The result of integrating gives
= 6_2 In(y)
1
%

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
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And
N =uN
1
Y +z—1
Y2
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

—dy

M+ N-= e =0
— 2 _
() ()
The following equations are now set up to solve for the function ¢(z,y)
% =M (1)
2N @

Integrating (1) w.r.t. = gives

(3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

0
o= I

(4)

But equation (2) says that a¢ = % Therefore equation (4) becomes

2
-y'+z—-1 =z ,
e AT

Y Y W)
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Solving equation (5) for f'(y) gives

Integrating the above w.r.t y gives

/f’(y) dy = / (_y;_ 1) dy

f(y)=—y+§+c1

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

T 1
¢=———y+—+01
Yy Yy

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

x 1
Ci=———Y + -
) Yy
Summary
The solution(s) found are the following
z 1
———y+-=c (1)
) Yy
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Verification of solutions

Verified OK.
Maple trace
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Figure 62: Slope field plot

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

Ldsolve((x—l—y(x) ~2)*diff (y(x),x)-y(x)=0,y(x), singsol=all) J
e JAE—4r+4
y(@) = 2 2
e e —4dz+4
y(@) = I R

v/ Solution by Mathematica
Time used: 0.304 (sec). Leaf size: 56

kDSolve [(x-1-y[x]~2)*y' [x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — %(cl —v—4x+4+ 012>
y(z) — %(\/ —drx+4+c?+ cl)
y(z) =0
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3.5 problem 4(b)

3.5.1 Solving as separableode . . . . . .. ... ... 272
3.5.2 Solving as first order ode lie symmetry lookup ode . . ... .. 274
3.5.3 Solvingasexactode ... ... .................. 2779
3.5.4 Maple step by step solution . . . .. ... ... ... ...... 287

Internal problem ID [3104]
Internal file name [OUTPUT/2596_Sunday_June_05_2022_03_21_46_AM_66865626/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 4(b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "separable", "first__or-
der__ode_ lie_ symmetry lookup"

Maple gives the following as the ode type
[_separable]

y—(z+2y°)y =0

3.5.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
-y
T (y*+1)

Where f(z) =1 and g(y) = y;{H. Integrating both sides gives

1

Y
y3+1

x
1 1
/Ldy= de
y3+1

dy=1dw

%
g-l-ln(y) =ln(z)+a
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Which results in
1

y:

1 3
LambertW (z3e3°1 )

Since ¢, is constant, then exponential powers of this constant are constants also, and
these can be simplified to just ¢; in the above solution. Which simplifies to

1
y= 1
1 3
( LambertW (z3e3°1) )
gives
1
y= 1
1 3
< LambertW (c3z3) >
Summary

The solution(s) found are the following

1

y:

1)

W

1
( LambertW (c3z3) >
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Figure 63: Slope field plot
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Verification of solutions

1

y:

( LamberthV (c3=3) )
Verified OK.

3.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y= Y
z(y®+1)
y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - Ex) - w2§y — wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &,
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Table 28: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

{(z,y) =2
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case

R=y

S is found from

1
S = / —dx
3
= / 1da:
T
Which results in
S =1In(z)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(x,y)Sy (2)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

_ Yy
RIS

Evaluating all the partial derivatives gives

R, =0
R,=1
1
Sy =—
xr
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s y*+1
I 2A
dR Y (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS R*+1

dR R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R3

S( R) =

3 +In(R)+ a1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

%
In(z) = E—i—ln(y) +c

Which simplifies to

Which gives

y:

=

1
< LambertW (e~3¢153) )

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ y dS __ R3+41
dz = =z(y3+1) dR~ R
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

1

y:

=

1
( LambertW (e~3¢1z3) )
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Figure 64: Slope field plot

1

y:

=

1
( LambertW (e~ 3¢133) >
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3.5.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

But since ;’;g = aa 255 then for the above to be valid, we require that
y Yoz

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
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Comparing (1A) and (2A) shows that

1
3
¥ +1
N(z,y) = y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM _0( 1
dy Oy\ =z
=0
And
ON _ 0 (41
oxr Oz Y
=0
Since %i; = %{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
L =M 1
o (1)
09
2 =N 2
5 2)

Integrating (1) w.r.t. = gives

op .
adx—/de
) 1
¢ =—In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
3 =0+ 1'(y) (4)
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06 _ y*+1

But equation (2) says that .~ Therefore equation (4) becomes

Oy
v’ +1 :
=0+ f(y) (5)
Solving equation (5) for f'(y) gives
3
oy = Y01
F) ==

Integrating the above w.r.t y gives

m/f@ﬁm=i/(f;&)dy

3
@)= +n)+e

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

b=-I@+ % + () +e

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

3

c1=—In(z)+ % + In (y)
The solution becomes
B 1
y= } I
(LambertW (m3e361) >
Summary
The solution(s) found are the following
1
Y= 1 (1)
1 3
(LambertW (a:3e3cl) >
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Figure 65: Slope field plot

Verification of solutions

1

y:

=

1
( LambertW (z3e3°1) )

Verified OK.

3.5.4 Maple step by step solution

Let’s solve

y—(z+azy’)y =0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
Yt (¥’ —yt+l) _ 1

vy x

. Integrate both sides with respect to x

[ (yH)(; v gy = [ idz+ ¢,
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° Evaluate integral
% +In(y)=In(z)+c

° Solve for y

I x
y - LambertW(xSeSCl)
e 3

—cy

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful”

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve(y(x)-(x+x*y(x)"3)*diff (y(x),x)=0,y(x), singsol=all) J

1

y(z) =

W=

1
( LambertW(c1 z3) )

v/ Solution by Mathematica
Time used: 4.377 (sec). Leaf size: 76

LDSolve[y[x]—(x+x*y[x]“3)*y'[x]== ,y[x],x,IncludeSingularSolutions -> True] J

4(a) + YT @)
y(z) = — \/_\/W'(eTx?'
ygxg — (=1)¥3YW (e3arg3)

y(x

X
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3.6 problem 4(c)

3.6.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 284
3.6.2 Solvingasexactode . .. ... ... ... ... ... ... ... 286
3.6.3 Solvingasriccatiode. . . .. .. ... ... ... ... ... 2971

Internal problem ID [3105]
Internal file name [OUTPUT/2597_Sunday_June_05_2022_03_21_48_AM_92210252/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 4(c).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type

[[_homogeneous, ~class D°], _rational, _Riccatil

xy'—y2x3—y=x5

3.6.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
o (z) z + u(z)) — u(@)’ 2® — u(x)z = 2°
In canonical form the ODE is
v = F(z,u)
= f(2)g(u)
=3 (u2 + 1)
Where f(z) = z® and g(u) = u? + 1. Integrating both sides gives

1
u2+1

/uzildu=/w3dx

arctan (u) = — + c2

du = 23 dx

284



1)

—02=0

ot
4

arctan (u(z)) —

e e T e T Y Y T T S —— ~—

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

The solution(s) found are the following

The solution is
Summary

1111111 S~SSNNNNN ST s———— |
77777 SSNANA NN
11111 —~~>~NX\ \ J S st
11111111 ~\/) -
LLLLLLL — =\ ~——————
—_—— = 7 ] \ / NN S ———— |
~SNA L T N N N ——————e
———— S NN NN N TS T —— B
11111111111111111111
n Q — S — N A
| I I
—_
=
N—
=

Figure 66: Slope field plot
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Verification of solutions

Verified OK.



3.6.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (2° +2°y* +y) dz
(—2° —2°y* —y) dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ ON
oy Oz
Using result found above gives
= —22%y —1
And
ON 0
o~ o
=1
Since %—Aj %—JZ, then the ODE is not exact. By inspection ?ﬁ is an integrating factor.

Therefore by multiplying M = —y?z® — 2° — y and N = z by this integrating factor
the ode becomes exact. The new M, N are

2.3 .5
Mo YTy

y2 + 12
N = ﬁ
To solve an ode of the form
M(z,) + N(z,y) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
oxr  Oydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

o =V
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But since % = % then for the above to be valid, we require that
Y yox
OM ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = 59: 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

53,2
(2x 2>dy:(_ T 2xy2 y>dm
vty ¢4y

—z® — 23yt —y T
d ——)d
( z? +y? ) x+<w2+y2) Y

Comparing (1A) and (2A) shows that

Therefore

(24)

—a — 3%y —y

M(z,y) = "
X
N(x,y)=x2—+y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM  ON
0y Oz
Using result found above gives
OM 0 (—z° -2y —y
oy Oy z2 4 y?
2?4y
(a2 +y2)°

oN_o( s
or  Ozr\xz2+y2

_ —z2 4 y2
(22 + 12)°

And

288



Since 2M — ‘%, then the ODE is exact The following equations are now set up to solve

5
for the Zf}unction o(z,y)
0¢p _
=M (1)
0p
o = N (2)

Integrating (1) w.r.t. = gives

/%dx=/Mdm

9o P2y
%dx—/ g dzx

¢=—§—mmw(§)+ﬂw 3

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0 T /

R A 4

5y~ 2 <Z_§+1> f'(y) (4)
=ﬁy2‘|‘f/(y)

But equation (2) says that g—;’j = Therefore equation (4) becomes

_z
2 +y2 .
T T

Tt/ ©)

Solving equation (5) for f'(y) gives

flly)=0
Therefore

fy)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

z* x
o= 1 —arctan | — | + ¢
Y
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

7 o ()
cp = —— —arctan | —
4 (]

The solution becomes

Summary
The solution(s) found are the following

= — v 1

tan (Z- +c;) (1)
31 INRAREEEEEE
NEARERERER.
AN REREEE
21 =NVttt
fr=NVIr 01t
fr=NVt717r111
| FIRSERSERR
[T 7=\N\V177111
e

—~ =7

117771 \N—~/11
N 11771~/ 11
1771 VN\N~/11
PtV N=711
Pt yN=1711
-2 Pty N=111
Pty Nst
IEEREEREARE
-3 INRERERYAEE

Figure 67: Slope field plot

Verification of solutions

Verified OK.
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3.6.3 Solving as riccati ode

In canonical form the ODE is

y =F(z,y)
335+.’L'3y2+y

x
This is a Riccati ODE. Comparing the ODE to solve

Y

y'=x4+y2x2+—
x

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y®

Shows that fo(z) = z%, fi(z) = % and fo(z) = 2. Let

x

_u’

'y =
fou
_ul

= 1)

T2y

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" () = (f + frfa) w'(2) + f3 fou(z) = 0 (2)
But
fi=2z
fifo=x
f3fo=1°

Substituting the above terms back in equation (2) gives
" (z) — 3zu'(z) + 2u(z) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives
z? z?
u(z) = ¢ sin (Z) + ¢y cos (Z)
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The above shows that

o) = eres (2) - enin (%)

Using the above in (1) gives the solution

134 : 1134
a:<c1 cos (I) — ¢gsin <Z>>
4

¢y sin (4°) 4 ¢z cos (2—4)

Yy=-

Dividing both numerator and denominator by c; gives, after renaming the constant
& = c3 the following solution

Summary
The solution(s) found are the following

1)
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Figure 68: Slope field plot

Verification of solutions

(S

(—c3 cos (%) + sin (%)) T
T 4
4

V= cssin ( 4)—i—cos(%)
Verified OK.
Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve(x*diff (y(x) ,x)=x"5+x"3%y (x) ~2+y(x) ,y(x), singsol=all) J

4
y(x) = tan (xz + cl) x

v Solution by Mathematica
Time used: 0.212 (sec). Leaf size: 18

LDSolve [x*xy' [x]==x"5+x"3*y[x] "2+y[x],y[x] ,x,IncludeSingularSolutions -> Truel J

4
y(xz) — ztan (xz + cl)
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3.7 problem 4(d)

3.7.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 295
3.7.2  Solving as first order ode lie symmetry calculated ode . . . . . . 297
3.7.3 Solvingasexactode ... ... ..... ... ... . .....

Internal problem ID [3106]
Internal file name [OUTPUT/2598_Sunday_June_05_2022_03_21_51_AM_23105553/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 4(d).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_ order_ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class A~]]

(y+z)y —y=—x

3.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(uw(z)z +z) (W(z) z+u(z)) —ulz)z = —2

In canonical form the ODE is

v = F(z,u)
= f(z)g(w)
v+l
T z(u+1)
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Where f(z) = —1 and g(u) = “£1. Integrating both sides gives

u+1
1 1
o) du = — dx
u+1
1 1
u+1
In (u?+1
% + arctan (u) = —In (z) + ¢,
The solution is
In (u(gn)2 +1)

5 + arctan (u(z)) + In(z) —c2 =0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

M + arctan (E) +In(z) —ce=0

2 T
@ + arctan (g) +In(z) —c2=0

Summary
The solution(s) found are the following

In (Z—z-l-l)
—

+ arctan <%> +In(z) —c2=0 (1)
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Figure 69: Slope field plot

Verification of solutions

In (g—z-i-l)
2

+ arctan <%) +In(z) —c=0

Verified OK.
3.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y%:y_x
y+zx
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — w2€y —we§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(y—=z)(bs—az) (y—x)as 1 y—=x
b2t y+ax B (y—l—a:)2 _(_y+x_(y+z)2) (waz +yas+a.) (5E)
_ 1 y-= . _

Putting the above in normal form gives

z2ay — 22a3 — 12by — 12bs + 2xyay + 2xyas + 2zyby — 2xybs — y2as + y2as + y2by + y2bs — 2xby + 2ya,
(y+)”

=0
Setting the numerator to zero gives

z2ay — xlag — 2%by — 2°b3 + 2xyas + 2zyas + 2xyb, (6E)
— 2.’1,‘yb3 — y2a2 + y2a3 + y2b2 + y2b3 — szl + 2ya1 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y =02}

The above PDE (6E) now becomes

azvf + 2a9v1v9 — a2v§ — agvf + 2a3v1v2 + agvg — bgvf (TE)
+ 2b2’l)1’02 + bg’Ug — b3’U% - 2b3’l)1’02 + bgvg + 2&11)2 — 2b1’01 =0

Collecting the above on the terms v; introduced, and these are

{vl’ 1)2}
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Equation (7E) now becomes

(a2 — as — b2 — b3) ’U% + (2&2 + 2@3 + 2b2 — 2b3) V1V (SE)
— 2bjv1 + (—CLQ + a3+ by + b3) ’Ug + 2a;v, =0

Setting each coefficients in (8E) to zero gives the following equations to solve

2a1 =0

—2b; =0
—as+as+by+b3=0
ag—a3—by—b3 =0
2a9 + 2a3 + 2by — 2b5 = 0

Solving the above equations for the unknowns gives

a; =0
as = b3
as = —by
by =0
by = by
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y

Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(y)§
- (357)@

o+

N y+x
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (f a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

52/1@
n
1
=/ﬁﬁﬂy

y+x

S is found from

Which results in
In (2% + y?)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S = + arctan (g)
T

as _ S +tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

y—z
y+w

w(z,y) =
Evaluating all the partial derivatives gives

R, =1

R,=0

-yt+z

x? 4 y?

yrzr

x? + y?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

=0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0

gives
S (R) =C (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1 2 2
M + arctan (g> — cl
2 z
Which simplifies to
1 2 2
(" +2%) | rctan (4) =e
2 T

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
Original ode in z,y coordinates coordinates (R, S)
transformation ’

ODE in canonical coordinates

y—z as _
y+z dR

Fl&
I

AARA v o oo

AAF A o>——>—b

IS

Pl e e e Y .S(R):

A A s aa

A 7 p—a—a~a~aaa

A —e—s~a A a N Sa Na

>N N N N N N NN

N W o e ama—a—a—
N W & e e a—a———>
N e b
N o aama—e— ———b
Pt o e S S
N e e e ——e b —aaa
e e e e
o —~Shaaaa
e N N\ e
—>>a SO N N N R N N\

T T

N g N SO ]

NN N S Sa e 7

D N I

s e el

~~a—a—a—b—b—>_¥ 7 7
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)

\\\\a\s-—sq—«g/.e/
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Summary
The solution(s) found are the following

In (y* + 2?)

5 + arctan <%> =q (1)
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Figure 70: Slope field plot

Verification of solutions

In (2 4 2?)

5 -+ arctan (E) =cC1

X

Verified OK.

3.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,y) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(y+2)dy=(y—=z)dz
(—y+z)dz+(y+2z)dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y)=-y+=z
N(z,y) =y+z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives
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And
oN_o
or Oz
=1

(y + )

Since %—A; # %—];], then the ODE is not exact. By inspection m is an integrating factor.
Therefore by multiplying M = —y + x and N = y + z by this integrating factor the
ode becomes exact. The new M, N are

M=—

y2 + .’112

yt+z
N=2

y2 + 1.2

To solve an ode of the form
d
M(z,y) + N(z,y) 22 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 96 06d
Y
AT e B
Oxr Oydx 0 (B)
Comparing (A,B) shows that

0p
8_w o
0p
a_y -
2¢ _ 8%

But since 520y = Dyox

then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
8‘12 gy = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
y+T _( Ytz
(w2+y2>dy_( x2+y2)dx
—y+zx yt+x
2A
($2+y2)d +(.’L'2+y2)d ( )

Comparing (1A) and (2A) shows that

-y+z
M(ﬂ%y)=m

y+x
N(w,y)=x2—+y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz

Using result found above gives

oM 0 (-y+=x
8_y_8_y(r2+y2)
_—2? = 2zy+ ¢
@+’

And

N _ 0 (yta
0xr Oz \ a2+ 192

=—x2—2xy+y2
(a2 +12)°

Since %iy/f = %%’, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
=M (1)

8¢
o =V 2)
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Integrating (1) w.r.t. z gives

0¢ .
a—zdx—/de

op . [—y+=x
a—zdw—/x2+y2dx

6= ) orctan (g) T fw) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0¢ Y T
6_: 2+ 2+ 2
AT

+ ) @
)

Y+
_:L'2+y2

+ f'(v)

y+x
2 +y2

But equation (2) says that g—?‘f = . Therefore equation (4) becomes

y+x  y+z
.'L'2+y2 x2+y2

+ ') (5)

Solving equation (5) for f’'(y) gives
f'y) =0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

1 2 2
o= w — arctan (E) +c
Y

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and c; constants into new constant c; gives the solution as

In (2% + y?)

— arctan z
2 (0
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Summary
The solution(s) found are the following

2 2
In (y 2+$ ) — arctan (—) = (1)
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Figure 71: Slope field plot
Verification of solutions

2 2
—ln (y Tz ) — arctan <§> =C

2 Y

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

Ldsolve((y(x)+x)*diff(y(x),x)=(y(x)—x),y(x), singsol=all)

y(z) = tan (RootOf (2_Z + In (sec (_Z)2) +2In(z) + 2c1)) =

v/ Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 34

LDSolve[(y[x]+X)*y'[x]==(y[x]-x),y[x],x,IncludeSingularSolutions -> True]

Solve [arctan (@) + %log (%2)2 + 1) = —log(z) + cl,y(z)}
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3.8 problem 4(e)
3.8.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 309
3.8.2 Solving asriccatiode. . . . . . ... ... L. 310

Internal problem ID [3107]
Internal file name [OUTPUT/2599_Sunday_June_05_2022_03_21_53_AM_63742245/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 10, page 47

Problem number: 4(e).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeD2"
Maple gives the following as the ode type

[[_homogeneous, ~class D°], _rational, _Riccatil

zy —y—9y* =2?

3.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) « on the above ode results in new ode in u(z)
o' (z) z + u(z)) — u(@) z — Ju(z)’ 22 = 22

Integrating both sides gives

1
9u2+1du=x+02
arctan (3u)

3 =x+ Co
Solving for u gives these solutions
tan (3z + 3cz)
U = ———
3
Therefore the solution y is
Y =zU
_ xtan (3z + 3cy)
B 3
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The solution(s) found are the following

Summary

(1)

z tan (3z + 3c¢y)

y:

—————————————— ——t————~——~—~——— |

————— ——————————
——— ———————————
e e e e e e e |
——— T — T — — — T T T ——
———————— ————————————

———————————~—~— —————— e —

P S G

———— e e e e = = — e e e e e~

P = s s a8
T G S PG
P G s s e
e a e e - = = e = o

—_—— e e = = = P S GGG

X

22+ 9y +y

F(z,y)

z tan (3z + 3c2)

92
WLy

Figure 72: Slope field plot
yl

This is a Riccati ODE. Comparing the ODE to solve

3.8.2 Solving as riccati ode
In canonical form the ODE is

Verification of solutions

Verified OK.

T

T
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With Riccati ODE standard form

Y = fo(z) + filz)y + fa(2)y’

Shows that fo(z) =z, fi(z) = 1 and fo(z) = 2. Let

y:

= Tu (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(z) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
9
f2 = _;
9
fif2=
Bh="

Substituting the above terms back in equation (2) gives

=0

9u” 81
z T

Solving the above ODE (this ode solved using Maple, not this program), gives
u(z) = ¢ sin (3x) + c2 cos (3z)

The above shows that
u'(z) = 3¢y cos (3z) — 3eosin (3z)

Using the above in (1) gives the solution

(3¢ cos (3z) — 3egsin (3x))
9 (¢ sin (3z) + ¢ cos (3z))

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution

311



(1)

(—cscos (3z) + sin (3z)) =
3cs sin (3z) + 3 cos (3x)
(—c3 cos (3z) + sin (3z)) =
3cs sin (3x) + 3 cos (3z)

Y
Y

The solution(s) found are the following

Summary

X

3cs sin (3x) + 3 cos (3z)
312

(—c3 cos (3z) + sin (3z)) =

Figure 73: Slope field plot

Y

Verification of solutions

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(x*diff(y(x),x)=y(x)+x‘2+9*y(x)‘2,y(x), singsol=all) J
tan (3z + 3cy) =
y(z) = ( 3 )

v/ Solution by Mathematica
Time used: 0.285 (sec). Leaf size: 17

LDSolve[x*y'[x]==y[x]+x“2+9*y[x]“2,y[x],x,IncludeSingularSolutions -> True] J

y(z) — %x tan(3(x + ¢1))
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4 Chapter 2, section 11, page 49

41 problem 2(a) . . . . ...
42 problem 2(b) . .. ...
4.3 problem 2(c) . .. ...
4.4 problem 2(d) . . . . ...
45 problem 2(e) . . . . ...
46 problem 2(f). . . . . ...
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4.1 problem 2(a)

4.1.1 Solving aslinearode . . . . . ... ... ... L.
4.1.2 Solving as first order ode lie symmetry lookup ode . .. . . .. 317
4.1.3 Solvingasexactode . .. .. ... ... ... ... ... 321
4.1.4 Maple step by step solution . . . . . ... ... 326

Internal problem ID [3108]
Internal file name [OUTPUT/2600_Sunday_June_05_2022_03_21_56_AM_40981428/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

zy — 3y = z*

4.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)

Where here
3
p(z) = Tz
q(z) = z°
Hence the ode is
I 3_y — 1‘3
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The integrating factor u is

The ode becomes

Integrating gives

=+

Dividing both sides by the integrating factor u = x% results in
Y= ciz® + zt

which simplifies to

y=23(z+c)

Summary
The solution(s) found are the following

y=2(z+c)
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Figure 74: Slope field plot

Verification of solutions

y=1(z+c1)
Verified OK.

4.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y,:x4+3y
X
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wzf — Wyl = 0 (A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 31: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =z

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Satw(z,y)Sy (2)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

zt + 3y
(.U(.’L' ’ y) - x
Evaluating all the partial derivatives gives
R, =1
R, =0
3y
Sy = 4
1
Sy = o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1 (2A)

1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+ ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

pocs =+
Which simplifies to
% =z+c
Which gives
y=2’(z +c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
- . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates

. (R, S)
transformation
dy _ z+3y a8 _ 1
dz T dR —
4 bbbyt ettt R s LR R s
4 vt rrr et AAAAAAAASANAA AP AA AN
R I PAAAAPAAPIRN AP AP
R EEEE R R LR R R
by bttt /////?f AAAASALAAASS
L&&&itrr?f AR AAAAAAAAAASS
RN PAPAP APV AS AP A
VRl vr et APPSR PR AANAAAAA AL
IR R=z AAAAAAAAAAAAS A A A
VAANNAZ 2P FPPPF PP PP PP
Sy VAR NI AN AR T T T Y D R R L T
NSRS R S == //////////////;R/////
bhot byt 3 FAAAAFA A A A A
L\ft%4¥\ff AARAPAAAALNA SIS SIS
VYA LN AAAAAAAASANAAFAAAAS AN
PNt bVt FAPAP AP A A AP AP S
NSRS FASAAIAAIA AR AR
Sl L Tt A R s L R R R R R
AN EEY FAAAPPAPFANFAA AP AA AT
AN IRRRN SIS AP A AT I J S
Summary
The solution(s) found are the following
3
y=x(r+c1) (1)
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Figure 75: Slope field plot

Verification of solutions

3(z + c1)

y:

Verified OK.

4.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

)
=]
]
I y___m
= =S
i I
Sy +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (z* + 3y) dz
(—2* — 3y) dz +(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —z* - 3y
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 4
T (st 3
Oy 8y( e )
= -3
And
ON 0
o~ 2™
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Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
A= Gﬁ‘%)
1

= ~((=3)- ()

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ads
_ -t
The result of integrating gives
= e 4@
_ 1
74

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

- Liatosy
—z* — 3y

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

(=22): ()
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The following equations are now set up to solve for the function ¢(z,y)

% _w (1)
0p  —
oy =" 2)

Integrating (1) w.r.t. z gives

op .
%dx—/de
o . [—z'—3y
b=z + %+ 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 1
a—y——+f(y) (4)

3

But equation (2) says that g—‘z = 2. Therefore equation (4) becomes

1 1
—=—=+f(y (5)
Solving equation (5) for f'(y) gives
flly)=0
Therefore
fly)=a

Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
_ y
¢=—x+ -3 +c
T

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

_ Y
Cl——$+;
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1)

y=x3(z+c1)
Y= r3(x +¢)

e~~~ ———— —— ———— ———— —

B e e e e S e S

NN .

The solution(s) found are the following

The solution becomes

Summary

—— S e e e e e e = > [~
— —_— — —
T T
on N — o — N o
—_
N—

X

Figure 76: Slope field plot
_ .3
y=z°(z+c1)
325
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Verified OK.



4.1.4 Maple step by step solution

Let’s solve
zy — 3y = z*
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y =%+
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — =43
° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v — %) = p(z) 2
o Assume the lhs of the ODE is the total derivative - (u(z)y)
wa) (v = F) =@y +u@)y
o  Isolate p/(x)

p(z) = — 22

° Solve to find the integrating factor
p(z) = 5

° Integrate both sides with respect to x

[ (L(u(@)y)) dz = [ p(z) z¥de + e
° Evaluate the integral on the lhs
wz)y = [ @) z?dz + ¢

° Solve for y

[ p(z)zddztcr
V=@

o Substitute pu(z) = %
y=2a*([1dz +c1)
° Evaluate the integrals on the rhs

y=z3(z+c)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(x*diff(y(x),x)-3*y(x)=x“4,y(x), singsol=all)

y(z) = (a1 +z) 2’

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13

LDSolve[x*y'[x]—3*y[x]==x‘4,y[x],x,IncludeSingularSolutions -> Truel

y(z) = 2*(z + ¢1)
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4.2 problem 2(b)

4.2.1 Solving aslinearode . . . . . ... ... ... ... ... .. 328]
4.2.2 Solving as first order ode lie symmetry lookup ode . . . . ... 330
423 Solvingasexactode . .. ... ... .. ... ... ... 334
4.2.4 Maple step by step solution . . . . . ... ..o 338

Internal problem ID [3109]
Internal file name [OUTPUT/2601_Sunday_June_05_2022_03_21_58_AM_39847362/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(b).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

! —

4.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
p(z) =1
1
q(x) - ezm + 1
Hence the ode is
V+y= St
e +1
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The integrating factor u is

The ode becomes

Integrating gives

e”
T, d
ey /eQm—l—l i

e”y = arctan (%) + ¢
Dividing both sides by the integrating factor u = €® results in
y = arctan (") e™" + c1e™”
which simplifies to

y = e *(arctan (6”) + ¢1)

Summary
The solution(s) found are the following

y = e “(arctan (%) + ¢1) (1)
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Figure 77: Slope field plot

Verification of solutions

y = e *(arctan (e”) + ¢;)
Verified OK.
4.2.2 Solving as first order ode lie symmetry lookup ode
Writing the ode as

,_ ePy+y—1
B e? 41
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fac) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =e"

x

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
Sz/—dy
n
=/%dy
e$

S =e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
o=

Evaluating all the partial derivatives gives

R, =1
Ry:

S, =€y
Sy =¢e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as_ e
dR e>*+1

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _ o
dR  eR 41

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

(24)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = arctan (") + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

e”y = arctan (6”) + ¢;
Which simplifies to
e”y = arctan (%) + ¢
Which gives
y = e *(arctan (6”) + ¢1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .

. . . . ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation ’
dy _ _ e*yty-1 as _ _eR
r e2z41 dR ~ e2R41
VAVAAL AL bbby R A
R R LR T T N B S
R R LR T T T N B O S
R R R R R O Pt
NN NN NN e R -
AR A R R e R B Y S e
R AN AR AR R AR R RN e
S S s s o o e e e e T —> > —> b v | T v o> b —>—
B i S T e T (e ISP I 35 05 SN
AAAAAAAA A A o s e a—a—a—a—a—a—a R =r | e SRS P05 O
PAAAAAASAS =y | e - AT -
AR A A ¢y | ==t L L R
AR NN NNy, G
D A A o S A A A S S o A S S S N B e e e g g e e e
DN A A A A A A & A A A A S S S S [ I et e IS e e S S
TN A A A A A A A oL A A A A A A A A e F e
A A A A = I A A A A A A A S N B e st T AT T e
O A A A N A A 1 A A A A A A A S [ BN o et e e e
TN A S A G A A 1A A A A O A e E e
Summary
The solution(s) found are the following
y = e *(arctan (e”) + ¢;) (1)
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Figure 78: Slope field plot

Verification of solutions

y = e *(arctan (e”) + ¢;)
Verified OK.

4.2.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

dy

M(m,y)—l—N(x,y)%

=0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 8(15 3¢ p
ay
oz ' dydr (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; E‘fy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

1
dy = (—y—i— e“—i—l) dzx

1
(y—e2z+1>dx+dy—0 (2A)

Comparing (1A) and (2A) shows that

1
er 1+ 1

M(IL‘,y) =Yy-
N(fL‘,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Oz

Using result found above gives

oM _o( 1
dy  oy\7 e i1

=1
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And

Slnce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= -2t
( 9y 8%)
=1((1) - (0))
=1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
p= efAda:
—e J1dz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

T
e y i
e2$ I

e“(e*y +y—1)
e? 41

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M—i—Nj—z:O
e’(e*y+y—1) dy
( e? 41 e )dw 0

336



The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x—M (1)
b~
5 = 2)

Integrating (1) w.r.t. z gives

@dx= /de
ox

op . [e(®y+y—1)
9z dz = / 1 dz

¢ = ey — arctan (") + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

L=t 1) @

But equation (2) says that g—z = e®. Therefore equation (4) becomes

e’ =e"+ f'(y) (5)
Solving equation (5) for f’'(y) gives
flly)=0
Therefore
fly)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = e”y — arctan (e”) + ¢;

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢, = e”y — arctan (e”)
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Summary
The solution(s) found are the following

e”y — arctan (e”) = ¢; (1)
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Figure 79: Slope field plot

Verification of solutions

e”y — arctan (e%) = ¢
Verified OK.

4.2.4 Maple step by step solution

Let’s solve
VHY=@mn
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Y =—y+mn
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° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y+y=z

° The ODE is linear; multiply by an integrating factor u(x)
we) (' +y) = 52

o Assume the lhs of the ODE is the total derivative - (u(z) y)
wz@) (' +y) = @)y +p)y

e  Isolate y/(x)

p(z) = p(z)

° Solve to find the integrating factor
p(z) = e”

° Integrate both sides with respect to x
] (& u@)y) de = [ Zdz+ e

° Evaluate the integral on the lhs
p)y=[ %dm +c

° Solve for y

. J egffl dz+cy

Y= "
o Substitute u(z) = €*

ez
. fie%-q-l dz+c1

Y e

° Evaluate the integrals on the rhs
y = arctane(;ez)—i-q

° Simplify

y = e *(arctan (e*) + ¢1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve (diff (y(x) ,x)+y(x)=1/(1+exp(2*x)),y(x), singsol=all) J

y(z) = (arctan (") + c1)e™®

v/ Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 18

LDSolve [y' [x]+y[x]==1/(1+Exp[2*x]) ,y[x] ,x,IncludeSingularSolutions -> True] J

y(z) — e *(arctan () + ¢1)
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4.3 problem 2(c)

4.3.1 Solving aslinearode . . . . . ... ... .. ... .. ... [341]
4.3.2 Solving as first order ode lie symmetry lookup ode . . . . ... 343
4.3.3 Solvingasexactode . .. ... ... .. ... ... . ...... [347]
4.3.4 Maple step by step solution . . . . ... ... ... ..., 351

Internal problem ID [3110)]
Internal file name [OUTPUT/2602_Sunday_June_05_2022_03_22_00_AM_85419095/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(c).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

2yz + (2° + 1) y' = cot (z)

4.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) = a:22-glc- 1
oo - 2
Hence the ode is
J o+ 2zy  cot(x)

224+1 z2+1
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The integrating factor u is
I mgifrldz

p=e
=z +1

The ode becomes

%(uy) = (w) (j;tfl) )

L(@+1)9) = @+ 1) (S12)

d((z*+1)y) = cot (z) dz

Integrating gives

(®+1)y= /cot (z) dz

(z°+ 1)y =In(sin(z)) + &1
Dividing both sides by the integrating factor u = x2 + 1 results in

In (sin (z)) ¢l
2 +1 r?2+1

y =
which simplifies to

_In(sin(z)) + ¢
B z?2+1

Summary
The solution(s) found are the following

_In(sin(z)) + ¢
v= z2+1
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Figure 80: Slope field plot

Verification of solutions

_In(sin(z)) + ¢
B z2+1

Verified OK.

4.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

J = —2zy + cot (x)
x?2+1
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - w2€y —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 37: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode v =fx)y+g(z)y" 0 e~ f("—l)f(w)dwyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~ J fds
The above table shows that
§(z,y) =0
W) = e (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
R
241

S=(z>+1)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—2zy + cot (x)
x2+1

w(z,y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
Sy = 2zy
S, =z*+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
iR= cot () (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

ds
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

= cot (R)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =In(sin (R)) + 1 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(z2+1)y=In(sin(z)) + 1
Which simplifies to

(z°+ 1)y =In(sin(z)) + &1
Which gives

_In(sin(z)) + ¢
B z?2+1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy __ —2xy-+cot(z) das __
dr = o2+1 ar = cot (R)

RN AR EEEERRARR S e e N N T S
VAV A A A B Y VAV S L U VL MR U U =N\ P AN SN e
VA B VA NENENANEVA AN Ny P AN AN
AP RTINS SR Y e
N g N P o~ A o
/////fﬂéf\f\\xx\\\\\ »»\xf/@Q\xr/»»\xf/»»
AAZALAZ 22K AN NN N N N AN AN
A AN VN R N N e R e R I I N I A
mrre 7777\ =N e _ e L e Y R T S N A S 2N
St T I e S S R = =Ny AN AN s
‘—b‘—s\a\g»-e.?::: § ;;«;14\/‘77.&—’ S 9 1 »\ﬁ_:fi ;;_,7\.:: § ;;»\2:; ;;Z»\s
~ A N A N A A A T v — T~ ——a —~a —o~a
SN NN NN YA A e e T+ )y SN I SN § I SN W I S
\\\\\\\\L§fff/////// »»\xf/»\x{f/»\\xf/»»
SNMSNNNNNNNNN P AL e B e N B e N
NNNNNNNNNWE AP AL N I A R e N b
NNNYNNNNNNNVE AP e I e N e o N P e
NNNNNNNNVME PP S F=N P AN SN e
NNYNNNNAVNN VPP AL e B I e R e N b
NNNAYNNVY VYRR, =N PN AN S

Summary
The solution(s) found are the following

_In(sin(z)) + ¢
B z2+1
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Figure 81: Slope field plot
Verification of solutions
_In(sin(z)) + ¢
- 2 +1
Verified OK.
4.3.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%¢("ra y) =0

Hence 96 0d
Yy _
or + oydr 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z* + 1) dy = (—2zy + cot (z)) dz
(2zy — cot (z))dz+(z*+1)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = 2zy — cot (z)
N(z,y) =2>+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
n = a—y(2xy — cot (z))
=2z
And
ON 0
o~ Y
=2z
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _
=N @)

Integrating (1) w.r.t. z gives

@dmz/de
oz

op .
e dz = /ny — cot (z) dz

¢ =2’y —In(sin (z)) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99

oy 2® + f'(y) (4)
But equation (2) says that g—i = 22 + 1. Therefore equation (4) becomes
z'+1=2"+f(y) (5)

Solving equation (5) for f'(y) gives
flly) =1
Integrating the above w.r.t y gives
[rway=[ay
fy)=y+a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢ =12’y —In(sin(z)) +y+c
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

c1 = 2’y — In(sin (z)) +y
The solution becomes

_In(sin(z)) +c
B z2+1

Summary
The solution(s) found are the following

_ In (sin (z)) + 1 (1)

2 +1
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Figure 82: Slope field plot

Verification of solutions

_In(sin(z)) + 1
B z2+1

Verified OK.
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4.3.4 Maple step by step solution

Let’s solve
2yzr + (2 + 1)y = cot (x)
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y =25+ 5E

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 2zy __ cot(x)
Y+ 241~ z241

° The ODE is linear; multiply by an integrating factor u(x)
wa) (v + 52 = Mo

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v + 35) = (@) y + ux)y

o Isolate ()

Wi(w) =252

. Solve to find the integrating factor
px)=12>+1

. Integrate both sides with respect to x
J (& u(@)y) de = [ “55 P dz + e,

° Evaluate the integral on the lhs

pz)y = [ M dr + o

° Solve for y
_Jeept®gi e
)
e  Substitute u(z) =22 + 1

t(z)dz+
y = J co 352_ 1:c c1
° Evaluate the integrals on the rhs
In(sin(x
y = e +)1)+c1
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve((1+x“2)*diff(y(x),x)+2*x*y(x)=cot(x),y(x), singsol=all) J

In (sin (z)) + &1
z2+1

y(z) =

v Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 19

LDSolve[(1+x“2)*y'[x]+2*x*y[x]==Cot[x],y[x],x,IncludeSingularSolutions -> True?

log(sin(z)) + ¢1
z2+1

y(z) =
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4.4 problem 2(d)

441 Solving aslinearode . . . . . ... ... ... ... ... .. ..
4.4.2 Solving as first order ode lie symmetry lookup ode . . . . ... 3551
443 Solvingasexactode . .. ... ... .. ... ... ... 359
4.4.4 Maple step by step solution . . . . . ... ..o 363l

Internal problem ID [3111]
Internal file name [OUTPUT/2603_Sunday_June_05_2022_03_22_02_AM_53367141/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(d).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

v +y=2ze"+ 2>

4.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)
Where here

Hence the ode is

The integrating factor u is
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(1)

(%) (z(2e7" + x))
(z(ze” +2)) dz

(x2+cl)e_’”+a:2—2x+2

(y) = (1) (z(2¢7" +2))
(®+a)e®+2°—2z+2

(€"y)
d(ey)
/ z(ze® +2) dzx

d
dz
d

dx

T T T T T T T T T T T T T T T ————~— [

— T T T T T T T T T T T T —— —

NN N N N S S e S e —
! \_ A N N N N e N 3
VA IR IANANANN NN
AV A NN |
—— e s 77 7 T NNNNN

X

354

N S S s

B I i e L

ey = 2%e” —2xe” + 2" + 22 + ¢
e ” (erz —2xe® +2e" + :(,'2) +ce”®

e’y
Yy
]

Dividing both sides by the integrating factor u = €® results in
Y

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary

Figure 83: Slope field plot




Verification of solutions

y=("+c)e " +2°—2z+2
Verified OK.

4.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Y = —y+2re® +2°
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - fz) - wzéy —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 40: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
n(z,y) =e"

x

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy
n
=/édy
eiE

S =e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —y +2ze " + 2?

Evaluating all the partial derivatives gives

R, =1
Ryz

S, =€y
Sy =¢”

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds -
IR z(ze® +2) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s

— =R(Re®+2

7p = B(Re" +2)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

357



integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =e"R* —2Re +2e® + R? + ¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ey = z%e® — 2xe” +2e" + 22 4+ ¢4
Which simplifies to
ey = z%e® — 2xe” +2e" + 22 + ¢4
Which gives
y= (2" —2ze" +2e"+2° +c1)e "

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation

u

Y =—y+2ze " +a? 4> = R(Re® +2)

.
v

<
—
——b—b—b—b—>
|2
ar i i i

4?;//4/4//

L

i
|

o

P e e e

\ G| o atoar o e
P R Al

e S B
=

¥ e e e e a—a—a—a—
—> bbb BB BB BB —b bbb S b

/4/4/4/4/4/4—4—4—4—4——4——4——4——4&4—««4—

NN

— bbb BB BB —b—B—B—b—b—b—>—>

bbb —B—b—B—B bbb —b—b—b—D—b b
4 a— e a— GGG a—a—a—a—
e et e s e s e e e e e o
Dl e i P e P st et e e e

ﬂﬂﬂﬂﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

ettt

KN

A L¥ AL LAY A ASN A R L EL
\

e T i N e e N e

— bbb —b—b—b b~ —a—aaaa “a N\

i T B O

a—a—a

Summary
The solution(s) found are the following

y=(z%"—2ze" + 26"+ 2>+ ¢1) ™" (1)
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Figure 84: Slope field plot

Verification of solutions

(2% —2z€" +2e" +2° +¢1) ™"

y:

Verified OK.

4.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

0

gb(.’L', y) =

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (—y+2ze*+2%)dz
(y—2ze® —2®)dz+dy=0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =y —2re® —2°

N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
Dl _ 2 - _ .2
9y — oy (y—2ze z?)
=1
And
oN _ 2
oxr Oz

=0
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Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM _oN
N\ Oy Oz

(1) = (0))

1
1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— efldz

I

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M =uM
=€’ (y —2xe ¥ — a:2)
= (—2*+y)e" — 2z
And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M + N% =0
dx
dy
2 T 9 Ty Y _ 0
((—z*+y)e :c)+(e)dx
The following equations are now set up to solve for the function ¢(z,y)
op —
— =M 1
e (1)
oy —
— =N 2
o &)
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Integrating (1) w.r.t. z gives

/%dxz/ﬂdx
¢

%dx=/(—x2+y)ex—2xdx

¢=(—x2—|—2x+y—2)e”’—w2+f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ /

A A 4

9, —¢ tI'W (4)
But equation (2) says that g—‘z = €. Therefore equation (4) becomes

" =e"+ f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0

Therefore
fly) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (—x2+2x+y—2)ew—x2+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

a=(-2*+20+y—2)e" —2°

The solution becomes

y= (2" —2ze" +2e" + 2’ + 1) e™"
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The solution(s) found are the following

Summary

Figure 85: Slope field plot

(xzex —2xe®+2e" + 2% + cl) e ”

Y
Highest derivative means the order of the ODE is 1

Let’s solve
Isolate the derivative
Y =—-y+2ze %+ 12

4.4.4 Maple step by step solution
v +y=2zre%+ 22

Verification of solutions
Verified OK.



° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
v +y=2zre%+ 22

° The ODE is linear; multiply by an integrating factor u(x)
w(@) (' +y) = p(z) 2ze™ + 2°)

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
wz) (' +y) = w(x)y + plx)y’

e  Isolate p/(x)
w(z) = p(z)

° Solve to find the integrating factor
pu(z) = e

° Integrate both sides with respect to x
[ (E(u(x)y) de = [p(z) 2re™+2?)dz+ 1

° Evaluate the integral on the lhs
u(w)y = [ u(e) Qoe +22) da +

° Solve for y

_ Ju(=z)(2ze~®+x2)datcy
y= w(z)

o Substitute pu(z) = €”
y = Je® (2ze‘“”+:c2)dz+c1

e:l)

° Evaluate the integrals on the rhs
_ 12e*—2ze*+2e%+x2+c;
y - e

° Simplify
y=(z>+c)e®+z2 -2z +2

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

Ldsolve(diff (y(x),x)+y (x)=2*x*exp(-x)+x"2,y(x), singsol=all) J

y(z) = (x> +c) e +2> —2z+2

v/ Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 29

LDSolve [y' [x]+y[x]==2*x*Exp [-x]+x~2,y[x],x,IncludeSingularSolutions -> Truel J

y(z) > e (2 + e (x> — 22+ 2) + ¢1)
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4.5 problem 2(e)

4.5.1 Solving aslinearode . . . . . ... ... ... ... ...
4.5.2 Solving as first order ode lie symmetry lookup ode . . . . . .. 368]
4.5.3 Solvingasexactode . .. ... ... ... ... ... . .....
4.5.4 Maple step by step solution . . . . ... ... ... ...,

Internal problem ID [3112]
Internal file name [OUTPUT/2604_Sunday_June_05_2022_03_22_07_AM_72034493/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(e).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

y' +ycot(z) =2csc(z)x

4.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(2)

Where here

p(z) = cot (z)
q(z) = 2csc(z) z

Hence the ode is
y' +ycot(z) =2csc(z)x

The integrating factor u is

b= ef cot(z)dz

= sin ()
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(1)

2+ ¢

/2xdx

(2z) dz

(y) = (1) (2 csc(z) )
(sin (z) y) = (sin (x)) (2 csc (z) x)
csc (z) z* + ¢ csc ()
cse (z) (2 + 1)
cse (z) (2% + 1)

sin (z) y
sin (z) y

Y
Y

dz
y

d(sin (z) y)

e e T T T T T — —— N — N —

—— e T T T T T T T T T T T T S S S
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7777777 ~~~~\\1/ -
///// S— e SSS O NSONON N / _/ N \ Ve

X
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dz
Dividing both sides by the integrating factor u = sin (x) results in

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary

N T e e e S e e e e S S S S S S
e R S e e i Rttt
T T T T T T T T T T T S S S~
———r————————~— -~ -~
T T
o N — o — N on
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Figure 86: Slope field plot




Verification of solutions

y=csc(z) (2% + 1)
Verified OK.

4.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y' = —ycot (z) +2csc(z)z
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w1y — &) — W€y — wef —wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 43: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
£(z,y) =0
1
= — Al

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
:/;dy

sin(z)

S is found from

Which results in
S =sin(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+t w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = —ycot (x) + 2csc (z) x

Evaluating all the partial derivatives gives

R,=1
R,=0

Sy =cos (z)y
Sy = sin (z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

2z (2A)

2R

It converts an ode, no matter how complicated it is, to one that can be solved by
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(4)

St S T
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T T T R T R R T (R R R R R S R S W W
BRI RCRCRCRCRCR R RCRCRCRCRC R R KR
RRAARARRAARAARRAARKRARARNR

=2R

(R, 5)
das

ODE in canonical coordinates
dR

FIHETTIT IS A ST AT T
g A A A A A e n e A e
e e v T v v v | v v v v v v v v v
RS SR I I S A
S < N I

A S S S A S S 9

A S S S G G S o e

B e e e e e e

R2+Cl
Canonical
coordinates
transformation

22 4¢

sin ()

Y

ysin (z) = 2%+ ¢;
ysin (z) = 2%+ ¢;

S(R)

B e Lt

—>—> >

v v s v vt RO v s w v R W

A N N N N L N
o m A AL R R R e v e

ycot (z) +2csc(z) x

y _ _

Original ode in z,y coordinates

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
To complete the solution, we just need to transform (4) back to z,y coordinates. This

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

results in
Which gives

PN S Y t A AN o w
T T T e R Tl T T R R R R T R R R RO R

— > bbb

Which simplifies to

1)

2+ ¢

sin (z)
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Figure 87: Slope field plot

Verification of solutions

z2 + ¢

sin (z)

Verified OK.

4.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(x,y)+N(w,y)£=0

)
=]
e
I Lm
= =S
i I
S +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—ycot (z) + 2csc(z) z) dz
(ycot (x) —2csc(z)x)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = ycot (z) — 2csc(x) x
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
- _ 2 -9
o~ oy (ycot (z) — 2csc (z) )
= cot ()
And
oN _ 2
or Oz
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Since %—M # %N , then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let
A L(oM_oN
- N\oy Oz
= 1((cot (z)) — (0))
= cot (z)

Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor p is
—e JAdz

— ef cot(z) dz

1

The result of integrating gives
u= eln(sin(x))

= sin (z)

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= sin (z) (y cot () — 2 csc (z) x)

=cos(z)y — 2z
And

=sin (z) (1)
= sin (z)
Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is

M+N%=0
dz
d
dy _,

(cos (z)y — 2z) + (sin (x)) i

The following equations are now set up to solve for the function ¢(z,y)

o¢ 1)

ﬁxzﬁ
06  —
8—y—N (2)
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Integrating (1) w.r.t. z gives

%dxz /de
or

9¢
%dx— /cos(m)y—dem

¢ =sin (z)y — 2 + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

5 =sin(o) + /') ()
But equation (2) says that g—;’j = sin (z). Therefore equation (4) becomes
sin (z) = sin (z) + f'(y) (5)
Solving equation (5) for f’'(y) gives

fy)=0

Therefore
fly)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =sin (z)y —2° + ¢,

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢, = sin (z) y — z?
The solution becomes

_ ? + ¢
Y= sin (x)
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(1)

2+ ¢

sin ()

y:
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z2 + ¢

sin (z)
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The solution(s) found are the following

Summary
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Figure 88: Slope field plot

Highest derivative means the order of the ODE is 1

Y +ycot(z) =2csc(z)x
Isolate the derivative

Let’s solve

4.5.4 Maple step by step solution
[ ]

Verification of solutions

Verified OK.



, —_—

y' = —ycot (z) + 2csc(z) z

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y +ycot(z) =2csc(z)

The ODE is linear; multiply by an integrating factor u(x)
() (y + y cot () = 2u(x) csc(z)

Assume the lhs of the ODE is the total derivative - (u(z) y)
w(z) (y +ycot (z)) = p'(z)y + p(z)y'

Isolate ()

W' (z) = p(x) cot ()

Solve to find the integrating factor

p(z) = sin (z)

Integrate both sides with respect to x

[ (E(u(z)y)) do = [ 2p(z) csc (z) zdz + ¢

Evaluate the integral on the lhs

wz)y = [ 2p(z)csc (z) zdz + ¢

Solve for y

_ J2p(x) csc(z)zdz+-c1
¥= u(z)

Substitute pu(z) = sin (x)

[ 2csc(z)zsin(z)dz+cy
y= sin(z)

Evaluate the integrals on the rhs

_ z24a

y= sin(zx)
Simplify
y = csc () (2% + ¢1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

Ldsolve(diff(y(x),x)+y(x)*cot(x)=2*x*csc(x),y(x), singsol=all) J

y(z) = csc(z) (2 + 1)

v/ Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 14

LDSolve[y'[x]+y[x]*Cot[x]==2*x*Csc[x],y[x],x,IncludeSingularSolutions -> True]J

y(z) = (2* + c1) cse(x)
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4.6 problem 2(f)

4.6.1 Solving aslinearode . . . .. ... ... ... ... ... ...,
4.6.2 Solving as first order ode lie symmetry lookup ode . . . . ... 38T
4.6.3 Solvingasexactode . .. ... ... .. ... ... . ......
4.6.4 Maple step by step solution . . . . . ... ... ... ..., 390

Internal problem ID [3113]
Internal file name [OUTPUT/2605_Sunday_June_05_2022_03_22_09_AM_5462670/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, section 11, page 49

Problem number: 2(f).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

2y —zy = 2°

4.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)

Where here
2
p(z) = Tz
q(z) = -2’
Hence the ode is
I 2_?/ — _x2
T
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The integrating factor u is

The ode becomes

Integrating gives

Dividing both sides by the integrating factor u = x% results in
y=cx® — 1’
which simplifies to
y=x*(—z+c1)

Summary
The solution(s) found are the following

y=a(-z+c) 1)
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Figure 89: Slope field plot

Verification of solutions

y=z*(—z+c1)

Verified OK.

4.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

—z3+ 2y

y =

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

N + w(ny - €z) - w2€y —wg€ — Wy

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 46: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = 2

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Satw(z,y)Sy (2)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—23 4+ 2y
wlw,y) = =
Evaluating all the partial derivatives gives
R, =1
R, =0
2y
Sy = 3
1
Sy = o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
Sl | 2A
iR (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

R~ !
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S(R)=—-R+ ¢ 4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
Y
2 —Tr+c
Which simplifies to
% =—-r+ac
Which gives
y = a*(—z +c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates
. (R,S)
transformation
dy _ —2®+2y s _ _q
dx T dR
I IR AREEER, R e L N N N
N YA RERREE] A R A R e e e Y
I AR ER R R S N
I AR RN R R A N
LL&&&A@&&T?ﬁ\&&&L \\\\\me\\\\\\\\\\\\
RIS sirrf\xsxx R e N R R
I I AR RN R A N
N I e R R R N N O e e e e Y
R R R R RIS R=zx OO NN NN N NN
b LBV VNN NN VL A e
[ A IR Y R R AN W HANE N N W
AR R S == AR R R R R A R
bbby v N2 vV b x2 NNV RN VRN NN
LL%&&\/L%Lxxlsltt R O D D N e e T
AN S IR R A N R N A e e e N
NI EEEE RN R R A N
Py bbb N—=A bbb vy bl R R
L St A - & I T "V s A D R R T A R N
N e I EEE RN R R A N
AN AR I EEEEERR A R N N
Summary
The solution(s) found are the following
2
y=2z*(—x+c1) (1)
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Figure 90: Slope field plot

Verification of solutions

y=z*(—z+c1)

Verified OK.

4.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

)
=]
]
I y___m
= =S
i I
Sy +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—z)dy = (2° — 2y) dz
(—2® + 2y) dz +(—z)dy = 0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —2* + 2y
N(z,y) = —x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 3
T T (= 9
Oy 8y( 7+ 2y)
And
N _ 0
oxr Ox
=-1

386



Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

oM ON
A= (a—y‘a—x)

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ads
_ -t
The result of integrating gives
= 3@
_ 1
73

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

=3 (—:c3 + 2y)
—z3 4+ 2y

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

am) ()
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The following equations are now set up to solve for the function ¢(z,y)

0p —
e M (1)
0p —
oy = N (2)
Integrating (1) w.r.t. z gives
@ dz = /de
ox
o . —z3 4+ 2y
b=—z— 5+ (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 1

=1 (@)
But equation (2) says that g—‘z = ——. Therefore equation (4) becomes
1 1
—;=—a?+f'(y) (5)

Solving equation (5) for f'(y) gives
flly) =0
Therefore
fy)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
(ZS = —T — % + C1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

_ Y
L =—-T— —
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1)

Y= —(x+cl)z2
y=—(z+c)2’

B T S S S
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\\\\ — 7 7 \ NN SN ——
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The solution(s) found are the following

The solution becomes

Summary
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T T
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X

y=—(z+c) z?
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Figure 91: Slope field plot

Verification of solutions

Verified OK.



4.6.4 Maple step by step solution

Let’s solve
2y —zy = 23
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y/ — % _ xz
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 2y _ 2
y—E=-z

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v — %) = —p(z) 22

o Assume the lhs of the ODE is the total derivative - (u(z)y)
p) (v — %) = p(x)y + ple)y

o  Isolate p/(x)

p(z) = —242)

° Solve to find the integrating factor
p(z) = 5

° Integrate both sides with respect to x

il (%(,u(m) y)) dz = [ —p(z) z?dz + ¢
° Evaluate the integral on the lhs

we)y = [ () a*da + o

° Solve for y
_ [ —p(z)z?dztcr
Y= "

° Substitute p(z) = m%
y=2*([(-1)dz+c)

° Evaluate the integrals on the rhs

y=2*(-z+c1)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve((2*y(x)-x“3)=x*diff(y(x),x),y(x), singsol=all)

y(z) = (a1 — ) 2

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 15

LDSolve[(2*y[x]-x‘3)==x*y'[x],y[x],x,IncludeSingularSolutions -> Truel

y(z) = 2*(—x + c1)
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5.1 problem 2
5.1.1 Solving as first order ode lie symmetry calculated ode . . . . . . 393]
5.1.2 Solvingasexactode . .. ... ... ... ... ... ... ... 398]

Internal problem ID [3114]
Internal file name [OUTPUT/2606_Sunday_June_05_2022_03_22_11_AM_87162369/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, [_Abel, “2nd type,
class B"]11]

(—yz+1)y —y* =0

5.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

2

v= _J:y -1
Yy =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

g = zas + yas +a (1E)
1 = xby + ybs + by (2E)
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Where the unknown coeflicients are

{a'la aq, as, bl) b2, b3}

Substituting equations (1E,2E) and w into (A) gives

y%(bs — ay) B yias B y3(zaz + yas + a;)
-1 (ay—1) (zy — 1)° (5E)

2y s >
— (- + Ty + ybs + by) = 0
( 2y —1 (xy_l)Q (zbs + ybs + b1)

by —

Putting the above in normal form gives

2229%by — 2ytas + x y?b; — yPa; — dxyby — y?as — y?bz — 2yby + by

: =0
(zy — 1)

Setting the numerator to zero gives
22%1%by — 2ytas + T y?by — yPa; — dwyby — y?ay — y?bs —2yby + b, =0  (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =2}
The above PDE (6E) now becomes
—2a3v;5 + 2020202 — a V5 4 biv1vs — agvs — 4byv1vy — bavi — 2b1vy + by =0 (TE)
Collecting the above on the terms v; introduced, and these are
{vi, v2}
Equation (7E) now becomes

2b2’l)%’l}% + blvlvg — 4b2’01’02 - 2(1,31};L - alvg’ + (—a2 - b3) ’U% - 2b1U2 + b2 =0 (SE)
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Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

by =0

—a1 =0
—2a3 =0
—2b; =0
—4by =0
2by =0
—ay—b3=0

Solving the above equations for the unknowns gives

a; =0
as = —bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=z
n=y

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

o ()i

Y
zy —1

£=0

The next step is to determine the canonical coordinates R, .S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =18 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==zx
S is found from
5= [ La
n
1
= / W
zy—1

Which results in
S§=—-zy+In(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

_ Y
Evaluating all the partial derivatives gives
R,=1
R,=0

Sw =Y

1

Sy=—c+—

! y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

=0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—yz+In(y) =a
Which simplifies to

—yz+In(y) =c
Which gives

y=¢e" LambertW(—e®1z)+cy

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . )
.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

dy _ _ ¢ a5 _
dr —  zy-1 dR —

A7 7220 HE LV VYN NN NN
AZZ27272 70 HE VYV VNN NN N
AAZZZ27 P LV VN N NN N 4
///////f;;;iit\\\\\\
AAAAAS NN N N NN .
/v/////}éff £V N N N e S(R]
O 4 NN RO N 2
»»»»/ﬂ////f$x\\\\\x\
iiiﬁiiiiiiiiilil)’?:: R==x
B T S s i 7
—w—wwaN\| AT —
-~~~ NN ) {7 /‘//"/"/Vx/‘?»/v/v/» S .'L'y+].n (y)
S~ NN\ Y L%f/"//"/’/'///v/v S—
SN A e
~NNaNNNNNNY NP A S A
SNSNNSNNNNNV PP Ao
SNMNNNNNNN WP PP -
SNSNNNNNNNAV AN
SNNNNNNN NP r A
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Summary
The solution(s) found are the following

y=e" LambertW(—e€lz)+c1 (1)
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Figure 92: Slope field plot

Verification of solutions

y=e" LambertW(—e€lz)+c1

Verified OK.

5.1.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dz
We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

M(z,y) + N(z,y) o= =0 (A)

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—zy+1)dy = (v*) dz
(=y*) dz+(—zy+1)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y*
N(z,y) = —zy+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 9
By oy (=v%)

399



And

ON 0
o~ o WY

=Y

Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A 1 /0M ON
~ N\oy Oz
1
- ((=2y) = (=
s 1((=2y) = (=)
__ Y
zy —1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

po (20

T M\ oz Oy

— (0 - (-2)
_ 1

oy

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be yu. Then

p= e/ Bdy
— oy
The result of integrating gives
p=e" In(y)
1
Ty

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.
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And

N =uN

1
=—(—zy+1
m )

—zy+1
Y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N%=0

dz

—zy+1\dy
(o) + (FEE) o

The following equations are now set up to solve for the function ¢(z,y)

0p —

g—x =M (1)
6 _~

oy - (2)

Integrating (1) w.r.t. = gives
@ dx = / M dx
ox
oo .
%dx = / —ydx
¢=—zy+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
oy~ o Q) (4)

But equation (2) says that g—i = iytl Therefore equation (4) becomes

‘“;* L ot rw) (5)
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Solving equation (5) for f'(y) gives
1
I = —
Fw) =7

Integrating the above w.r.t y gives

/f’(y) dy=/(§) dy
fy)=In(y) +a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=—-zy+In(y)+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

¢ =—zy+1n(y)

The solution becomes

y=e" LambertW(—e€lz)+c1

Summary
The solution(s) found are the following

y=e" LambertW(—e€lz)+c1 (1)
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Verification of solutions

Verified OK.
Maple trace

Figure 93: Slope field plot

y=e" LambertW(—e€lz)+c1

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful
<- inverse linear successful"
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve((1—x*y(x))*diff(y(x),x)=y(x)‘2,y(x), singsol=all)

_ LambertW (—ze™*)
T

y(z) =

v/ Solution by Mathematica
Time used: 2.155 (sec). Leaf size: 25

LDSolve[(l-x*y[x])*y'[x]==y[x]“2,y[x],x,IncludeSingularSolutions -> Truel

W(—e “x)
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5.2 problem 3
5.2.1 Solving as homogeneousTypeMapleCode . . . . . . .. ... .. 405
5.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 408]

Internal problem ID [3115]
Internal file name [OUTPUT/2607_Sunday_June_05_2022_03_22_14_AM_19060358/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A°]]

3y+ 2y —3z+5)y =—-1-2z

5.2.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z then the above is transformed to new ode in Y (X)

iY(X) _ 2X+230+3Y(X) 43y +1
dX 2V (X) 42y —3X —3zp+5
Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in
Ty = 1
Yo=—1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d _ 22X +3Y(X)
Y (X)-3X
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In canonical form, the ODE is

Y'=F(X,Y)
2X +3Y

=T -sx @

An ode of the form Y’ = % is called homogeneous if the functions M (X,Y’) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function

f(X,Y) is homogeneous of order n if
fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = 2X + 3Y and N = —2Y + 3X are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y =uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du —3u — 2
x> T a3
du s~ uX)
dx X
Or —3u(X)—2
iu(X) _ 2uqzx)—3 — u(X) _0
dX X
Or p p
2 —
2(qu(X)> Xu(X) 3<qu(X)) X+2u(X)"+2=0
Or p
2+ X (2u(X) — 3) <d—Xu(X)) +2u(X)? =0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)

= f(X)g(u)
2(u® +1)
X (2u —3)
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Where f(X) = —2 and g(u) = L1 Integrating both sides gives

2u—

1 2
du=——dX
w2
2ui_il’» X
1 2
——du=/——dX
w2
/ Zui_il’) X

In (u® + 1) — 3arctan (u) = —2In (X) + ¢
The solution is
In (u(X)? +1) — 3arctan (u(X)) +2In(X) —c; =0

Now u in the above solution is replaced back by Y using u = % which results in the

solution \
Y (X) Y(X)
ln( 2 +1> — Jarctan (T +2In(X)—c2=0

Using the solution for Y'(X)

In (Yg?g) + 1) — 3arctan (%) +2In(X)—c=0

And replacing back terms in the above solution using

Y=y+y
XI.’L'+.’L'0

Y=9y—-1
X=z+1

Then the solution in y becomes

1) 1
In (EZH_ 1;2 + 1) — 3arctan (i1> +2In(z—-1)—c=0
T —

Summary
The solution(s) found are the following

(y+1)* y+1 3
111((36_1)24—1) — 3arctan <w_1)+21n(:c—1)—c2_0 (1)
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Figure 94: Slope field plot

Verification of solutions

1)? 1
In M—i—l — 3arctan y+ +2In(x—1)—c2=0
(x—l)2 z—1

Verified OK.

5.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

,_ 2x+3y+1
2y —3z+5

Y =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — w?Ey — wef —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala az, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(2z+3y+1) (b3 —ax) (2z+3y+ 1)® as

bo —
? 2y —3x+5 (2y — 3z + 5)
_(_ 2 _3(2w+3y+1))(m tyast a) (5E)
2y—3c+5 (2y—3z+5°%) - ~ o
3 4x+6y—|—2)
(= xbs +ybs +b1) =0
(2y—3x—|—5 (2y—3x—+—5)2 ( 2 T Yb3 1)

Putting the above in normal form gives

_6m2a2 + 4z2a3 + 422by — 62%b3 — 8zyas + 12zyas + 12xyby + Sxybs — 6y%as — 4y?as — 4y>by + 6y%bs —
(

=0
Setting the numerator to zero gives

—62%ay — 4x2a5 — 4x°by + 62°b3 + 8xyay — 12xyas — 12xyby — 8xybs + 63°a, (6E)
+ 4y2a3 + 4y2b2 — 6y2b3 + 20zas — 4xas — 13xby — 17xby — Txb3 4+ 13ya,
+ 17ya2 + 7ya3 -+ 20yb2 — 4yb3 + 13(1,1 + 5(12 — as -+ 13b1 -+ 25b2 - 5b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}

The above PDE (6E) now becomes

—6a2vf + 8asv1ve + 6@1}% — 4a3v% — 12a3v1v5 + 4a3v§ — 4b2vf
— 12b2’01’02 + 4b2’U§ + 6b3’U% - 8b3’U1’Uz - 6b3’U% + 13(11’1)2
+ 20&2’01 + 17a2v2 - 4a3v1 + 70/3’02 - ].3b1’01 - 17b2’01 + 20b2’l)2
- 7b3’01 - 4b3’l)2 + 13&1 + 5a2 — as + 13b1 + 25b2 - 5b3 =0

(7E)
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Collecting the above on the terms v; introduced, and these are
{’Ul, UZ}

Equation (7E) now becomes

(—6a2 - 4a3 - 4b2 + 6b3) ’U% + (8@2 — 120,3 - 12b2 - 8b3) V1V (SE)
+ (20ay — 4az — 13b; — 17by — Ths) vy + (6ay + 4as + 4by — 6b3) v3
+ (13&1 + 17&2 + 7a3 + 20b2 — 4b3) Vo + 13(11 + 5&2 —az+ 13b1 + 25b2 - 5b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve
—6ay — 4a3 — 4by +6b3 =0
6as + 4asz + 4by — 6b5 =0
8as — 12a3 — 12by — 8b3 =0
13a; + 17ao + Tas + 20b; — 4b3 = 0
20a9 — 4as3 — 13b; — 17b; — 7b3 =0
13a; + bag — a3z + 13b; + 25by — bb3 =0

Solving the above equations for the unknowns gives

a; = —bs — by
as = b3
as3 = —by

by = b3 — bo
by = by

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x—-1
n=y+1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—w(zy)é
2r+3y+1
= 1— (22T - -1
v+ <2y—3x+5>(x )
—2x2 — 2% + 4z — 4y — 4
—2y+3x—5

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _
3 n

The above comes from the requirements that (ﬁ a% + 77(%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

n

1
_/ —2x2—2y2+4x—4y—4dy

—2y+3z—5

S is found from

Which results in

In (z2 +y2 — 2z + 2y + 2) N (—3z + 3) arctan (;ﬁg)

2 2z — 2
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_2z4+3y+1

o) = oy s

Evaluating all the partial derivatives gives

R, =1
R,=0
B 2r+3y+1
T 22422 — 4z 44y + 4
2y —3z+5

VT 002+ 22 — Az + 4y + 4
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

iR 0 (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y2+22+2y—2z+2) 3arctan (L)
— — C].
2 2
Which simplifies to
In(y? + 2% + 2y — 2z +2)  3arctan (¥3)

2 2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
N . _ ] ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R,S)

transformation ’

dy _ _ 2a+3y+1 4> =0
dr —  2y—3z+5 i

S S L T U A W A
e e S T A
BESERRANH NN RSB B ’
ﬂﬂ»‘\\\\\\ttitiii;;;
»»»»» - Na N\ )
BT A NN S R -
v &N NN L PP ’
PSR SN NNV I S
PSS, NN R B R =
sy Dl S I / Vv 2 2 - -~
//}///z///»»f};{/ﬁ// S lIl(.’E +y _2134'23 4 4 2
R R e e - 2
///////ft%?\\‘*»»/// =27
AFPAAZILEETE N e -
VA A R
22222 P Y N N e
AR R RS NN ”
A Y NNV
A A A A A R R A
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Summary
The solution(s) found are the following

In(y*+a? +2y—2c+2) 3arctan (15)

2 2 .
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— s~ \\\\\\\\1\1 \ ‘V 1 I /
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B e e e S
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Figure 95: Slope field plot

Verification of solutions

In(y*+a? +2y —2c+2) 3arctan (15)
J— — cl
2 2

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N\ J

v/ Solution by Maple
Time used: 0.046 (sec). Leaf size: 31

Ldsolve((2*x+3*y(x)+1)+(2*y(x)—3*x+5)*diff (y(x),x)=0,y(x), singsol=all) J

y(z) = —1 — tan (RootOf (3_Z+1In (sec (_2)%) +2In(z — 1) +2¢1)) (z — 1)

v Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 68

LDSolve[(2*x+3*y[x]+1)+(2*y[x]-3*x+5)*y'[x]== ,y[x],x,IncludeSingularSolutionsJ—> True]

Solve {54 arctan (3y(x) +2z+ 1>

2y(z) —3z+5
4(z% 4+ y(z)? + 2y(z) — 2z + 2)
13(x — 1)2

+ 181log ( > + 36log(x — 1) 4+ 13¢; =0, y(x)}
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5.3 problem 4
5.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 415

Internal problem ID [3116]
Internal file name [OUTPUT/2608_Sunday_June_05_2022_03_22_18_AM_69094642/index . tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

zy —VyP+22=0

5.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as
,_ VT
B x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + ay (1E)
n = xby + ybs + by (2E)

Where the unknown coeflicients are

{(11, a2, as, bl) b2, b3}
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Substituting equations (1E,2E) and w into (A) gives

Vel +y?(bs—a) (2 +y*)as

by T 22 (5E)
1 z? + y? y(wby + ybs + by)
-~ - +yas + a1) — =0
( 2 + 92 x2 ) (zaz +yas + a1) zv/x? + y?

Putting the above in normal form gives

V2?2 2%a3 — bpy/2% + 2 2% + Va? + g2 yPaz + 3Pay — 203 + 2Pyby — yas + 2yb — yPa

Va? 4+ y?z?
=0

Setting the numerator to zero gives

—Vz2 4+ y25%a3 + bo/22 + Y2 2° — /22 + y2 ylas (6E)

— z3ay + 233 — 2%yby + y3as — xyby +9y%a1 =0

Simplifying the above gives

z(z® +y°) bs + (2° + ¥*) yas — V22 + y® 2’as (6E)

+ bov/32 + 2 2 — /22 + 2 yPaz — 7Pay — 7Pyas
— z?yby — £ y%bs + (z2 + y2) ay — z?a; — xyb, =0

Since the PDE has radicals, simplifying gives

—Vz2 4+ y?2z’az + bo/2? + Y2 2° — /22 + y2 ylas

— z3ay + 233 — 2%yby + y2as — 2yby +9%a1 =0
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{w, Yy, Vo' + y2}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{x=v1,y=vz,vw2+y2=vg}
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The above PDE (6E) now becomes
—viay — v3viaz + viaz — v3vV3az — Viveby + bovsv? + vibs + via; — viveby =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1,v2,v3}
Equation (7E) now becomes
(bs — ag) V3 — vivgby + (—as3 + by) vivs — v1veby + vias — vsvias +via; =0 (8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
az3 =0
—a3z3 =0
-b=0
—by, =0
—a3+by=0
b3 —a; =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

(ZE)e

=y—Vai+y?
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n

1
= [ ————d
/y— T Y

S is found from

Which results in
¥ e+ In(y+VeT )
2x2 2x2 2
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S:

ﬁ — Sx +UJ(.’L’,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(x’ y) = T
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Evaluating all the partial derivatives gives
R,=1
R,=0
(=2 = 49°) VT + 0 = 30 — 4y’

Sy =—

WG (y+ VAT F i) 2
o _WETP A4y
o

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s 3(yVa?+ ¢+ +y°)
dR 2327+ ¢ (y+ V22 + 47)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ 3
dR ~ 2R

(24)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

3In(R)

S(R) = ===

+a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(y+vy>+22) 22 —y(y + V¥ + 2?) _3In(z)

212 - 2 “
Which simplifies to
—In(y+vy*+2%)2® —y(y+vy*+27)  3n(z) .
22 B 2 !
Which gives
$2(La’mbertw (x4e_461+1) - 1) \/z2 LambertV&(m‘le_‘lcl‘*l)

y= 2
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. ) ) . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ VaP+y? as _ _ 3
dz x d 2R
NNNANNNNNV Mttt r 2 rrr s v 222 AN N
NNYNNNNNNNV YA ettt A I N
NYNNNNNNNSH PSS ity s IINR RN
NNNNNNNNNU PP AAAA S wrrm m AL NN N e
NNNNNNNNN W AR »///wm/’f\,\\\\\\\\m
\\\xxxkﬁxiw/‘m/m«/ﬁ oo n P2 1 RN R
SNSNNNNNNNN A2 A A wrm w2 A A S AT NN N e
SNONNNNNNNN P A A A B o b B I NN
SONNNNNNNNNE A A S A R==zx B ettt N B I 1NN
\\\\\\g\\\/‘//g///:x// »)/v/////;gi\\\\\\\\\
SN NSNS NSNS A F A _ 2 2\ ool S TN e
SNNNNNNSNNN P 2SS A S = In (y + v2* + ) A R SR
NNNNNNNNNN AT A - 2»»»//;/’/7?&\\\\\\\\»
\\\\\\\\L{Mf/////// »/u/////f_%x\\\\\\\\\
SNANNNNNNNNE p A2 s a s RS E ol LNl | IENANANCRICCR
NNNNNNNNNWE AP A wrmm 7 AR NN N e
SNNNNNNN VA b r 2 ar sy rrm e 2 2 LN NN
NNNNNNNN VYt p 222y PRSP EEIYY S 1IN RN
NNNNNANNNV At rp 2 r s R O | FENNCCICICICR
NNNNNNANNV WP AT wrmmm A NN N e
Summary

The solution(s) found are the following

z?(LambertW (zte~41+1) — 1) \/

1

z2 LambertW (z4e—4c1+1)

y:

2
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Figure 96: Slope field plot

Verification of solutions

1
z2 LambertW (zle—4c1+1)

z?(LambertW (zte 41 +1) — 1) \/

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying homogeneous types:

trying homogeneous G

1st order, trying the canonical coordinates of the invariance group

<- 1st order, canonical coordinates successful

<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 51

Ldsolve(x*diff(y(x),x)=sqrt(x“2+y(x)‘2),y(x), singsol=all)

y(@) +y(@) /22 +y (2)° + (111 (y(x) /2 4y (x)2> — ¢ -3 @)) 22

2 =0

v/ Solution by Mathematica
Time used: 0.313 (sec). Leaf size: 66

kDSolve [x*y' [x]==Sqrt [x~2+y[x]~2],y[x] ,x,IncludeSingularSolutions -> Truel

|/ r@? y(@)
1 y@)< s i z)_bg< y(z)?

Solve 5 o +1_y(x)> =log(z)+c1,y(z)

T T
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5.4 problem 5
5.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 423]

Internal problem ID [3117]
Internal file name [OUTPUT/2609_Sunday_June_05_2022_03_22_21_AM_13020875/index. tex]|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class G°], _rational, [_Abel, ~2nd type’,
class B-1]]

3

' — (z* —yz)y' =0

5.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

) y?

=Y G
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2€y - wx§ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ = zaz +yaz + a (1E)
n= .’Eb2 + yb3 + bl (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b y?(bs — ag) ylas
> z(—22+y) 22 (a2 2
y) x2(—a22+vy)
2 2
y 2y (5E)
— — xas + yas + a
(wQ (-2 +y) (—w2+y)2>( 2 T Yas 1)
2y y? )
— (- + by + ybs + by) = 0

Putting the above in normal form gives

2%by — 4xtyby + 223y%ay — 23Y%bs + 3x2ylas — 2z3yby + 3x2y?a; + 22%y%by — 2ytas + T y?b, — yiay

22 (22 — y)?

=0
Setting the numerator to zero gives

x50y — 4xyby + 223y ay — 23ybs + 32ylas — 223yby (6E)
+ 3z%y%a; + 22%y%by — 2ytas + v y?by —yla1 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{CB =0,y = UQ}

The above PDE (6E) now becomes

bov® + 2020303 + 3aszvivs — 4bovivy — bavdva + 3ayvivs (7E)
— 2a3v§ — 2b1vi‘vg + 2b2va§ — alfvg + b1v1v§ =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

bov® — 4byvivy + (2a9 — b3) v3v2 — 2bv3v, + 3asv?vd (8E)
+ (3a1 + 2bo) viv3 + byv1vs — 2a3vy — a1vs = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

by =0

—a; =0
—2a3 =0
3a3 =0
—2b; =0
—4by =0
3a; +2b; =0
2a; —b3 =0

Solving the above equations for the unknowns gives

a; =0
Qs = G
a3 =0
by=0
by =0
bz = 2a4

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n =2y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)¢ 2
- (i) @

_ 2z%y — 3y?
="y
§=0
The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S is found from

Which results in
In(—222+3y) In(y)
6 + 2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S=-—

ﬁ _ Satw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2

_ Y
CU(.’D, y) - x(_xQ +y)
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Evaluating all the partial derivatives gives

R, =1
R, =0
2z
Sy =————
622 — 9y
_ -y
Vo 232y — 32

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

a5 _ 1
dR ~ 3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = — 3 +a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In(—2z%+3y) In(y) In (z)

B 6 Ty T3 A

Which simplifies to

In(—2z2+3y) In(y) In (z)
B 6 Ty Ty A
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

e

dz z(—z2+y)
ISR N A R A et
R R R R R R A atatad
R N R IR R B atatatad
e——a—aa P S
ﬂﬂﬂ»\\ﬁ@f$ SR
AT VL
rt tf

——r—r—rr— s !

P e e

\
!
{
1
1
1
1
1
!

LI
=" =

e,

P e

R =
———s—s——a~a s

——e—s—a—aa N\

U N S S U

——a—sa s aa

%4
b
Y
4
'
'

“a
\
\
I
!
l
I
!

A
A oo ros
AA o s
fAA T
/ AT oo b
PAAA T s
PP A

R

S =

=T

6

In(—2z2+3
_In(=22%+3y) |

ds _
dR —

——>—>—n_ > > o > 7
B e e S
B T .
S |
- =
DGV
g
B e e S
B e e e

I Y

_ 1

3R

N e s>
N e —s——b
R
N e —b—s—5
N e —s——b
R
N e ——s—b
N e —s——>
A

N e —s——b

—»—»_—'z——a——v—a_‘—f/’/v A
> > > > > > v v A
B 5 0
v _v |
e e T
B 5 0
R =
——>—r——w—b > > v 7 f
Y 5 T

e L e

N \\s\z'\sﬁ.a{r—»ﬂ
N s s —epe—b—a—s—>
N e —b—s—5
N e —s——>
N Sw s —b—s—b
N e e —b—>—b
N e
N s —b—>
N e e bbb —b—>—5

N\ s —s—s—p

Summary

The solution(s) found are the following

In (—22? + 3y)

In (z)

6

. (y)

2 3
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Figure 97: Slope field plot
Verification of solutions
o2
_In( 2:2i + 3y) 4 lnéy) _ In (z) te

Verified OK.
Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature

trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:

trying homogeneous G

<- homogeneous successful”
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v/ Solution by Maple
Time used: 0.5 (sec). Leaf size: 211

Ldsolve(y(x)‘2=(x“3—x*y(x))*diff(y(x),x),y(x), singsol=all)

2
C1 (<—$3 + 8 — Ci’) ’ + Cl)

y(z) = 1
T (—x?’ + /28 — c*;’)
2 3

c1 <z\/§ (—x3 + \/xb — c{’) —iv3e + (—w?’ + /a8 — ci’) + 01)

y(z) = — :
2z (—x?’ + /26 — c:{’)
2 2
1 (—zx/g <—a:3 + /26 — ci‘) " +iv3a + (—x3 + /26 — c?) °

20 (~a% + /27—l

430



v/ Solution by Mathematica
Time used: 60.13 (sec). Leaf size: 820

kDSolve [y [x] ~2==(x"3-x*y [x])*y' [x],y[x],x,IncludeSingularSolutions -> True] J

93\ 12 (— cosh <3zl)) — z12ginh <34 ) + 226 cosh (38 > + 226 sinh (38 ) + \/:c6 (cosh (%

x6 cosh(361 >+w5 smh(Tl) 1

9i<\/§+i> 3\ 12 < cosh (32 )) — z12ginh (34 ) + 225 cosh (38 ) + 228 sinh (38 > + 4|z (cos]

z6 cosh( ) ~+28 sinh ( 38 )

91'(\/?7—1‘) 3\ 12 (— cosh (%)) — z12ginh (34 > + 226 cosh (38 ) + 226 sinh <38 ) + <C(

26 cosh ( 3% +26 sinh ( 3—21
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5.5 problem 6

Internal problem ID [3118]
Internal file name [OUTPUT/2610_Sunday_June_05_2022_03_22_25_AM_64609755/index. tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_rationall

Unable to solve or complete the solution.

¥ty — (y2x3—w)y’:—x2

Unable to determine ODE type.

432



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

trying exact

Looking for potential symmetries
trying inverse_Riccati

trying an equivalence to an Abel ODE

» —> Computing symmetries using: way

, —> Computing symmetries using: way

, —> Computing symmetries using: way

-> trying a symmetry pattern of the form
-> trying a symmetry pattern of the form
-> trying symmetry patterns of the forms

differential order: 1; looking for linear symmetries

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation

--- Trying Lie symmetry methods, 1st order ---

2
3
4

trying symmetry patterns for 1st order ODEs

[F(x)*G(y), 0]

[0, F(x)*G(y)]

[F(x),G(y)] and [G(y),F(x)]
[F(x),G(x)]

[F(y),G(y)]

[F(x)+G(y), 0]

[0, F(x)+G(y)]
[F(x),G(x)*y+H(x)]

-> trying a symmetry pattern of the form
-> trying a symmetry pattern of the form
-> trying a symmetry pattern of the form
-> trying a symmetry pattern of the form
-> trying a symmetry pattern of the form
-> trying a symmetry pattern of conformal type"

X Solution by Maple

-

Ldsolve((x“2+y(x)‘3+y(x))=(x“3*y(x)‘2-x)*diff(y(x),x),y(x), singsol=all)

| —

No solution found
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X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve [(x"2+y[x] "3+y[x])==(x"3*y[x] "2-x)*y' [x],y[x],x, IncludeSingularSolutionjs -> Truel

Not solved
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5.6 problem 8

5.6.1 Solving as linearode . . . . .. ... ... ... ... ... 435
5.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. [437
5.6.3 Solvingasexactode . . ... ... ... ... ... ....... 441]
5.6.4 Maple step by step solution . . . .. .. ... ... ... ..., 445

Internal problem ID [3119]
Internal file name [OUTPUT/2611_Sunday_June_05_2022_03_22_28_AM_67308557/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

zy +y=cos(z)z

5.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
y +p(z)y = q()

Where here

SR

p(z) =

q(z) = cos (z)
Hence the ode is

Y
/ —_ =
y + ;= cos (x)
The integrating factor y is
p=e I %dw

=X
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The ode becomes

L () = (1) (cos (@)

= (2y) = (@) (co5 (2))

d(zy) = (cos (z) z) dz
Integrating gives
Yy = /cos (x) zdx
zy = zsin (z) + cos (z) + ¢

Dividing both sides by the integrating factor yu = x results in

_ xsin(z) + cos () Lo

)
z T

which simplifies to

) = zsin (z) + cos (z) + ¢

T

Summary
The solution(s) found are the following

_ zsin(z) + cos(x) + ¢
T

436



H—==7771T 1111V VYNV
=777 701 VNN NN NN
~—==77 7111 P VNVNNNN NN

H~==77771T1T1 1 VNVNNNNNNN
N~—==77 700 VNNNNNNNN
SN~==7 7711 VNNNNNNN NN

1_\\\\_A////H\,\\\\\\\\\
NNS== 7 LN SN

NNN=—=~/ 7 [ [ N =——==>~N\\\

o NNNN—=—= 7 [ — 77—~ N\
y(x) NN\N\N~—=> 77—~ ] 7 7~~~ N\ \
NANNNN————\ [ /7 7 7=\
NNNNNSN==N\ [ [/ /7=~
NONNNNN

/
!
!
f
f
f
f
f

PPl

N\
\
\
\
\
\
\

PP LV
P Yl
S
PP V4

— |

\
|
| 1
|1
b
V]
b

e e S NG G

|
N
1
1o r sy s

0 ] 2 3

I
w
| 4
\S)
(.

Figure 98: Slope field plot

Verification of solutions

zsin (z) + cos (z) + ¢
T

y:

Verified OK.

5.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

J = —y+cos(z)x
x
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — Wny —wef —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 49: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
wwy) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=xz

S is found from

U
<

o)
Il
—

8l = 3|~

Il
—

U
<

Which results in
S=uxy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—y +cos(z)z
T

w(z,y) =

Evaluating all the partial derivatives gives

R, =1
R,=0
Se =y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

dsS
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

= cos (z) z (2A)

=cos(R)R
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =cos(R)+sin(R)R+ ¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yx = zsin (z) + cos (z) + ¢
Which simplifies to

yx = zsin (z) + cos (z) + ¢
Which gives

zsin (z) + cos (z) + ¢
T

y:

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy __ —y+cos(z)x as _

B = TRRs 2 =cos(R)R
pAFA2 2P HE VLV VY VY VN NAP PP mw~m sV VNN
e i B T R S R O e NAPP P m~wa=mr oV NN
Nttt A A & B R R NAPS S e N VN
e e A B R I R R NAP PP mwn=m sV VNN
//*** 6f?&¥\\&\\\\\ \/fff?@a\\”/”\\¥¥¥\/
A r—emas PN YN NN N N NS D B N
G S A A R R NAPL PP VY VNS
e S A R R R NAPP P~ rmN NV VNN
e A R R e R— N A A e e e N R
B A S e e z NAPL LA e r N N L VNS
S T N e e SN NENEEEESS e RN
R R R R Tk g S=uxy A Attt - I TN
D B T N b B e e e NAP PP mwmrm NV VNN
w\\\\\\\x%xrf//»\\»»/ NS P A L L AN
=SNNNYNNNNNG S Ay s NAPL P sy L NN
~NNNYNNNN NP S o NAPL S Ny L N NS
SNNNYNYNNN NP o NAPL P s rm NV Y VNS
D T T T O O e B A e e AN R A i S e A R R N
I O R R N A L I A A A e NAPL S ey L N NS
SNNNANNNN Y Wt P A s NAPL P ey L NN

Summary

The solution(s) found are the following

_ zsin(z) +cos(z) + ¢
x
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Figure 99: Slope field plot

Verification of solutions

zsin (z) + cos (z) + ¢
T

y:

Verified OK.

5.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form
d
M(z,y) + N(z,y) 52 =0 (8)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

Hence 8(15 3(;3 p
ay
oz 8y dr (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (—y +cos (z) z) dz
(y —cos(z)z)dz+(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y — cos (z) x
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
By 8_y(y — cos (z) z)
=1
And
ON 0
o~ 2™
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8p
o= M W)
0p

Integrating (1) w.r.t. z gives
% dzr = / M dzx
0x

—dx=/y—cos(x)xda:
¢ = zy — cos (z) — zsin (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 _ /
a—y—w+f(y) (4)

But equation (2) says that g—i = z. Therefore equation (4) becomes

z=z+ f(y) (5)
Solving equation (5) for f'(y) gives
fly)=0
Therefore
fy)=a

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =zy —cos(z) —zsin(z) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

¢ = xy — cos (z) — x sin (z)
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The solution becomes
_ xsin(z) + cos(x) + ¢
T

Summary
The solution(s) found are the following

_ xsin(z) + cos(x) + ¢
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Figure 100: Slope field plot

Verification of solutions

_ xsin(z) + cos(x) +c1
T

Verified OK.

444



5.6.4 Maple step by step solution

Let’s solve
zy +y=cos(z)z
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
Yy =—¥ 4 cos(x)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y + £ =cos(x)
° The ODE is linear; multiply by an integrating factor u(x)
() (v + ) = p(x) cos (z)
o Assume the lhs of the ODE is the total derivative - (u(z)y)
p(@) (v +2) = w(x)y + p()y’
o  Isolate p/(x)

p(z) =42

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x

[ (E(u(z)y)) de = [ p(z) cos (z) dz + ¢

° Evaluate the integral on the lhs

w@)y = [ p(z)cos(z)dx + ¢
° Solve for y

[ p(=) cos(z)dz+cy
y= p()

) Substitute u(z) = x

y = fcos(m)xacdw—f-cl

° Evaluate the integrals on the rhs

__ zsin(z)+cos(z)+c1
z
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve(x*diff(y(x),x)+y(x)=x*cos(x),y(x), singsol=all)

_ xsin(z) + cos (z) + ¢
T

y(z)

v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 18

LDSolve[x*y'[x]+y[x]==x*Cos[x],y[x],x,IncludeSingularSolutions -> True]

zsin(z) + cos(z) + ¢;
T

y(z) —
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5.7 problem 9

5.7.1 Solving as homogeneousTypeD2ode . . ... ... ... .... 447
5.7.2  Solving as first order ode lie symmetry calculated ode . . . . . . 449
5.7.3 Solvingasexactode . .. ... ... .. ... ... ....... 454

Internal problem ID [3120]
Internal file name [OUTPUT/2612_Sunday_June_05_2022_03_22_30_AM_99694529/index . tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 9.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "homoge-
neousTypeD2", "first_ order_ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class B~ 1]

(yx_w2)y/_y2:0

5.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(u(z) 2% — 2%) (v (z) 2 + u(z)) — u(z)’2* =0

In canonical form the ODE is

u' = F(z,u)
= f(x)g(w)

z(u—1)
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Where f(z) = L and g(u) = -%;. Integrating both sides gives

T

1 1
Tduz—dx
u—1 z

1 1
Tdu:/—dzc
u—1 z

u—In(u) =In(z)+c

The solution is
u(z) —In(u(z)) —In(z) —c2 =0

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

%—ln<%)—ln(x)—c2=0
%—ln<%)—ln(x)—cz=0

Summary
The solution(s) found are the following

Y <g>—ln(:c)—02: (1)

T i
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SOSSNNNNN VLV )
SSOSOSONNNN VL b
ASSSSNNNNNV L VAN
=SSNV VNN
A R AR
s L AN S
****** R B B
AAAAAAAA \\ / NN s s
y(x) o T
~~~~~~ R TN e —
e T B R D
THmSSSNY ] ANS S
RAAMATEEEEEERR R
AR AR AR R
2NN TV NN S
AR EERRRARR R
VoV NNNNYNS
=3 TP VN NN
-3 -2 -1 0 1 2 3

Figure 101: Slope field plot
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Verification of solutions

%—ln(%)—ln(x)—62=0

Verified OK.

5.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

Ly

Y rw—o)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - &) — W2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + oz (1E)
1 = xbz + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

y2 (b3 — a2) — y4a3 N y2 y2 za as+a
by + z(y—x) x2(y—x)2 ( xz(y—$)+x(y—x)2)( o+yasz+ay) (5E)
— 2y . y? . _
<x(y—x) x(y_x)Q)( by +ybs+b1) =0

Putting the above in normal form gives

ztby — 22y2ay + 22y?bs — 2z y3as + 22%yb; — 2z a1 — v y?by + yias

2 =0
z? (—y + )
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Setting the numerator to zero gives
ztby — 2%y%ay + 2%Y%bs — 22 y3as + 22%yb, — 2z y2a1 — x y?by + y3a; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y =}
The above PDE (6E) now becomes
—a0202 — 2030105 + byv] + bviva — 2a,v1v2 + a1v3 4 2b1v2v; — bivvi =0 (TE)
Collecting the above on the terms v; introduced, and these are
{v1, v2}
Equation (7E) now becomes
bovy + (b3 — ag) viva + 2b1vivy — 2030105 + (—2a; — by) v1v5 + ayvs =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

b, =0

—2a3 =0
2b; =0
—2a1—b; =0
b3 —ay; =0

Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
by =0
bs = bs
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

zy
—-yt+z
=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that (5 2 4 n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S=/—dy
n
. 1

- / Ty dy

S=ln(y) -2

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wiz,y) = —F—
z(y — =)
Evaluating all the partial derivatives gives
R, =1
R,=0
Y
Sy = o
S, = -yt+z
zy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0 (2A)

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y)z—y _
—_— =
x
Which simplifies to
In(y)z—y _
&l Y = cl
x

Which gives

y = e— LambertW(—%)—i—cl
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . ) )
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _y° s _
z = 2ly—2) dR =
SSNNNNNN L PPt
~~aNaNNNN VPt
~~ssaaNNNN V4t PRt by 4
SRR A
—a e~ ~aSa Na Na y
w»\\\,\.ﬂ@\i I I NN S(R]
‘*ﬂ‘k\»\‘\\\t x]; )): f N Y N e 2,
ﬂﬂﬂﬂﬂﬂ ~Sa A e
ﬂﬂﬂﬂﬂﬂﬂ —a ) f N b —b—b—5—b R =2
4«,4«,4«,4«,4«,4«,'4«,-»—»\ — b ——b
::3::332“?27:\3%?*1** _ In(y)z—y = =7 T
——s—s—aa N\ f f x\\\s\s ﬂﬂﬂﬂﬂ T
I f_%; N -
NSNNY P AV N N e
N I IR R
[ A A A A = & R N 4
[ O A A A A R TR Y N PN
IR EEEIIEERERRE RSO
Summary

The solution(s) found are the following

x

y = e— LambertW(— el )+c1
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Figure 102: Slope field plot

Verification of solutions

y = e— LambertW (— %) +c1

Verified OK.

5.7.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,y) + N(z,) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

d
Hence 06 06 d
o¢ 994y _
Or Oydx 0 (B)
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(=2 + zy) dy = (v°) dz
(—y?)dz+(—2® +zy)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —y*

N(z,y) = -2+ 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _oN
oy Oz
Using result found above gives
oM 0
= ()
9y Oy
And
ON 0 9
o " asl )
=-2r+y
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Since %—J‘; # %, then the ODE is not exact. By inspection ﬁ is an integrating factor.
Therefore by multiplying M = —y? and N = yz — z? by this integrating factor the ode
becomes exact. The new M, N are

n--t
N_¥® ; x?
z2y
To solve an ode of the form
M(z,) + N(z,) 2 =0 *)

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d

Hence 06 06 d
vy _
ox  Oydr 0 (B)
Comparing (A,B) shows that

9¢ _
or
0
oy =V
2¢ _ 824

But since 520y = gz

then for the above to be valid, we require that

oM  ON

By Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9; g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
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Therefore

2
Y —x° + 2y
(-%) dx+( iy ) dy = (24)
Comparing (1A) and (2A) shows that

Y

M(z,y) =~
—z? + 1y
N =
(z,y) 7y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN

oy Oz
Using result found above gives

oM _ 9 (-2)
oy Oy\ a2
1

T2

And
ON _ 0 (' +ay
oxr Oz x2y
1
T2

Since %}Vf = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)

99

=M 1

9 (1)

09

2 =N 2

5 e

Integrating (1) w.r.t. z gives

0
%dx=/de
0 Yy
6="2+f() (3)

457



Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 1
4
ERr AL (4)
But equation (2) says that a¢ = _””TJ;’”'” Therefore equation (4) becomes
—x*+zy 1
gz )
2 () (5)
Solving equation (5) for f’(y) gives
f'ly)=—-
W) =—

Integrating the above w.r.t y gives

from=] (1)

fy)=-In(y) +a

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢=%—mwﬂw1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

_Y_
Cl—x ln(y)

The solution becomes

y = e— LambertW(— el )—cl

Summary
The solution(s) found are the following

T

y = e LambertW(— el )—cl (1)
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Verification of solutions

Verified OK.
Maple trace
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Figure 103: Slope field plot

y = e— LambertW(—%) —c1

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying

trying homogeneous D

homogeneous types:

<- homogeneous successful”

459




v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

Ldsolve((x*y(x)-x“2)*diff (y(x),x)=y(x)"2,y(x), singsol=all) J

y(z) = —z LambertW (_e; )

v Solution by Mathematica
Time used: 2.286 (sec). Leaf size: 25

LDSolve [(x*y[x]-x"2)*y' [x]==y[x]~2,y[x],x,IncludeSingularSolutions -> True] J

y(z) = —aW (—e_q)

y(x) =0
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5.8 problem 10
5.8.1 Solvingasexactode . . ... ... ... ... ... .. ... 461
5.8.2 Maple step by step solution . . . . . ... ... 464

Internal problem ID [3121]
Internal file name [OUTPUT/2613_Sunday_June_05_2022_03_22_33_AM_29737813/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 10.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact, [_1st_order, ~_with_symmetry_[F(x),G(x)*xy+H(x)] 1]

(6" —3y*z?) v + e"y — 2zy° = 0

5.8.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) >= =0 (A)

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o¢

P M

o¢

3y N
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(ez — 3y2x2) dy = (—e”’y + 2z y3) dx
(—2zy° + €"y) dz+(e" — 3y°z*) dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —2zy° + ey
N(z,y) = e” — 3y’x?

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
=2 (=9 3 x
o 8y( zy’ +€y)
=e” — 62y’
And
ON 0, , 9 9
=e" — 6ry’
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
2 =N 2
o )
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Integrating (1) w.r.t. z gives

%dx:/de
or

%dx=/—2xy3+e”ydx
ox

¢ =y(—y’z> +¢°) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—j o~ 3% + y) (4)

But equation (2) says that g—‘z = e® — 3y?z?. Therefore equation (4) becomes
& — 3ot — o — 3y + £(y) )
Solving equation (5) for f'(y) gives

fly)=0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=y(-y’s° +e") + a1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

a =y(-y’z® + )

Summary
The solution(s) found are the following

y(—y2332 + e””) =c (1)
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Verification of solutions

Verified OK.

Figure 104: Slope field plot

y(—y’z’ + €)=

5.8.2 Maple step by step solution

Let’s solve
(e —3y’z?h)y' + ey — 2293 =0

° Highest derivative means the order of the ODE is 1
y/

O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function

F'(z,y)=0

o Compute derivative of lhs

Fi(z,y)+ (& F(,

m)y=o
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(e]

Evaluate derivatives

e” — 6z y? = e* — 6z 9>

Condition met, ODE is exact

Exact ODE implies solution will be of this form

Fle,y) = e, M(z,1) = F'(z,9), N(z,9) = $F(2,9)

Solve for F'(z,y) by integrating M (z,y) with respect to
F(z,y) = [ (-22y® +ey) dz + fi(y)

Evaluate integral

F(z,y) = ey —y’z* + fi(y)

Take derivative of F'(x,y) with respect to y
N(z,y) = 5. F(z,y)

Compute derivative

e —3y’a® = e — 3y’s” + L fi(y)

Isolate for d% fi(y)

%f 1(y) =0

Solve for fi(y)

fily) =0

Substitute f;(y) into equation for F'(z,y)
F(z,y) = "y — y’°z?

Substitute F'(z,y) into the solution of the ODE
e’y — y3932 =

Solve for y
(

1

3
(—108c1a;+12. /81c§m2—12(ew)3)

) y= 6x + 2e
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T
3
T (—10801 z+124/81c2z? —12(e$)3)

Yy = —

(—108c1x+12, /81222 —12(e®)’
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 278

Ldsolve((exp(x)—3*x‘2*y(x)‘2)*diff(y(x),x)+y(x)*exp(x)=2*x*y(x)‘3,y(x), sings9}=all)

2
(108c12 + 12/81cka2 — 126%) " + 1267

y(z) =

1
6 (108c10 + 12/81c27 — 12¢% ) '
y(x)
2 2
~iv/3 (108c,z +12/81fa? — 127" +12ie*V/3 — (108¢,2 + 12/81cfa? — 127" — 12¢7

1

12 (108¢,2 + 12/81cfa? = 1267 ) '

2 2
~iv/3 (108c1z +12/81cfa? — 127" +12ieV/3 + (108c,2 + 12/81cfa? — 127 )" + 12¢°

1

12 (108c12 +12/81cfa% — 127 " o
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v/ Solution by Mathematica
Time used: 48.841 (sec). Leaf size: 364

kDSolve [(Exp [x]-3*x~2xy [x] “2) *xy' [x] +y [x] *Exp [x] ==2*x*y [x] "3,y [x] ,x, IncludeSingﬁ.llarSolutions -

2v/3e%z? + \3’/5(90131:4 + /=123 38 + 81¢;228) /3

y(z) —

62/322 {q’/QClx“ + v/ —12e3226 + 81¢, 228

i(vV3+1) \3/901x4 + v/ —12e3226 + 81c,228
2v/23%/31,2
(V3+3i)e”

22/335/6 {’/ 9crat + \/—12€3725 + 8lc; 228
(—1 - 2\/3) 6/9013:4 + \/—1263“”:66 + 81c¢; 228
2+/232/342
(\/§ — 32') er
22/335/6 {’/ 9crat + \/—12€3725 + 8lc; 228

y(z) =

y(z) =
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5.9 problem 12

5.9.1 Solving as linearode . . . . .. ... ... ... ... ... 468
5.9.2 Solving as homogeneousTypeD2ode . . ... ... .. .. ... 470
5.9.3 Solving as first order ode lie symmetry lookup ode . . ... .. 471l
5.9.4 Solvingasexactode . .. ... ... .. ... ... ....... 475
5.9.5 Maple step by step solution . . . . ... ... 480

Internal problem ID [3122]
Internal file name [OUTPUT/2614_Sunday_June_05_2022_03_22_37_AM_79544205/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 12.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exact WithIntegrationFactor", "first_ order_ ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

—ry' +y=—z

5.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y' +p(z)y = q(z)

Where here
1
p(x) = Tz
q(z) ==z
Hence the ode is
Yy
y—==x
T
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The integrating factor u is

The ode becomes

Integrating gives

~ [

=T+

8 I 8w

Dividing both sides by the integrating factor u = % results in
y=cx+ z?

which simplifies to
y=z(x+c1)

Summary
The solution(s) found are the following

y=z(x+c1)
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Verification of solutions

y=z(x+c)

Verified OK.

5.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

—z(v'(z)  + u(z)) +u(x)z = —2°

Integrating both sides gives

u(a:)z/l dz

T+ co

Therefore the solution y is

Y =ux

z(z + c2)

470



Summary

The solution(s) found are the following

1)

y=z(z+c)
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Figure 106: Slope field plot

Verification of solutions

y=z(x + c)

Verified OK.

5.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

2 +y

yl

w(z,y)

yl

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ny - &) — w2€y — wz€ —wyn
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The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 53: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class

Form I3 n
linear ode vy = f(@)y(z) + g(z) 0 el fde
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | y = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a4 bz + cy)™ 1 —2
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . z e— J bf(z)dz—h(x) — Jbf(z)de—h(z)

First order special | ' = g(z) M@+ + f(x) e fz)e @)
form ID 1

polynomial type ode

! amzt+bhiyta
Yy az2z+bay—+ca

ai1boz—agbiz—bica+bacy

a1bey—agbiy—aice—azcy

a1ba—aszb1

a1ba—aszb;

Bernoulli ode

Y = f(x)y+g(z)y"

e~/ (=D f@)dzyn

Reduced Riccati

¥ = fi(@)y+ folz)y?

e~ J frdz

The above table shows that

£(z,y) =0

n(z,y) ==

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
13 n
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The above comes from the requirements that (5 a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
S:/—dy

n

T

s=2

T

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy ©)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

?+y
(d(m ’ y) - x
Evaluating all the partial derivatives gives

R, =1
R,=0

__Y
1
Sy = -

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1 (2A)

1

473



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
S (R) =R+ C1 (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
g=x+C1
x
Which simplifies to
g =x+ C1
x
Which gives
y=z(z+c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

.. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ 2%ty as _q
dz z dR

CRR TR TR TR TR T TR I A A A A A A A A R R R R R R
CRR TR TR TR TR TR T R 2 A A A A A A R R R R R R R
IR TR IR R TR & A A A A A A A A i s LR R R R
CER TR TR TR TR T TR A A A A A A A APPSR AP AANAAAAA AL
IR P e* S A DA AR AT AR A AR A A R o R R R R s
VAV AVAVVIIR Ve r et SRS FLNAAASIASSS
O TR TR 1 E A A A A AN A A AAPASAAAAINAAAAS AL
CER R IR IR TR T IR 1 A AV AN A A A A A R R R R R R
VAYVVVNNNNNR A AR R==zx APAPAPAAAANA A AAAAAAS
VANV YNNNNNN A AP AP LPP AP
Y M NN NONS a7 A PR T Y LR R Gk L
N A v S== //////////////ﬂg////
LAV VNN SN~ N Pt T R R R R
¥&¥x\\\»L%x\w//fffff AAPAP AP ALNA PSS SRS AS
VAV YNNST Sl N f FPAPPPAAPAF AP P AP/
VY VNNN= s A AN APAPAPPAPAAAAAAA SRS S
VAYVNNN= AP AN 2 APPSR AR AANAAAAAAASAS
R I I = R A AT R R R s R R R R
VANNN S AL NN f R R R R R R
VANNN= s P A NN AAPAPPAPAAAAAAS AL

Summary
The solution(s) found are the following
y=2xz(r+c1) (1)
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Figure 107: Slope field plot

Verification of solutions

y=z(x+c)

Verified OK.

5.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

d(z,y) =0

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—z)dy = (—2° —y)dz
(£ +y)dz+(—z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =" +y
N(z,y) = —=x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 ,,
o~y Y
And
N _ 0
oxr Ox
=-1
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
TN (6_y - 37)
= (1)~ (-1)
_ 2

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ads
_ -t
The result of integrating gives
= e 2@
_ 1
22

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dz

x> +y 1\ dy
(=) (2w
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The following equations are now set up to solve for the function ¢(z,y)

o¢

Oz =M (1)
0p  —
3_y_N (2)

Integrating (1) w.r.t. z gives

%dx: /de
or

op . [2®+y

b=z 2+ (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 1
— 4
Ll (@)
But equation (2) says that g—‘z = —1. Therefore equation (4) becomes
11,
= 5
LW )

Solving equation (5) for f'(y) gives

f'ly) =0
Therefore

fy)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

QZS =T — y + C1
x

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

_ Y
CiL =T — —
x
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(1)

y=—(—z+ac)z
y=—(—zx+ac)x
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Figure 108: Slope field plot
y=—(—z+aca)x
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The solution(s) found are the following

The solution becomes

Summary

T T T T T T T
on N — ) — N o

—

=

~—

=~

Verification of solutions

Verified OK.



5.9.5 Maple step by step solution

Let’s solve

—zy +y=—a

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
y=4+z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—i==x

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v — ¥) = p(z)

o Assume the lhs of the ODE is the total derivative - (u(z)y)
waz) (v —2) = p(@)y+ p@)y

o  Isolate p/(x)

W (z) = -2

° Solve to find the integrating factor
u(x) =1

° Integrate both sides with respect to x
[ (E(w(=z)y)) dz = [ p(z) zde + ¢y

° Evaluate the integral on the lhs
p)y = [ ) zde + ¢

° Solve for y

[ p(@)zdz4-c1
Y=

. Substitute p(z) = %
y=z([1ldz +c1)
° Evaluate the integrals on the rhs

y=z(z+c)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve((x“2+y(x))=x*diff(y(x),x),y(x), singsol=all)

y(@) = (a + o)z

v/ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 11

LDSolve[(x‘2+y[x])==x*y'[x],y[x],x,IncludeSingularSolutions -> True]

y(x) = z(z +c1)
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5.10 problem 13

5.10.1 Solving as linearode . . . . . . ... ... ... ... ... .. 482
5.10.2 Solving as first order ode lie symmetry lookup ode . . .. . .. [4841
5.10.3 Solvingasexactode . . ... ... ... ... ... ...... 4RS]
5.10.4 Maple step by step solution . . . . ... ... ... ... .... 492

Internal problem ID [3123]
Internal file name [OUTPUT/2615_Sunday_June_05_2022_03_22_39_AM_13834837/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 13.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

zy +y = z*cos ()

5.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)

Where here

SR

p(z) =
q(z) = cos(z)x
Hence the ode is
Y+ % = cos (z) z

The integrating factor y is
p=e I %dw

=X
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The ode becomes

L (uy) = (1) (cos (2) 2
= (2y) = (2) (cos (2) 2)
d(zy) = (z*cos (z)) dz

Integrating gives
xy = /x2 cos (z) dx
zy = 2°sin (x) — 2sin (z) + 2cos (z)  + ¢;

Dividing both sides by the integrating factor yu = x results in

z?sin (z) — 2sin (z) + 2 cos (z) z La
T T

y =
which simplifies to

_ a?sin (x) — 2sin (z) + 2cos (z) z + ¢

T

Summary
The solution(s) found are the following

_ z”sin (z) — 2sin (x) + 2cos (z) z + ¢

T
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Figure 109: Slope field plot

Verification of solutions

z?sin (z) — 2sin (z) + 2cos (z) = + ¢;

Verified OK.

5.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - 590) - w2§y - wx§ - wy'r]

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 56: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
wwy) = (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case
R=z

S is found from

I
<

(9!
I
—

8lR = 3|~
QU
<

I
—

Which results in
S=uxy

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ — Sx +w(xay)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—y + 2% cos (z)
T

w(z,y) =

Evaluating all the partial derivatives gives

R,=1
R,=0
Se=1y
Sy==z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
das
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

Fio R? cos (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.

= 2? cos () (2A)

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) = R?sin (R) — 2sin (R) + 2Rcos (R) + ¢;

4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

yr = z?sin (z) — 2sin (z) + 2cos (z) z + ¢;

Which simplifies to

yx = x°sin (x) — 2sin (z) + 2cos (z)  + ¢;

Which gives

_ a?sin (z) — 2sin (z) + 2cos (z) z + ¢

T

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ —y+a?cos(z) dS _ p2
2= — 4% = R*cos (R)

YRR IR R R T IR IR IR BT St e O AN N A R R
RN A A S A N O VO U O e [ T T T e I U U A
DNV A S A A I O U i e e [ T T T e RO N AN B O
MU IRNHE NS
\/ffffﬂéff&\\\\\&&\/ f&L&&¥Q@/aﬂ//\¥L&l¥f
NAPFEL /2NN YLV NS R R R N e e N R A N
NAP PP A2V NS Y VNS R A R s It N T SR SR AR
NAPP P A N =N VNN R= [ T T R e e N A R A
N BB NS NN Y =z RN R NS SN,
NP Bl T 7~/ 77N\ ¥ =/ Fidt T\ ooV T h VT
NAPLP L ZNNNME /7NN VAN S__xy NIRRT T I afate et AR I A R
NS PASNNA A AN VAN AR IR N e A I A
\//f/’/\\&.%ﬁf/’/\\\\\f BRI R e e N
NP NNV TP AN A/ [ T T R IO A N R R A
NP AANN Y P AN NN/ [ I T R e N U A N A
NP NNV PP NN IR IR R I e e e O A N A N A
N=2 7NN 4t PP NN N R R R N et Y TR AR AR AR
N=/ 7=\ VPP NN NN [ T T T e e N U A B A
N=/7 27N AV PP 2NN/ [ T T R A I O A NN A R AR

Summary
The solution(s) found are the following

z?sin (z) — 2sin (z) + 2cos (z) T + ¢1

y:

T
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Figure 110: Slope field plot

Verification of solutions

z?sin (z) — 2sin (z) + 2cos (z) = + ¢;

Verified OK.

5.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. z gives

8
(@)
(@)
I Lx
N ]
2 ¢_1W
& JD
S, +
=
TS

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z)dy = (—y + 2% cos (z)) dz
(y — 2°cos (z)) dz +(z)dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) =y — z° cos (z)
N(z,y) ==z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
By 8_y(y — z% cos (z))
=1
And
ON 0
%~ 5
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Since 2M — ‘%, then the ODE is exact The following equations are now set up to solve

5
for the Zf}unction o(z,y)
0p
= M (1)
86 _
= N (2)

Integrating (1) w.r.t. z gives

%dxz/Mdz
or

9 . _ 2
%dx—/y z“ cos (z) dz

¢ = (—z*+ 2) sin (z) + z(—2cos (z) + y) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

99 _ /
3—y—w+f(y) (4)

But equation (2) says that g—dy’ = z. Therefore equation (4) becomes

=2+ f() )

Solving equation (5) for f’'(y) gives
f'ly) =0
Therefore
fly) =a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ = (—z* + 2) sin (z) + z(—2cos (z) + y) + &1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

¢1 = (=% +2) sin (z) + z(—2cos (z) + y)
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Figure 111: Slope field plot
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e e N

z?sin (z) — 2sin (z) + 2cos (z) T + ¢
z?sin (z) — 2sin (z) + 2cos (z) z + ¢1

The solution(s) found are the following

The solution becomes

Summary

T T T T T T T
on N — ) — N on

z?sin (z) — 2sin (z) + 2cos (z) T + ¢;

Verification of solutions

Verified OK.



5.10.4 Maple step by step solution

Let’s solve
zy +y = z%cos (z)
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Yy =—Y4cos(z)x

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy +Y%=cos(z)x

° The ODE is linear; multiply by an integrating factor u(x)
() (v + %) = p(z) cos (z) z

o Assume the lhs of the ODE is the total derivative - (u(z)y)
w) (v +2) = p(@)y+ p@)y

o  Isolate p/(x)

p(z) =42

° Solve to find the integrating factor
p(z) =z

° Integrate both sides with respect to x

[ (E(u(z)y)) de = [ p(z) cos (z) zdz +
° Evaluate the integral on the lhs
w(@)y = [ p(z)cos (z) zdz + ¢

° Solve for y

[ p(=) cos(z)zdz+c1
y= u(z)

) Substitute u(z) = x

__ [ z?cos(z)dz+c1
y= T

° Evaluate the integrals on the rhs
__ z?sin(z)—2sin(z)+2 cos(z)z+c1
y= T
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

Ldsolve(x*diff(y(x),x)+y(x)=x”2*cos(x),y(x), singsol=all)

sin (z) % — 2sin (z) + 2z cos (z) + ¢;
T

y(z) =

v Solution by Mathematica
Time used: 0.066 (sec). Leaf size: 25

LDSolve[x*y'[x]+y[x]==x‘2*Cos[x],y[x],x,IncludeSingularSolutions -> True]

(x? — 2)sin(x) + 2z cos(z) + ¢;
T

y(z) —
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5.11 problem 14
5.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 494

Internal problem ID [3124]
Internal file name [OUTPUT/2616_Sunday_June_05_2022_03_22_42_AM_16397768/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 14.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, ~2nd type’,
class A-1]]

dy+ Bz +2y+2)y =-3—6z

5.11.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

,  bx+4y+3
v= 3z 42y +2

Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — W2€y —wz —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =zay+yaz + a (1E)
n = xbs +ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

_ (bz+4y+3)(bs —a2) (6 4 4y + 3) as

b
2 3z + 2y + 2 (32 4 2y + 2)°
6 18x+12y+9) (5E)
— | — zas + yas + a

4 122 + 8y + 6 )
—| - + by +ybz +b1) =0
< 3r+2y+2  (3z+2y+2)° (22 +ybs + b1)
Putting the above in normal form gives

182%ay — 3622a3 + 972by — 1822bs + 24xyas — 48xyas + 122yby — 24xybs + Sy?as — 16y%as + 4y?by — Sy
(3z +

=0
Setting the numerator to zero gives

18z%ay — 362%a3 + 92°by — 18x2bs + 24xyay — 48zyas + 12zyb, — 24xybs (6E)
+ 8yay — 16y%as + 4y>by — 8y’bs + 24xay — 36xas + 14xby — 21bs
—|— 14ya2 —_ 21ya3 + 8yb2 —_ 12yb3 —|— 3a1 —|— 6&2 —_ 9(13 + 2b1 —|— 4b2 —_ 6b3 = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

18@1}% + 24a,v1v9 + 8a2v§ — 36a3vf — 48asv1v9 — 16a3v§ + 9b211% + 12byv1v5 (TE)
+ 4b2’l}§ — 18b3’U% - 24()3’01’02 - 8b3’l}§ + 24(12’01 + 14&2’02 - 36&3’01 - 21&3’02
+ 14b2’01 + 8()2’1)2 — 21b3’l}1 — 12b3’l}2 + 3a1 + 6&2 — 9@3 + 2b1 + 4b2 — 6b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(18@2 — 36&3 + 9b2 - 18b3) ’U% + (240,2 - 48&3 + 12b2 - 24b3) V1V (8E)
+ (24(12 — 360,3 + 14b2 - 21b3) V1 + (8(1/2 — 16@3 + 4b2 — 8b3) ’U%
+ (14&2 - 210,3 + 8()2 - 12b3) Vg + 3a1 + 6&2 - 9(13 + 2b1 + 4b2 - 6b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

8as — 16a3 + 4by — 8b3 =0

14a9 — 21as + 8by — 12b5 =0

18as — 36as + 9bs — 18b5 = 0

24as — 48a3 + 12by — 24b3 = 0

24a, — 36a3 + 14by — 21b3 =0

3a; + 6ay — 9as + 2b; + 4by — 6b3 =0

Solving the above equations for the unknowns gives

a; = ay
oy 305
272
as = as
3a
h=="%
b2 = —3a3
b3 = —2a3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—w(y)é
3 61 + 4y + 3

= _ (=771
2 ( 3x+2y+2)()
3z + 2y

T 6rtdy+4
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

1
Sz/—dy
n
1
=/7mﬁdy

6z+4y+4

S is found from

Which results in
S =2y+2In(3z + 2y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
_ 6z + 4y + 3
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Evaluating all the partial derivatives gives

R, =1
Ry =0
6
T 3x 42y
4
S, =2
Y +3x+2y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s
-~ 4 2A
IR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

—4

gives
S(R) = —4R +cC (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2y+2In(3z+2y) = -4z + ¢
Which simplifies to
2y+2In(3z+2y) = -4z + ¢

Which gives

3 —z 4
y= _g + LambertW (e 22 ’ )
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

R e e S

R B e e

Lo o v v v

e B e g

e b e > o > b PH > > o > v > > >

R B e e

R B e e |

e > v v v _v_»_

e B e g
\w\k\w\w\w\v\w\w\v\w

> > > > > o> > v > o

PR S S S S = S

R

n
3
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Original ode in z,y coordinates

6x+4y+3
3xz+2y+2
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The solution(s) found are the following

Summary

1)

+ LambertW (e

3z
2

2

y:
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Figure 112: Slope field plot

Verification of solutions

172

2

8l

+ LambertW (e

3z
2

y:

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

‘dsolve((6*x+4*y(x)+3)+(3*x+2*y(x)+2)*diff(y(x),x)=0,y(x), singsol=all)

y(z) = —35 + LambertW (cie”2)

v/ Solution by Mathematica
Time used: 4.333 (sec). Leaf size: 34

tDSolve [(6*x+4xy [x]+3)+(3*x+2*y [x] +2) *y' [x]==0,y[x],x, IncludeSingularSolutionsJ -> True]

y(z) — —3736 + W (-2 1)
3
y(x) — Y
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5.12 problem 15

5.12.1 Solving as first order ode lie symmetry calculated ode . . . . . . 02l
5.12.2 Solvingasexactode . . . ... ... ... ... ... ... 08|
5.12.3 Maple step by step solution . . . . . . ... ... ... . .... 12

Internal problem ID [3125]
Internal file name [OUTPUT/2617_Sunday_June_05_2022_03_22_44_AM_15140119/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 15.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first__order__ode__lie_ sym-
metry_ calculated"

Maple gives the following as the ode type

[[_1st_order, _with_linear_symmetries], _exact]

cos(y+z)—zsin(y+z) —zsin(y+z)y =0

5.12.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

, _ —zsin(y + ) + cos (y + )
N zsin (y + x)

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - Ez) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n= .’IJbQ + yb3 + bl (QE)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(—zsin (y + z) + cos (y + z)) (bs — as)
zsin (y + z)
_ (==sin(y+z) +cos(y+ ) as
z?sin (y + )
B <—2sin(y+x) —zcos(y+x) —zsin(y+z)+cos(y+z)

by +

zsin (y + ) z?sin (y + ) (5E)
_ (==sin(y + ) + cos (y + z)) cos (y + z) ra G+ ar
zsin (y 4 z)° )( 2 Fyas +a)
—zcos(y+ x) —sin (y + x)
zsin (y + z)
_ (—zsin(y+ =) +cos(y +z))cos (y + z)

zsin (y + z)°

) (be+yb3+b1) =0

Putting the above in normal form gives

cos (y + z)* 22ay + cos (y + )% 22b; + cos (y + z)° zyas + cos (y + z)° zybs + 2sin (y + z)? 2a, — sin (y

=0

Setting the numerator to zero gives

cos (y+x)* 22ay + cos (y +z)? £2by +cos (y +z)* zyaz + cos (y +z)° zybs
+ 2sin (y + z)* 2%ay — sin (y + 2)° 2%as + 2boa? sin (y + )
— sin (y 4 )® 22bs + sin (y + z)* zyas + sin (y + z)° 2ybs (6E)
+ cos (y + )® zay + cos (y + x)? zby + 2cos (y + z) sin (y + z) zas
+cos (y + ) sin (y + &) zbs + cos (y + ) sin (y + =) yas +sin (y + z)° za;
+sin (y + 2)* zby — cos (y + ) as + cos (y + z) sin (y + z) a; = 0
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Simplifying the above gives

as cos (2 + 2y) L@ sin (2z + 2y) N 3z%a;,

a
—33 + zyas + xybs —

2 2 2
zagcos (2x +2y) = 3x%by  z’bycos(2x +2y)  xlas
- 2 ty T 2 T (6E)
2 2 2 2p 2p 2 2
+xagcos;:v+ y)_z23+x 3cos(2x+ y)—l—xal—l-zbl
in (2 2 b3 sin (2 2
4 Yassin (2.’13 + 2y) + zas sin (20 + 2) + xbs sin (2x + 2y) —0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y,cos (2 + 2y) ,sin (2z + 2y) }

The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z = v1,y = vg,cos (22 + 2y) = v3, sin (2 + 2y) = v4}

The above PDE (6E) now becomes

1 1 3,
—5(13 + v1v2a3 + V1V2b3 — §a3v3 + —a1vs + Zvias

2 2
L 2 aroe - 302 2 Lo2ar 4 L2 Lo (7E)
2’01&2’03 2’01 2 2’01 2VU3 2’01(13 2’1)1&31)3 2’01 3
15 1 1
+ 5%”3’03 + v1a1 + v1by + 51)2&3’04 + via3vs + 5111531)4 =0

Collecting the above on the terms v; introduced, and these are
{vla V2, Vs, ’04}

Equation (7E) now becomes

—5+(a1+b1)v1—7+7+

a bp a3 b V9Q30. b
+(a3+b3)v2v1+(——2——2+—3+—3) ’l)3'Uf+ 273 4+(0,3+§3) 'U4’Ul=0

as asvVs a1V <3a2 + 3b2 as b3> ’02

2 2 2 2
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Setting each coefficients in (8E) to zero gives the following equations to solve

ay
—~— =0
2
as
-2 =0
2
a3_
5 =
a;+b =
a3+b3—0
b
0;3+53—0
(45) b2 as b3_
T3 Tt Tty =0
az 302 a5 b5,

Solving the above equations for the unknowns gives

a; =0
ay = —by
a3 =10
by =0
by = by
bs =0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=—x

n=<zx
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n—w(y)¢
e —zsin (y + z) + cos (y + z) —ac
R G [
_ cos (x) cos (y) — sin (z) sin (y)
cos (z) sin (y) + sin (z) cos (y)
=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dr _dy _
3 n

The above comes from the requirements that <§ 2 4+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S = / —dy
n
B 1

cos(z) cos(y)—sin(z) sin(y) dy
cos(z) sin(y)+sin(z) cos(y)

Which results in
S = —In(cos (z) cos (y) — sin (x) sin (y))

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

—zsin (y + z) + cos (y + )
zsin (y + x)

w(z,y) =
Evaluating all the partial derivatives gives

R, =1

R,=0
cos () sin (y) + sin (x) cos (y)
cos (z) cos (y) — sin (z) sin (y)

_ cos (z)sin (y) + sin () cos (y)
cos (z) cos (y) — sin () sin (y)

Sy =

Y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

o _ 2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = In(R) + c; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—1In (cos (z) cos (y) — sin (z) sin (y)) = In (z) + &1
Which simplifies to
—In (cos () cos (y) — sin (z) sin (y)) = In (z) + ¢

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

- . . : ODE in canonical coordinates

Original ode in x,y coordinates coordinates (R, S)

transformation ’

dy __ —zsin(y4z)+cos(y+z) s _ 1

dz zsin(y+z) dR R
NONNN= L YVNN Y Y P NN N e e S O Y Pttt g
SOENNNY NV VNN Y NN e R O e
N E NN N AT NN P NN | I S
NN VA 1 F N N N VN N | I P P S
NN N \ﬂQ\f?/\\\\?\\\ ——a—a—aa M A Ao
NN NS AN A PN N N e ——a—aaad NV A e e
PN NN YV NVEY VPN NN P S S S SN L S S
SN PN NN N L VNN Y PN NN S e e N Y S Cat e
AR R A AR AR REA YRR R— O S N I P
N NN NS A PN N N NNy =T N e
t:%\f?%ttgi/\&::i?\t g 1 x‘JX\\)\:S;;/ﬁ/»»iiﬁ
N e —7a Sa — — . —e—a—a—aaaa AT Ay >
PN NN Y NN Y —»\’\\\f\ n(cos(m)cos(g,) e e S N b e g
\f\\\\»?;%\xx?»\\\\? x‘\\\\\\x§f////»»))”
S PN NN TN P NN NN R S S SR L s e
A N T D W U N N N e N NN R SOV NN L B I 5 3P S
NN N YNNI NN N NN OIS S S S SR L I 38 05 S
NN NN NN N NN N e R S S S SN L P e e
A B O e S N [N R S Y
SOANNN N AN Y NN S S S OOV P S S
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Summary
The solution(s) found are the following

—In (cos (z) cos (y) — sin (z) sin (y)) = In(x) + ¢; (1)
3 O NNNNNN=/ 1 SN
=P NNNNNSNAT L /SN
N VNNNNS T L /=N
R R R Y AR R R A Y
NNV NNL V)L SN
NN VNN N SN
HNNNN=7 VL NNV
NANNNN=7 L SNV =
NANNNNSN=7 )L P ANNNNN N =
of VNNNNNSAT ] 7NN\
y(x) PANNNNN=/ 1 7~NANNNN
=1 NNNNNSNAT ] S NN
N1 VNNNNST7 |} /=N NN\
Ly BN R SN 2 T A R SCNE NN
R R T R e A T S RN
N T N S A R I N NN
=2NNNN=7 T VL NNV L NN
NNNNN=/ 1 L L /=NNVNNV ) —
NANNNSN=/ P ASNNNNNN =
=3 NNNNNNST ] /=N
-3 -2 =1 0 1 2 3

Figure 113: Slope field plot

Verification of solutions

—1In (cos (z) cos (y) —sin (z) sin (y)) = In (z) + 1

Verified OK.

5.12.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,y) 2 = 0 (4)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—zsin(y+z))dy = (—cos(y+z) + zsin(y + z)) dx
(—zsin(y + z) + cos (y + z)) dz +(—zsin (y + z))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —zsin (y + z) + cos (y + )
N(z,y) = —zsin (y + )

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives

oM 0 .
By = 8—y(—xsm (y+z)+cos(y+x))
= —zcos (y + ) — sin (y + x)
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And

ON _ 0 _ysin(y+a))
0xr Oz y
= —zcos(y+z) —sin(y + z)
Since %—A; = ‘:’9%{, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

0p
or (1)
0p

Integrating (1) w.r.t. z gives

@dx=/Mdm
or

%dxz/—zsin(y-l—x)—i—cos(y—l—:c)da:

¢ =z cos(y+)+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
20 = —zsin(y+2) + () (@
Ay
But equation (2) says that g—;’j = —zsin (y + z). Therefore equation (4) becomes
—zsin(y +z) = —zsin (y +z) + f'(v) (5)
Solving equation (5) for f'(y) gives
f'ly)=0
Therefore
fy)=a

Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=zcos(y+z)+ac
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(1)

¢ =zcos(y+x)
= ¢,

zcos (y + x)

I N —r 777t
AT I N —r s s S ] N—
I I N—— 77NN
777 I N———r 7777 1N L
7] I N——— 7] | \N——
S/ N N———m 7NN s
I\NN———7 7771\ ——Frr/ )

1 /) /7= ~\ \\\\\{\'\11//..

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

The solution(s) found are the following

Summary

J S s NN S s/
SIS NV S s s N7 /]
VPN B AV AP 4y G P s SN V4
s = N}/ / /777~ N\N] /777
s NSNS
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V\J 777 s~ S sk
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=
~

&1

X
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Figure 114: Slope field plot
z cos (y + x)

Verification of solutions

Verified OK.



5.12.3 Maple step by step solution

Let’s solve
cos(y+z)—zsin(y+z) —zsin(y+z)y =0
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs
F(z,9)+ (§F @)y =0

o Evaluate derivatives
—zcos(y+x)—sin(y+x) = —xcos(y+ z) —sin (y + z)

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = e, M(z,9) = F'(2,9), Nw,9) = $F(z,9)]
° Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (—zsin(y + z) + cos (y + z)) dz + f1(y)
° Evaluate integral
F(z,y) = —ycos (y+ z) + (y + z) cos (y + z) + f1(y)
o Take derivative of F'(x,y) with respect toy
_
° Compute derivative
—zsin(y +2) = ysin (y +2) — (y +2)sin (y + 2) + 2 f1(y)
o Isolate for % fi(y)

wh(y) = —zsin(y +z) — ysin (y + z) + (y + ) sin (y + z)

o Solve for fi(y)
fily) =0
o Substitute f(y) into equation for F'(z,y)
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F(z,y) = —ycos(y +z) + (y + z) cos (y + )

° Substitute F'(z,y) into the solution of the ODE
—ycos(y+x)+ (y+x)cos(y+z) =c1

° Solve for y
y = —x + arccos ()

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries

differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

Ldsolve(cos(x+y(x))-x*sin(x+y(x))=x*sin(x+y(x))*diff(y(x),x),y(x), singsol=a11?

y(x) = —z + arccos (ﬂ>
x

v Solution by Mathematica
Time used: 10.102 (sec). Leaf size: 35

DSolve[Cos[x+y[x]]-x*Sin[x+y[x]]==x*Sin[x+y[x]]*y'[x],y[x],x,IncludeSingularS#lutions -> Tru

N

y(x) = —x — arccos <—ﬁ>
T

y(z) — —z + arccos (—ﬁ>

T
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5.13 problem 17
5.13.1 Solvingasexactode . . . .. ... ... ... ... .. .. .. 614
5.13.2 Maple step by step solution . . . . . ... ... ... .. ... BIT

Internal problem ID [3126]
Internal file name [OUTPUT/2618_Sunday_June_05_2022_03_22_49_AM_71482201/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 17.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

y?e¥” + (e¥* + e¥"yzx)y' = — cos ()

5.13.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) -= =0 (A)

ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 06d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

o =V
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
(e +ye™z)dy = (—y’e™ — cos(z)) dz
(y?e™ + cos (z)) dz +(e™ + ye™z)dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = y*e®™¥ + cos ()
N(z,y) =e™ +ye™x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
M
68_y = %(y%wy + cos (z))
=ye™(zy+2)
And
ON 0
% = $(ezy + yexyx)
=ye™(zy +2)
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
9 =M (1)
o
oy N (2)
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Integrating (1) w.r.t. z gives

%dx:/de
or

% dz = /erxy + cos (z) dz

¢ =ye™ +sin(z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0
o =yt [o) @

=e¥(zy+1)+ ()
But equation (2) says that g—‘z = e"¥ 4 y e™z. Therefore equation (4) becomes
e +ye™r =eV(zy+1)+ f(y) (5)

Solving equation (5) for f'(y) gives
f'ly)=0

Therefore
fy)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =ye"” +sin(x) + ¢

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and ¢, constants into new constant c; gives the solution as

¢ =ye™ + sin (z)

The solution becomes

Y= LambertW (x;cl — sin (z)))
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Summary
The solution(s) found are the following

_ LambertW (z(c; — sin (z)))

Yy
T
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Figure 115: Slope field plot

Verification of solutions

_ LambertW (z(c1 — sin (z)))

Y
x

Verified OK.

5.13.2 Maple step by step solution

Let’s solve

y2e¥” + (e¥® + e¥®yz) y = — cos (z)

/

Yy
Check if ODE is exact

017

Highest derivative means the order of the ODE is 1




ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

Compute derivative of lhs

F'(z,y) + (,%F(w,y)) Y =0

Evaluate derivatives

2y ™ + eWx y? = 2ye™ + eV 1>

Condition met, ODE is exact

Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,9) = $F ()]
Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (y?e" + cos (z)) dz + fi(y)

Evaluate integral

F(z,y) = ye™ +sin(z) + fi(y)

Take derivative of F'(x,y) with respect toy

N(z,y) = 5. F(z,y)

Compute derivative

e +yez = e +yez + L fi(y)

Isolate for % fi(y)

%f 1(y) =0

Solve for fi(y)

fily) =0

Substitute f1(y) into equation for F'(z,y)

F(z,y) = ye™ + sin (z)

Substitute F'(z,y) into the solution of the ODE

ye™ +sin (z) = ¢

Solve for y

_ LambertW (z(c1—sin(z)))
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 16

‘dsolve((y(x)‘2*exp(x*y(x))+cos(x))+(exp(x*y(x))+x*y(x)*exp(x*y(x)))*diff(y(x)Lx)=0,y(x), sin

_ LambertW (—z(sin (z) + ¢1))

y(z)

v/ Solution by Mathematica
Time used: 60.266 (sec). Leaf size: 19

tDSolve[(y[x]‘2*Exp[x*y[x]]+Cos[x])+(Exp[x*y[x]]+x*y[x]*Exp[x*y[x]])*y'[x]==0,#[x],x,1ncludes

W (z(—sin(z) + ¢1))

y(z) =
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5.14 problem 18

5.14.1 Solving as first order ode lie symmetry calculated ode . . . . . . 520
5.14.2 Solving asexactode . . . ... ... ... ... ... ... 526
5.14.3 Maple step by step solution . . . . . . ... ... ... .. ... 530

Internal problem ID [3127]
Internal file name [OUTPUT/2619_Sunday_June_05_2022_03_22_53_AM_32827643/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 18.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first__order__ode__lie_ sym-
metry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _exact, _dAlembert]

yIn(—y+z)—ln(-y+z)=1

5.14.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

, 1+In(—y+2)
~ In(-y+2)
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ﬂy - Ez) - w2€y - wx€ — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n= .’IJbQ + yb3 + bl (QE)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(I+ln(-y+z))(bs—a) (+In(-y+ z))? a3

by +

n(~y+2) In(—y +2)° (58)
- !  lem(yrm) N,
((—y+x)ln(—y-|-m) ln(—y+$)2(—y+a:))( 2 +yasz + 1)
_(— 1 1+In(-y+ ) i _
( (—y+x) ln(—y+x) In (—y+x)2 (—y+x)) ( b2+yb3+b1) 0

Putting the above in normal form gives

In(-y+ z) zay +1In(—y + z)’wag —boIn (—y +z)°z — In (—y + z)* zbs — In (—y + z)> yas — In (—y

=0
Setting the numerator to zero gives
—In(—y+z)’zay — In(—y + z)’ zaz + by In (—y + z)’
+1n(—y +2)*xbs +In (—y + 2)> yag + In (—y + z)* yas (6E)
—byln (—y+2)’y —In(—y +z)* ybs — In (—y + z) za,

—2In(—y+z)zazg+In(—y+z)xbs+In(—y+2x)yas+2In (—y + ) yas
—In (—y + z) ybs + zay — zag — xbe + 2yas — ybs +a; — by =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{CL’, Y, In (_y + IL‘)}

The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z =v1,y =vo,In(—y + ) = vs}

The above PDE (6E) now becomes

2 2 2 2 2 2 2
—V3V1G2 + V3V202 — V30103 + U3V2a3 + bavzvr — bavzva + v3v1bs (TE)
2
— U3’l}gb3 — V3V10Q2 + V3V2Qg — 21)3v1a3 + 2v3v2a3 + ’U3’Ulb3
— ’U3’Ugb3 + vias — viaz + 21)2&3 — ’Ulbz — ’l)2b3 +a; — bl =0
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Collecting the above on the terms v; introduced, and these are
{U17 V2, 'U3}

Equation (7E) now becomes

(—a2 — as + b2 + b3) ’Ul’Ug + (—G,Q — 2(13 + bg) V1V3 + (ag — as — b2) v (8E)
-+— ((12 —|— as — bg — bg) ’1)2’032) —|— (a2 —|— 2(13 —_ b3) V2U3 —|— (2(13 —_ bg) () —|— a; — bl = 0

Setting each coefficients in (8E) to zero gives the following equations to solve
ap—b; =0
2a3 — b3 =0
—ag —2a3+b3=0
ag—a3—by=0
as +2a3 — b3 =0
—ag—a3+by+b3=0
ag+az3 —by—b3 =0

Solving the above equations for the unknowns gives

a=b

a; =0

a3 = —by
by =0b;

by = by

b3 = —2b,

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

n=1
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(y)¢

L <1+ln(—y+x)) 0

In(—y+z)
-t
~ In(-y+az)

£=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _dy _

F=y =48 1)

The above comes from the requirements that <§ 2+ n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

S is found from

Which results in
S=(-y+z)ln(-y+2z)+y—=z

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sx +CU(.’L',y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

1+In(—y+z)
In (—y + z)

w(z,y) =
Evaluating all the partial derivatives gives

R, =1

R, =0

Sy =In(~y+2)
Sy=—In(-y+2z)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

-1 (2A)

-1

gives
S(R)=—-R+ ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(In(-y+2)-1)(-y+2)=—z+c
Which simplifies to
(—y+z)n(-y+z)+y—c=0
Which gives

LambertW ((—z+c1)e™1)+1 +

y=—e x
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’
dy _ l+ln(—y+z) s — _q
dz —  In(-y+=z) dR —
R R e Y
~ R R R R N
41 ~ R R A R e N
~ Pt R N R e e e Y
y(x) N \\\\\3& AR ARRR R R RN
~tEAg NN N NN N P R N N RN
21 ~t AL R A e
~trrrry A O e R L R e VN
~tprrrP227 R— R R A N
~t P AL = OO OO O N Y N N N N Y
4 P T AR SETT SO S N SO N N8N O N N N N N Y N
NI, S::1n(—y4—x)—])(—q\\\\\\\\\\\\\\\\\\\\
~HPALP2PP2AALL '\\\\\\\\\\\\\\JK\\\\
ST PSS AR R R R R e N N
~tPHPPAALAA AP R N D N
AN R A e Y
D A A VA R O e R R e N VN
VP PP PP R N R N
NP P PPPPANLALP PP R N e
RN A VA VS VA A A R O S e N N i A A N N
Summary

The solution(s) found are the following

y=—e

LambertW ((—z+c1)e™1)+1 +

925

T

1)




|
W
\
<\
— )
I ~—~——

- \\\\«/\
NN
\\\\\\ﬁ/\
\\\\\\\e/\
NSNS NS
\\\\\\\\\e/\

T N SN NN NN NN —— )
\\\\\\\\\\\«/\
\\\\\\\\\\\\«/\

D AN N N NN NN NN NN )
\\\\\\\\\\\\\\e/\
NN N O N N N N NN NN NN

P e D O e !

I
(U]
|
[\e]
I
= O
—

Figure 116: Slope field plot

Verification of solutions

_ -1
y = _eLambertW(( z+er)e 1) +1 Ty

Verified OK.

5.14.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Eﬂ%mzo

Hence 06 06 d
0¢ , 0ddy _

dor ' dydz 0 (B)
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Comparing (A,B) shows that

But since % = 86—2194’— then for the above to be valid, we require that
0y yOx

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; gy = (96: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
(In(-y+z))dy=(1+In(-y+z))dz
(-1—-In(—y+z))dz+(In(-y+z))dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =-1—In(~y +x)
N(z,y) =In(~y + )

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— =—(-1—In(-
oy = 9,1y +2)
1
C —y+z
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And

Since %M = 5> N then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
=M (1)

09
ay =N (2)

Integrating (1) w.r.t. z gives

—da:—/Mdm

9¢
axdx—/—l—ln(—y—l—x)dx

¢=@y-—z)n(-y+z)-y+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o —
5 =ln(y+a) - LT 1 p) @

=In(-y+2)+ f'(y)

But equation (2) says that 8¢’ = In (—y + z). Therefore equation (4) becomes
In(-y+z) =In(-y+z)+ f(y) (5)

Solving equation (5) for f'(y) gives

Therefore
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢p=(y—r)ln(-y+z)-y+ta

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

a=y-z)ln(-y+z)-y

The solution becomes
y = —elambertW(—(zter)e™))+1 4 o

Summary
The solution(s) found are the following

y = _eLambertW(—(ac+c1)e—1)+1 +z (1)
3_
-\
2 -\ |
=N\ |1
=N\ 11
g =N\|111
=N\1177
Iy
y(x) o N\ 1111777
=N\11r177777
=N\1171777777
-1 =N\V11r1r777777
=N\1r1rr7777777
=N\V111r177777777
—27 =N\V111r7r77777777
=N\V117177777777777
=N\V111177777777777
3 =N\\VI117171777777777777
3 -2 -1 0 1 2 3
X

Figure 117: Slope field plot

Verification of solutions

_ -1
y = _eLambertW( (z+ec1)e 1) +1 4+

Verified OK.
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5.14.3 Maple step by step solution

Let’s solve
yYIn(—y+z)—In(-y+z)=1
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs
F(z,9)+ ($F(@,9)y =0

o Evaluate derivatives

1 1
—y+x —y+x

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,9) = 5 F ()]
° Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y) = [(-1=In(—y+2z))dz+ fi(y)
° Evaluate integral
Flz,y) = —(-y+2)In(-y+2) -y + f(y)
° Take derivative of F'(x,y) with respect toy
N(z,y) = 5, F(z,y)
° Compute derivative
In(—y+z)=ln(-y+z)+ L fiy)
o Isolate for % fi(y)
d%f 1(y) =0
o Solve for fi(y)
fily) =0
o Substitute f;(y) into equation for F(z,y)
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F(z,y) = —(~y+2z)In(-y+x) -y

° Substitute F'(z,y) into the solution of the ODE
—(—y+z)h(-y+z)-y=a
° Solve for y

LambertW (— H%) +1

y=—e +z

Maple trace

e N

"Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful

<- homogeneous successful’

v Solution by Maple
Time used: 0.031 (sec). Leaf size: 32

-

Ldsolve(diff(y(x),x)*ln(x—y(x))=1+1n(x—y(x)),y(x), singsol=all)

-/

(z) = z LambertW ((¢; —z)e™!) —c1 +
o= LambertW ((¢; — z) e™1)

v Solution by Mathematica
Time used: 0.127 (sec). Leaf size: 26

LDSolve[y'[x]*Log[x—y[x]]==1+Log[x—y[x]],y[x],x,IncludeSingularSolutions -> T?#e]

Solve[(z — y())(— log(z — y(x))) — y(z) = c1,y(x)]
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5.15 problem 19

5.15.1 Solving as linearode . . . . . . ... ... ... ... ... .. 32l
5.15.2 Solving as first order ode lie symmetry lookup ode . . .. . .. 634!
5.15.3 Solvingasexactode . .. ... ... ... .. ... ...... H38]
5.15.4 Maple step by step solution . . . . . .. ... ... ... .... H43

Internal problem ID [3128]
Internal file name [OUTPUT/2620_Sunday_June_05_2022_03_22_55_AM_39789059/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 19.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

z2

v +2yr =e

5.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here

p(z) =2z

g(z) =™
Hence the ode is

v +2yr=e"

The integrating factor y is

y = of 2

= e““2
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(1)

e”’2y=x—|—cl
.2 .2
y=ze * +ce”
y=e"(x+ac)
y=e " (z+c)
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Dividing both sides by the integrating factor p = e results in

The solution(s) found are the following

The ode becomes
Integrating gives
which simplifies to

Summary

X
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Verification of solutions

y = e_xz(l' + CI)
Verified OK.

5.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as
’ —z?
Yy =-2zy+e
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - €z) - wzéy —wz§ — wyn =0 (A)

The type of this ode is known. It is of type 1inear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
=/_2dy
ez

S=e"y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
$2

w(z,y) = —2zy + e

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy = 2xe’”2y
Sy =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

1 (2A)

1
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Y e =g +¢
Which simplifies to
z2
ye' =x+¢

Which gives

y = e—.’L'2 (.’L‘ + Cl)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . ) ODE in canonical coordinates
Original ode in x,y coordinates coordinates
: (R,S)
transformation

dy _ —z? ds _

i 2zy +e =1
IR EEEE R AR, AAPPPPAPAASASAS PSS
trrttrrt ANV by bbb AAAAA AR ANAAAAAAAAAS
AN EEEE R, R R R s R AR
BN A I R R R R R, AAPPPPAPAANAAA AP S
SEEEE N R AR R R o R R R R
BRSNS RN RN D R e
Prtrtt =Nyl R o R R R
ttrttrtrzzNyv bbby AAAAAPAASANAAAAAAAA AN
R A A e I R T I R— PRPPARAIAINFAAARFAAS
PLPAAA 2277 =N NN N N Y =T FLILPP LIPS
RN D YA T/ 2 DR VN D VY VNP
PA Y b VNN NS ottt S=e"y //////////////QV////
Phv bbb AN Tt FARAIAAAAAS A A A
Phvbdbbb vttt PRSI AP AL A ARSI AS
T A A A AAAAAAAASANAASAAAAA AN
vrbb bbby vttt R R s R R R R R
vrbb b bbbyttt ARARPAAAAANAAAFFFAS IS
I T IR IR TR = P A A O O A O A R s R R R R
VPP LL L P VNt FAPAAPIA AN RIS S
R IR T TR AR TR RN U A N A A R A AAAAAAAAS A A A AP RS AN

Summary
The solution(s) found are the following
2
y=e " (z+a) (1)

837



—— 7]
777 1
A)/////M

SNSNNNNNN
At S S S NN

NAAANL ]

SIS

X
d(z,y) =0
538

d
M(w,y)+N(x,y)£=0
dz

Figure 119: Slope field plot

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)
ode. Taking derivative of ¢ w.r.t. x gives

5.15.3 Solving as exact ode
To solve an ode of the form

Verification of solutions
Verified OK.
Hence



Comparing (A,B) shows that

99 _
or
9 _ N
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
59; g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is
M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
dy = (—Qacy + e_’”Q) dx
<2xy - e_””2> dz+dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = 2zy — e~
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives

oM = 9 <2zy — e_w2>

dy Oy
=2z
And
oN_ 0,
or Ox
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

4] (aM aN)

~ N\dy Oz

= 1((2z) - (0))

=2z

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

M:efAdm

— ef2zdz

The result of integrating gives

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=" <2azy - e_wQ)

= 2xe”"2y -1

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is
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The following equations are now set up to solve for the function ¢(z,y)

0p —
O

Integrating (1) w.r.t. = gives

0¢ Iy
adx—/de

%dx = /2xez2y— l1dz
ox

¢=—z+e"y+f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 2
a—j — 4 F(y) (4)

9 —

5y e”’. Therefore equation (4) becomes

But equation (2) says that

e” =e” + f'(y) (5)
Solving equation (5) for f’'(y) gives

fy)=0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—z+e" y+c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

2
co=-zc+€e"y
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(1)

y=e"(z+a)
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The solution(s) found are the following

The solution becomes

Summary

X
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Figure 120: Slope field plot

Verification of solutions

Verified OK.



5.15.4 Maple step by step solution

Let’s solve
x2

Y +2yr =e”
° Highest derivative means the order of the ODE is 1

/

Yy

° Isolate the derivative
Y =—2yz+e

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y +2yz = e

° The ODE is linear; multiply by an integrating factor u(x)

u(z) (v +2yz) = p(z)e
o Assume the lhs of the ODE is the total derivative £ (u(z) y)

—z2

u(z) (¥ +2yz) = ' (2)y + u(@)y'

e  Isolate p/(x)
' (z) = 2p(z)

° Solve to find the integrating factor
wa) = e

° Integrate both sides with respect to x
J (@) y)) dz = [ p(z) e de + e

° Evaluate the integral on the lhs
px)y = [ wz)e ™ ds+

° Solve for y

_ [u@)e* dzter
Y= (@)

o Substitute pu(z) = e*”

° Evaluate the integrals on the rhs
y ==t
° Simplify
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y = e_w2($ + 01)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(diff(y(x),x)+2*x*y(x)=exp(-x“2),y(x), singsol=all)

y(@) = (e +2)e™

v/ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 17

tDSolve[y'[x]+2*x*y[x]==Exp[—x‘2],y[x],x,IncludeSingularSolutions -> True]

y(z) — e (x+ 1)
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5.16 problem 20

5.16.1 Solving as homogeneousTypeD2ode . . ... ... . ... ... 545
5.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . H4T]
5.16.3 Solvingasexactode . . ... ... ... ... ... ....... 553

Internal problem ID [3129]
Internal file name [OUTPUT/2621_Sunday_June_05_2022_03_22_57_AM_39946048/index.tex|

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 20.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, [_Abel, ~2nd type ,
class B~ 1]

y* —3yz — (2° —yz) yf = 227

5.16.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
w(z)® z? — 3u(x) 2 — (2% — u(z) 2°) (v'(z) ¢ + u(z)) = 227
In canonical form the ODE is

u' = F(z,u)
= f(2)g(u)
2(u? —2u — 1)
z(u—1)
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Where f(z) = —2 and g(u) = “=24=1, Integrating both sides gives

1 2
—uzﬁﬁ_l du = — dx
1 2
T z
1 2_2u—1
 (u u=1) = —2Iln(z) + ¢

2

Raising both side to exponential gives

Vuz—2u—1= e—2ln(:c)+cz

Which simplifies to

w?—2u—1= 6—32
x
Which simplifies to
c3e?
\/u(:c)2 —2u(x)—1= 2
The solution is
c3e°2
\/u(alc)2 —2u(z)—1= 2

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

2 2y _ c3e”
2 x g2
Y2 —2yr —x2 36
x? T2
Summary
The solution(s) found are the following
Y2 —2yr — 12 c3e®
\/ x? T (1)
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Figure 121: Slope field plot

Verification of solutions

Verified OK.

5.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, —22% — 3zy + 9/
Yy ==
z(y — )
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny — &) — wzgy —we§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(—22% — 3zy + y?) (bs — as) _ (—22% — 3zy + 312)2 as

by —
2 z(y—x) 2 (y—ac)2 5E)
—4r — 3y  —2z% — 3xy + 42 —2z2—3xy+y2)
—| - - zaz +yasz+a
( z(y — ) 22 (y — ) z(y — x)° (wa; +yos +a1)
-3z + 2 —2122% — 3zy + 2
_(_a;(y—x?)J—i_ x(y_j)Qy)(xb2+yb3+b1):0

Putting the above in normal form gives

2x%ay — 4x*as + 62%by — 22%b; — 4x3yay — 1223yas — 4x3yby + 4x3ybs — 22%y%ay — 10x%y%as + 222y>b, -
2 (—y +z)*

=0

Setting the numerator to zero gives

220y — 4xtas + 621by — 22%b; — 4w3ya2 — 12x3ya3 — 4w3yb2 (6E)
+ 4z3ybs — 20%9%ay — 1022y%as + 22%y?by + 22%y%bs + 8z y3as
— 2*as + 523b; — 5x’ya, — 222yby + 2z y2ar + z y?by — yPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

2(121111 — 4azv:f1)2 — 2a2va§ — 4agvi1 — 12a3vi’v2 — 10a3va§ + 8a3vlv3 (7E)
— 2a30;5 + 6byv — 4byvivy + 2b9v7vE — 2b3v] + 4bsvdvy + 203073
— 50,11)%1;2 + 2a1vlv§ — alvg’ + 5b1vi’ — 2bw%1;2 + blvlvg =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(2(12 - 4a3 + 6b2 - 2b3) ’Uil + (—402 - 120,3 - 4b2 + 4b3) ’Ui”Ug + 5b1’Ui’ (SE)
+ (—20,2 — 10(13 + 2b2 + 2b3) ’U%’U% + (—5a1 — 2b1) 'U]2_'U2
+ 8azv1v5 + (2a1 + by) v1v5 — 2a3v5 — a,v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

—a; =0

—2a3 =0

8az =0

5b; =0

—5a; —2b; =0
201 +b; =0

—4&2 — 12&3 — 4b2 + 4b3 =0
—2a2 — 10a3 + 2b2 + 2b3 =0
20,2 - 40,3 + 6b2 — 2b3 =0

Solving the above equations for the unknowns gives

a; =0
az = b3
a3 =0
by =0
b, =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—wzy)
—21% — 3zy + 12
- (- )@
2% 4 dxy — 2y°
B -y+z

§£=0
The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
&

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

= dS 1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from

1

S = / —dy
n
= / :1:2~|—4xy 2y2 y
Which results in
g In (—22 — 2zy + v?)

4
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
ﬁ _ Satw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—22% — 3y + 1
z(y — )

w(ac, y) =
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Evaluating all the partial derivatives gives

R, =1
R,=0
. Y+
T 222 4 4oy — 242

g — -yt+z
V222 4 4oy — 22

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

R~ "% (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s _ _ 1
dR~ 2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

+c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y* —2yzr—2?)  In(x)
4 2

C1
Which simplifies to

In(y? —2yz —2%)  In(x)

4 N 2

&
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ _—2:1:2—3:1:y+y2 das _ 1
dx — z(y—z) dR 2R

RN TR O N L B S/ N e
RN 1Rt o A N T R e o N e
R R N B N et o I\ e
Bt AN SR VR BRI & S R PONl NS
—>—>_ v 7 — S P Na A e A bbb
REEAT S T e SR vt
Rl S T S T T T A anantad A FIN e
R a2 o RV R T T T i
NN NN 7 LYY
AN S A LA VAV LY
|V VW W S R ) /S 1 W M N NS

R N e R L e N N N

L O O I | R A Rt NN

Vb bl TL{Tff//»»\\\

N R N I A s tadna

L Bk L L A At

AR A A tatad w7 I\ N
L B 7 & s B A A et e v I\ e e
Lottt r=NWN PP A A | e =7 N e

ttttrs~\NNWtttrrrr A A | T 7 N A

Summary

The solution(s) found are the following

In (y* — 2yz — z?)

_ In (z)

4

2
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Figure 122: Slope field plot

Verification of solutions

+c1

In (z)

In (y* — 2yz — z°)

Verified OK.

5.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)ﬁ=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

0

¢(z,y) =

a
dz

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(=2 + zy) dy = (22° + 3oy — ¢°) d=
(=22 — 3zy + y*) dz +(—2* + zy) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —22% — 3zy + ¢/
N(z,y) = -2 + 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
Dl _2 2 3 2
3 ay( z Ty +y°)
= -3z +2y
And
ON 0 9
o " asl )
=-2r+y
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Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
A= N(a_zi %)
= —m((—3x +2y) — (=22 +y))

1
x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
—e J %dx
The result of integrating gives
= eln(:c)
=z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

= m(—2x2 —3zy + y2)
= —22° — 32%y + z¢?

And

N = uN
= z(—2* + zy)
-~y +a)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N3—Z =0
(—22° — 32y + z¢°) + (—2*(—y + ) g—z =0
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The following equations are now set up to solve for the function ¢(z,y)

0  —
g—w_M (1)
¢ _w

Integrating (1) w.r.t. z gives

a—(bdx: /de
or

g—fdm=/—2x3—3z2y+xy2dm
Ly 3 L oo
¢=—§$ —TY+ oY + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—‘s = -2’ + 2%y + f'(y) (4)

= —2*(—y +2) + f'(y)
But equation (2) says that g—i = —z?(—y + x). Therefore equation (4) becomes
—2*(~y+2) = —z'(-y + )+ f'(v) (5)

Solving equation (5) for f’(y) gives
f'(y) =0
Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
1

1
¢= —5354 -2’y + §y2x2 +a
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and

combining ¢; and cy; constants into new constant c; gives the solution as

—~
—
N—
N
o S
>
— e I
N
Z e
™ N
N +
_ -
< 8
) =N
— | [
|
<t
I S
— |
S

The solution(s) found are the following

Summary
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Figure 123: Slope field plot

Verification of solutions

2,2
yrd + L5 = ¢

.’L‘4

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 59

Ldsolve((y(x)“2—3*x*y(x)—2*x"2)=(x“2—x*y(x))*diff (y(x),x),y(x), singsol=all) J

cr? — 23zt +1

y(@) =
1T
() cr? + /2c3rt + 1
Y\x) =
1T

v/ Solution by Mathematica
Time used: 0.701 (sec). Leaf size: 99

‘DSolve[(y[x]”2-3*x*y[x]—2*x”2)==(x”2-x*y[x])*y'[x],y[x],x,IncludeSingularSolu#ions -> True]

V2zt + e?a

y(x) >z — -
y(z) >z + —@
y(x) >z — V2vat

T
V2v/x4
+zx

y(z) = —
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5.17 problem 21

5.17.1 Solving as linearode . . . . . . ... ... ... ... ... . %18
5.17.2 Solving as differentialTypeode . . . .. ... ... ... .... HoT]
5.17.3 Solving as first order ode lie symmetry lookup ode . . .. . .. H63]
5174 Solvingasexactode . . ... ... ... ... .......... Ho7]
5.17.5 Maple step by step solution . . . . . . ... ... ... Lyal

Internal problem ID [3130]
Internal file name [QUTPUT/2622_Sunday_June_05_2022_03_23_00_AM_414119/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 21.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_ order__ode_ lie_ symmetry_lookup"

Maple gives the following as the ode type

[_linear]

2yz + (22 + 1)y = 42°

5.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here

2z

P =

423

Hence the ode is
2y 43
/ _
y+ 224+1 2241
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The integrating factor u is

The ode becomes

Integrating gives

2
| e

p=e
=z +1

241
L@y =@+ 1) (25)

d((ﬂv2 + 1) y) = (43:3) dx

d%(uy) = (w) ( o )

(x2+1)y:/4x3dx

(x2+1)y=z4+cl

Dividing both sides by the integrating factor u = x2 + 1 results in

which simplifies to

Summary

xt 1

=x2+1+x2+1

Y

The solution(s) found are the following

y:
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Figure 124: Slope field plot

Verification of solutions

zt + ¢
2 +1

Verified OK.

5.17.2 Solving as differentialType ode

Writing the ode as

1)

—2yx + 423
x2+1

/

Y

Which becomes

(2)

0= (—x2 — 1) dy + (2x(2x2 — y)) dx

But the RHS is complete differential because
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(1)

4

(—222 + y)2

d

0

~——— STt T —— ——————————~—— [~

e T T T e T T T T T T T T

e T T T T T T T T T T T T T T T —— ————

T T T T T T T T T T T T T —— |

NN SN T e T e T T T T T T T T T T T T T e
A N N e
7 \ »— A N N N e
7777 TN N N N N N S e
P o L ENANANANA NN NG
777777 TPV NNNNNNN L
NNNNNANANANANV 17777
SN NN\\\\NV Vs
~NN\N\\\\N1/ /s
g~ o~ = =~
P S R R
on [q\l — _0 — [q\l on

Integrating both sides gives gives these solutions

The solution(s) found are the following

Hence (2) becomes

Summary

X
+

Figure 125: Slope field plot
zt + ¢
x2+1
562

Verification of solutions

Verified OK.



5.17.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

/ 2.’1:(—2:1:2 + y)

y=-

Y =w(z,y)

2 +1

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ﬂy - é.m) - w2€y - sz —Wyn = 0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 65: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(x)

Q

o— [ bf(@)de—h(z)
9(z)

f(w)e_ Jof (z)dz—h(z)
g(x)

polynomial type ode

/ _ a1zt+bhiyta
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—ascr

a1b2—azby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e~ f(n—l)f(w)d:cyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz
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The above table shows that

£(z,y) =0
1

241 (AD)

n(z,y) =

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
S=/—dy
n
1
:/ 1 dy
z2+1

S=(m2+1)y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

2z(—22% + y)

w(x’y):_ $2+1
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Evaluating all the partial derivatives gives

R, =1
R,=0
Sz = 2xy
S, =z>+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as
2 —4R3
dR R

493 (24)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = R4 +c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

(P+)y=2"+c
Which simplifies to

(P+l)y=2"+c
Which gives

o
v= 2 +1
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

— bbb > bl

>—5 5> > > > b5 5

n
ot
o]
=
...m
= <
3 el -
&) M) ettt et e e ettt e
ﬂa o) m AS S S NS NSNS S SN S S NSNS N SN
.mS., S A
g 3 | EERBERERIIEEEIEAE N
o NI PP PSSP PSSP
w d_d \w\w\w\w\mvw LLLLLLLLLLLLLL
) 2 i -
g
or—
= i
m S
n —
= 9 B —
O B <
2 & ¢ N
m o r— — N
& T O S
s 549 ~
S S 8 ol
£ K ©»
n
D -—
+~
< | — GG G—
g | e e
e S P
d rrrrrrrrrrrrrrrrrrrr
8 S R T
w OI.T — W R T T S St e e e
> 2$ + P N N AR
7 | 2m o o 7 7 A S » AN L N G A AR A
] 5 RN R I A BRRARAASSS SN
= N a/fm.»/q//%}/»» A A T
o= _ IR NS S SN \\\q\q\q\L\w\v\v\r\v\v
D) A R e i  ata ata  d
) __ P E SIS S I P
o o [
y_z B A
— 151
3 EOSEESSEEE: S
13 R S - S
&b T
.-
S

Summary

The solution(s) found are the following

1)

zt + ¢
2 +1
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Figure 126: Slope field plot

Verification of solutions

zt + ¢
2 +1

Verified OK.

5.17.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

d(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(w2 + 1) dy = (43:3 — 2zy) dx
(—42° + 2zy) dz +(2* + 1) dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —4x® + 2zy
N(z,y)=2*+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— = (—42*+2
o ay( z° + 2zy)
=2z
And
ON 0
o~ Y
=2z
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Since %i; = ‘%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

96
g—x—M (1)
¢ _
=N @)

Integrating (1) w.r.t. = gives

%dxz/de
or

@ dxr = / —4z3 4+ 2zydx
ox

o=-CZ 0 4 1) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

0 Y o
6—y—$2—§+f(y) (4)

But equation (2) says that g—‘z = 22 + 1. Therefore equation (4) becomes
P +1=2" 2+ f(y) (5)
Solving equation (5) for f'(y) gives
Y
fly)=5+1
Integrating the above w.r.t y gives

/f’(y)dy=/<%+1) dy

1
f(y)=;ly2+y+cl
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(1)

ty+a
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zt + ¢
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Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and c; constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary
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Figure 127: Slope field plot
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Verification of solutions

Verified OK.

5.17.5 Maple step by step solution

Let’s solve
2yr + (z2 + 1)y = 423
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

r_ 2zy 473
y = x2+1 + 241

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

/ 2zy _ 4x3
y+ z24+1 T z2+1

° The ODE is linear; multiply by an integrating factor u(x)
ua) (v + ) = 95

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v + 2) = W)y + u(z)y’

e  Isolate p/(x)

W) = 2

° Solve to find the integrating factor
px) =12*+1

° Integrate both sides with respect to x

S (L(p(z)y)) de = [ 2074z + ¢,

° Evaluate the integral on the lhs
wz)y= [ w@)a® gy 4 ¢

z2+1
° Solve for y
3
y = L st
()

e  Substitute u(z) =z*+1
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_ 4z3dz+cy

Y=""p1
° Evaluate the integrals on the rhs
1154 C
y= m2—:-11

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

Ldsolve((1+x“2)*diff(y(x),x)+2*x*y(x)=4*x“3,y(x), singsol=all) J
(x)_$4+01
= z2+1

v/ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 19

LDSolve[(1+x“2)*y'[x]+2*x*y[x]==4*x‘3,y[x],x,IncludeSingularSolutions -> True]J

2+
2 +1

y(z) —
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5.18 problem 22
5.18.1 Solvingasexactode . .. ... ... ... ... ... ... ... 73l
5.18.2 Maple step by step solution . . . . ... ... ... 0. 576

Internal problem ID [3131]
Internal file name [OUTPUT/2623_Sunday_June_05_2022_03_23_03_AM_57615570/index . tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 22.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

e”sin (y) — ysin (yz) + (cos (y) €* — zsin (yz))y' =0

5.18.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 (*)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 04d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

3 =
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(cos (y) €° — zsin (zy)) dy = (—sin (y) € + ysin (zy)) dz
(sin (y) € — ysin (zy)) dz +(cos (y) €* — zsin (zy))dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =sin (y) " — ysin (zy)
N(z,y) = cos (y) e — zsin (zy)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives

oM o, . - .
Sy = 6 (1) — ysin (&)

= cos (y) e” — sin (zy) — y cos (zy) =

And
ON 0
o %(cos (y) e® — xsin (zy))
= cos (y) e” — sin (zy) — y cos (zy) =
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
=N 2
o @)

o974



Integrating (1) w.r.t. z gives

%dx:/de
ox

op . [ . x :
. dz = /sm (y) e” — ysin (zy) dz

¢ = sin (y) " + cos (zy) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

g—i = cos (y) €* — zsin (zy) + f'(y) (4)

But equation (2) says that 22 = cos (y) e® — z sin (zy). Therefore equation (4) becomes
dy

cos (y) € — zsin (zy) = cos (y) € — zsin (zy) + f'(y) (5)

Solving equation (5) for f’(y) gives
f'y) =0

Therefore
fy) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =sin (y) e” + cos (zy) + 1

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

c1 = sin (y) €” + cos (zy)

Summary
The solution(s) found are the following

e”sin (y) + cos (yz) = ¢ (1)
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Figure 128: Slope field plot

Verification of solutions

e”sin (y) + cos (yz) = 1
Verified OK.

5.18.2 Maple step by step solution

Let’s solve

e” sin (y) — ysin (yx) + (cos (y) €* — zsin (yz))y' =0
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y)=0

o Compute derivative of lhs

F(z,y) + (& F (@) y =0
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o Evaluate derivatives
cos (y) €* —sin (zy) — y cos (zy) z = cos (y) € — sin (zy) — y cos (zy) =
o Condition met, ODE is exact
Exact ODE implies solution will be of this form
Fl@,y) = o1, M(z,y) = F'(z,3), N(z,9) = 5 F ()]
Solve for F'(z,y) by integrating M (z,y) with respect to z
F(z,y) = [ (sin(y) * — ysin (zy)) dz + f1(y)
Evaluate integral
F(z,y) = sin (y) e” + cos (zy) + f1(y)
Take derivative of F'(x,y) with respect toy
N(z,y) = &£ F(z,y)
Compute derivative
cos (y) €* — z sin (zy) = cos (y) e — zsin (zy) + % fi(y)
Isolate for % fily)
d%f 1(y) =0
Solve for fi(y)
fily) =0
Substitute f;(y) into equation for F(z,y)
F(z,y) = sin (y) € + cos (zy)
Substitute F'(z,y) into the solution of the ODE
sin (y) e* + cos (zy) = 1
Solve for y
y = RootOf(_Zx — arccos (—sin (_Z)e* + ¢1))
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.265 (sec). Leaf size: 16

‘dsolve((exp(x)*sin(y(x))—y(x)*sin(x*y(x)))+(exp(x)*cos(y(x))—x*sin(x*y(x)))*d#ff(y(x),x)=0,y

e”sin (y(z)) + cos (zy(z)) +¢1 =0

v/ Solution by Mathematica
Time used: 0.58 (sec). Leaf size: 19

LDSolve [(Exp[x]*Sin[y[x]]-y[x]*Sin[x*y[x]])+(Exp [x]*Cos [y [x]]-x*Sin[x*y[x]]) *yJ' [x]==0,y[x],x,

Solve[e” sin(y(x)) + cos(zy(z)) = c1, y(z)]
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5.19 problem 24

5.19.1 Solvingasexactode . .. ... ... ... ... ... ... ... LY
5.19.2 Maple step by step solution . . . . . ... ... ... H&3]

Internal problem ID [3132]
Internal file name [OUTPUT/2624_Sunday_June_05_2022_03_23_11_AM_89760593/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 24.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

(0o +y—2P)f — 2o+ e =

5.19.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
dx

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

M(z,y) + N(z,y) >= =0 (A)

ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

o¢

P M

o¢

3y N
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. 824 _ 829
But since 520y = yos

then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(ze¥+y— w2) dy = (2zy — ¥ — z)dz
(—2zy+e! +z)dz+(ze! +y—2°)dy =0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) = —-2zy+e’+z
N(z,y) =ze¥ +y— z?

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
T _ (-9 y
By 8y( zy + e’ +x)
=eY—2x
And
ON 0
- - Yy — 2
5 = B2 (ze¥ +y— %)
=e¥ -2z
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
2 =N 2
o )
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Integrating (1) w.r.t. z gives

op .
%dx—/de

%dx=/—2my+ey+xdm
o=ae~ (y-3) 2 +10) @

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

L =+ f(y) @

But equation (2) says that g—‘;’ = ze¥ + y — z°. Therefore equation (4) becomes

vel 4yt = (el —2) + 1) ©
Solving equation (5) for f'(y) gives
fly) =y
Integrating the above w.r.t y gives

[rwa= [ way

2

fw) =% +e

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

1 2
¢p=zxe¥— (y—§>m2+%+01
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

1 2
clzxey—(y—§>x2+%

Summary
The solution(s) found are the following

1 y?
Y _ _ = 24,9 _

ze <y 2)x + 5 =a (1)
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Figure 129: Slope field plot

Verification of solutions

Verified OK.
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5.19.2 Maple step by step solution

Let’s solve
(ze? +y—x°)y —2yz +e¥ = —2x
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs
F(z,9)+ (§F @)y =0

o Evaluate derivatives
ey —2x =e¥ -2z

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = e, M(z,9) = F'(2,9), Nw,9) = $F(z,9)]

° Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (—2zy + ¥+ z)dz + fi(y)

° Evaluate integral

z2
F(z,y) = -2’y +ze' + 5 + fi(y)

o Take derivative of F'(z,y) with respect to y
N(z,y) = 5. F(z,y)
° Compute derivative

ze¥+y—a’=—a*+ze’ + 1 fi(y)

o Isolate for % fi(y)
d%f 1(y) =y
° Solve for f1(y)
fily) = %
o Substitute f(y) into equation for F'(z,y)
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F(z,y) = -2’y +ze! + 2 + 1L
o Substitute F'(z,y) into the solution of the ODE
1‘2 2
—Py+rel+ L+ L =¢
° Solve for y

y = RootOf (2z*_Z —2e?x — 7" — 2% + 2c1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

Ldsolve((x*exp(y(x))+y(x)—x“2)*diff(y(x),x)=(2*x*y(x) —exp(y(x))-x),y(x), sing%ol=a11)

@, y@)’

—.172y(£l7) + ey(””)x + ? + 9 +c = 0

v/ Solution by Mathematica
Time used: 0.315 (sec). Leaf size: 35

s

LDSolve[(x*Exp[y[x]]+y[x]-x‘2)*y'[x]==(2*x*y[x] -Exp[y[x]]—x),y[x],x,IncludeSi\gularSolutions

72 2
Solve | 2*(—y(z)) + 5 + ze¥@ + 20 =, y(z)
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5.20 problem 25
5.20.1 Solvingasexactode . .. ... ... ... ... ... .. ... B85

Internal problem ID [3133]
Internal file name [OUTPUT/2625_Sunday_June_05_2022_03_23_15_AM_43739337/index.tex]

Book: Differential equations with applications and historial notes, George F. Simmons, 1971
Section: Chapter 2, End of chapter, page 61

Problem number: 25.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[Cy=_G(x,y"') "]

—(ze® —eYy)y = —€e"(z+ 1)

5.20.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 06 06 d
Yy _
ox + Ooydr 0 (B)

Comparing (A,B) shows that

0p

9 M

0p

8_;1/ =N
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But since % = % then for the above to be valid, we require that
Y yox
OM ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
(,;9; 6¢y = 5;9; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—ze®+ye’)dy = (—€e®(z+ 1)) dz
(e"(x+1))dz+(—ze” +ye)dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =e"(z + 1)
N(z,y) = —ze” +ye¥

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
— = —(e"(z+1
y y( (z+1))
=0
And
ON 0
= (= Z Y
0x Gm( e’ +ye’)

=e’(—z—1)
Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
=A%)

Oy ox
1 xT xT
= —mz—_yey((o) — (—ze" —¢€"))
_e(z+1)
N ret —yev
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

1 /ON OM
BW(a—x‘a—y)
= (e =) = (0))

=-1

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

— e/ Bdy

— ef—ldy

7

The result of integrating gives

p=e"

= e_y

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M =uM
=e Y(e"(z +1))
=(z+1)e ¥

And

N = uN
=e Y(—ze"+yeY)

=—ze VT 4y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

_ _dy
M+N-—==0
dz
((z +1) e_y"'m) + (—z e vtT 4 y) g—z =0
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The following equations are now set up to solve for the function ¢(z,y)

0p —

g—x =M (1)
0 _w

8y )

Integrating (1) w.r.t. z gives
@ dx = / M dzx
O0x

a¢ — —y+z
axdx—/($+1)e dz

p=zeV"" + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and

y. Taking derivative of equation (3) w.r.t y gives

§§=—xfww+f@> (4)

But equation (2) says that g—z = —ze ¥ +y. Therefore equation (4) becomes

—ze Ly =~z 4 () (5)

Solving equation (5) for f'(y) gives

fly) =y

Integrating the above w.r.t y gives

[rwa=[waw

2
f(y)Z%‘FCl

Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢
—y+ y2
¢ =ge ¥* + 5 + C1
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as
v

cp=xe ¥ 4 5

Summary
The solution(s) found are the following

rxe VTt 4 2 =¢ (1)
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Figure 130: Slope field plot

Verification of solutions

Verified OK.
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

‘dsolve(exp(x)*(1+x)=(x*exp(x)-y(x)*exp(y(x)))*diff(y(x),x),y(x), singsol=all)

y(@)’

z—y(z)
Te +2

+Cl=0

v Solution by Mathematica
Time used: 0.307 (sec). Leaf size: 26

-

N
LDSolve[Exp[x]*(1+x)==(x*Exp[x]—y[x]*Exp[y[x]])*y'[x],y[x],x,IncludeSingularSg}utions -> True

1
Solve —§y(x)2 — z2e” V@ = ¢ y(x)
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