A Solution Manual For

Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

2 Chapter 4. Linear Differential Equations. Page 183
836

1 Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78

1.1 problem 1 5
1.2 problem 2 9
1.3 problem 3 13
1.4 problem 4 17
1.5 problem 5 21
1.6 problem 6 25
1.7 problem 7 29
1.8 problem 8 33
1.9 problem 9 42
1.10 problem 10 53
1.11 problem 11 64
1.12 problem 12 77
1.13 problem 13 91
1.14 problem 14 101
1.15 problem 15 110
1.16 problem 16 118
1.17 problem 17 129
1.18 problem 18 145
1.19 problem 19 153
1.20 problem 20 163
1.21 problem 21 170
1.22 problem 22 176
1.23 problem 23 182
1.24 problem 24 190
1.25 problem 25 205
1.26 problem 26 213
1.27 problem 27 219
1.28 problem 28 229
1.29 problem 29 235
1.30 problem 30 243
1.31 problem 31 249
1.32 problem 32 264
1.33 problem 33 270
1.34 problem 34 282
1.35 problem 35 288
1.36 problem 36 301
1.37 problem 37 314
1.38 problem 38 320
1.39 problem 39 326
1.40 problem 41 332
1.41 problem 42 342
1.42 problem 43 350
1.43 problem 44 357
1.44 problem 45 368
1.45 problem 46 380
1.46 problem 47 393
1.47 problem 48 405
1.48 problem 49 408
1.49 problem 50 411
1.50 problem 51 420
1.51 problem 52 428
1.52 problem 53 436
1.53 problem 54 445
1.54 problem 55 450
1.55 problem 56 454
1.56 problem 57 458
1.57 problem 58 465
1.58 problem 59 478
1.59 problem 60 489
1.60 problem 61 501
1.61 problem 62 507
1.62 problem 63 512
1.63 problem 64 524
1.64 problem 65 529
1.65 problem 66 534
1.66 problem 68 538
1.67 problem 69 543
1.68 problem 71.1 558
1.69 problem 72 562
1.70 problem 73 568
1.71 problem 74 581
1.72 problem 75 586
1.73 problem 76 591
1.74 problem 77 596
1.75 problem 78 601
1.76 problem 79 606
1.77 problem 80 614
1.78 problem 81 619
1.79 problem 82 623
1.80 problem 83 626
1.81 problem 84 630
1.82 problem 85 635
1.83 problem 86 640
1.84 problem 87 666
1.85 problem 88 691
1.86 problem 89 698
1.87 problem 90 721
1.88 problem 91 738
1.89 problem 92 743
1.90 problem 111 748
1.91 problem 112 762
1.92 problem 113 775
1.93 problem 115 793
1.94 problem 116 803
1.95 problem 117 817
1.96 problem 119 830

1.1 problem 1

1.1.1 Solving as separable ode
1.1.2 Maple step by step solution

Internal problem ID [3146]
Internal file name [OUTPUT/2638_Sunday_June_05_2022_08_37_51_AM_88841125/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
\cos (y)^{2}+\left(1+\mathrm{e}^{-x}\right) \sin (y) y^{\prime}=0
$$

1.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\cos (y) \cot (y)}{1+\mathrm{e}^{-x}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{1+\mathrm{e}^{-x}}$ and $g(y)=\cos (y) \cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y) \cot (y)} d y & =-\frac{1}{1+\mathrm{e}^{-x}} d x \\
\int \frac{1}{\cos (y) \cot (y)} d y & =\int-\frac{1}{1+\mathrm{e}^{-x}} d x \\
\frac{1}{\cos (y)} & =-\ln \left(1+\mathrm{e}^{-x}\right)+\ln \left(\mathrm{e}^{-x}\right)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\pi-\arccos \left(\frac{1}{\ln \left(\left(\mathrm{e}^{x}+1\right) \mathrm{e}^{-x}\right)+x-c_{1}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\pi-\arccos \left(\frac{1}{\ln \left(\left(\mathrm{e}^{x}+1\right) \mathrm{e}^{-x}\right)+x-c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
y=\pi-\arccos \left(\frac{1}{\ln \left(\left(\mathrm{e}^{x}+1\right) \mathrm{e}^{-x}\right)+x-c_{1}}\right)
$$

Verified OK.

1.1.2 Maple step by step solution

Let's solve
$\cos (y)^{2}+\left(1+\mathrm{e}^{-x}\right) \sin (y) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime} \sin (y)}{\cos (y)^{2}}=-\frac{1}{1+\mathrm{e}^{-x}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime} \sin (y)}{\cos (y)^{2}} d x=\int-\frac{1}{1+\mathrm{e}^{-x}} d x+c_{1}$
- Evaluate integral
$\frac{1}{\cos (y)}=-\ln \left(1+\mathrm{e}^{-x}\right)+\ln \left(\mathrm{e}^{-x}\right)+c_{1}$
- \quad Solve for y
$y=\pi-\arccos \left(\frac{1}{\ln \left(\frac{e^{x}+1}{\mathrm{e}^{x}}\right)+x-c_{1}}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve(cos(y(x))^2+(1+exp(-x))*sin(y(x))*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{\pi}{2}+\arcsin \left(\frac{1}{\ln \left(1+\mathrm{e}^{x}\right)+c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.95 (sec). Leaf size: 57
DSolve $[\operatorname{Cos}[y[x]] \sim 2+(1+\operatorname{Exp}[-x]) * \operatorname{Sin}[y[x]] * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sec ^{-1}\left(-\log \left(e^{x}+1\right)+2 c_{1}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(-\log \left(e^{x}+1\right)+2 c_{1}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

1.2 problem 2

1.2.1 Solving as separable ode . 9
1.2.2 Maple step by step solution . 11

Internal problem ID [3147]
Internal file name [OUTPUT/2639_Sunday_June_05_2022_08_37_52_AM_99009684/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{3} \mathrm{e}^{x^{2}}}{y \ln (y)}=0
$$

1.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{3} \mathrm{e}^{x^{2}}}{y \ln (y)}
\end{aligned}
$$

Where $f(x)=x^{3} \mathrm{e}^{x^{2}}$ and $g(y)=\frac{1}{y \ln (y)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y \ln (y)}} d y & =x^{3} \mathrm{e}^{x^{2}} d x \\
\int \frac{1}{\frac{1}{y \ln (y)}} d y & =\int x^{3} \mathrm{e}^{x^{2}} d x \\
\frac{y^{2} \ln (y)}{2}-\frac{y^{2}}{4} & =\frac{\left(x^{2}-1\right) \mathrm{e}^{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(2\left(x^{2} e^{x^{2}}-\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-1}\right)}{2}+\frac{1}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(2\left(x^{2} \mathrm{e}^{x^{2}}-\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-1}\right)}{2}+\frac{1}{2}} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(2\left(x^{2} \mathrm{e}^{x^{2}}-\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-1}\right)}{2}+\frac{1}{2}}
$$

Verified OK.

1.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{x^{3} \mathrm{e}^{2}}{y \ln (y)}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime} y \ln (y)=x^{3} \mathrm{e}^{x^{2}}
$$

- Integrate both sides with respect to x
$\int y^{\prime} y \ln (y) d x=\int x^{3} \mathrm{e}^{x^{2}} d x+c_{1}$
- Evaluate integral

$$
\frac{y^{2} \ln (y)}{2}-\frac{y^{2}}{4}=\frac{\left(x^{2}-1\right) \mathrm{e}^{x^{2}}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\text {LambertW }\left(\frac{2\left(x^{2} \mathrm{e}^{x^{2}}-\mathrm{e}^{x^{2}}+2 c_{1}\right)}{e}\right)}{ }^{2}+\frac{1}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 54

```
dsolve(diff (y(x),x)=(x^3*exp(x^2))/(y(x)*\operatorname{ln}(y(x))),y(x), singsol=all)
```

$$
y(x)=\sqrt{2} \sqrt{\frac{\mathrm{e}^{x^{2}} x^{2}-\mathrm{e}^{x^{2}}+2 c_{1}}{\text { LambertW }\left(2\left(\mathrm{e}^{x^{2}} x^{2}-\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-1}\right)}}
$$

\checkmark Solution by Mathematica
Time used: 60.191 (sec). Leaf size: 106
DSolve[y' $[x]==\left(x^{\wedge} 3 * \operatorname{Exp}\left[x^{\wedge} 2\right]\right) /(y[x] * \log [y[x]]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{2 e^{x^{2}}\left(x^{2}-1\right)+4 c_{1}}}{\sqrt{W\left(\frac{2 e^{x^{2}}\left(x^{2}-1\right)+4 c_{1}}{e}\right)}} \\
& y(x) \rightarrow \frac{\sqrt{2 e^{x^{2}}\left(x^{2}-1\right)+4 c_{1}}}{\sqrt{W\left(\frac{2 e^{x^{2}}\left(x^{2}-1\right)+4 c_{1}}{e}\right)}}
\end{aligned}
$$

1.3 problem 3

> 1.3.1 Solving as separable ode
1.3.2 Maple step by step solution . 15

Internal problem ID [3148]
Internal file name [OUTPUT/2640_Sunday_June_05_2022_08_37_53_AM_87021584/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x \cos (y)^{2}+\mathrm{e}^{x} \tan (y) y^{\prime}=0
$$

1.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x \mathrm{e}^{-x} \cos (y)^{2} \cot (y)
\end{aligned}
$$

Where $f(x)=-x \mathrm{e}^{-x}$ and $g(y)=\cos (y)^{2} \cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)^{2} \cot (y)} d y & =-x \mathrm{e}^{-x} d x \\
\int \frac{1}{\cos (y)^{2} \cot (y)} d y & =\int-x \mathrm{e}^{-x} d x \\
\frac{1}{2 \cot (y)^{2}} & =(x+1) \mathrm{e}^{-x}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right) \\
& y=\pi-\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right) \tag{1}\\
& y=\pi-\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right) \tag{2}
\end{align*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right)
$$

Verified OK.

$$
y=\pi-\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{2 c_{1} \mathrm{e}^{x}+2 x+2}\right)
$$

Verified OK.

1.3.2 Maple step by step solution

Let's solve
$x \cos (y)^{2}+\mathrm{e}^{x} \tan (y) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime} \tan (y)}{\cos (y)^{2}}=-\frac{x}{\mathrm{e}^{x}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} \tan (y)}{\cos (y)^{2}} d x=\int-\frac{x}{\mathrm{e}^{x}} d x+c_{1}$
- Evaluate integral
$\frac{\tan (y)^{2}}{2}=\frac{x+1}{\mathrm{e}^{x}}+c_{1}$
- \quad Solve for y
$\left\{y=-\arctan \left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{\mathrm{e}^{x}}\right), y=\arctan \left(\frac{\sqrt{2} \sqrt{\left(c_{1} \mathrm{e}^{x}+x+1\right) \mathrm{e}^{x}}}{\mathrm{e}^{x}}\right)\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 77

```
dsolve(x*\operatorname{cos}(y(x))~2+exp(x)*\operatorname{tan}(y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\pi-\operatorname{arccot}\left(\frac{\sqrt{2} \sqrt{\left(-\mathrm{e}^{x} c_{1}+x+1\right) \mathrm{e}^{x}}}{-2 \mathrm{e}^{x} c_{1}+2 x+2}\right) \\
& y(x)=\frac{\pi}{2}-\arctan \left(\frac{\sqrt{2} \sqrt{\left(-\mathrm{e}^{x} c_{1}+x+1\right) \mathrm{e}^{x}}}{-2 \mathrm{e}^{x} c_{1}+2 x+2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 15.741 (sec). Leaf size: 149
DSolve $[x * \operatorname{Cos}[y[x]] \sim 2+\operatorname{Exp}[x] * \operatorname{Tan}[y[x]] * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sec ^{-1}\left(-\sqrt{2} \sqrt{e^{-x}\left(x+4 c_{1} e^{x}+1\right)}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(-\sqrt{2} \sqrt{e^{-x}\left(x+4 c_{1} e^{x}+1\right)}\right) \\
& y(x) \rightarrow-\sec ^{-1}\left(\sqrt{2} \sqrt{e^{-x}\left(x+4 c_{1} e^{x}+1\right)}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(\sqrt{2} \sqrt{e^{-x}\left(x+4 c_{1} e^{x}+1\right)}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

1.4 problem 4

1.4.1 Solving as separable ode . 17
1.4.2 Maple step by step solution . 19

Internal problem ID [3149]
Internal file name [OUTPUT/2641_Sunday_June_05_2022_08_37_59_AM_8997525/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x\left(y^{2}+1\right)+(2 y+1) \mathrm{e}^{-x} y^{\prime}=0
$$

1.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x \mathrm{e}^{x}\left(y^{2}+1\right)}{2 y+1}
\end{aligned}
$$

Where $f(x)=-x \mathrm{e}^{x}$ and $g(y)=\frac{y^{2}+1}{2 y+1}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{\frac{y^{2}+1}{2 y+1} d y}=-x \mathrm{e}^{x} d x \\
\int \frac{1}{\frac{y^{2}+1}{2 y+1}} d y=\int-x \mathrm{e}^{x} d x
\end{gathered}
$$

$$
\ln \left(y^{2}+1\right)+\arctan (y)=-(x-1) \mathrm{e}^{x}+c_{1}
$$

Which results in

$$
y=\tan \left(\operatorname{RootOf}\left(-x \mathrm{e}^{x}+\mathrm{e}^{x}-\ln \left(\frac{1}{\cos \left(_Z\right)^{2}}\right)+c_{1}-_Z\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\operatorname{RootOf}\left(-x \mathrm{e}^{x}+\mathrm{e}^{x}-\ln \left(\frac{1}{\cos \left(_Z\right)^{2}}\right)+c_{1}-_Z\right)\right) \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=\tan \left(\operatorname{RootOf}\left(-x \mathrm{e}^{x}+\mathrm{e}^{x}-\ln \left(\frac{1}{\cos \left(_Z\right)^{2}}\right)+c_{1}-_Z\right)\right)
$$

Verified OK.

1.4.2 Maple step by step solution

Let's solve

$$
x\left(y^{2}+1\right)+(2 y+1) \mathrm{e}^{-x} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}(2 y+1)}{y^{2}+1}=-\frac{x}{\mathrm{e}^{-x}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}(2 y+1)}{y^{2}+1} d x=\int-\frac{x}{\mathrm{e}^{-x}} d x+c_{1}
$$

- Evaluate integral
$\ln \left(y^{2}+1\right)+\arctan (y)=-\frac{x-1}{\mathrm{e}^{-x}}+c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve $(x *(y(x) \wedge 2+1)+(2 * y(x)+1) * \exp (-x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\tan \left(\operatorname{RootOf}\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+\ln (2)+\ln \left(\frac{1}{1+\cos \left(2 _Z\right)}\right)+_Z+c_{1}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.627 (sec). Leaf size: 43
DSolve $[\mathrm{x} *(\mathrm{y}[\mathrm{x}] \sim 2+1)+(2 * \mathrm{y}[\mathrm{x}]+1) * \operatorname{Exp}[-\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\log \left(\# 1^{2}+1\right)+\arctan (\# 1) \&\right]\left[-e^{x}(x-1)+c_{1}\right] \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

1.5 problem 5

1.5.1 Solving as separable ode . 21
1.5.2 Maple step by step solution . 23

Internal problem ID [3150]
Internal file name [OUTPUT/2642_Sunday_June_05_2022_08_37_59_AM_14399028/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x y^{3}+\mathrm{e}^{x^{2}} y^{\prime}=0
$$

1.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x y^{3} \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Where $f(x)=-x \mathrm{e}^{-x^{2}}$ and $g(y)=y^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}} d y & =-x \mathrm{e}^{-x^{2}} d x \\
\int \frac{1}{y^{3}} d y & =\int-x \mathrm{e}^{-x^{2}} d x \\
-\frac{1}{2 y^{2}} & =\frac{\mathrm{e}^{-x^{2}}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1} \\
& y=-\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1} \tag{1}\\
& y=-\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1} \tag{2}
\end{align*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1}
$$

Verified OK.

$$
y=-\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1}
$$

Verified OK.

1.5.2 Maple step by step solution

Let's solve

$$
x y^{3}+\mathrm{e}^{x^{2}} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}}=-\frac{x}{\mathrm{e}^{x^{2}}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{3}} d x=\int-\frac{x}{\mathrm{e}^{x^{2}}} d x+c_{1}$
- Evaluate integral
$-\frac{1}{2 y^{2}}=\frac{1}{2 \mathrm{e}^{x^{2}}}+c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-\left(2 c_{1} \mathrm{e}^{x^{2}}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{2}+1}, y=-\frac{\sqrt{-\left(2 c_{1} \mathrm{x}^{2}+1\right) \mathrm{e}^{x^{2}}}}{2 c_{1} \mathrm{e}^{x^{2}}+1}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve $\left(x * y(x) \wedge 3+\exp \left(x^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{c_{1}-\mathrm{e}^{-x^{2}}}} \\
& y(x)=-\frac{1}{\sqrt{c_{1}-\mathrm{e}^{-x^{2}}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 7.124 (sec). Leaf size: 70
DSolve $[x * y[x] \sim 3+E x p[x \wedge 2] * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{i e^{\frac{x^{2}}{2}}}{\sqrt{1+2 c_{1} e^{x^{2}}}} \\
& y(x) \rightarrow \frac{i e^{\frac{x^{2}}{2}}}{\sqrt{1+2 c_{1} e^{x^{2}}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.6 problem 6

1.6.1 Solving as separable ode . 25
1.6.2 Maple step by step solution . 27

Internal problem ID [3151]
Internal file name [OUTPUT/2643_Sunday_June_05_2022_08_37_59_AM_34888727/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x \cos (y)^{2}+\tan (y) y^{\prime}=0
$$

1.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-x \cos (y)^{2} \cot (y)
\end{aligned}
$$

Where $f(x)=-x$ and $g(y)=\cos (y)^{2} \cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (y)^{2} \cot (y)} d y & =-x d x \\
\int \frac{1}{\cos (y)^{2} \cot (y)} d y & =\int-x d x \\
\frac{1}{2 \cot (y)^{2}} & =-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right) \\
& y=\pi-\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right) \tag{1}\\
& y=\pi-\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right) \tag{2}
\end{align*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right)
$$

Verified OK.

$$
y=\pi-\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}+2 c_{1}}}\right)
$$

Verified OK.

1.6.2 Maple step by step solution

Let's solve

$$
x \cos (y)^{2}+\tan (y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime} \tan (y)}{\cos (y)^{2}}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} \tan (y)}{\cos (y)^{2}} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\tan (y)^{2}}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\arctan \left(\sqrt{-x^{2}+2 c_{1}}\right), y=\arctan \left(\sqrt{-x^{2}+2 c_{1}}\right)\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
dsolve $\left(x * \cos (y(x))^{\wedge} 2+\tan (y(x)) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\operatorname{arccot}\left(\frac{1}{\sqrt{-x^{2}-2 c_{1}}}\right) \\
& y(x)=\frac{\pi}{2}+\arctan \left(\frac{1}{\sqrt{-x^{2}-2 c_{1}}}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.202 (sec). Leaf size: 103
DSolve[x*Cos[y[x]]~2+Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sec ^{-1}\left(-\sqrt{-x^{2}+8 c_{1}}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(-\sqrt{-x^{2}+8 c_{1}}\right) \\
& y(x) \rightarrow-\sec ^{-1}\left(\sqrt{-x^{2}+8 c_{1}}\right) \\
& y(x) \rightarrow \sec ^{-1}\left(\sqrt{-x^{2}+8 c_{1}}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

1.7 problem 7

1.7.1 Solving as separable ode . 29
1.7.2 Maple step by step solution . 31

Internal problem ID [3152]
Internal file name [OUTPUT/2644_Sunday_June_05_2022_08_38_01_AM_44925495/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x y^{3}+(y+1) \mathrm{e}^{-x} y^{\prime}=0
$$

1.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x y^{3} \mathrm{e}^{x}}{y+1}
\end{aligned}
$$

Where $f(x)=-x \mathrm{e}^{x}$ and $g(y)=\frac{y^{3}}{y+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y^{3}}{y+1}} d y & =-x \mathrm{e}^{x} d x \\
\int \frac{1}{\frac{y^{3}}{y+1}} d y & =\int-x \mathrm{e}^{x} d x \\
-\frac{1}{y}-\frac{1}{2 y^{2}} & =-(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{\mathrm{e}^{-x}-\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)} \\
& y=-\frac{\mathrm{e}^{-x}+\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{\mathrm{e}^{-x}-\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)} \tag{1}\\
& y=-\frac{\mathrm{e}^{-x}+\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)} \tag{2}
\end{align*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-x}-\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)}
$$

Verified OK.

$$
y=-\frac{\mathrm{e}^{-x}+\sqrt{-2 c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)}
$$

Verified OK.

1.7.2 Maple step by step solution

Let's solve

$$
x y^{3}+(y+1) \mathrm{e}^{-x} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}(y+1)}{y^{3}}=-\frac{x}{\mathrm{e}^{-x}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}(y+1)}{y^{3}} d x=\int-\frac{x}{\mathrm{e}^{-x}} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}-\frac{1}{2 y^{2}}=-\frac{x-1}{\mathrm{e}^{-x}}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{\mathrm{e}^{-x}-\sqrt{-2 c_{1}\left(\mathrm{e}^{-x}\right)^{2}+\left(\mathrm{e}^{-x}\right)^{2}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)}, y=-\frac{\mathrm{e}^{-x}+\sqrt{-2 c_{1}\left(\mathrm{e}^{-x}\right)^{2}+\left(\mathrm{e}^{-x}\right)^{2}+2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}}}{2\left(c_{1} \mathrm{e}^{-x}-x+1\right)}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 73
dsolve $(x * y(x) \wedge 3+(y(x)+1) * \exp (-x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1-\sqrt{(2 x-2) \mathrm{e}^{x}+2 c_{1}+1}}{(2 x-2) \mathrm{e}^{x}+2 c_{1}} \\
& y(x)=\frac{1+\sqrt{(2 x-2) \mathrm{e}^{x}+2 c_{1}+1}}{(2 x-2) \mathrm{e}^{x}+2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 9.963 (sec). Leaf size: 88
DSolve $[x * y[x] \sim 3+(y[x]+1) * \operatorname{Exp}[-x] * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1-\sqrt{2 e^{x}(x-1)+1-2 c_{1}}}{2 e^{x}(x-1)-2 c_{1}} \\
& y(x) \rightarrow \frac{1+\sqrt{2 e^{x}(x-1)+1-2 c_{1}}}{2 e^{x}(x-1)-2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.8 problem 8

> 1.8.1 Solving as homogeneousTypeD2 ode
1.8.2 Solving as first order ode lie symmetry calculated ode 35

Internal problem ID [3153]
Internal file name [OUTPUT/2645_Sunday_June_05_2022_08_38_02_AM_12623809/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}+\frac{x}{y}=-2
$$

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+\frac{1}{u(x)}=-2
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{(u+1)^{2}}{x u}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{(u+1)^{2}}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{(u+1)^{2}}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u+1)^{2}}{u}} d u & =\int-\frac{1}{x} d x \\
\ln (u+1)+\frac{1}{u+1} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln (u(x)+1)+\frac{1}{u(x)+1}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \ln \left(\frac{y}{x}+1\right)+\frac{1}{\frac{y}{x}+1}+\ln (x)-c_{2}=0 \\
& \ln \left(\frac{y+x}{x}\right)+\frac{x}{y+x}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln \left(\frac{y+x}{x}\right)+\frac{x}{y+x}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
\ln \left(\frac{y+x}{x}\right)+\frac{x}{y+x}+\ln (x)-c_{2}=0
$$

Verified OK.

1.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{x+2 y}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+2 y)\left(b_{3}-a_{2}\right)}{y}-\frac{(x+2 y)^{2} a_{3}}{y^{2}}+\frac{x a_{2}+y a_{3}+a_{1}}{y} \tag{5E}\\
& -\left(-\frac{2}{y}+\frac{x+2 y}{y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{x^{2} a_{3}+x^{2} b_{2}-2 x y a_{2}+4 x y a_{3}+2 x y b_{3}-2 y^{2} a_{2}+3 y^{2} a_{3}-b_{2} y^{2}+2 y^{2} b_{3}+x b_{1}-y a_{1}}{y^{2}}=0
$$

Setting the numerator to zero gives
$-x^{2} a_{3}-x^{2} b_{2}+2 x y a_{2}-4 x y a_{3}-2 x y b_{3}+2 y^{2} a_{2}-3 y^{2} a_{3}+b_{2} y^{2}-2 y^{2} b_{3}-x b_{1}+y a_{1}=0$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}-3 a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& +b_{2} v_{2}^{2}-2 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+a_{1} v_{2}-b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
\left(-a_{3}-b_{2}\right) v_{1}^{2}+\left(2 a_{2}-4 a_{3}-2 b_{3}\right) v_{1} v_{2}-b_{1} v_{1}+\left(2 a_{2}-3 a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2}+a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-b_{1} & =0 \\
-a_{3}-b_{2} & =0 \\
2 a_{2}-4 a_{3}-2 b_{3} & =0 \\
2 a_{2}-3 a_{3}+b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-2 b_{2}+b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x+2 y}{y}\right)(x) \\
& =\frac{x^{2}+2 x y+y^{2}}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2}+2 x y+y^{2}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y+x)+\frac{x}{y+x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+2 y}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+2 y}{(y+x)^{2}} \\
S_{y} & =\frac{y}{(y+x)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{(y+x) \ln (y+x)+x}{y+x}=c_{1}
$$

Which simplifies to

$$
\frac{(y+x) \ln (y+x)+x}{y+x}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\text {LambertW }\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x+2 y}{y}$		$\frac{d S}{d R}=0$
	$S=\underline{(y+x) \ln (y+x)}$	
	$y+x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		\rightarrow

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\mathrm{LambertW}\left(-x \mathrm{e}^{-c_{1}}\right)+c_{1}}-x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 21
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{x} / \mathrm{y}(\mathrm{x})+2=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=-\frac{x\left(\operatorname{LambertW}\left(-c_{1} x\right)+1\right)}{\operatorname{LambertW}\left(-c_{1} x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 31
DSolve[y' $[x]+x / y[x]+2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\frac{1}{\frac{y(x)}{x}+1}+\log \left(\frac{y(x)}{x}+1\right)=-\log (x)+c_{1}, y(x)\right]
$$

1.9 problem 9

1.9.1 Solving as homogeneousTypeD ode 42
1.9.2 Solving as homogeneousTypeD2 ode 44
1.9.3 Solving as first order ode lie symmetry lookup ode 46

Internal problem ID [3154]
Internal file name [OUTPUT/2646_Sunday_June_05_2022_08_38_03_AM_51971513/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
x y^{\prime}-y-x \cot \left(\frac{y}{x}\right)=0
$$

1.9.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\cot \left(\frac{y}{x}\right)+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\cot \left(\frac{y}{x}\right)
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=\frac{\cot (u(x))}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\cot (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\cot (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cot (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\cot (u)} d u & =\int \frac{1}{x} d x \\
-\ln (\cos (u)) & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (u)}=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\sec (u)=c_{2} x
$$

Therefore the solution is

$$
\begin{aligned}
y & =u x \\
& =x \operatorname{arcsec}\left(c_{2} \mathrm{e}^{c_{1}} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \operatorname{arcsec}\left(c_{2} \mathrm{e}^{c_{1}} x\right) \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot

Verification of solutions

$$
y=x \operatorname{arcsec}\left(c_{2} \mathrm{e}^{c_{1}} x\right)
$$

Verified OK.

1.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x\left(u^{\prime}(x) x+u(x)\right)-u(x) x-x \cot (u(x))=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\cot (u)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\cot (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cot (u)} d u & =\frac{1}{x} d x \\
\int \frac{1}{\cot (u)} d u & =\int \frac{1}{x} d x \\
-\ln (\cos (u)) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (u)}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sec (u)=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right) \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot
Verification of solutions

$$
y=x \operatorname{arcsec}\left(c_{3} \mathrm{e}^{c_{2}} x\right)
$$

Verified OK.

1.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+x \cot \left(\frac{y}{x}\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 8: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+x \cot \left(\frac{y}{x}\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\tan \left(\frac{y}{x}\right)}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\tan (R) S(R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \cos (R) \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \cos \left(\frac{y}{x}\right)
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \cos \left(\frac{y}{x}\right)
$$

Which gives

$$
y=\left(\pi-\arccos \left(\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+x \cot \left(\frac{y}{x}\right)}{x}$		$\frac{d S}{d R}=-\tan (R) S(R)$
blblbly		
+1.	$R=\frac{y}{x}$	
	$S=-\frac{1}{x}$	
	x	${ }_{\text {¢ }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\pi-\arccos \left(\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=\left(\pi-\arccos \left(\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve($x * \operatorname{diff}(y(x), x)-y(x)=x * \cot (y(x) / x), y(x)$, singsol=all)

$$
y(x)=x \arccos \left(\frac{1}{c_{1} x}\right)
$$

\checkmark Solution by Mathematica
Time used: 25.917 (sec). Leaf size: 56
DSolve[x*y' $[x]-y[x]==x * \operatorname{Cot}[y[x] / x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x \arccos \left(\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow x \arccos \left(\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow-\frac{\pi x}{2} \\
& y(x) \rightarrow \frac{\pi x}{2}
\end{aligned}
$$

1.10 problem 10

$$
\text { 1.10.1 Solving as homogeneousTypeD ode } 53
$$

1.10.2 Solving as homogeneousTypeD2 ode 55
1.10.3 Solving as first order ode lie symmetry lookup ode 57

Internal problem ID [3155]
Internal file name [OUTPUT/2647_Sunday_June_05_2022_08_38_04_AM_4756193/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
x \cos \left(\frac{y}{x}\right)^{2}-y+x y^{\prime}=0
$$

1.10.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\cos \left(\frac{y}{x}\right)^{2}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =-1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\cos \left(\frac{y}{x}\right)
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=-\frac{\cos (u(x))^{2}}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\cos (u)^{2}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\cos (u)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (u)^{2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\cos (u)^{2}} d u & =\int-\frac{1}{x} d x \\
\tan (u) & =-\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
\tan (u(x))+\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
\tan \left(\frac{y}{x}\right)+\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\tan \left(\frac{y}{x}\right)+\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot

Verification of solutions

$$
\tan \left(\frac{y}{x}\right)+\ln (x)-c_{1}=0
$$

Verified OK.

1.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x \cos (u(x))^{2}-u(x) x+x\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\cos (u)^{2}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\cos (u)^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cos (u)^{2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\cos (u)^{2}} d u & =\int-\frac{1}{x} d x \\
\tan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\tan (u(x))+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \tan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \tan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\tan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
\tan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x \cos \left(\frac{y}{x}\right)^{2}-y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 10: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x \cos \left(\frac{y}{x}\right)^{2}-y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\sec \left(\frac{y}{x}\right)^{2}}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sec (R)^{2} S(R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{\tan (R)} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{\tan \left(\frac{y}{x}\right)}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{\tan \left(\frac{y}{x}\right)}
$$

Which gives

$$
y=\arctan \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x \cos \left(\frac{y}{x}\right)^{2}-y}{x}$		$\frac{d S}{d R}=\sec (R)^{2} S(R)$
$\xrightarrow[1]{*}$		
\cdots		
	$R=\underline{y}$	
ditatind		
	$S=-\frac{1}{x}$	
		6t. ${ }^{\text {d }}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\arctan \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
y=\arctan \left(\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve $\left(\left(x * \cos (y(x) / x)^{\wedge} 2-y(x)\right)+x * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=-\arctan \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.5 (sec). Leaf size: 37
DSolve $\left[(x * \operatorname{Cos}[y[x] / x] \sim 2-y[x])+x * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow x \arctan \left(-\log (x)+2 c_{1}\right) \\
& y(x) \rightarrow-\frac{\pi x}{2} \\
& y(x) \rightarrow \frac{\pi x}{2}
\end{aligned}
$$

1.11 problem 11

1.11.1 Solving as first order ode lie symmetry calculated ode 64
1.11.2 Solving as exact ode . 70

Internal problem ID [3156]
Internal file name [OUTPUT/2648_Sunday_June_05_2022_08_38_05_AM_95895671/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x y^{\prime}-y(1+\ln (y)-\ln (x))=0
$$

1.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y(-1+\ln (x)-\ln (y))}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y(-1+\ln (x)-\ln (y))\left(b_{3}-a_{2}\right)}{x}-\frac{y^{2}(-1+\ln (x)-\ln (y))^{2} a_{3}}{x^{2}} \\
& -\left(-\frac{y}{x^{2}}+\frac{y(-1+\ln (x)-\ln (y))}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{-1+\ln (x)-\ln (y)}{x}+\frac{1}{x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\ln (x)^{2} y^{2} a_{3}-2 \ln (x) \ln (y) y^{2} a_{3}+\ln (y)^{2} y^{2} a_{3}-\ln (x) x^{2} b_{2}-\ln (x) y^{2} a_{3}+\ln (y) x^{2} b_{2}+\ln (y) y^{2} a_{3}-\ln }{x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\ln (x)^{2} y^{2} a_{3}+2 \ln (x) \ln (y) y^{2} a_{3}-\ln (y)^{2} y^{2} a_{3}+\ln (x) x^{2} b_{2}+\ln (x) y^{2} a_{3} \tag{6E}\\
& \quad-\ln (y) x^{2} b_{2}-\ln (y) y^{2} a_{3}+\ln (x) x b_{1}-\ln (x) y a_{1}-\ln (y) x b_{1} \\
& +\ln (y) y a_{1}-b_{2} x^{2}+x y a_{2}-x y b_{3}+y^{2} a_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (x), \ln (y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (x)=v_{3}, \ln (y)=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3}^{2} v_{2}^{2} a_{3}+2 v_{3} v_{4} v_{2}^{2} a_{3}-v_{4}^{2} v_{2}^{2} a_{3}+v_{3} v_{2}^{2} a_{3}-v_{4} v_{2}^{2} a_{3}+v_{3} v_{1}^{2} b_{2}-v_{4} v_{1}^{2} b_{2}-v_{3} v_{2} a_{1} \tag{7E}\\
& +v_{4} v_{2} a_{1}+v_{1} v_{2} a_{2}+v_{2}^{2} a_{3}+v_{3} v_{1} b_{1}-v_{4} v_{1} b_{1}-b_{2} v_{1}^{2}-v_{1} v_{2} b_{3}+2 v_{2} a_{1}-2 v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& v_{3} v_{1}^{2} b_{2}-v_{4} v_{1}^{2} b_{2}-b_{2} v_{1}^{2}+\left(-b_{3}+a_{2}\right) v_{1} v_{2}+v_{3} v_{1} b_{1}-v_{4} v_{1} b_{1}-2 v_{1} b_{1}-v_{3}^{2} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+2 v_{3} v_{4} v_{2}^{2} a_{3}+v_{3} v_{2}^{2} a_{3}-v_{4}^{2} v_{2}^{2} a_{3}-v_{4} v_{2}^{2} a_{3}+v_{2}^{2} a_{3}-v_{3} v_{2} a_{1}+v_{4} v_{2} a_{1}+2 v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
-2 b_{1} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-b_{3}+a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(-1+\ln (x)-\ln (y))}{x}\right)(x) \\
& =\ln (x) y-\ln (y) y \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\ln (x) y-\ln (y) y} d y
\end{aligned}
$$

Which results in

$$
S=-\ln (\ln (x)-\ln (y))
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y(-1+\ln (x)-\ln (y))}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{1}{x(\ln (x)-\ln (y))} \\
& S_{y}=\frac{1}{y(\ln (x)-\ln (y))}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (\ln (x)-\ln (y))=-\ln (x)+c_{1}
$$

Which simplifies to

$$
-\ln (\ln (x)-\ln (y))=-\ln (x)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\left(\mathrm{e}^{\left.c_{1} \ln (x)-x\right)} \mathrm{e}^{-c_{1}}\right.}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\left(\mathrm{e}^{c_{1}} \ln (x)-x\right) \mathrm{e}^{-c_{1}}} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\left(\mathrm{e}^{\left.c_{1} \ln (x)-x\right)} \mathrm{e}^{-c_{1}}\right.}
$$

Verified OK.

1.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =(y(1+\ln (y)-\ln (x))) \mathrm{d} x \\
(-y(1+\ln (y)-\ln (x))) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y(1+\ln (y)-\ln (x)) \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y(1+\ln (y)-\ln (x))) \\
& =-2+\ln (x)-\ln (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2} y}$ is an integrating factor. Therefore by multiplying $M=-y(1+\ln (y)-\ln (x))$ and $N=x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
& M=-\frac{1+\ln (y)-\ln (x)}{x^{2}} \\
& N=\frac{1}{x y}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{x y}\right) \mathrm{d} y & =\left(\frac{1+\ln (y)-\ln (x)}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{1+\ln (y)-\ln (x)}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{x y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1+\ln (y)-\ln (x)}{x^{2}} \\
& N(x, y)=\frac{1}{x y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1+\ln (y)-\ln (x)}{x^{2}}\right) \\
& =-\frac{1}{x^{2} y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{x y}\right) \\
& =-\frac{1}{x^{2} y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1+\ln (y)-\ln (x)}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln (y)-\ln (x)}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{x y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{x y}=\frac{1}{x y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln (y)-\ln (x)}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln (y)-\ln (x)}{x}
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1} x} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1} x} x \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{c_{1} x} x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve $(x * \operatorname{diff}(y(x), x)=y(x) *(1+\ln (y(x))-\ln (x)), y(x)$, singsol=all)

$$
y(x)=x \mathrm{e}^{-c_{1} x}
$$

\checkmark Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 20
DSolve $[x * y$ ' $[x]==y[x] *(1+\log [y[x]]-\log [x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x e^{e_{1} x} \\
& y(x) \rightarrow x
\end{aligned}
$$

1.12 problem 12

$$
\text { 1.12.1 Solving as homogeneousTypeD2 ode } 77
$$

1.12.2 Solving as first order ode lie symmetry calculated ode 79
1.12.3 Solving as exact ode 84

Internal problem ID [3157]
Internal file name [OUTPUT/2649_Sunday_June_05_2022_08_38_05_AM_83109919/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y x+\left(y^{2}+x^{2}\right) y^{\prime}=0
$$

1.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x^{2}+\left(u(x)^{2} x^{2}+x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(u^{2}+2\right)}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u\left(u^{2}+2\right)}{u^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{u\left(u^{2}+2\right)}{u^{2}+1}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u\left(u^{2}+2\right)}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+2\right)}{4}+\frac{\ln (u)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(u^{2}+2\right)}{4}+\frac{\ln (u)}{2}}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\left(u^{2}+2\right)^{\frac{1}{4}} \sqrt{u}=\frac{c_{3}}{x}
$$

The solution is

$$
\left(u(x)^{2}+2\right)^{\frac{1}{4}} \sqrt{u(x)}=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\left(\frac{y^{2}}{x^{2}}+2\right)^{\frac{1}{4}} \sqrt{\frac{y}{x}} & =\frac{c_{3}}{x} \\
\left(\frac{y^{2}+2 x^{2}}{x^{2}}\right)^{\frac{1}{4}} \sqrt{\frac{y}{x}} & =\frac{c_{3}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(\frac{y^{2}+2 x^{2}}{x^{2}}\right)^{\frac{1}{4}} \sqrt{\frac{y}{x}}=\frac{c_{3}}{x} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot
Verification of solutions

$$
\left(\frac{y^{2}+2 x^{2}}{x^{2}}\right)^{\frac{1}{4}} \sqrt{\frac{y}{x}}=\frac{c_{3}}{x}
$$

Verified OK.

1.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y x}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y x\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{y^{2} x^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y}{x^{2}+y^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{x}{x^{2}+y^{2}}+\frac{2 y^{2} x}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{2 x^{4} b_{2}-2 y^{2} x^{2} a_{3}+x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}+y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{4} b_{2}-2 y^{2} x^{2} a_{3}+x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3} \tag{6E}\\
& +y^{4} a_{3}+y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 a_{2} v_{1} v_{2}^{3}-2 a_{3} v_{1}^{2} v_{2}^{2}+a_{3} v_{2}^{4}+2 b_{2} v_{1}^{4}+b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4} \tag{7E}\\
& -2 b_{3} v_{1} v_{2}^{3}-a_{1} v_{1}^{2} v_{2}+a_{1} v_{2}^{3}+b_{1} v_{1}^{3}-b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{4}+b_{1} v_{1}^{3}+\left(-2 a_{3}+b_{2}\right) v_{1}^{2} v_{2}^{2}-a_{1} v_{1}^{2} v_{2} \tag{8E}\\
& \quad+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2}^{3}-b_{1} v_{1} v_{2}^{2}+\left(a_{3}+b_{2}\right) v_{2}^{4}+a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
2 b_{2} & =0 \\
2 a_{2}-2 b_{3} & =0 \\
-2 a_{3}+b_{2} & =0 \\
a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y x}{x^{2}+y^{2}}\right)(x) \\
& =\frac{2 x^{2} y+y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2} y+y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2 x^{2}+y^{2}\right)}{4}+\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y x}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 x^{2}+y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{2 x^{2} y+y^{3}}
\end{aligned}
$$

Substituting all the above in（2）and simplifying gives the ode in canonical coordinates．

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only．This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying．This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{\ln \left(y^{2}+2 x^{2}\right)}{4}+\frac{\ln (y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+2 x^{2}\right)}{4}+\frac{\ln (y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y x}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
		为
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \longrightarrow}$
		$S(R)$
	$R=x$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{ }$	$\ln \left(2 x^{2}+y^{2}\right) \quad \ln (y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow-4 \rightarrow \rightarrow+$	$S=\frac{\ln \left(2 x^{2}+y^{2}\right)}{4}+\frac{\ln (y}{2}$	
边	4	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \pm \pm \pm \rightarrow 0 \pm 0$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow]{ }$
$\rightarrow \rightarrow$－		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 为

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+2 x^{2}\right)}{4}+\frac{\ln (y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}+2 x^{2}\right)}{4}+\frac{\ln (y)}{2}=c_{1}
$$

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(-x y) \mathrm{d} x \\
(x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y \\
N(x, y) & =x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x y) \\
& =x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((x)-(2 x)) \\
& =-\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{x y}((2 x)-(x)) \\
& =\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (y)} \\
& =y
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =y(x y) \\
& =x y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =y\left(x^{2}+y^{2}\right) \\
& =y\left(x^{2}+y^{2}\right)
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(x y^{2}\right)+\left(y\left(x^{2}+y^{2}\right)\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x y^{2} \mathrm{~d} x \\
\phi & =\frac{y^{2} x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y\left(x^{2}+y^{2}\right)$. Therefore equation (4) becomes

$$
\begin{equation*}
y\left(x^{2}+y^{2}\right)=x^{2} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{3}\right) \mathrm{d} y \\
f(y) & =\frac{y^{4}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{2} y^{2} x^{2}+\frac{1}{4} y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{2} y^{2} x^{2}+\frac{1}{4} y^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2} x^{2}}{2}+\frac{y^{4}}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
\frac{y^{2} x^{2}}{2}+\frac{y^{4}}{4}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

Solution by Maple
Time used: 0.688 (sec). Leaf size: 221

```
dsolve(x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}-\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(-c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}} \\
& y(x)=-\frac{\sqrt{x^{2} c_{1}\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right)}}{x\left(c_{1} x^{2}+\sqrt{c_{1}^{2} x^{4}+1}\right) c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 9.087 (sec). Leaf size: 218
DSolve $\left[x * y[x]+\left(x^{\wedge} 2+y[x] \sim 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}-\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow \sqrt{-x^{2}-\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow-\sqrt{-x^{2}+\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow \sqrt{-x^{2}+\sqrt{x^{4}+e^{4 c_{1}}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\sqrt{-\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow \sqrt{-\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow-\sqrt{\sqrt{x^{4}}-x^{2}} \\
& y(x) \rightarrow \sqrt{\sqrt{x^{4}}-x^{2}}
\end{aligned}
$$

1.13 problem 13

$$
\text { 1.13.1 Solving as homogeneousTypeD2 ode } 91
$$

1.13.2 Solving as first order ode lie symmetry calculated ode 93

Internal problem ID [3158]
Internal file name [OUTPUT/2650_Sunday_June_05_2022_08_38_06_AM_30676466/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
\left(1-\mathrm{e}^{-\frac{y}{x}}\right) y^{\prime}-\frac{y}{x}=-1
$$

1.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(1-\mathrm{e}^{-u(x)}\right)\left(u^{\prime}(x) x+u(x)\right)-u(x)=-1
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\mathrm{e}^{-u} u-1}{\left(\mathrm{e}^{-u}-1\right) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{\mathrm{e}^{-u} u-1}{\mathrm{e}^{-u}-1}$. Integrating both sides gives

$$
\frac{1}{\frac{\mathrm{e}^{-u} u-1}{\mathrm{e}^{-u}-1}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{\mathrm{e}^{-u} u-1}{\mathrm{e}^{-u}-1}} d u & =\int-\frac{1}{x} d x \\
u+\ln \left(\mathrm{e}^{-u} u-1\right) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
u(x)+\ln \left(\mathrm{e}^{-u(x)} u(x)-1\right)+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{y}{x}+\ln \left(\frac{\mathrm{e}^{-\frac{y}{x}} y}{x}-1\right)+\ln (x)-c_{2} & =0 \\
\frac{\ln \left(\frac{y \mathrm{e}^{-\frac{y}{x}}-x}{x}\right) x+\ln (x) x-c_{2} x+y}{x} & =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y \mathrm{e}^{-\frac{y}{x}-x}}{x}\right) x+\ln (x) x-c_{2} x+y}{x}=0 \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y \mathrm{e}^{-\frac{y}{x}}-x}{x}\right) x+\ln (x) x-c_{2} x+y}{x}=0
$$

Verified OK.

1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y-x}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(y-x)\left(b_{3}-a_{2}\right)}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x}-\frac{(y-x)^{2} a_{3}}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)^{2} x^{2}} \\
& -\left(\frac{1}{x\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)}+\frac{(y-x) y \mathrm{e}^{-\frac{y}{x}}}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)^{2} x^{3}}+\frac{y-x}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{x\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)}-\frac{(y-x) \mathrm{e}^{-\frac{y}{x}}}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)^{2} x^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{-\frac{2 y}{x}} x^{3} b_{2}-\mathrm{e}^{-\frac{y}{x}} x^{3} a_{2}-2 \mathrm{e}^{-\frac{y}{x}} x^{3} b_{2}+\mathrm{e}^{-\frac{y}{x}} x^{3} b_{3}+\mathrm{e}^{-\frac{y}{x}} x^{2} y a_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{2}-\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{3}-\mathrm{e}^{-\frac{y}{x}} x y^{2} a_{2}+\mathrm{e}^{-\frac{y}{x}} x y^{2} b_{3}}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right)^{2} x^{3}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& \mathrm{e}^{-\frac{2 y}{x}} x^{3} b_{2}-\mathrm{e}^{-\frac{y}{x}} x^{3} a_{2}-2 \mathrm{e}^{-\frac{y}{x}} x^{3} b_{2}+\mathrm{e}^{-\frac{y}{x}} x^{3} b_{3}+\mathrm{e}^{-\frac{y}{x}} x^{2} y a_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{2} \tag{6E}\\
& \quad-\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{3}-\mathrm{e}^{-\frac{y}{x}} x y^{2} a_{2}+\mathrm{e}^{-\frac{y}{x}} x y^{2} b_{3}-\mathrm{e}^{-\frac{y}{x}} y^{3} a_{3}+\mathrm{e}^{-\frac{y}{x}} x y b_{1} \\
& \quad-\mathrm{e}^{-\frac{y}{x}} y^{2} a_{1}+x^{3} a_{2}-x^{3} a_{3}-x^{3} b_{3}+2 x^{2} y a_{3}-x^{2} b_{1}+x y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& \mathrm{e}^{-\frac{2 y}{x}} x^{3} b_{2}-\mathrm{e}^{-\frac{y}{x}} x^{3} a_{2}-2 \mathrm{e}^{-\frac{y}{x}} x^{3} b_{2}+\mathrm{e}^{-\frac{y}{x}} x^{3} b_{3}+\mathrm{e}^{-\frac{y}{x}} x^{2} y a_{2}+\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{2} \tag{6E}\\
& \quad-\mathrm{e}^{-\frac{y}{x}} x^{2} y b_{3}-\mathrm{e}^{-\frac{y}{x}} x y^{2} a_{2}+\mathrm{e}^{-\frac{y}{x}} x y^{2} b_{3}-\mathrm{e}^{-\frac{y}{x}} y^{3} a_{3}+\mathrm{e}^{-\frac{y}{x}} x y b_{1} \\
& \quad-\mathrm{e}^{-\frac{y}{x}} y^{2} a_{1}+x^{3} a_{2}-x^{3} a_{3}-x^{3} b_{3}+2 x^{2} y a_{3}-x^{2} b_{1}+x y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{-\frac{2 y}{x}}, \mathrm{e}^{-\frac{y}{x}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{-\frac{2 y}{x}}=v_{3}, \mathrm{e}^{-\frac{y}{x}}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{4} v_{1}^{3} a_{2}+v_{4} v_{1}^{2} v_{2} a_{2}-v_{4} v_{1} v_{2}^{2} a_{2}-v_{4} v_{2}^{3} a_{3}+v_{3} v_{1}^{3} b_{2}-2 v_{4} v_{1}^{3} b_{2} \tag{7E}\\
& +v_{4} v_{1}^{2} v_{2} b_{2}+v_{4} v_{1}^{3} b_{3}-v_{4} v_{1}^{2} v_{2} b_{3}+v_{4} v_{1} v_{2}^{2} b_{3}-v_{4} v_{2}^{2} a_{1}+v_{1}^{3} a_{2} \\
& -v_{1}^{3} a_{3}+2 v_{1}^{2} v_{2} a_{3}+v_{4} v_{1} v_{2} b_{1}-v_{1}^{3} b_{3}+v_{1} v_{2} a_{1}-v_{1}^{2} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& v_{3} v_{1}^{3} b_{2}+\left(-a_{2}-2 b_{2}+b_{3}\right) v_{1}^{3} v_{4}+\left(a_{2}-a_{3}-b_{3}\right) v_{1}^{3}+\left(a_{2}+b_{2}-b_{3}\right) v_{1}^{2} v_{2} v_{4} \tag{8E}\\
& \quad+2 v_{1}^{2} v_{2} a_{3}-v_{1}^{2} b_{1}+\left(b_{3}-a_{2}\right) v_{1} v_{2}^{2} v_{4}+v_{4} v_{1} v_{2} b_{1}+v_{1} v_{2} a_{1}-v_{4} v_{2}^{3} a_{3}-v_{4} v_{2}^{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
-b_{1} & =0 \\
b_{3}-a_{2} & =0 \\
-a_{2}-2 b_{2}+b_{3} & =0 \\
a_{2}-a_{3}-b_{3} & =0 \\
a_{2}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y-x}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x}\right)(x) \\
& =\frac{y \mathrm{e}^{-\frac{y}{x}}-x}{-1+\mathrm{e}^{-\frac{y}{x}}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y \mathrm{e}^{-\frac{y}{x}}-x}{-1+\mathrm{e}^{-\frac{y}{x}}}} d y
\end{aligned}
$$

Which results in

$$
S=\ln \left(x \mathrm{e}^{\frac{y}{x}}-y\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y-x}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{(-y+x) \mathrm{e}^{\frac{y}{x}}}{x\left(x \mathrm{e}^{\frac{y}{x}}-y\right)} \\
S_{y} & =\frac{\mathrm{e}^{\frac{y}{x}}-1}{x \mathrm{e}^{\frac{y}{x}}-y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(x \mathrm{e}^{\frac{y}{x}}-y\right)=c_{1}
$$

Which simplifies to

$$
\ln \left(x \mathrm{e}^{\frac{y}{x}}-y\right)=c_{1}
$$

Which gives

$$
y=-x \text { LambertW }\left(-\mathrm{e}^{-\frac{\mathrm{e}^{c_{1}}}{x}}\right)-\mathrm{e}^{c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y-x}{\left(-1+\mathrm{e}^{-\frac{y}{x}}\right) x}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+0 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
p^{\prime}		
${ }^{\text {a }}$		
	$R=x$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 促
	$S=\ln \left(x \mathrm{e}^{\frac{y}{x}}-y\right)$	
$\xrightarrow{\text { dit }}$		$\xrightarrow{\rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		\rightarrow

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-x \text { LambertW }\left(-\mathrm{e}^{-\frac{\mathrm{e}_{1}}{x}}\right)-\mathrm{e}^{c_{1}} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot

Verification of solutions

$$
y=-x \text { LambertW }\left(-\mathrm{e}^{-\frac{\mathrm{e}^{c_{1}}}{x}}\right)-\mathrm{e}^{c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
dsolve((1-exp $(-y(x) / x)) * \operatorname{diff}(y(x), x)+(1-y(x) / x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{-c_{1} \text { LambertW }\left(-\mathrm{e}^{-\frac{1}{c_{1} x}}\right) x-1}{c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 60.202 (sec). Leaf size: 29
DSolve[(1-Exp[-y[x]/x])*y'[x]+(1-y[x]/x)==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x W\left(-e^{-\frac{e^{c_{1}}}{x}}\right)-e^{c_{1}}
$$

1.14 problem 14

1.14.1 Solving as homogeneousTypeD2 ode 101
1.14.2 Solving as first order ode lie symmetry calculated ode 103

Internal problem ID [3159]
Internal file name [OUTPUT/2651_Sunday_June_05_2022_08_38_07_AM_32855839/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
-y x+y^{2}-x y y^{\prime}=-x^{2}
$$

1.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x^{2}+u(x)^{2} x^{2}-x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u-1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u-1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u-1}{u}} d u & =\int-\frac{1}{x} d x \\
u+\ln (u-1) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
u(x)+\ln (u(x)-1)+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{gathered}
\frac{y}{x}+\ln \left(\frac{y}{x}-1\right)+\ln (x)-c_{2}=0 \\
\frac{y}{x}+\ln \left(\frac{y-x}{x}\right)+\ln (x)-c_{2}=0
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{x}+\ln \left(\frac{y-x}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
\frac{y}{x}+\ln \left(\frac{y-x}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

1.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x^{2}-x y+y^{2}}{x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2}-x y+y^{2}\right)\left(b_{3}-a_{2}\right)}{x y}-\frac{\left(x^{2}-x y+y^{2}\right)^{2} a_{3}}{x^{2} y^{2}} \\
& -\left(\frac{2 x-y}{x y}-\frac{x^{2}-x y+y^{2}}{x^{2} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{-x+2 y}{x y}-\frac{x^{2}-x y+y^{2}}{x y^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} a_{3}-x^{4} b_{2}+2 x^{3} y a_{2}-2 x^{3} y a_{3}-2 x^{3} y b_{3}-x^{2} y^{2} a_{2}+4 x^{2} y^{2} a_{3}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2}}{y^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{3}+x^{4} b_{2}-2 x^{3} y a_{2}+2 x^{3} y a_{3}+2 x^{3} y b_{3}+x^{2} y^{2} a_{2}-4 x^{2} y^{2} a_{3} \tag{6E}\\
& \quad-x^{2} y^{2} b_{3}+2 x y^{3} a_{3}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{3} v_{2}+a_{2} v_{1}^{2} v_{2}^{2}-a_{3} v_{1}^{4}+2 a_{3} v_{1}^{3} v_{2}-4 a_{3} v_{1}^{2} v_{2}^{2}+2 a_{3} v_{1} v_{2}^{3} \tag{7E}\\
& \quad+b_{2} v_{1}^{4}+2 b_{3} v_{1}^{3} v_{2}-b_{3} v_{1}^{2} v_{2}^{2}-a_{1} v_{1}^{2} v_{2}+a_{1} v_{2}^{3}+b_{1} v_{1}^{3}-b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{3}+b_{2}\right) v_{1}^{4}+\left(-2 a_{2}+2 a_{3}+2 b_{3}\right) v_{1}^{3} v_{2}+b_{1} v_{1}^{3} \tag{8E}\\
& \quad+\left(a_{2}-4 a_{3}-b_{3}\right) v_{1}^{2} v_{2}^{2}-a_{1} v_{1}^{2} v_{2}+2 a_{3} v_{1} v_{2}^{3}-b_{1} v_{1} v_{2}^{2}+a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
2 a_{3} & =0 \\
-b_{1} & =0 \\
-a_{3}+b_{2} & =0 \\
-2 a_{2}+2 a_{3}+2 b_{3} & =0 \\
a_{2}-4 a_{3}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x^{2}-x y+y^{2}}{x y}\right)(x) \\
& =\frac{-x^{2}+x y}{y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}+x y}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y-x)+\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}-x y+y^{2}}{x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{2}-x y+y^{2}}{x^{2}(-y+x)} \\
S_{y} & =-\frac{y}{x(-y+x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-x) x+y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-x) x+y}{x}=c_{1}
$$

Which gives

$$
y=x \operatorname{LambertW}\left(\frac{\mathrm{e}^{c_{1}-1}}{x}\right)+x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}-x y+y^{2}}{x y}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow+\rightarrow+\rightarrow+}$
		$\xrightarrow[Y(R)]{\rightarrow \rightarrow}$
		$\rightarrow \rightarrow 2$
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow+}$
	$S=\underline{\ln (y-x) x+y}$	
	x	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\cdots \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \text { LambertW }\left(\frac{\mathrm{e}^{c_{1}-1}}{x}\right)+x \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=x \text { LambertW }\left(\frac{\mathrm{e}^{c_{1}-1}}{x}\right)+x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19
dsolve($\left(x^{\wedge} 2-x * y(x)+y(x)^{\wedge} 2\right)-x * y(x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=x\left(1+\text { LambertW }\left(\frac{\mathrm{e}^{-c_{1}-1}}{x}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 3.69 (sec). Leaf size: 25
DSolve $\left[\left(x^{\wedge} 2-x * y[x]+y[x] \sim 2\right)-x * y[x] * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x\left(1+W\left(\frac{e^{-1+c_{1}}}{x}\right)\right) \\
& y(x) \rightarrow x
\end{aligned}
$$

1.15 problem 15

1.15.1 Solving as first order ode lie symmetry calculated ode 110

Internal problem ID [3160]
Internal file name [OUTPUT/2652_Sunday_June_05_2022_08_38_08_AM_83933171/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
(3+2 x+4 y) y^{\prime}-2 y=x+1
$$

1.15.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x+2 y+1}{3+2 x+4 y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(x+2 y+1)\left(b_{3}-a_{2}\right)}{3+2 x+4 y}-\frac{(x+2 y+1)^{2} a_{3}}{(3+2 x+4 y)^{2}} \\
& -\left(\frac{1}{3+2 x+4 y}-\frac{2(x+2 y+1)}{(3+2 x+4 y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2}{3+2 x+4 y}-\frac{4(x+2 y+1)}{(3+2 x+4 y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{2} a_{2}+x^{2} a_{3}-4 x^{2} b_{2}-2 x^{2} b_{3}+8 x y a_{2}+4 x y a_{3}-16 x y b_{2}-8 x y b_{3}+8 y^{2} a_{2}+4 y^{2} a_{3}-16 y^{2} b_{2}-8 y^{2} b_{3}+}{(3+2 x+4} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} a_{2}-x^{2} a_{3}+4 x^{2} b_{2}+2 x^{2} b_{3}-8 x y a_{2}-4 x y a_{3}+16 x y b_{2}+8 x y b_{3} \tag{6E}\\
& \quad-8 y^{2} a_{2}-4 y^{2} a_{3}+16 y^{2} b_{2}+8 y^{2} b_{3}-6 x a_{2}-2 x a_{3}+10 x b_{2}+5 x b_{3} \\
& \quad-10 y a_{2}-5 y a_{3}+24 y b_{2}+8 y b_{3}-a_{1}-3 a_{2}-a_{3}-2 b_{1}+9 b_{2}+3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2}-8 a_{2} v_{1} v_{2}-8 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}-4 a_{3} v_{2}^{2}+4 b_{2} v_{1}^{2}+16 b_{2} v_{1} v_{2} \tag{7E}\\
& +16 b_{2} v_{2}^{2}+2 b_{3} v_{1}^{2}+8 b_{3} v_{1} v_{2}+8 b_{3} v_{2}^{2}-6 a_{2} v_{1}-10 a_{2} v_{2}-2 a_{3} v_{1}-5 a_{3} v_{2} \\
& +10 b_{2} v_{1}+24 b_{2} v_{2}+5 b_{3} v_{1}+8 b_{3} v_{2}-a_{1}-3 a_{2}-a_{3}-2 b_{1}+9 b_{2}+3 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-a_{3}+4 b_{2}+2 b_{3}\right) v_{1}^{2}+\left(-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-6 a_{2}-2 a_{3}+10 b_{2}+5 b_{3}\right) v_{1}+\left(-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3}\right) v_{2}^{2} \\
& \quad+\left(-10 a_{2}-5 a_{3}+24 b_{2}+8 b_{3}\right) v_{2}-a_{1}-3 a_{2}-a_{3}-2 b_{1}+9 b_{2}+3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-10 a_{2}-5 a_{3}+24 b_{2}+8 b_{3} & =0 \\
-8 a_{2}-4 a_{3}+16 b_{2}+8 b_{3} & =0 \\
-6 a_{2}-2 a_{3}+10 b_{2}+5 b_{3} & =0 \\
-2 a_{2}-a_{3}+4 b_{2}+2 b_{3} & =0 \\
-a_{1}-3 a_{2}-a_{3}-2 b_{1}+9 b_{2}+3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=5 b_{2}-2 b_{1} \\
& a_{2}=2 b_{2} \\
& a_{3}=4 b_{2} \\
& b_{1}=b_{1} \\
& b_{2}=b_{2} \\
& b_{3}=2 b_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-2 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{x+2 y+1}{3+2 x+4 y}\right)(-2) \\
& =\frac{4 x+8 y+5}{3+2 x+4 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{4 x+8 x+5}{3+2 x+4 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{2}+\frac{\ln (4 x+8 y+5)}{16}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x+2 y+1}{3+2 x+4 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{16 x+32 y+20} \\
S_{y} & =\frac{3+2 x+4 y}{4 x+8 y+5}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{2}+\frac{\ln (4 x+8 y+5)}{16}=\frac{x}{4}+c_{1}
$$

Which simplifies to

$$
\frac{y}{2}+\frac{\ln (4 x+8 y+5)}{16}=\frac{x}{4}+c_{1}
$$

Which gives

$$
y=\frac{\text { LambertW }\left(\mathrm{e}^{8 x+5+16 c_{1}}\right)}{8}-\frac{x}{2}-\frac{5}{8}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\text { LambertW }\left(\mathrm{e}^{8 x+5+16 c_{1}}\right)}{8}-\frac{x}{2}-\frac{5}{8} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
y=\frac{\text { LambertW }\left(\mathrm{e}^{8 x+5+16 c_{1}}\right)}{8}-\frac{x}{2}-\frac{5}{8}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 20
dsolve $((3+2 * x+4 * y(x)) * \operatorname{diff}(y(x), x)=1+x+2 * y(x), y(x)$, singsol=all)

$$
y(x)=-\frac{x}{2}+\frac{\text { LambertW }\left(c_{1} \mathrm{e}^{5+8 x}\right)}{8}-\frac{5}{8}
$$

\checkmark Solution by Mathematica
Time used: 4.849 (sec). Leaf size: 39
DSolve $[(3+2 * x+4 * y[x]) * y$ ' $[x]==1+x+2 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{8}\left(W\left(-e^{8 x-1+c_{1}}\right)-4 x-5\right) \\
& y(x) \rightarrow \frac{1}{8}(-4 x-5)
\end{aligned}
$$

1.16 problem 16

1.16.1 Solving as homogeneousTypeMapleC ode 118
1.16.2 Solving as first order ode lie symmetry calculated ode 121

Internal problem ID [3161]
Internal file name [OUTPUT/2653_Sunday_June_05_2022_08_38_08_AM_66885656/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{2 x+y-1}{x-y-2}=0
$$

1.16.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{2 X+2 x_{0}+Y(X)+y_{0}-1}{-X-x_{0}+Y(X)+y_{0}+2}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =-1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{2 X+Y(X)}{-X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{2 X+Y}{-X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 X+Y$ and $N=X-Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-u-2}{u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-u(X)-2}{u(X)-1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-u(X)-2}{u(X)-1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)-\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+2=0
$$

Or

$$
X(u(X)-1)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+2=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+2}{X(u-1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+2}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2}{u-1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+2}{u-1}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u}{2}\right)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} u(X)}{2}\right)}{2}+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} Y(X)}{2 X}\right)}{2}+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} Y(X)}{2 X}\right)}{2}+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-1 \\
& X=x+1
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}+\ln (x-1)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}+\ln (x-1)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{(y+1)^{2}}{(x-1)^{2}}+2\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}+\ln (x-1)-c_{2}=0
$$

Verified OK.

1.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x+y-1}{-x+y+2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(2 x+y-1)\left(b_{3}-a_{2}\right)}{-x+y+2}-\frac{(2 x+y-1)^{2} a_{3}}{(-x+y+2)^{2}} \\
& -\left(-\frac{2}{-x+y+2}-\frac{2 x+y-1}{(-x+y+2)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{-x+y+2}+\frac{2 x+y-1}{(-x+y+2)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{2} a_{2}+4 x^{2} a_{3}+2 x^{2} b_{2}-2 x^{2} b_{3}-4 x y a_{2}+4 x y a_{3}+2 x y b_{2}+4 x y b_{3}-y^{2} a_{2}-2 y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}-8 x a_{2}}{(x-y-} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{2} a_{2}-4 x^{2} a_{3}-2 x^{2} b_{2}+2 x^{2} b_{3}+4 x y a_{2}-4 x y a_{3}-2 x y b_{2}-4 x y b_{3} \tag{6E}\\
& +y^{2} a_{2}+2 y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}+8 x a_{2}+4 x a_{3}-3 x b_{1}-x b_{2}-5 x b_{3}+3 y a_{1} \\
& +y a_{2}+5 y a_{3}+4 y b_{2}+2 y b_{3}+3 a_{1}-2 a_{2}-a_{3}+3 b_{1}+4 b_{2}+2 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{2}+4 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}+2 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& +2 b_{3} v_{1}^{2}-4 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+3 a_{1} v_{2}+8 a_{2} v_{1}+a_{2} v_{2}+4 a_{3} v_{1}+5 a_{3} v_{2}-3 b_{1} v_{1} \\
& -b_{2} v_{1}+4 b_{2} v_{2}-5 b_{3} v_{1}+2 b_{3} v_{2}+3 a_{1}-2 a_{2}-a_{3}+3 b_{1}+4 b_{2}+2 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3}\right) v_{1}^{2}+\left(4 a_{2}-4 a_{3}-2 b_{2}-4 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(8 a_{2}+4 a_{3}-3 b_{1}-b_{2}-5 b_{3}\right) v_{1}+\left(a_{2}+2 a_{3}+b_{2}-b_{3}\right) v_{2}^{2} \\
& \quad+\left(3 a_{1}+a_{2}+5 a_{3}+4 b_{2}+2 b_{3}\right) v_{2}+3 a_{1}-2 a_{2}-a_{3}+3 b_{1}+4 b_{2}+2 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{2}-4 a_{3}-2 b_{2}+2 b_{3} & =0 \\
a_{2}+2 a_{3}+b_{2}-b_{3} & =0 \\
4 a_{2}-4 a_{3}-2 b_{2}-4 b_{3} & =0 \\
3 a_{1}+a_{2}+5 a_{3}+4 b_{2}+2 b_{3} & =0 \\
8 a_{2}+4 a_{3}-3 b_{1}-b_{2}-5 b_{3} & =0 \\
3 a_{1}-2 a_{2}-a_{3}+3 b_{1}+4 b_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =a_{3}-b_{3} \\
a_{2} & =b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =2 a_{3}+b_{3} \\
b_{2} & =-2 a_{3} \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-1 \\
& \eta=y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+1-\left(-\frac{2 x+y-1}{-x+y+2}\right)(x-1) \\
& =\frac{-2 x^{2}-y^{2}+4 x-2 y-3}{x-y-2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{2}-y^{2}+4 x-2 y-3}{x-y-2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2 x^{2}+y^{2}-4 x+2 y+3\right)}{2}+\frac{(1-x) \sqrt{2} \arctan \left(\frac{(2+2 y) \sqrt{2}}{4 x-4}\right)}{2 x-2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x+y-1}{-x+y+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x+y-1}{2 x^{2}+y^{2}-4 x+2 y+3} \\
S_{y} & =\frac{-x+y+2}{2 x^{2}+y^{2}-4 x+2 y+3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+2 x^{2}+2 y-4 x+3\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+2 x^{2}+2 y-4 x+3\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+2 x^{2}+2 y-4 x+3\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{2}+2 x^{2}+2 y-4 x+3\right)}{2}-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}(y+1)}{2 x-2}\right)}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.297 (sec). Leaf size: 47

$$
\begin{aligned}
& \text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=(2 * \mathrm{x}+\mathrm{y}(\mathrm{x})-1) /(\mathrm{x}-\mathrm{y}(\mathrm{x})-2), \mathrm{y}(\mathrm{x}), \text { singsol=all) } \\
& y(x)=-1-\tan \left(\operatorname{RootOf}\left(\sqrt{2} \ln \left(\sec \left(_Z\right)^{2}(x-1)^{2}\right)+\sqrt{2} \ln (2)+2 \sqrt{2} c_{1}+2 _Z\right)\right)(x \\
& -1) \sqrt{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 75

```
DSolve[y'[x]==(2*x+y[x]-1)/(x-y[x]-2),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& \text { Solve }\left[2 \sqrt{2} \arctan \left(\frac{y(x)+2 x-1}{\sqrt{2}(-y(x)+x-2)}\right)\right. \\
& \left.+\log (9)=2 \log \left(\frac{2 x^{2}+y(x)^{2}+2 y(x)-4 x+3}{(x-1)^{2}}\right)+4 \log (x-1)+3 c_{1}, y(x)\right]
\end{aligned}
$$

1.17 problem 17

1.17.1 Solving as homogeneousTypeMapleC ode 129
1.17.2 Solving as first order ode lie symmetry calculated ode 133
1.17.3 Solving as exact ode . 138

Internal problem ID [3162]
Internal file name [OUTPUT/2654_Sunday_June_05_2022_08_38_09_AM_50529257/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`
    class A`]]
```

$$
y-(2 x+y-4) y^{\prime}=-2
$$

1.17.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{Y(X)+y_{0}+2}{2 X+2 x_{0}+Y(X)+y_{0}-4}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =3 \\
y_{0} & =-2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{Y(X)}{2 X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{Y}{2 X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=Y$ and $N=2 X+Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{u}{u+2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{u(X)}{u(X)+2}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{u(X)}{u(X)+2}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)+2\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+u(X)=0
$$

Or

$$
X(u(X)+2)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u(u+1)}{X(u+2)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u(u+1)}{u+2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u(u+1)}{u+2}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u(u+1)}{u+2}} d u & =\int-\frac{1}{X} d X \\
-\ln (u+1)+2 \ln (u) & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u+1)+2 \ln (u)}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\frac{u^{2}}{u+1}=\frac{c_{3}}{X}
$$

The solution is

$$
\frac{u(X)^{2}}{u(X)+1}=\frac{c_{3}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{Y(X)^{2}}{\left(\frac{Y(X)}{X}+1\right) X^{2}}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\frac{Y(X)^{2}}{Y(X)+X}=c_{3}
$$

Using the solution for $Y(X)$

$$
\frac{Y(X)^{2}}{Y(X)+X}=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-2 \\
& X=x+3
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{(y+2)^{2}}{y+x-1}=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(y+2)^{2}}{y+x-1}=c_{3} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot

Verification of solutions

$$
\frac{(y+2)^{2}}{y+x-1}=c_{3}
$$

Verified OK.

1.17.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+2}{2 x+y-4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{(y+2)\left(b_{3}-a_{2}\right)}{2 x+y-4}-\frac{(y+2)^{2} a_{3}}{(2 x+y-4)^{2}}+\frac{2(y+2)\left(x a_{2}+y a_{3}+a_{1}\right)}{(2 x+y-4)^{2}} \tag{5E}\\
& \quad-\left(\frac{1}{2 x+y-4}-\frac{y+2}{(2 x+y-4)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 x^{2} b_{2}+4 x y b_{2}-y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}-2 x b_{1}-10 x b_{2}+4 x b_{3}+2 y a_{1}+2 y a_{2}-8 y b_{2}+4 y b_{3}+4 a_{1}+\varepsilon}{(2 x+y-4)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{2} b_{2}+4 x y b_{2}-y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}-2 x b_{1}-10 x b_{2}+4 x b_{3} \tag{6E}\\
& \quad+2 y a_{1}+2 y a_{2}-8 y b_{2}+4 y b_{3}+4 a_{1}+8 a_{2}-4 a_{3}+6 b_{1}+16 b_{2}-8 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{2}^{2}+a_{3} v_{2}^{2}+2 b_{2} v_{1}^{2}+4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{2}^{2}+2 a_{1} v_{2}+2 a_{2} v_{2}-2 b_{1} v_{1} \tag{7E}\\
& \quad-10 b_{2} v_{1}-8 b_{2} v_{2}+4 b_{3} v_{1}+4 b_{3} v_{2}+4 a_{1}+8 a_{2}-4 a_{3}+6 b_{1}+16 b_{2}-8 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{2}+4 b_{2} v_{1} v_{2}+\left(-2 b_{1}-10 b_{2}+4 b_{3}\right) v_{1}+\left(-a_{2}+a_{3}+b_{2}+b_{3}\right) v_{2}^{2} \tag{8E}\\
& \quad+\left(2 a_{1}+2 a_{2}-8 b_{2}+4 b_{3}\right) v_{2}+4 a_{1}+8 a_{2}-4 a_{3}+6 b_{1}+16 b_{2}-8 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
2 b_{2} & =0 \\
4 b_{2} & =0 \\
-2 b_{1}-10 b_{2}+4 b_{3} & =0 \\
2 a_{1}+2 a_{2}-8 b_{2}+4 b_{3} & =0 \\
-a_{2}+a_{3}+b_{2}+b_{3} & =0 \\
4 a_{1}+8 a_{2}-4 a_{3}+6 b_{1}+16 b_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-a_{3}-3 b_{3} \\
a_{2} & =a_{3}+b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =2 b_{3} \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-3 \\
& \eta=y+2
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+2-\left(\frac{y+2}{2 x+y-4}\right)(x-3) \\
& =\frac{x y+y^{2}+2 x+y-2}{2 x+y-4} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x y+y^{2}+2 x+y-2}{2 x+y-4}} d y
\end{aligned}
$$

Which results in

$$
S=2 \ln (y+2)-\ln (x-1+y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+2}{2 x+y-4}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{x-1+y} \\
S_{y} & =\frac{2 x+y-4}{(y+2)(x-1+y)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
2 \ln (y+2)-\ln (y+x-1)=c_{1}
$$

Which simplifies to

$$
2 \ln (y+2)-\ln (y+x-1)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+2}{2 x+y-4}$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{\rightarrow}$
		为
		\rightarrow
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow}$
	$S=2 \ln (y+2)-$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$		
		$\rightarrow \rightarrow \rightarrow-{ }^{-2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2+\rightarrow \rightarrow \rightarrow]{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
2 \ln (y+2)-\ln (y+x-1)=c_{1} \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot
Verification of solutions

$$
2 \ln (y+2)-\ln (y+x-1)=c_{1}
$$

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 x-y+4) \mathrm{d} y & =(-y-2) \mathrm{d} x \\
(y+2) \mathrm{d} x+(-2 x-y+4) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y+2 \\
N(x, y) & =-2 x-y+4
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+2) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 x-y+4) \\
& =-2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-2 x-y+4}((1)-(-2)) \\
& =-\frac{3}{2 x+y-4}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y+2}((-2)-(1)) \\
& =-\frac{3}{y+2}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y+2} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y+2)} \\
& =\frac{1}{(y+2)^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(y+2)^{3}}(y+2) \\
& =\frac{1}{(y+2)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(y+2)^{3}}(-2 x-y+4) \\
& =\frac{-2 x-y+4}{(y+2)^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{1}{(y+2)^{2}}\right)+\left(\frac{-2 x-y+4}{(y+2)^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{(y+2)^{2}} \mathrm{~d} x \\
\phi & =\frac{x}{(y+2)^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{2 x}{(y+2)^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-2 x-y+4}{(y+2)^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-2 x-y+4}{(y+2)^{3}}=-\frac{2 x}{(y+2)^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{-4+y}{(y+2)^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{4-y}{(y+2)^{3}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y+2}-\frac{3}{(y+2)^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x}{(y+2)^{2}}+\frac{1}{y+2}-\frac{3}{(y+2)^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x}{(y+2)^{2}}+\frac{1}{y+2}-\frac{3}{(y+2)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x}{(y+2)^{2}}+\frac{1}{y+2}-\frac{3}{(y+2)^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot

Verification of solutions

$$
\frac{x}{(y+2)^{2}}+\frac{1}{y+2}-\frac{3}{(y+2)^{2}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49
dsolve $(y(x)+2=(2 * x+y(x)-4) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-4 c_{1}+1+\sqrt{1+4(x-3) c_{1}}}{2 c_{1}} \\
& y(x)=\frac{-4 c_{1}+1-\sqrt{1+4(x-3) c_{1}}}{2 c_{1}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 82
DSolve $[y[x]+2==(2 * x+y[x]-4) * y$ ' $[x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{1+4 c_{1}(x-3)}-1+4 c_{1}}{2 c_{1}} \\
& y(x) \rightarrow \frac{\sqrt{1+4 c_{1}(x-3)}+1-4 c_{1}}{2 c_{1}} \\
& y(x) \rightarrow-2 \\
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow 1-x
\end{aligned}
$$

1.18 problem 18

1.18.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3163]
Internal file name [OUTPUT/2655_Sunday_June_05_2022_08_38_10_AM_51036450/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _dAlembert]
```

$$
y^{\prime}-\sin (-y+x)^{2}=0
$$

1.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\sin (-y+x)^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\sin (-y+x)^{2}\left(b_{3}-a_{2}\right)-\sin (-y+x)^{4} a_{3} \tag{5E}\\
& \quad-2 \sin (-y+x) \cos (-y+x)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& \quad+2 \sin (-y+x) \cos (-y+x)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\sin (-y+x)^{4} a_{3}-2 \sin (-y+x) \cos (-y+x) x a_{2} \\
& +2 \sin (-y+x) \cos (-y+x) x b_{2}-2 \sin (-y+x) \cos (-y+x) y a_{3} \\
& +2 \sin (-y+x) \cos (-y+x) y b_{3}-\sin (-y+x)^{2} a_{2}+\sin (-y+x)^{2} b_{3} \\
& \quad-2 \sin (-y+x) \cos (-y+x) a_{1}+2 \sin (-y+x) \cos (-y+x) b_{1}+b_{2}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\sin (-y+x)^{4} a_{3}-2 \sin (-y+x) \cos (-y+x) x a_{2} \\
& +2 \sin (-y+x) \cos (-y+x) x b_{2}-2 \sin (-y+x) \cos (-y+x) y a_{3} \tag{6E}\\
& +2 \sin (-y+x) \cos (-y+x) y b_{3}-\sin (-y+x)^{2} a_{2}+\sin (-y+x)^{2} b_{3} \\
& \quad-2 \sin (-y+x) \cos (-y+x) a_{1}+2 \sin (-y+x) \cos (-y+x) b_{1}+b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& b_{2}-\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2}+\frac{a_{3} \cos (-2 y+2 x)}{2}-\frac{a_{3} \cos (-4 y+4 x)}{8} \\
& \quad-x a_{2} \sin (-2 y+2 x)+x b_{2} \sin (-2 y+2 x)-y a_{3} \sin (-2 y+2 x) \tag{6E}\\
& +y b_{3} \sin (-2 y+2 x)+\frac{a_{2} \cos (-2 y+2 x)}{2}-\frac{b_{3} \cos (-2 y+2 x)}{2} \\
& \quad-a_{1} \sin (-2 y+2 x)+b_{1} \sin (-2 y+2 x)=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \cos (-4 y+4 x), \cos (-2 y+2 x), \sin (-2 y+2 x)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \cos (-4 y+4 x)=v_{3}, \cos (-2 y+2 x)=v_{4}, \sin (-2 y+2 x)=v_{5}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{gather*}
b_{2}-\frac{3}{8} a_{3}-\frac{1}{2} a_{2}+\frac{1}{2} b_{3}+\frac{1}{2} a_{3} v_{4}-\frac{1}{8} a_{3} v_{3}-v_{1} a_{2} v_{5}+v_{1} b_{2} v_{5} \tag{7E}\\
-v_{2} a_{3} v_{5}+v_{2} b_{3} v_{5}+\frac{1}{2} a_{2} v_{4}-\frac{1}{2} b_{3} v_{4}-a_{1} v_{5}+b_{1} v_{5}=0
\end{gather*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{gather*}
b_{2}-\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2}+\left(-a_{2}+b_{2}\right) v_{5} v_{1}+\left(-a_{3}+b_{3}\right) v_{5} v_{2} \tag{8E}\\
-\frac{a_{3} v_{3}}{8}+\left(\frac{a_{3}}{2}+\frac{a_{2}}{2}-\frac{b_{3}}{2}\right) v_{4}+\left(-a_{1}+b_{1}\right) v_{5}=0
\end{gather*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-\frac{a_{3}}{8} & =0 \\
-a_{1}+b_{1} & =0 \\
-a_{2}+b_{2} & =0 \\
-a_{3}+b_{3} & =0 \\
\frac{a_{3}}{2}+\frac{a_{2}}{2}-\frac{b_{3}}{2} & =0 \\
b_{2}-\frac{3 a_{3}}{8}-\frac{a_{2}}{2}+\frac{b_{3}}{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\sin (-y+x)^{2}\right)(1) \\
& =1-\cos (x)^{2} \sin (y)^{2}+2 \cos (x) \sin (y) \sin (x) \cos (y)-\sin (x)^{2} \cos (y)^{2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1-\cos (x)^{2} \sin (y)^{2}+2 \cos (x) \sin (y) \sin (x) \cos (y)-\sin (x)^{2} \cos (y)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\tan (-y+x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\sin (-y+x)^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\sec (-y+x)^{2} \\
S_{y} & =\sec (-y+x)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\tan (-y+x)=-x+c_{1}
$$

Which simplifies to

$$
-\tan (-y+x)=-x+c_{1}
$$

Which gives

$$
y=x+\arctan \left(-x+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\sin (-y+x)^{2}$		$\frac{d S}{d R}=-1$
	$R=x$	didywidydidydydy
	$S=-\tan (-y+x)$	
		$1 x^{2}$
		didy

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x+\arctan \left(-x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
y=x+\arctan \left(-x+c_{1}\right)
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 12
dsolve(diff $(y(x), x)=\sin (x-y(x)) \wedge 2, y(x)$, singsol=all)

$$
y(x)=x+\arctan \left(c_{1}-x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 31
DSolve $\left[y^{\prime}[x]==\operatorname{Sin}[x-y[x]]^{\sim} 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[2 y(x)-2(\tan (x-y(x))-\arctan (\tan (x-y(x))))=c_{1}, y(x)\right]
$$

1.19 problem 19

1.19.1 Solving as first order ode lie symmetry calculated ode 153
1.19.2 Solving as riccati ode . 159

Internal problem ID [3164]
Internal file name [OUTPUT/2656_Sunday_June_05_2022_08_38_13_AM_76858072/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _Riccati]

$$
y^{\prime}-(4 y+1)^{2}-8 y x=(x+1)^{2}+1
$$

1.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x^{2}+8 x y+16 y^{2}+2 x+8 y+3 \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\left(x^{2}+8 x y+16 y^{2}+2 x+8 y+3\right)\left(b_{3}-a_{2}\right)-\left(x^{2}+8 x y+16 y^{2}+2 x+8 y\right. \tag{5E}\\
& +3)^{2} a_{3}-(2 x+8 y+2)\left(x a_{2}+y a_{3}+a_{1}\right)-(8+32 y+8 x)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -x^{4} a_{3}-16 x^{3} y a_{3}-96 x^{2} y^{2} a_{3}-256 x y^{3} a_{3}-256 y^{4} a_{3}-4 x^{3} a_{3}-48 x^{2} y a_{3} \\
& -192 x y^{2} a_{3}-256 y^{3} a_{3}-3 x^{2} a_{2}-10 x^{2} a_{3}-8 x^{2} b_{2}+x^{2} b_{3}-16 x y a_{2}-82 x y a_{3} \\
& -32 x y b_{2}-16 y^{2} a_{2}-168 y^{2} a_{3}-16 y^{2} b_{3}-2 x a_{1}-4 x a_{2}-12 x a_{3}-8 x b_{1}-8 x b_{2} \\
& +2 x b_{3}-8 y a_{1}-8 y a_{2}-50 y a_{3}-32 y b_{1}-2 a_{1}-3 a_{2}-9 a_{3}-8 b_{1}+b_{2}+3 b_{3}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{3}-16 x^{3} y a_{3}-96 x^{2} y^{2} a_{3}-256 x y^{3} a_{3}-256 y^{4} a_{3}-4 x^{3} a_{3}-48 x^{2} y a_{3} \\
& -192 x y^{2} a_{3}-256 y^{3} a_{3}-3 x^{2} a_{2}-10 x^{2} a_{3}-8 x^{2} b_{2}+x^{2} b_{3}-16 x y a_{2}-82 x y a_{3} \tag{6E}\\
& -32 x y b_{2}-16 y^{2} a_{2}-168 y^{2} a_{3}-16 y^{2} b_{3}-2 x a_{1}-4 x a_{2}-12 x a_{3}-8 x b_{1}-8 x b_{2} \\
& +2 x b_{3}-8 y a_{1}-8 y a_{2}-50 y a_{3}-32 y b_{1}-2 a_{1}-3 a_{2}-9 a_{3}-8 b_{1}+b_{2}+3 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}-16 a_{3} v_{1}^{3} v_{2}-96 a_{3} v_{1}^{2} v_{2}^{2}-256 a_{3} v_{1} v_{2}^{3}-256 a_{3} v_{2}^{4}-4 a_{3} v_{1}^{3} \\
& \quad-48 a_{3} v_{1}^{2} v_{2}-192 a_{3} v_{1} v_{2}^{2}-256 a_{3} v_{2}^{3}-3 a_{2} v_{1}^{2}-16 a_{2} v_{1} v_{2}-16 a_{2} v_{2}^{2} \tag{7E}\\
& \quad-10 a_{3} v_{1}^{2}-82 a_{3} v_{1} v_{2}-168 a_{3} v_{2}^{2}-8 b_{2} v_{1}^{2}-32 b_{2} v_{1} v_{2}+b_{3} v_{1}^{2}-16 b_{3} v_{2}^{2} \\
& \quad-2 a_{1} v_{1}-8 a_{1} v_{2}-4 a_{2} v_{1}-8 a_{2} v_{2}-12 a_{3} v_{1}-50 a_{3} v_{2}-8 b_{1} v_{1} \\
& \quad-32 b_{1} v_{2}-8 b_{2} v_{1}+2 b_{3} v_{1}-2 a_{1}-3 a_{2}-9 a_{3}-8 b_{1}+b_{2}+3 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -a_{3} v_{1}^{4}-16 a_{3} v_{1}^{3} v_{2}-4 a_{3} v_{1}^{3}-96 a_{3} v_{1}^{2} v_{2}^{2}-48 a_{3} v_{1}^{2} v_{2} \\
& +\left(-3 a_{2}-10 a_{3}-8 b_{2}+b_{3}\right) v_{1}^{2}-256 a_{3} v_{1} v_{2}^{3}-192 a_{3} v_{1} v_{2}^{2} \tag{8E}\\
& +\left(-16 a_{2}-82 a_{3}-32 b_{2}\right) v_{1} v_{2}+\left(-2 a_{1}-4 a_{2}-12 a_{3}-8 b_{1}-8 b_{2}+2 b_{3}\right) v_{1} \\
& \quad-256 a_{3} v_{2}^{4}-256 a_{3} v_{2}^{3}+\left(-16 a_{2}-168 a_{3}-16 b_{3}\right) v_{2}^{2} \\
& +\left(-8 a_{1}-8 a_{2}-50 a_{3}-32 b_{1}\right) v_{2}-2 a_{1}-3 a_{2}-9 a_{3}-8 b_{1}+b_{2}+3 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-256 a_{3} & =0 \\
-192 a_{3} & =0 \\
-96 a_{3} & =0 \\
-48 a_{3} & =0 \\
-16 a_{3} & =0 \\
-4 a_{3} & =0 \\
-a_{3} & =0 \\
-16 a_{2}-168 a_{3}-16 b_{3} & =0 \\
-16 a_{2}-82 a_{3}-32 b_{2} & =0 \\
-8 a_{1}-8 a_{2}-50 a_{3}-32 b_{1} & =0 \\
-3 a_{2}-10 a_{3}-8 b_{2}+b_{3} & =0 \\
-2 a_{1}-4 a_{2}-12 a_{3}-8 b_{1}-8 b_{2}+2 b_{3} & =0 \\
-2 a_{1}-3 a_{2}-9 a_{3}-8 b_{1}+b_{2}+3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-4 b_{1} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-4 \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(x^{2}+8 x y+16 y^{2}+2 x+8 y+3\right)(-4) \\
& =4 x^{2}+32 x y+64 y^{2}+8 x+32 y+13 \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{4 x^{2}+32 x y+64 y^{2}+8 x+32 y+13} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\arctan \left(\frac{8 y}{3}+\frac{2 x}{3}+\frac{2}{3}\right)}{24}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}+8 x y+16 y^{2}+2 x+8 y+3
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{36\left(\frac{8 y}{3}+\frac{2 x}{3}+\frac{2}{3}\right)^{2}+36} \\
S_{y} & =\frac{1}{4 x^{2}+(8+32 y) x+64 y^{2}+32 y+13}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{4} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\arctan \left(\frac{8 y}{3}+\frac{2 x}{3}+\frac{2}{3}\right)}{24}=\frac{x}{4}+c_{1}
$$

Which simplifies to

$$
\frac{\arctan \left(\frac{8 y}{3}+\frac{2 x}{3}+\frac{2}{3}\right)}{24}=\frac{x}{4}+c_{1}
$$

Which gives

$$
y=-\frac{x}{4}-\frac{1}{4}+\frac{3 \tan \left(6 x+24 c_{1}\right)}{8}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}+8 x y+16 y^{2}+2 x+8 y+3$		$\frac{d S}{d R}=\frac{1}{4}$
¢ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \mid \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow+\infty+\infty$
	$R=x$	$\rightarrow \rightarrow+\infty$
	$S=\underline{\arctan \left(\frac{8 y}{3}+\frac{2 x}{3}+\frac{2}{3}\right)}$	
	$S=\frac{24}{}$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$
		- $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$
		$\rightarrow \rightarrow+\infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{4}-\frac{1}{4}+\frac{3 \tan \left(6 x+24 c_{1}\right)}{8} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=-\frac{x}{4}-\frac{1}{4}+\frac{3 \tan \left(6 x+24 c_{1}\right)}{8}
$$

Verified OK.

1.19.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}+8 x y+16 y^{2}+2 x+8 y+3
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}+8 x y+16 y^{2}+2 x+8 y+3
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+2 x+3, f_{1}(x)=8 x+8$ and $f_{2}(x)=16$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{16 u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =128 x+128 \\
f_{2}^{2} f_{0} & =256 x^{2}+512 x+768
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
16 u^{\prime \prime}(x)-(128 x+128) u^{\prime}(x)+\left(256 x^{2}+512 x+768\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{2 x(x+2)}\left(c_{1} \cos (6 x)+c_{2} \sin (6 x)\right)
$$

The above shows that

$$
u^{\prime}(x)=4 \mathrm{e}^{2 x(x+2)}\left(\left(c_{1}(x+1)+\frac{3 c_{2}}{2}\right) \cos (6 x)+\sin (6 x)\left(-\frac{3 c_{1}}{2}+(x+1) c_{2}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{1}(x+1)+\frac{3 c_{2}}{2}\right) \cos (6 x)+\sin (6 x)\left(-\frac{3 c_{1}}{2}+(x+1) c_{2}\right)}{4\left(c_{1} \cos (6 x)+c_{2} \sin (6 x)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-3+(-2-2 x) c_{3}\right) \cos (6 x)-2 \sin (6 x)\left(-\frac{3 c_{3}}{2}+x+1\right)}{8 c_{3} \cos (6 x)+8 \sin (6 x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-3+(-2-2 x) c_{3}\right) \cos (6 x)-2 \sin (6 x)\left(-\frac{3 c_{3}}{2}+x+1\right)}{8 c_{3} \cos (6 x)+8 \sin (6 x)} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=\frac{\left(-3+(-2-2 x) c_{3}\right) \cos (6 x)-2 \sin (6 x)\left(-\frac{3 c_{3}}{2}+x+1\right)}{8 c_{3} \cos (6 x)+8 \sin (6 x)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = -1/4, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff (y (x),x)=(x+1)^2+(4*y(x)+1)^2+8*x*y(x)+1,y(x), singsol=all)
```

$$
y(x)=-\frac{x}{4}-\frac{1}{4}-\frac{3 \tan \left(-6 x+6 c_{1}\right)}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 49

```
DSolve \(\left[y\right.\) ' \([x]==(x+1)^{\wedge} 2+(4 * y[x]+1)^{\wedge} 2+8 * x * y[x]+1, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{16}\left(-4 x+\frac{1}{c_{1} e^{12 i x}-\frac{i}{12}}-(4+6 i)\right) \\
& y(x) \rightarrow \frac{1}{8}(-2 x-(2+3 i))
\end{aligned}
$$

1.20 problem 20

1.20.1 Solving as exact ode . 163
1.20.2 Maple step by step solution . 166

Internal problem ID [3165]
Internal file name [OUTPUT/2657_Sunday_June_05_2022_08_38_14_AM_94601019/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational]

$$
6 y^{2} x+\left(6 x^{2} y+4 y^{3}\right) y^{\prime}=-3 x^{2}
$$

1.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(6 x^{2} y+4 y^{3}\right) \mathrm{d} y & =\left(-6 x y^{2}-3 x^{2}\right) \mathrm{d} x \\
\left(6 x y^{2}+3 x^{2}\right) \mathrm{d} x+\left(6 x^{2} y+4 y^{3}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =6 x y^{2}+3 x^{2} \\
N(x, y) & =6 x^{2} y+4 y^{3}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(6 x y^{2}+3 x^{2}\right) \\
& =12 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(6 x^{2} y+4 y^{3}\right) \\
& =12 x y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 6 x y^{2}+3 x^{2} \mathrm{~d} x \\
\phi & =x^{2}\left(3 y^{2}+x\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=6 x^{2} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=6 x^{2} y+4 y^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
6 x^{2} y+4 y^{3}=6 x^{2} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=4 y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(4 y^{3}\right) \mathrm{d} y \\
f(y) & =y^{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2}\left(3 y^{2}+x\right)+y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2}\left(3 y^{2}+x\right)+y^{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x^{2}\left(3 y^{2}+x\right)+y^{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot

Verification of solutions

$$
x^{2}\left(3 y^{2}+x\right)+y^{4}=c_{1}
$$

Verified OK.

1.20.2 Maple step by step solution

Let's solve

$$
6 y^{2} x+\left(6 x^{2} y+4 y^{3}\right) y^{\prime}=-3 x^{2}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
$\square \quad$ Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$12 x y=12 x y$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(6 x y^{2}+3 x^{2}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=3 y^{2} x^{2}+x^{3}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$6 x^{2} y+4 y^{3}=6 x^{2} y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=4 y^{3}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y^{4}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=3 y^{2} x^{2}+y^{4}+x^{3}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$3 y^{2} x^{2}+y^{4}+x^{3}=c_{1}$
- \quad Solve for y
$\left\{y=-\frac{\sqrt{-6 x^{2}-2 \sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=\frac{\sqrt{-6 x^{2}-2 \sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=-\frac{\sqrt{-6 x^{2}+2 \sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{2}, y=\frac{\sqrt{-6 x^{2}+2,}}{}\right.$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 125
dsolve ($\left(3 * x^{\wedge} 2+6 * x * y(x)^{\wedge} 2\right)+\left(6 * x^{\wedge} 2 * y(x)+4 * y(x)^{\wedge} 3\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol $\left.=a l l\right)$

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{-6 x^{2}-2 \sqrt{9 x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=\frac{\sqrt{-6 x^{2}-2 \sqrt{9 x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=-\frac{\sqrt{-6 x^{2}+2 \sqrt{9 x^{4}-4 x^{3}-4 c_{1}}}}{2} \\
& y(x)=\frac{\sqrt{-6 x^{2}+2 \sqrt{9 x^{4}-4 x^{3}-4 c_{1}}}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.017 (sec). Leaf size: 163
DSolve $\left[\left(3 * x^{\wedge} 2+6 * x * y[x] \wedge 2\right)+\left(6 * x^{\wedge} 2 * y[x]+4 * y[x] \wedge 3\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-3 x^{2}-\sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-3 x^{2}-\sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{-3 x^{2}+\sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{-3 x^{2}+\sqrt{9 x^{4}-4 x^{3}+4 c_{1}}}}{\sqrt{2}}
\end{aligned}
$$

1.21 problem 21

$$
\text { 1.21.1 Solving as exact ode . } 170
$$

1.21.2 Maple step by step solution . 173

Internal problem ID [3166]
Internal file name [OUTPUT/2658_Sunday_June_05_2022_08_38_14_AM_48662186/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, _rational, [_Abel, `2nd type`, `class B`]]
```

$$
-y^{2} x-2 y-\left(x^{2} y+2 x\right) y^{\prime}=-2 x^{2}-3
$$

1.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2} y-2 x\right) \mathrm{d} y & =\left(x y^{2}-2 x^{2}+2 y-3\right) \mathrm{d} x \\
\left(-x y^{2}+2 x^{2}-2 y+3\right) \mathrm{d} x+\left(-x^{2} y-2 x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x y^{2}+2 x^{2}-2 y+3 \\
& N(x, y)=-x^{2} y-2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x y^{2}+2 x^{2}-2 y+3\right) \\
& =-2 x y-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2} y-2 x\right) \\
& =-2 x y-2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x y^{2}+2 x^{2}-2 y+3 \mathrm{~d} x \\
\phi & =\frac{2 x^{3}}{3}-\frac{y^{2} x^{2}}{2}+(-2 y+3) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-x^{2} y-2 x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-x^{2} y-2 x$. Therefore equation (4) becomes

$$
\begin{equation*}
-x^{2} y-2 x=-x^{2} y-2 x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{2 x^{3}}{3}-\frac{y^{2} x^{2}}{2}+(-2 y+3) x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{2 x^{3}}{3}-\frac{y^{2} x^{2}}{2}+(-2 y+3) x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{2 x^{3}}{3}-\frac{y^{2} x^{2}}{2}+(-2 y+3) x=c_{1} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
\frac{2 x^{3}}{3}-\frac{y^{2} x^{2}}{2}+(-2 y+3) x=c_{1}
$$

Verified OK.

1.21.2 Maple step by step solution

Let's solve

$$
-y^{2} x-2 y-\left(x^{2} y+2 x\right) y^{\prime}=-2 x^{2}-3
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-2 x y-2=-2 x y-2
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(-x y^{2}+2 x^{2}-2 y+3\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=-\frac{y^{2} x^{2}}{2}+\frac{2 x^{3}}{3}-2 x y+3 x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-x^{2} y-2 x=-x^{2} y-2 x+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\frac{1}{2} y^{2} x^{2}+\frac{2}{3} x^{3}-2 x y+3 x
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-\frac{1}{2} y^{2} x^{2}+\frac{2}{3} x^{3}-2 x y+3 x=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{-2-\frac{\sqrt{12 x^{3}-18 c_{1}+54 x+36}}{3}}{x}, y=\frac{-2+\frac{\sqrt{12 x^{3}-18 c_{1}+54 x+36}}{3}}{x}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 53

```
dsolve((2*x^2-x*y(x)^2-2*y(x)+3)-(x^2*y(x)+2*x)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-6-\sqrt{12 x^{3}+18 c_{1}+54 x+36}}{3 x} \\
& y(x)=\frac{-6+\sqrt{12 x^{3}+18 c_{1}+54 x+36}}{3 x}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.646 (sec). Leaf size: 87

DSolve $\left[\left(2 * x^{\wedge} 2-x * y[x] \sim 2-2 * y[x]+3\right)-\left(x^{\wedge} 2 * y[x]+2 * x\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{6 x+\sqrt{3} \sqrt{x^{2}\left(4 x^{3}+18 x+12+3 c_{1}\right)}}{3 x^{2}} \\
& y(x) \rightarrow \frac{-6 x+\sqrt{3} \sqrt{x^{2}\left(4 x^{3}+18 x+12+3 c_{1}\right)}}{3 x^{2}}
\end{aligned}
$$

1.22 problem 22

1.22.1 Solving as exact ode . 176
1.22.2 Maple step by step solution . 179

Internal problem ID [3167]
Internal file name [OUTPUT/2659_Sunday_June_05_2022_08_38_15_AM_76938598/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _rational, [_Abel, `2nd type`, `class B`]]

$$
y^{2} x-2 y+\left(x^{2} y-2 y-2 x\right) y^{\prime}=-x-3
$$

1.22.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2} y-2 x-2 y\right) \mathrm{d} y & =\left(-x y^{2}-x+2 y-3\right) \mathrm{d} x \\
\left(x y^{2}+x-2 y+3\right) \mathrm{d} x+\left(x^{2} y-2 x-2 y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y^{2}+x-2 y+3 \\
N(x, y) & =x^{2} y-2 x-2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{2}+x-2 y+3\right) \\
& =2 x y-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2} y-2 x-2 y\right) \\
& =2 x y-2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x y^{2}+x-2 y+3 \mathrm{~d} x \\
\phi & =\frac{x\left(x y^{2}+x-4 y+6\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x(2 x y-4)}{2}+f^{\prime}(y) \tag{4}\\
& =x(x y-2)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2} y-2 x-2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2} y-2 x-2 y=x(x y-2)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2 y) \mathrm{d} y \\
f(y) & =-y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x\left(x y^{2}+x-4 y+6\right)}{2}-y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x\left(x y^{2}+x-4 y+6\right)}{2}-y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x\left(y^{2} x+x-4 y+6\right)}{2}-y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot

Verification of solutions

$$
\frac{x\left(y^{2} x+x-4 y+6\right)}{2}-y^{2}=c_{1}
$$

Verified OK.

1.22.2 Maple step by step solution

Let's solve

$$
y^{2} x-2 y+\left(x^{2} y-2 y-2 x\right) y^{\prime}=-x-3
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2 x y-2=2 x y-2$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int\left(x y^{2}+x-2 y+3\right) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{y^{2} x^{2}}{2}+\frac{x^{2}}{2}-2 x y+3 x+f_{1}(y)$
- Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$x^{2} y-2 x-2 y=x^{2} y-2 x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-2 y$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{1}{2} y^{2} x^{2}+\frac{1}{2} x^{2}-2 x y+3 x-y^{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{1}{2} y^{2} x^{2}+\frac{1}{2} x^{2}-2 x y+3 x-y^{2}=c_{1}$
- \quad Solve for y
$\left\{y=\frac{2 x+\sqrt{-x^{4}+2 c_{1} x^{2}-6 x^{3}+6 x^{2}-4 c_{1}+12 x}}{x^{2}-2}, y=-\frac{-2 x+\sqrt{-x^{4}+2 c_{1} x^{2}-6 x^{3}+6 x^{2}-4 c_{1}+12 x}}{x^{2}-2}\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 89
dsolve $\left((x * y(x) \wedge 2+x-2 * y(x)+3)+\left(x^{\wedge} 2 * y(x)-2 *(x+y(x))\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{2 x+\sqrt{-x^{4}-6 x^{3}+\left(-2 c_{1}+6\right) x^{2}+12 x+4 c_{1}}}{x^{2}-2} \\
& y(x)=\frac{2 x-\sqrt{-x^{4}-6 x^{3}+\left(-2 c_{1}+6\right) x^{2}+12 x+4 c_{1}}}{x^{2}-2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.549 (sec). Leaf size: 95
DSolve $\left[(x * y[x] \sim 2+x-2 * y[x]+3)+\left(x^{\wedge} 2 * y[x]-2 *(x+y[x])\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 x-\sqrt{-x^{4}-6 x^{3}+\left(6+c_{1}\right) x^{2}+12 x-2 c_{1}}}{x^{2}-2} \\
& y(x) \rightarrow \frac{2 x+\sqrt{-x^{4}-6 x^{3}+\left(6+c_{1}\right) x^{2}+12 x-2 c_{1}}}{x^{2}-2}
\end{aligned}
$$

1.23 problem 23

> 1.23.1 Solving as differentialType ode
1.23.2 Solving as exact ode . 184
1.23.3 Maple step by step solution 187

Internal problem ID [3168]
Internal file name [OUTPUT/2660_Sunday_June_05_2022_08_38_15_AM_29060004/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type

```
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x)*G(y)
    ,0]`], [_Abel, `2nd type`, `class A`]]
```

$$
3\left(x^{2}-1\right) y+\left(x^{3}+8 y-3 x\right) y^{\prime}=0
$$

1.23.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{3\left(x^{2}-1\right) y}{x^{3}+8 y-3 x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(8 y) d y=\left(-x^{3}+3 x\right) d y+\left(-3 y\left(x^{2}-1\right)\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{3}+3 x\right) d y+\left(-3 y\left(x^{2}-1\right)\right) d x=d\left(-3 y\left(\frac{1}{3} x^{3}-x\right)\right)
$$

Hence (2) becomes

$$
(8 y) d y=d\left(-3 y\left(\frac{1}{3} x^{3}-x\right)\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=-\frac{x^{3}}{8}+\frac{3 x}{8}+\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1} \\
& y=-\frac{x^{3}}{8}+\frac{3 x}{8}-\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{x^{3}}{8}+\frac{3 x}{8}+\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1} \tag{1}\\
& y=-\frac{x^{3}}{8}+\frac{3 x}{8}-\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1} \tag{2}
\end{align*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=-\frac{x^{3}}{8}+\frac{3 x}{8}+\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1}
$$

Verified OK.

$$
y=-\frac{x^{3}}{8}+\frac{3 x}{8}-\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}+c_{1}
$$

Verified OK.

1.23.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{3}-3 x+8 y\right) \mathrm{d} y & =\left(-3 y\left(x^{2}-1\right)\right) \mathrm{d} x \\
\left(3 y\left(x^{2}-1\right)\right) \mathrm{d} x+\left(x^{3}-3 x+8 y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y\left(x^{2}-1\right) \\
N(x, y) & =x^{3}-3 x+8 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y\left(x^{2}-1\right)\right) \\
& =3 x^{2}-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{3}-3 x+8 y\right) \\
& =3 x^{2}-3
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 y\left(x^{2}-1\right) \mathrm{d} x \\
\phi & =y x\left(x^{2}-3\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x\left(x^{2}-3\right)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}-3 x+8 y$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}-3 x+8 y=x\left(x^{2}-3\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=8 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(8 y) \mathrm{d} y \\
f(y) & =4 y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x\left(x^{2}-3\right)+4 y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x\left(x^{2}-3\right)+4 y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y x\left(x^{2}-3\right)+4 y^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot
Verification of solutions

$$
y x\left(x^{2}-3\right)+4 y^{2}=c_{1}
$$

Verified OK.

1.23.3 Maple step by step solution

Let's solve
$3\left(x^{2}-1\right) y+\left(x^{3}+8 y-3 x\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
3 x^{2}-3=3 x^{2}-3
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int 3 y\left(x^{2}-1\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=3 y\left(\frac{1}{3} x^{3}-x\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x^{3}-3 x+8 y=x^{3}-3 x+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=8 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=4 y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=3 y\left(\frac{1}{3} x^{3}-x\right)+4 y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$3 y\left(\frac{1}{3} x^{3}-x\right)+4 y^{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=-\frac{x^{3}}{8}+\frac{3 x}{8}-\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}, y=-\frac{x^{3}}{8}+\frac{3 x}{8}+\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}+16 c_{1}}}{8}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 67

```
dsolve((3*y(x)*(x^2-1))+(x^3+8*y(x) -3*x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{x^{3}}{8}+\frac{3 x}{8}-\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}-16 c_{1}}}{8} \\
& y(x)=-\frac{x^{3}}{8}+\frac{3 x}{8}+\frac{\sqrt{x^{6}-6 x^{4}+9 x^{2}-16 c_{1}}}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.17 (sec). Leaf size: 86
DSolve $\left[\left(3 * y[x] *\left(x^{\wedge} 2-1\right)\right)+\left(x^{\wedge} 3+8 * y[x]-3 * x\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{8}\left(-x^{3}-\sqrt{x^{6}-6 x^{4}+9 x^{2}+64 c_{1}}+3 x\right) \\
& y(x) \rightarrow \frac{1}{8}\left(-x^{3}+\sqrt{x^{6}-6 x^{4}+9 x^{2}+64 c_{1}}+3 x\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.24 problem 24

1.24.1 Solving as first order ode lie symmetry calculated ode 190
1.24.2 Solving as exact ode . 198
1.24.3 Maple step by step solution . 202

Internal problem ID [3169]
Internal file name [OUTPUT/2661_Sunday_June_05_2022_08_38_16_AM_88832495/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[_exact, [_1st_order, - $w i t h _s y m m e t r y _[F(x), G(x) * y+H(x)]$]]

$$
\ln (y)=-x^{2}-\frac{x y^{\prime}}{y}
$$

1.24.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{\left(x^{2}+\ln (y)\right) y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{\left(x^{2}+\ln (y)\right) y\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{x} \\
& -\frac{\left(x^{2}+\ln (y)\right)^{2} y^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}} \\
& -\left(-2 y+\frac{\left(x^{2}+\ln (y)\right) y}{x^{2}}\right)\left(x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}\right. \\
& \left.+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)-\left(-\frac{1}{x}-\frac{x^{2}+\ln (y)}{x}\right)\left(x^{3} b_{7}\right. \\
& \left.+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 \ln (y) x^{2} y^{2} a_{3}+2 \ln (y) x^{3} y^{2} a_{5}+4 \ln (y) x^{2} y^{3} a_{6}+\ln (y)^{2} x y^{2} a_{5}-\ln (y) x^{2} y a_{4}+\ln (y) x y^{2} b_{6}-2 \ln (y)}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 \ln (y) x^{2} y^{2} a_{3}-2 \ln (y) x^{3} y^{2} a_{5}-4 \ln (y) x^{2} y^{3} a_{6}-\ln (y)^{2} x y^{2} a_{5} \\
& +\ln (y) x^{2} y a_{4}-\ln (y) x y^{2} b_{6}+2 \ln (y) x^{3} y a_{7}+\ln (y) x^{2} y^{2} a_{8} \\
& -\ln (y) x^{2} y^{2} b_{9}-2 \ln (y) x y^{3} b_{10}-2 \ln (y) x^{4} y^{2} a_{8}-4 \ln (y) x^{3} y^{3} a_{9} \\
& -6 \ln (y) x^{2} y^{4} a_{10}-\ln (y)^{2} x^{2} y^{2} a_{8}-2 \ln (y)^{2} x y^{3} a_{9}+2 b_{2} x^{2} \\
& +x^{4} b_{2}+x^{3} b_{1}+x b_{1}+x^{5} b_{4}+3 x^{3} b_{4}+4 x^{4} b_{7}+x^{6} b_{7}+3 x^{3} y b_{8} \tag{6E}\\
& +2 y^{2} b_{9} x^{2}-x^{3} y^{2} b_{6}+x^{2} y^{3} a_{6}+x y^{2} b_{6}-2 \ln (y)^{2} y^{3} a_{6}+\ln (y) x^{3} b_{4} \\
& -x^{5} y^{2} a_{5}-2 x^{4} y^{3} a_{6}+3 x^{4} y a_{4}+2 x^{3} y^{2} a_{5}+2 y b_{5} x^{2}-\ln (y) y^{2} a_{3} \\
& +\ln (y) x b_{1}-\ln (y) y a_{1}-x^{4} y^{2} a_{3}+2 x^{3} y a_{2}+x^{2} y^{2} a_{3}+x^{2} y a_{1} \\
& +x y b_{3}-\ln (y)^{2} y^{2} a_{3}+\ln (y) x^{2} b_{2}-\ln (y) y^{3} a_{6}+4 x^{5} y a_{7}+3 x^{4} y^{2} a_{8} \\
& -x^{4} y^{2} b_{9}+2 x^{3} y^{3} a_{9}-2 x^{3} y^{3} b_{10}-x^{6} y^{2} a_{8}-2 x^{5} y^{3} a_{9}-3 x^{4} y^{4} a_{10} \\
& +x^{2} y^{4} a_{10}+x y^{3} b_{10}-3 \ln (y)^{2} y^{4} a_{10}-\ln (y) y^{4} a_{10}+\ln (y) x^{4} b_{7}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (y)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 v_{3} v_{1}^{3} v_{2}^{2} a_{5}-4 v_{3} v_{1}^{2} v_{2}^{3} a_{6}-v_{3}^{2} v_{1} v_{2}^{2} a_{5}+v_{3} v_{1}^{2} v_{2} a_{4}-v_{3} v_{1} v_{2}^{2} b_{6}+2 v_{3} v_{1}^{3} v_{2} a_{7} \\
& +v_{3} v_{1}^{2} v_{2}^{2} a_{8}-v_{3} v_{1}^{2} v_{2}^{2} b_{9}-2 v_{3} v_{1} v_{2}^{3} b_{10}-2 v_{3} v_{1}^{4} v_{2}^{2} a_{8}-4 v_{3} v_{1}^{3} v_{2}^{3} a_{9} \\
& -6 v_{3} v_{1}^{2} v_{2}^{4} a_{10}-v_{3}^{2} v_{1}^{2} v_{2}^{2} a_{8}-2 v_{3}^{2} v_{1} v_{2}^{3} a_{9}-2 v_{3} v_{1}^{2} v_{2}^{2} a_{3}+2 b_{2} v_{1}^{2}+v_{1}^{4} b_{2} \\
& +v_{1}^{3} b_{1}+v_{1} b_{1}+v_{1}^{5} b_{4}+3 v_{1}^{3} b_{4}+4 v_{1}^{4} b_{7}+v_{1}^{6} b_{7}-2 v_{1}^{3} v_{2}^{3} b_{10}-v_{1}^{6} v_{2}^{2} a_{8} \tag{7E}\\
& -2 v_{1}^{5} v_{2}^{3} a_{9}-3 v_{1}^{4} v_{2}^{4} a_{10}+v_{1}^{2} v_{2}^{4} a_{10}+v_{1} v_{2}^{3} b_{10}-3 v_{3}^{2} v_{2}^{4} a_{10}-v_{3} v_{2}^{4} a_{10} \\
& +v_{3} v_{1}^{4} b_{7}+3 v_{1}^{3} v_{2} b_{8}+2 v_{2}^{2} b_{9} v_{1}^{2}-v_{1}^{3} v_{2}^{2} b_{6}+v_{1}^{2} v_{2}^{3} a_{6}+v_{1} v_{2}^{2} b_{6}-2 v_{3}^{2} v_{2}^{3} a_{6} \\
& +v_{3} v_{1}^{3} b_{4}-v_{1}^{5} v_{2}^{2} a_{5}-2 v_{1}^{4} v_{2}^{3} a_{6}+3 v_{1}^{4} v_{2} a_{4}+2 v_{1}^{3} v_{2}^{2} a_{5}+2 v_{2} b_{5} v_{1}^{2}-v_{3} v_{2}^{2} a_{3} \\
& +v_{3} v_{1} b_{1}-v_{3} v_{2} a_{1}-v_{1}^{4} v_{2}^{2} v_{3} v_{2} a_{2}+v_{1}^{2} v_{2}^{2} a_{3}+v_{1}^{2} v_{2} a_{1}+v_{1} v_{2} b_{3} \\
& -v_{3}^{2} v_{2}^{2} a_{3}+v_{3} v_{1}^{2} b_{2}-v_{3} v_{2}^{3} a_{6}+4 v_{1}^{5} v_{2} a_{7}+3 v_{1}^{4} v_{2}^{2} a_{8}-v_{1}^{4} v_{2}^{2} b_{9}+2 v_{1}^{3} v_{2}^{3} a_{9}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(a_{1}+2 b_{5}\right) v_{1}^{2} v_{2}+\left(-a_{3}+3 a_{8}-b_{9}\right) v_{2}^{2} v_{1}^{4}+\left(-2 b_{10}+2 a_{9}\right) v_{2}^{3} v_{1}^{3} \\
& \quad+\left(3 b_{8}+2 a_{2}\right) v_{2} v_{1}^{3}+\left(2 b_{9}+a_{3}\right) v_{1}^{2} v_{2}^{2}+\left(2 a_{5}-b_{6}\right) v_{2}^{2} v_{1}^{3}-2 v_{3} v_{1}^{3} v_{2}^{2} a_{5} \\
& \quad-4 v_{3} v_{1}^{2} v_{2}^{3} a_{6}-v_{3}^{2} v_{1} v_{2}^{2} a_{5}+v_{3} v_{1}^{2} v_{2} a_{4}-v_{3} v_{1} v_{2}^{2} b_{6}+2 v_{3} v_{1}^{3} v_{2} a_{7} \\
& \quad-2 v_{3} v_{1} v_{2}^{3} b_{10}-2 v_{3} v_{1}^{4} v_{2}^{2} a_{8}-4 v_{3} v_{1}^{3} v_{2}^{3} a_{9}-6 v_{3} v_{1}^{2} v_{2}^{4} a_{10}-v_{3}^{2} v_{1}^{2} v_{2}^{2} a_{8} \tag{8E}\\
& \quad-2 v_{3}^{2} v_{1} v_{2}^{3} a_{9}+\left(a_{8}-b_{9}-2 a_{3}\right) v_{2}^{2} v_{1}^{2} v_{3}+2 b_{2} v_{1}^{2}+v_{1} b_{1}+v_{1}^{5} b_{4}+v_{1}^{6} b_{7} \\
& \quad-v_{1}^{6} v_{2}^{2} a_{8}-2 v_{1}^{5} v_{2}^{3} a_{9}-3 v_{1}^{4} v_{2}^{4} a_{10}+v_{1}^{2} v_{2}^{4} a_{10}+v_{1} v_{2}^{3} b_{10}-3 v_{3}^{2} v_{2}^{4} a_{10} \\
& \quad-v_{3} v_{2}^{4} a_{10}+v_{3} v_{1}^{4} b_{7}+v_{1}^{2} v_{2}^{3} a_{6}+v_{1} v_{2} b_{6}-2 v_{3}^{2} v_{2}^{3} a_{6}+v_{3} v_{1}^{3} b_{4}-v_{1}^{5} v_{2}^{2} a_{5} \\
& -2 v_{1}^{4} v_{2}^{3} a_{6}+3 v_{1}^{4} v_{2} a_{4}-v_{3} v_{2}^{2} a_{3}+v_{3} v_{1} b_{1}-v_{3} v_{2} a_{1}+v_{1} v_{2} b_{3}-v_{3}^{2} v_{2}^{2} a_{3} \\
& \quad+v_{3} v_{1}^{2} b_{2}-v_{3} v_{2}^{3} a_{6}+4 v_{1}^{5} v_{2} a_{7}+\left(b_{2}+4 b_{7}\right) v_{1}^{4}+\left(b_{1}+3 b_{4}\right) v_{1}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& a_{4}=0 \\
& a_{6}=0 \\
& a_{10}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=0 \\
& b_{4}=0 \\
& b_{6}=0 \\
& b_{7}=0 \\
& b_{10}=0 \\
&-a_{1}=0 \\
&-a_{3}=0 \\
& 3 a_{4}=0 \\
&-2 a_{5}=0 \\
&-a_{5}=0 \\
&-4 a_{6}=0 \\
&-2 a_{6}=0 \\
&-a_{6}=0 \\
& 2 a_{7}=0 \\
& 4 a_{7}=0 \\
&-2 a_{8}=0 \\
& b_{2}+4 b_{9}+4 b_{7}=0 \\
& 2 a_{9}=0 \\
&-a_{8}=0 \\
&-4 a_{3}=0 \\
&-4 a_{9}=0 \\
&-2 a_{9}=0 \\
&-6 a_{10}=0 \\
&-3 a_{10}=0 \\
&-a_{10}=0 \\
& 2 b_{2}=0 \\
&-b_{6}=0 \\
&-2 b_{10}=0 \\
& 2 b_{5}=0 \\
& b_{6}=0 \\
& 0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-\frac{3 b_{8}}{2} \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =0 \\
a_{8} & =0 \\
a_{9} & =0 \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =0 \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =b_{8} \\
b_{9} & =0 \\
b_{10} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-\frac{3 x}{2} \\
& \eta=x^{2} y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x^{2} y-\left(-\frac{\left(x^{2}+\ln (y)\right) y}{x}\right)\left(-\frac{3 x}{2}\right) \\
& =-\frac{x^{2} y}{2}-\frac{3 \ln (y) y}{2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{x^{2} y}{2}-\frac{3 \ln (y) y}{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 \ln \left(x^{2}+3 \ln (y)\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\left(x^{2}+\ln (y)\right) y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{4 x}{3 x^{2}+9 \ln (y)} \\
S_{y} & =-\frac{2}{y\left(x^{2}+3 \ln (y)\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{2 \ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \ln \left(x^{2}+3 \ln (y)\right)}{3}=\frac{2 \ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
-\frac{2 \ln \left(x^{2}+3 \ln (y)\right)}{3}=\frac{2 \ln (x)}{3}+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-x^{3}+\mathrm{e}^{-\frac{3 c_{1}}{2}}} 3 x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{-x^{3}+\mathrm{e}^{-\frac{3 c_{1}}{2}}}{3 x}} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{\frac{-x^{3}+\mathrm{e}^{-}-\frac{3 c_{1}}{3 x}}{3 x}}
$$

Verified OK.

1.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{y}\right) \mathrm{d} y & =\left(-x^{2}-\ln (y)\right) \mathrm{d} x \\
\left(x^{2}+\ln (y)\right) \mathrm{d} x+\left(\frac{x}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+\ln (y) \\
N(x, y) & =\frac{x}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+\ln (y)\right) \\
& =\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{y}\right) \\
& =\frac{1}{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{2}+\ln (y) \mathrm{d} x \\
\phi & =\frac{x^{3}}{3}+\ln (y) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{y}=\frac{x}{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{3}}{3}+\ln (y) x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{3}}{3}+\ln (y) x
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}
$$

Verified OK.

1.24.3 Maple step by step solution

Let's solve
$\ln (y)=-x^{2}-\frac{x y^{\prime}}{y}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{1}{y}=\frac{1}{y}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int\left(x^{2}+\ln (y)\right) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=\frac{x^{3}}{3}+\ln (y) x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative $\frac{x}{y}=\frac{x}{y}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=0
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{x^{3}}{3}+\ln (y) x
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{x^{3}}{3}+\ln (y) x=c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{\frac{-x^{3}+3 c_{1}}{3 x}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve((x^2+ln(y(x)))+(x/y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x^{3}+3 c_{1}}{3 x}}
$$

\checkmark Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 21
DSolve $\left[\left(x^{\wedge} 2+\log [y[x]]\right)+(x / y[x]) * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow e^{-\frac{x^{2}}{3}+\frac{c_{1}}{x}}
$$

1.25 problem 25

$$
\begin{equation*}
\text { 1.25.1 Solving as exact ode . } 205 \tag{205}
\end{equation*}
$$

1.25.2 Maple step by step solution 209

Internal problem ID [3170]
Internal file name [OUTPUT/2662_Sunday_June_05_2022_08_38_16_AM_88983900/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right)+\left(x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}\right) y^{\prime}=0
$$

1.25.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}\right) \mathrm{d} y & =\left(-2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right)\right) \mathrm{d} x \\
\left(2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right)\right) \mathrm{d} x+\left(x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right) \\
& N(x, y)=x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right)\right) \\
& =-2 x\left(\mathrm{e}^{-x^{2}}-1\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}\right) \\
& =-2 x\left(\mathrm{e}^{-x^{2}}-1\right)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right) \mathrm{d} x \\
\phi & =x^{2} y+2 x^{3}+y \mathrm{e}^{-x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}=x^{2}+\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}\right) \mathrm{d} y \\
f(y) & =y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y+2 x^{3}+y \mathrm{e}^{-x^{2}}+y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y+2 x^{3}+y \mathrm{e}^{-x^{2}}+y^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x^{2} y+2 x^{3}+y \mathrm{e}^{-x^{2}}+y^{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot

Verification of solutions

$$
x^{2} y+2 x^{3}+y \mathrm{e}^{-x^{2}}+y^{3}=c_{1}
$$

Verified OK.

1.25.2 Maple step by step solution

Let's solve
$2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right)+\left(x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives
$2 x\left(-\mathrm{e}^{-x^{2}}+1\right)=2 x-2 x \mathrm{e}^{-x^{2}}$
- Simplify
$-2 x\left(\mathrm{e}^{-x^{2}}-1\right)=-2 x\left(\mathrm{e}^{-x^{2}}-1\right)$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int 2 x\left(3 x+y-y \mathrm{e}^{-x^{2}}\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=x^{2} y+2 x^{3}+\frac{y}{\mathrm{e}^{x^{2}}}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x^{2}+3 y^{2}+\mathrm{e}^{-x^{2}}=x^{2}+\frac{1}{\mathrm{e}^{x^{2}}}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=3 y^{2}+\mathrm{e}^{-x^{2}}-\frac{1}{\mathrm{e}^{x^{2}}}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=\frac{y^{3} \mathrm{e}^{x^{2}}+\mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}} y-y}{\mathrm{e}^{x^{2}}}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{2} y+2 x^{3}+\frac{y}{\mathrm{e}^{x^{2}}}+\frac{y^{3} \mathrm{e}^{x^{2}}+\mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}} y-y}{\mathrm{e}^{x^{2}}}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{2} y+2 x^{3}+\frac{y}{\mathrm{e}^{x^{2}}}+\frac{y^{3} \mathrm{e}^{x^{2}}+\mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}} y-y}{\mathrm{e}^{x^{2}}}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(-216 x^{3}+108 c_{1}+12 \sqrt{336 x^{6}+36 x^{4} \mathrm{e}^{-x^{2}}+36\left(\mathrm{e}^{-x^{2}}\right)^{2} x^{2}+12\left(\mathrm{e}^{-x^{2}}\right)^{3}-324 c_{1} x^{3}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}-\frac{}{\left(-216 x^{3}+108 c_{1}+12 \sqrt{336 x}\right.}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 634
dsolve $\left(\left(2 * x *\left(3 * x+y(x)-y(x) * \exp \left(-x^{\wedge} 2\right)\right)\right)+\left(x^{\wedge} 2+3 * y(x)^{\wedge} 2+\exp \left(-x^{\wedge} 2\right)\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol
$y(x)=$

$$
-\frac{12^{\frac{1}{3}}\left(-\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x^{2}}}-18 \mathrm{e}^{3 x^{2}}\left(x^{3}+\frac{c_{1}}{2}\right)\right.\right.}{6\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x^{2}}}-18 \mathrm{e}^{3 x^{2}}\right.},
$$

$y(x)=$
$-\frac{3^{\frac{1}{3}}\left(\mathrm{e}^{-x^{2}}(1+i \sqrt{3})\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x^{2}}}-18 \mathrm{e}^{3}\right.\right.}{12\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x}}\right.}$
$y(x)$
$=\frac{3^{\frac{1}{3}}\left((i \sqrt{3}-1) \mathrm{e}^{-x^{2}}\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x^{2}}}-18 \mathrm{e}^{3 x^{2}}\right.\right.}{12\left(\sqrt{3} \mathrm{e}^{2 x^{2}} \sqrt{\left(4+\left(112 x^{6}+108 c_{1} x^{3}+27 c_{1}^{2}\right) \mathrm{e}^{3 x^{2}}+12 \mathrm{e}^{2 x^{2}} x^{4}+12 \mathrm{e}^{x^{2}} x^{2}\right) \mathrm{e}^{-x^{2}}}\right.}$
\checkmark Solution by Mathematica
Time used: 37.566 (sec). Leaf size: 416
DSolve $\left[\left(2 * x *\left(3 * x+y[x]-y[x] * \operatorname{Exp}\left[-x^{\wedge} 2\right]\right)\right)+\left(x^{\wedge} 2+3 * y[x] \wedge 2+\operatorname{Exp}\left[-x^{\wedge} 2\right]\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingu
$y(x)$
$\rightarrow \frac{-6 \sqrt[3]{2}\left(x^{2}+e^{-x^{2}}\right)+2^{2 / 3}\left(-54 x^{3}+\sqrt{108\left(x^{2}+e^{-x^{2}}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}+27 c_{1}\right)^{2 / 3}}{6 \sqrt[3]{-54 x^{3}+\sqrt{108\left(x^{2}+e^{\left.-x^{2}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}+27 c_{1}\right.}}}$
$y(x) \rightarrow \frac{(1+i \sqrt{3})\left(x^{2}+e^{-x^{2}}\right)}{2^{2 / 3} \sqrt[3]{-54 x^{3}+\sqrt{108\left(x^{2}+e^{\left.-x^{2}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}+27 c_{1}\right.}}}$
$+\frac{(-1+i \sqrt{3}) \sqrt[3]{-54 x^{3}+\sqrt{108\left(x^{2}+e^{\left.-x^{2}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}\right.}+27 c_{1}}}{6 \sqrt[3]{2}}$
$y(x) \rightarrow \frac{(1-i \sqrt{3})\left(x^{2}+e^{-x^{2}}\right)}{2^{2 / 3} \sqrt[3]{-54 x^{3}+\sqrt{108\left(x^{2}+e^{-x^{2}}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}+27 c_{1}}}$
$-\frac{(1+i \sqrt{3}) \sqrt[3]{-54 x^{3}+\sqrt{108\left(x^{2}+e^{-x^{2}}\right)^{3}+729\left(-2 x^{3}+c_{1}\right)^{2}}+27 c_{1}}}{6 \sqrt[3]{2}}$

1.26 problem 26

1.26.1 Solving as exact ode . 213
1.26.2 Maple step by step solution . 216

Internal problem ID [3171]
Internal file name [OUTPUT/2663_Sunday_June_05_2022_08_38_18_AM_55902060/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_Abel, `2nd type`, `class B`]]
```

$$
y+2 y^{2} \sin (x)^{2}+(x+2 y x-y \sin (2 x)) y^{\prime}=-3
$$

1.26.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+2 x y-y \sin (2 x)) \mathrm{d} y & =\left(-3-y-2 y^{2} \sin (x)^{2}\right) \mathrm{d} x \\
\left(2 y^{2} \sin (x)^{2}+y+3\right) \mathrm{d} x+(x+2 x y-y \sin (2 x)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y^{2} \sin (x)^{2}+y+3 \\
N(x, y) & =x+2 x y-y \sin (2 x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{2} \sin (x)^{2}+y+3\right) \\
& =4 \sin (x)^{2} y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+2 x y-y \sin (2 x)) \\
& =1+2 y-2 y \cos (2 x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y^{2} \sin (x)^{2}+y+3 \mathrm{~d} x \\
\phi & =-\frac{\sin (2 x) y^{2}}{2}+x\left(y^{2}+y+3\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-y \sin (2 x)+x(2 y+1)+f^{\prime}(y) \tag{4}\\
& =x+2 x y-y \sin (2 x)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+2 x y-y \sin (2 x)$. Therefore equation (4) becomes

$$
\begin{equation*}
x+2 x y-y \sin (2 x)=x+2 x y-y \sin (2 x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sin (2 x) y^{2}}{2}+x\left(y^{2}+y+3\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sin (2 x) y^{2}}{2}+x\left(y^{2}+y+3\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\sin (2 x) y^{2}}{2}+x\left(y^{2}+y+3\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
-\frac{\sin (2 x) y^{2}}{2}+x\left(y^{2}+y+3\right)=c_{1}
$$

Verified OK.

1.26.2 Maple step by step solution

Let's solve

$$
y+2 y^{2} \sin (x)^{2}+(x+2 y x-y \sin (2 x)) y^{\prime}=-3
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
4 \sin (x)^{2} y+1=1+2 y-2 y \cos (2 x)
$$

- Simplify

$$
4 \sin (x)^{2} y+1=1+2 y-2 y \cos (2 x)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 y^{2} \sin (x)^{2}+y+3\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x y+3 x+2 y^{2}\left(-\frac{\sin (x) \cos (x)}{2}+\frac{x}{2}\right)+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x+2 x y-y \sin (2 x)=x+4 y\left(-\frac{\sin (x) \cos (x)}{2}+\frac{x}{2}\right)+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=2 x y-y \sin (2 x)-4 y\left(-\frac{\sin (x) \cos (x)}{2}+\frac{x}{2}\right)
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\frac{y^{2}(2 \sin (x) \cos (x)-\sin (2 x))}{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x y+3 x+2 y^{2}\left(-\frac{\sin (x) \cos (x)}{2}+\frac{x}{2}\right)+\frac{y^{2}(2 \sin (x) \cos (x)-\sin (2 x))}{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$x y+3 x+2 y^{2}\left(-\frac{\sin (x) \cos (x)}{2}+\frac{x}{2}\right)+\frac{y^{2}(2 \sin (x) \cos (x)-\sin (2 x))}{2}=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{x+\sqrt{-2 c_{1} \sin (2 x)+6 x \sin (2 x)+4 c_{1} x-11 x^{2}}}{-2 x+\sin (2 x)}, y=-\frac{-x+\sqrt{-2 c_{1} \sin (2 x)+6 x \sin (2 x)+4 c_{1} x-11 x^{2}}}{-2 x+\sin (2 x)}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 83

```
dsolve((3+y(x)+2*y(x)^2*\operatorname{sin}(x)^2)+(x+2*x*y(x)-y(x)*\operatorname{sin}(2*x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=al
```

$$
\begin{aligned}
& y(x)=\frac{x+\sqrt{\left(2 c_{1}+6 x\right) \sin (2 x)-11 x^{2}-4 c_{1} x}}{\sin (2 x)-2 x} \\
& y(x)=\frac{x-\sqrt{\left(2 c_{1}+6 x\right) \sin (2 x)-11 x^{2}-4 c_{1} x}}{\sin (2 x)-2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.378 (sec). Leaf size: 97
DSolve $[(3+y[x]+2 * y[x] \sim 2 * \operatorname{Sin}[x] \sim 2)+(x+2 * x * y[x]-y[x] * \operatorname{Sin}[2 * x]) * y$ ' $[x]==0, y[x], x$, IncludeSingular

$$
\begin{aligned}
& y(x) \rightarrow \frac{x-i \sqrt{x\left(11 x+2 c_{1}\right)-\left(6 x+c_{1}\right) \sin (2 x)}}{\sin (2 x)-2 x} \\
& y(x) \rightarrow \frac{x+i \sqrt{x\left(11 x+2 c_{1}\right)-\left(6 x+c_{1}\right) \sin (2 x)}}{\sin (2 x)-2 x}
\end{aligned}
$$

1.27 problem 27

1.27.1 Solving as homogeneousTypeD2 ode 219
1.27.2 Solving as first order ode lie symmetry calculated ode 221

Internal problem ID [3172]
Internal file name [OUTPUT/2664_Sunday_June_05_2022_08_38_31_AM_86629003/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
2 y x+\left(x^{2}+2 y x+y^{2}\right) y^{\prime}=0
$$

1.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 u(x) x^{2}+\left(x^{2}+2 u(x) x^{2}+u(x)^{2} x^{2}\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u\left(u^{2}+2 u+3\right)}{x(u+1)^{2}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u\left(u^{2}+2 u+3\right)}{(u+1)^{2}}$. Integrating both sides gives

$$
\frac{1}{\frac{u\left(u^{2}+2 u+3\right)}{(u+1)^{2}}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u\left(u^{2}+2 u+3\right)}{(u+1)^{2}}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u)}{3}+\frac{\ln \left(u^{2}+2 u+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(2 u+2) \sqrt{2}}{4}\right)}{3} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln (u(x))}{3}+\frac{\ln \left(u(x)^{2}+2 u(x)+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(2 u(x)+2) \sqrt{2}}{4}\right)}{3}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{\ln \left(\frac{y}{x}\right)}{3}+\frac{\ln \left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{\left(\frac{2 y}{x}+2\right) \sqrt{2}}{4}\right)}{3}+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y}{x}\right)}{3}+\frac{\ln \left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y}{x}\right)}{3}+\frac{\ln \left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 43: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y}{x}\right)}{3}+\frac{\ln \left(\frac{y^{2}}{x^{2}}+\frac{2 y}{x}+3\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\ln (x)-c_{2}=0
$$

Verified OK.

1.27.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y x}{x^{2}+2 x y+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y x\left(b_{3}-a_{2}\right)}{x^{2}+2 x y+y^{2}}-\frac{4 y^{2} x^{2} a_{3}}{\left(x^{2}+2 x y+y^{2}\right)^{2}} \\
& -\left(-\frac{2 y}{x^{2}+2 x y+y^{2}}+\frac{2 y x(2 x+2 y)}{\left(x^{2}+2 x y+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x}{x^{2}+2 x y+y^{2}}+\frac{2 y x(2 x+2 y)}{\left(x^{2}+2 x y+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{4} b_{2}+4 x^{3} y b_{2}+4 x^{2} y^{2} a_{2}-6 y^{2} x^{2} a_{3}+4 x^{2} y^{2} b_{2}-4 x^{2} y^{2} b_{3}+4 x y^{3} a_{2}+4 x y^{3} b_{2}-4 x y^{3} b_{3}+2 y^{4} a_{3}+y^{4} b_{2}+}{\left(x^{2}+2 x y+y^{2}\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{4} b_{2}+4 x^{3} y b_{2}+4 x^{2} y^{2} a_{2}-6 y^{2} x^{2} a_{3}+4 x^{2} y^{2} b_{2}-4 x^{2} y^{2} b_{3}+4 x y^{3} a_{2} \tag{6E}\\
& \quad+4 x y^{3} b_{2}-4 x y^{3} b_{3}+2 y^{4} a_{3}+y^{4} b_{2}+2 x^{3} b_{1}-2 x^{2} y a_{1}-2 x y^{2} b_{1}+2 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{gather*}
4 a_{2} v_{1}^{2} v_{2}^{2}+4 a_{2} v_{1} v_{2}^{3}-6 a_{3} v_{1}^{2} v_{2}^{2}+2 a_{3} v_{2}^{4}+3 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+4 b_{2} v_{1}^{2} v_{2}^{2}+4 b_{2} v_{1} v_{2}^{3} \tag{7E}\\
+b_{2} v_{2}^{4}-4 b_{3} v_{1}^{2} v_{2}^{2}-4 b_{3} v_{1} v_{2}^{3}-2 a_{1} v_{1}^{2} v_{2}+2 a_{1} v_{2}^{3}+2 b_{1} v_{1}^{3}-2 b_{1} v_{1} v_{2}^{2}=0
\end{gather*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+2 b_{1} v_{1}^{3}+\left(4 a_{2}-6 a_{3}+4 b_{2}-4 b_{3}\right) v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2} \tag{8E}\\
& \quad+\left(4 a_{2}+4 b_{2}-4 b_{3}\right) v_{1} v_{2}^{3}-2 b_{1} v_{1} v_{2}^{2}+\left(2 a_{3}+b_{2}\right) v_{2}^{4}+2 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2 a_{1} & =0 \\
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
3 b_{2} & =0 \\
4 b_{2} & =0 \\
2 a_{3}+b_{2} & =0 \\
4 a_{2}+4 b_{2}-4 b_{3} & =0 \\
4 a_{2}-6 a_{3}+4 b_{2}-4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y x}{x^{2}+2 x y+y^{2}}\right)(x) \\
& =\frac{3 x^{2} y+2 x y^{2}+y^{3}}{x^{2}+2 x y+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 x^{2} y+2 x y^{2}+y^{3}}{x^{2}+2 x y+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(3 x^{2}+2 x y+y^{2}\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(2 x+2 y) \sqrt{2}}{4 x}\right)}{3}+\frac{\ln (y)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y x}{x^{2}+2 x y+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{3 x^{2}+2 x y+y^{2}} \\
S_{y} & =\frac{(y+x)^{2}}{3 x^{2} y+2 x y^{2}+y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+2 y x+3 x^{2}\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\frac{\ln (y)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+2 y x+3 x^{2}\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\frac{\ln (y)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y x}{x^{2}+2 x y+y^{2}}$		$\frac{d S}{d R}=0$
1119 9 -		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 他
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		\rightarrow S R RT] \rightarrow
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$S=\frac{\ln \left(3 x^{2}+2 x y+y^{2}\right)}{3}$	$\xrightarrow{\rightarrow+4 \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow 0}$,
	$S=\frac{\ln \left(3 x^{2}+2 x y+y\right)}{3}$	
	3	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2^{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+2 y x+3 x^{2}\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\frac{\ln (y)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot

Verification of solutions

$$
\frac{\ln \left(y^{2}+2 y x+3 x^{2}\right)}{3}+\frac{\sqrt{2} \arctan \left(\frac{(y+x) \sqrt{2}}{2 x}\right)}{3}+\frac{\ln (y)}{3}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 53
dsolve $\left((2 * x * y(x))+\left(x^{\wedge} 2+2 * x * y(x)+y(x) \wedge 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=x(-1 \\
& \left.\quad+\sqrt{2} \tan \left(\operatorname{RootOf}\left(2 \sqrt{2} \ln \left(-\sec \left(_Z\right)^{2}\left(\sqrt{2}-2 \tan \left(_Z\right)\right) x^{3}\right)+\sqrt{2} \ln (2)+6 \sqrt{2} c_{1}+4 _Z\right)\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 62
DSolve $\left[(2 * x * y[x])+\left(x^{\wedge} 2+2 * x * y[x]+y[x] \sim 2\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

Solve $\left[\frac{1}{3}\left(\sqrt{2} \arctan \left(\frac{\frac{y(x)}{x}+1}{\sqrt{2}}\right)+\log \left(\frac{y(x)^{2}}{x^{2}}+\frac{2 y(x)}{x}+3\right)+\log \left(\frac{y(x)}{x}\right)\right)=\right.$ $\left.-\log (x)+c_{1}, y(x)\right]$

1.28 problem 28

> 1.28.1 Solving as exact ode

Internal problem ID [3173]
Internal file name [OUTPUT/2665_Sunday_June_05_2022_08_38_31_AM_44988939/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
$\left[\begin{array}{l}y= \\ = \\ \left(x, y^{\prime}\right)\end{array}\right]$

$$
-\sin (y)^{2}+x \sin (2 y) y^{\prime}=-x^{2}
$$

1.28.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\sin (2 y) x) \mathrm{d} y & =\left(-x^{2}+\sin (y)^{2}\right) \mathrm{d} x \\
\left(x^{2}-\sin (y)^{2}\right) \mathrm{d} x+(\sin (2 y) x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}-\sin (y)^{2} \\
N(x, y) & =\sin (2 y) x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}-\sin (y)^{2}\right) \\
& =-\sin (2 y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\sin (2 y) x) \\
& =\sin (2 y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\csc (2 y)}{x}((-2 \cos (y) \sin (y))-(\sin (2 y))) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x^{2}-\sin (y)^{2}\right) \\
& =\frac{x^{2}-\sin (y)^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(\sin (2 y) x) \\
& =\frac{\sin (2 y)}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}-\sin (y)^{2}}{x^{2}}\right)+\left(\frac{\sin (2 y)}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}-\sin (y)^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =x+\frac{\sin (y)^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 \sin (y) \cos (y)}{x}+f^{\prime}(y) \tag{4}\\
& =\frac{\sin (2 y)}{x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sin (2 y)}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sin (2 y)}{x}=\frac{\sin (2 y)}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x+\frac{\sin (y)^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x+\frac{\sin (y)^{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x+\frac{\sin (y)^{2}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot

Verification of solutions

$$
x+\frac{\sin (y)^{2}}{x}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 27

```
dsolve((x^2-sin(y(x))^2)+(x*\operatorname{sin}(2*y(x)))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\arcsin \left(\sqrt{-\left(c_{1}+x\right) x}\right) \\
& y(x)=-\arcsin \left(\sqrt{-\left(c_{1}+x\right) x}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 6.502 (sec). Leaf size: 39

```
DSolve[(x^2-Sin[y[x]]~2)+(x*Sin[2*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-\arcsin \left(\sqrt{-x\left(x+2 c_{1}\right)}\right) \\
& y(x) \rightarrow \arcsin \left(\sqrt{-x\left(x+2 c_{1}\right)}\right)
\end{aligned}
$$

1.29 problem 29

$$
\text { 1.29.1 Solving as homogeneousTypeD2 ode } 235
$$

1.29.2 Solving as exact ode . 237

Internal problem ID [3174]
Internal file name [OUTPUT/2666_Sunday_June_05_2022_08_38_33_AM_32086448/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor"

Maple gives the following as the ode type

```
[[_homogeneous, `class D`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y(2 x-y+2)+2(-y+x) y^{\prime}=0
$$

1.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x(2 x-u(x) x+2)+2(-u(x) x+x)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{(x+2) u(u-2)}{x(2 u-2)}
\end{aligned}
$$

Where $f(x)=-\frac{x+2}{x}$ and $g(u)=\frac{u(u-2)}{2 u-2}$. Integrating both sides gives

$$
\frac{1}{\frac{u(u-2)}{2 u-2}} d u=-\frac{x+2}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{u(u-2)}{2 u-2}} d u & =\int-\frac{x+2}{x} d x \\
\ln (u(u-2)) & =-x-2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u(u-2)=\mathrm{e}^{-x-2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
u(u-2)=c_{3} \mathrm{e}^{-x-2 \ln (x)}
$$

Which simplifies to

$$
u(x)(u(x)-2)=\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x^{2}}
$$

The solution is

$$
u(x)(u(x)-2)=\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
\frac{y\left(-2+\frac{y}{x}\right)}{x} & =\frac{c_{3} \mathrm{e}^{-x} \mathrm{e}^{c_{2}}}{x^{2}} \\
\frac{-2 y x+y^{2}}{x^{2}} & =\frac{c_{3} \mathrm{e}^{-x+c_{2}}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
-2 y x+y^{2}=c_{3} \mathrm{e}^{-x+c_{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2 y x+y^{2}=c_{3} \mathrm{e}^{-x+c_{2}} \tag{1}
\end{equation*}
$$

Figure 46: Slope field plot
Verification of solutions

$$
-2 y x+y^{2}=c_{3} \mathrm{e}^{-x+c_{2}}
$$

Verified OK.

1.29.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-2 y+2 x) \mathrm{d} y & =(-y(2 x-y+2)) \mathrm{d} x \\
(y(2 x-y+2)) \mathrm{d} x+(-2 y+2 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y(2 x-y+2) \\
N(x, y) & =-2 y+2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y(2 x-y+2)) \\
& =2 x-2 y+2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 y+2 x) \\
& =2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-2 y+2 x}((2 x-2 y+2)-(2)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y(2 x-y+2)) \\
& =y(2 x-y+2) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(-2 y+2 x) \\
& =2(-y+x) \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y(2 x-y+2) \mathrm{e}^{x}\right)+\left(2(-y+x) \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(2 x-y+2) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =(2 x-y) y \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\mathrm{e}^{x} y+(2 x-y) \mathrm{e}^{x}+f^{\prime}(y) \tag{4}\\
& =2(-y+x) \mathrm{e}^{x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2(-y+x) \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
2(-y+x) \mathrm{e}^{x}=2(-y+x) \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(2 x-y) y \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(2 x-y) y \mathrm{e}^{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
(2 x-y) y \mathrm{e}^{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 47: Slope field plot

Verification of solutions

$$
(2 x-y) y \mathrm{e}^{x}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 64

```
dsolve(y(x)*(2*x-y(x)+2)+2*(x-y(x))*diff (y (x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1} x-\sqrt{\mathrm{e}^{x} c_{1}\left(\mathrm{e}^{x} c_{1} x^{2}+1\right)} \mathrm{e}^{-x}}{c_{1}} \\
& y(x)=\frac{c_{1} x+\sqrt{\mathrm{e}^{x} c_{1}\left(\mathrm{e}^{x} c_{1} x^{2}+1\right)} \mathrm{e}^{-x}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 43.224 (sec). Leaf size: 125
DSolve $[y[x] *(2 * x-y[x]+2)+2 *(x-y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x-e^{-x} \sqrt{e^{x}\left(e^{x} x^{2}-e^{2 c_{1}}\right)} \\
& y(x) \rightarrow x+e^{-x} \sqrt{e^{x}\left(e^{x} x^{2}-e^{2 c_{1}}\right)} \\
& y(x) \rightarrow x-e^{-x} \sqrt{e^{2 x} x^{2}} \\
& y(x) \rightarrow e^{-x} \sqrt{e^{2 x} x^{2}}+x
\end{aligned}
$$

1.30 problem 30

1.30.1 Solving as exact ode

Internal problem ID [3175]
Internal file name [OUTPUT/2667_Sunday_June_05_2022_08_38_34_AM_86752118/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78 Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]

$$
4 y x+3 y^{2}+x(x+2 y) y^{\prime}=x
$$

1.30.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(x+2 y)) \mathrm{d} y & =\left(-4 x y-3 y^{2}+x\right) \mathrm{d} x \\
\left(4 x y+3 y^{2}-x\right) \mathrm{d} x+(x(x+2 y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =4 x y+3 y^{2}-x \\
N(x, y) & =x(x+2 y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 x y+3 y^{2}-x\right) \\
& =4 x+6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(x+2 y)) \\
& =2 x+2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(x+2 y)}((4 x+6 y)-(2 x+2 y)) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(4 x y+3 y^{2}-x\right) \\
& =(4 y-1) x^{3}+3 y^{2} x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(x(x+2 y)) \\
& =x^{3}(x+2 y)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((4 y-1) x^{3}+3 y^{2} x^{2}\right)+\left(x^{3}(x+2 y)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(4 y-1) x^{3}+3 y^{2} x^{2} \mathrm{~d} x \\
\phi & =\frac{(4 y-1) x^{4}}{4}+x^{3} y^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =x^{4}+2 x^{3} y+f^{\prime}(y) \tag{4}\\
& =x^{3}(x+2 y)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3}(x+2 y)$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3}(x+2 y)=x^{3}(x+2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(4 y-1) x^{4}}{4}+x^{3} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(4 y-1) x^{4}}{4}+x^{3} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(4 y-1) x^{4}}{4}+y^{2} x^{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 48: Slope field plot

Verification of solutions

$$
\frac{(4 y-1) x^{4}}{4}+y^{2} x^{3}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 59
dsolve $((4 * x * y(x)+3 * y(x) \sim 2-x)+x *(x+2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{-x^{3}+\sqrt{x\left(x^{5}+x^{4}-4 c_{1}\right)}}{2 x^{2}} \\
& y(x)=\frac{-x^{3}-\sqrt{x\left(x^{5}+x^{4}-4 c_{1}\right)}}{2 x^{2}}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.621 (sec). Leaf size: 80
DSolve $[(4 * x * y[x]+3 * y[x] \sim 2-x)+x *(x+2 * y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{4}+\sqrt{x^{2}} \sqrt{x^{6}+x^{5}+4 c_{1} x}}{2 x^{3}} \\
& y(x) \rightarrow-\frac{x}{2}+\frac{\sqrt{x^{2}} \sqrt{x^{6}+x^{5}+4 c_{1} x}}{2 x^{3}}
\end{aligned}
$$

1.31 problem 31

1.31.1 Solving as first order ode lie symmetry calculated ode 249
1.31.2 Solving as exact ode . 257

Internal problem ID [3176]
Internal file name [OUTPUT/2668_Sunday_June_05_2022_08_38_34_AM_20579265/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 31 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

$$
\begin{array}{r}
{\left[\left[_1 \text { st_order, }{ }^{\prime} \text {-with_symmetry_ }[\mathrm{F}(\mathrm{x}), \mathrm{G}(\mathrm{y})] `\right]\right]} \\
\\
y+x\left(y^{2}+\ln (x)\right) y^{\prime}=0
\end{array}
$$

1.31.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{x\left(y^{2}+\ln (x)\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{y\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{x\left(y^{2}+\ln (x)\right)} \\
& -\frac{y^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}\left(y^{2}+\ln (x)\right)^{2}} \\
& -\left(\frac{y}{x^{2}\left(y^{2}+\ln (x)\right)}+\frac{y}{x^{2}\left(y^{2}+\ln (x)\right)^{2}}\right)\left(x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}\right. \\
& \left.+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)-\left(-\frac{1}{x\left(y^{2}+\ln (x)\right)}+\frac{2 y^{2}}{x\left(y^{2}+\ln (x)\right)^{2}}\right)\left(x^{3} b_{7}\right. \\
& \left.+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
$3 x^{4} y^{4} b_{7}+2 x^{3} y^{5} b_{8}+x^{2} y^{6} b_{9}+2 x^{3} y^{3} a_{7}-2 x^{3} y^{3} b_{8}+x^{2} y^{4} a_{8}-3 x^{2} y^{4} b_{9}-4 x y^{5} b_{10}-2 x^{2} y^{2} a_{8}-3 x y^{3} a_{9}-x^{2}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{4} y^{4} b_{7}+2 x^{3} y^{5} b_{8}+x^{2} y^{6} b_{9}+2 x^{3} y^{3} a_{7}-2 x^{3} y^{3} b_{8}+x^{2} y^{4} a_{8} \\
& \quad-3 x^{2} y^{4} b_{9}-4 x y^{5} b_{10}-2 x^{2} y^{2} a_{8}-3 x y^{3} a_{9}-x^{3} y a_{7}-x^{4} y^{2} b_{7} \\
& \quad-x^{2} y a_{4}-2 x y^{2} a_{5}-x^{3} y^{2} b_{4}+x^{2} y^{3} a_{4}-2 x^{2} y^{3} b_{5}-3 x y^{4} b_{6} \\
& +2 \ln (x)^{2} x^{3} b_{4}+\ln (x) x^{3} b_{4}-\ln (x) y^{3} a_{6}-2 y^{2} a_{3}+2 \ln (x) x^{2} y^{2} b_{2} \\
& +4 \ln (x) x^{3} y^{2} b_{4}+2 \ln (x) x^{2} y^{3} b_{5}+\ln (x)^{2} x^{2} y b_{5}+\ln (x) x^{2} y a_{4} \tag{6E}\\
& \quad-\ln (x) x y^{2} b_{6}+6 \ln (x) x^{4} y^{2} b_{7}+4 \ln (x) x^{3} y^{3} b_{8}+2 \ln (x)^{2} x^{3} y b_{8} \\
& +2 \ln (x) x^{2} y^{4} b_{9}+\ln (x)^{2} x^{2} y^{2} b_{9}+2 \ln (x) x^{3} y a_{7}+\ln (x) x^{2} y^{2} a_{8} \\
& \quad-\ln (x) x^{2} y^{2} b_{9}-2 \ln (x) x y^{3} b_{10}+2 x^{3} y^{4} b_{4}+x^{2} y^{5} b_{5}-4 y^{4} a_{10} \\
& -y^{6} a_{10}+3 \ln (x)^{2} x^{4} b_{7}-\ln (x) y^{4} a_{10}+\ln (x) x^{4} b_{7}-y^{4} a_{3}-y^{3} a_{1} \\
& -y a_{1}+x^{2} y^{4} b_{2}-x^{2} y^{2} b_{2}-2 x y^{3} b_{3}-x y^{2} b_{1}-x y a_{2}+\ln (x)^{2} x^{2} b_{2} \\
& +\ln (x) x^{2} b_{2}-\ln (x) y^{2} a_{3}+\ln (x) x b_{1}-\ln (x) y a_{1}-y^{5} a_{6}-3 y^{3} a_{6}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \ln (x)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \ln (x)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3} v_{2} a_{1}+v_{1}^{2} v_{2}^{4} b_{2}-v_{1}^{2} v_{2}^{2} b_{2}-2 v_{1} v_{2}^{3} b_{3}-v_{1} v_{2}^{2} b_{1}-v_{1} v_{2} a_{2}+v_{3}^{2} v_{1}^{2} b_{2} \\
& +v_{3} v_{1}^{2} b_{2}-v_{3} v_{2}^{2} a_{3}+v_{3} v_{1} b_{1}+3 v_{1}^{4} v_{2}^{4} b_{7}+2 v_{1}^{3} v_{2}^{5} b_{8}+v_{1}^{2} v_{2}^{6} b_{9}+2 v_{1}^{3} v_{2}^{3} a_{7} \\
& -2 v_{1}^{3} v_{2}^{3} b_{8}+v_{1}^{2} v_{2}^{4} a_{8}-3 v_{1}^{2} v_{2}^{4} b_{9}-4 v_{1} v_{2}^{5} b_{10}-2 v_{1}^{2} v_{2}^{2} a_{8}-3 v_{1} v_{2}^{3} a_{9} \\
& -v_{1}^{3} v_{2} a_{7}-v_{1}^{4} v_{2}^{2} b_{7}-v_{1}^{2} v_{2} a_{4}-2 v_{1} v_{2}^{2} a_{5}-v_{1}^{3} v_{2}^{2} b_{4}+v_{1}^{2} v_{2}^{3} a_{4}-2 v_{1}^{2} v_{2}^{3} b_{5} \tag{7E}\\
& +v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{9}+2 v_{3} v_{1}^{3} v_{2} a_{7}+v_{3} v_{1}^{2} v_{2}^{2} a_{8}-v_{3} v_{1}^{2} v_{2}^{2} b_{9}-2 v_{3} v_{1} v_{2}^{3} b_{10} \\
& +v_{3}^{2} v_{1}^{2} v_{2} b_{5}+v_{3} v_{1}^{2} v_{2} a_{4}-v_{3} v_{1} v_{2}^{2} b_{6}+6 v_{3} v_{1}^{4} v_{2}^{2} b_{7}+4 v_{3} v_{1}^{3} v_{2}^{3} b_{8}+2 v_{3}^{2} v_{1}^{3} v_{2} b_{8} \\
& +2 v_{3} v_{1}^{2} v_{2}^{4} b_{9} 4 v_{3} v_{1}^{3} v_{2}^{2} b_{4}+2 v_{3} v_{1}^{2} v_{2}^{3} b_{5}+2 v_{3} v_{1}^{2} v_{2}^{2} b_{2}-3 v_{1} v_{2}^{4} b_{6}+2 v_{3}^{2} v_{1}^{3} b_{4} \\
& +v_{3} v_{1}^{3} b_{4}-v_{3} v_{2}^{3} a_{6}+2 v_{1}^{3} v_{2}^{4} b_{4}+v_{1}^{2} v_{2}^{5} b_{5}+3 v_{3}^{2} v_{1}^{4} b_{7}-v_{3} v_{2}^{4} a_{10}+v_{3} v_{1}^{4} b_{7} \\
& -2 v_{2}^{2} a_{3}-4 v_{2}^{4} a_{10}-v_{2}^{6} a_{10}-v_{2}^{4} a_{3}-v_{2}^{3} a_{1}-v_{2} a_{1}-v_{2}^{5} a_{6}-3 v_{2}^{3} a_{6}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3} v_{2} a_{1}-v_{1} v_{2} a_{2}+v_{3}^{2} v_{1}^{2} b_{2}+v_{3} v_{1}^{2} b_{2}-v_{3} v_{2}^{2} a_{3}+v_{3} v_{1} b_{1}+3 v_{1}^{4} v_{2}^{4} b_{7} \\
& +2 v_{1}^{3} v_{2}^{5} b_{8}+v_{1}^{2} v_{2}^{6} b_{9}-4 v_{1} v_{2}^{5} b_{10}-v_{1}^{3} v_{2} a_{7}-v_{1}^{4} v_{2}^{2} b_{7}-v_{1}^{2} v_{2} a_{4}-v_{1}^{3} v_{2}^{2} b_{4} \\
& +\left(a_{8}-b_{9}+2 b_{2}\right) v_{2}^{2} v_{1}^{2} v_{3}+\left(2 a_{7}-2 b_{8}\right) v_{2}^{3} v_{1}^{3}+\left(a_{4}-2 b_{5}\right) v_{2}^{3} v_{1}^{2} \\
& +\left(b_{2}+a_{8}-3 b_{9}\right) v_{2}^{4} v_{1}^{2}+\left(-b_{2}-2 a_{8}\right) v_{2}^{2} v_{1}^{2}+\left(-2 b_{3}-3 a_{9}\right) v_{2}^{3} v_{1} \tag{8E}\\
& +\left(-2 a_{5}-b_{1}\right) v_{2}^{2} v_{1}+v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{9}+2 v_{3} v_{1}^{3} v_{2} a_{7}-2 v_{3} v_{1} v_{2}^{3} b_{10}+v_{3}^{2} v_{1}^{2} v_{2} b_{5} \\
& +v_{3} v_{1}^{2} v_{2} a_{4}-v_{3} v_{1} v_{2}^{2} b_{6}+6 v_{3} v_{1}^{4} v_{2}^{2} b_{7}+4 v_{3} v_{1}^{3} v_{2}^{3} b_{8}+2 v_{3}^{2} v_{1}^{3} v_{2} b_{8} \\
& +2 v_{3} v_{1}^{2} v_{2}^{4} b_{9}+4 v_{3} v_{1}^{3} v_{2}^{2} b_{4}+2 v_{3} v_{1}^{2} v_{2}^{3} b_{5}-3 v_{1} v_{2}^{4} b_{6}+2 v_{3}^{2} v_{1}^{3} b_{4}+v_{3} v_{1}^{3} b_{4} \\
& \quad-v_{3} v_{2}^{3} a_{6}+2 v_{1}^{3} v_{2}^{4} b_{4}+v_{1}^{2} v_{2}^{5} b_{5}+3 v_{3}^{2} v_{1}^{4} b_{7}-v_{3} v_{2}^{4} a_{10}+v_{3} v_{1}^{4} b_{7} \\
& +\left(-4 a_{10}-a_{3}\right) v_{2}^{4}+\left(-a_{1}-3 a_{6}\right) v_{2}^{3}-2 v_{2}^{2} a_{3}-v_{2}^{6} a_{10}-v_{2} a_{1}-v_{2}^{5} a_{6}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& a_{4}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{4}=0 \\
& b_{5}=0 \\
& b_{7}=0 \\
& b_{9}=0 \\
& -a_{1}=0 \\
& -a_{2}=0 \\
& -2 a_{3}=0 \\
& -a_{3}=0 \\
& -a_{4}=0 \\
& -a_{6}=0 \\
& -a_{7}=0 \\
& 2 a_{7}=0 \\
& -a_{10}=0 \\
& -b_{4}=0 \\
& 2 b_{4}=0 \\
& 4 b_{4}=0 \\
& 2 b_{5}=0 \\
& -3 b_{6}=0 \\
& -b_{6}=0 \\
& -b_{7}=0 \\
& 3 b_{7}=0 \\
& 6 b_{7}=0 \\
& 2 b_{8}=0 \\
& 4 b_{8}=0 \\
& 2 b_{9}=0 \\
& -4 b_{10}=0 \\
& -2 b_{10}=0 \\
& -a_{1}-3 a_{6}=0 \\
& a_{4}-2 b_{5}=0 \\
& -2 a_{5}-b_{1}=0 \\
& 2 a_{7}-2 b_{8}=0 \\
& -4 a_{10}{ }^{252} a_{3}=0 \\
& -b_{2}-2 a_{8}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =0 \\
a_{8} & =0 \\
a_{9} & =-\frac{2 b_{3}}{3} \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =0 \\
b_{9} & =0 \\
b_{10} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-\frac{2 x y^{2}}{3} \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{x\left(y^{2}+\ln (x)\right)}\right)\left(-\frac{2 x y^{2}}{3}\right) \\
& =\frac{y^{3}+3 \ln (x) y}{3 y^{2}+3 \ln (x)} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}+3 \ln (x) y}{3 y^{2}+3 \ln (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\ln \left(y\left(y^{2}+3 \ln (x)\right)\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{x\left(y^{2}+\ln (x)\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3}{x\left(y^{2}+3 \ln (x)\right)} \\
S_{y} & =\frac{1}{y}+\frac{2 y}{y^{2}+3 \ln (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (y)+\ln \left(y^{2}+3 \ln (x)\right)=c_{1}
$$

Which simplifies to

$$
\ln (y)+\ln \left(y^{2}+3 \ln (x)\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (y)+\ln \left(y^{2}+3 \ln (x)\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot
Verification of solutions

$$
\ln (y)+\ln \left(y^{2}+3 \ln (x)\right)=c_{1}
$$

Verified OK.

1.31.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x\left(y^{2}+\ln (x)\right)\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(x\left(y^{2}+\ln (x)\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =x\left(y^{2}+\ln (x)\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x\left(y^{2}+\ln (x)\right)\right) \\
& =y^{2}+\ln (x)+1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x\left(y^{2}+\ln (x)\right)}\left((1)-\left(y^{2}+\ln (x)+1\right)\right) \\
& =-\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}(y) \\
& =\frac{y}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}\left(x\left(y^{2}+\ln (x)\right)\right) \\
& =y^{2}+\ln (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{y}{x}\right)+\left(y^{2}+\ln (x)\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{x} \mathrm{~d} x \\
\phi & =\ln (x) y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\ln (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2}+\ln (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2}+\ln (x)=\ln (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (x) y+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (x) y+\frac{y^{3}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y \ln (x)+\frac{y^{3}}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 50: Slope field plot

Verification of solutions

$$
y \ln (x)+\frac{y^{3}}{3}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 237

```
dsolve((y(x))+x*(y(x)^2+ln(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{2}{3}}-4 \ln (x)}{2\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& y(x)= \\
& -\frac{i\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{2}{3}} \sqrt{3}+4 i \ln (x) \sqrt{3}+\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{2}{3}}-4 \ln (x)}{4\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{1}{3}}} \\
& y(x) \\
& =\frac{i\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{2}{3}} \sqrt{3}+4 i \ln (x) \sqrt{3}-\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{2}{3}}+4 \ln (x)}{4\left(-12 c_{1}+4 \sqrt{4 \ln (x)^{3}+9 c_{1}^{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Solution by Mathematica

Time used: 1.211 (sec). Leaf size: 272
DSolve[(y[x])+x*(y[x]^2+Log[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt[3]{\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}}}{\sqrt[3]{2}}-\frac{\sqrt[3]{2} \log (x)}{\sqrt[3]{\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}}} \\
& y(x) \rightarrow \frac{\sqrt[3]{2}(2+2 i \sqrt{3}) \log (x)+i 2^{2 / 3}(\sqrt{3}+i)\left(\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}\right)^{2 / 3}}{4 \sqrt[3]{\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}}} \\
& y(x) \rightarrow \frac{(1-i \sqrt{3}) \log (x)}{2^{2 / 3} \sqrt[3]{\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}}}-\frac{(1+i \sqrt{3}) \sqrt[3]{\sqrt{4 \log ^{3}(x)+9 c_{1}^{2}}+3 c_{1}}}{2 \sqrt[3]{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.32 problem 32

1.32.1 Solving as exact ode

Internal problem ID [3177]
Internal file name [OUTPUT/2669_Sunday_June_05_2022_08_38_35_AM_57792872/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel,
-2nd type`, ‘class B`]]

$$
y+\left(3 x^{2} y-x\right) y^{\prime}=-x^{2}-2 x
$$

1.32.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 x^{2} y-x\right) \mathrm{d} y & =\left(-x^{2}-2 x-y\right) \mathrm{d} x \\
\left(x^{2}+2 x+y\right) \mathrm{d} x+\left(3 x^{2} y-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+2 x+y \\
N(x, y) & =3 x^{2} y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+2 x+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{2} y-x\right) \\
& =6 x y-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 x^{2} y-x}((1)-(6 x y-1)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(x^{2}+2 x+y\right) \\
& =\frac{x^{2}+2 x+y}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}\left(3 x^{2} y-x\right) \\
& =\frac{3 x y-1}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x^{2}+2 x+y}{x^{2}}\right)+\left(\frac{3 x y-1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}+2 x+y}{x^{2}} \mathrm{~d} x \\
\phi & =x-\frac{y}{x}+2 \ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{3 x y-1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{3 x y-1}{x}=-\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(3 y) \mathrm{d} y \\
f(y) & =\frac{3 y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x-\frac{y}{x}+2 \ln (x)+\frac{3 y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x-\frac{y}{x}+2 \ln (x)+\frac{3 y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x-\frac{y}{x}+2 \ln (x)+\frac{3 y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot
Verification of solutions

$$
x-\frac{y}{x}+2 \ln (x)+\frac{3 y^{2}}{2}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 67

```
dsolve(( (x^2+2*x+y(x))+(3*x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{1-\sqrt{-12 \ln (x) x^{2}-6 c_{1} x^{2}-6 x^{3}+1}}{3 x} \\
& y(x)=\frac{1+\sqrt{-12 \ln (x) x^{2}-6 c_{1} x^{2}-6 x^{3}+1}}{3 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.543 (sec). Leaf size: 96

```
DSolve[(x^2+2*x+y[x])+(3*x^2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \frac{1-\sqrt{\frac{1}{x^{2}}} x \sqrt{-6 x^{3}-12 x^{2} \log (x)+9 c_{1} x^{2}+1}}{3 x} \\
& y(x) \rightarrow \frac{1+\sqrt{\frac{1}{x^{2}}} x \sqrt{-6 x^{3}-12 x^{2} \log (x)+9 c_{1} x^{2}+1}}{3 x}
\end{aligned}
$$

1.33 problem 33

1.33.1 Solving as first order ode lie symmetry calculated ode 270
1.33.2 Solving as exact ode . 275

Internal problem ID [3178]
Internal file name [OUTPUT/2670_Sunday_June_05_2022_08_38_35_AM_89941550/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational]

$$
y^{2}+\left(y x+y^{2}-1\right) y^{\prime}=0
$$

1.33.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}}{x y+y^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-\frac{y^{2}\left(b_{3}-a_{2}\right)}{x y+y^{2}-1}-\frac{y^{4} a_{3}}{\left(x y+y^{2}-1\right)^{2}}-\frac{y^{3}\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(x y+y^{2}-1\right)^{2}} \tag{5E}\\
& \quad-\left(-\frac{2 y}{x y+y^{2}-1}+\frac{y^{2}(x+2 y)}{\left(x y+y^{2}-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{2 x^{2} y^{2} b_{2}+2 x y^{3} b_{2}+y^{4} a_{2}-2 y^{4} a_{3}+y^{4} b_{2}-y^{4} b_{3}+x y^{2} b_{1}-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-2 y^{2} b_{2}-y^{2} b_{3}-2 y b_{1}+l}{\left(x y+y^{2}-1\right)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{array}{r}
2 x^{2} y^{2} b_{2}+2 x y^{3} b_{2}+y^{4} a_{2}-2 y^{4} a_{3}+y^{4} b_{2}-y^{4} b_{3}+x y^{2} b_{1} \tag{6E}\\
-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-2 y^{2} b_{2}-y^{2} b_{3}-2 y b_{1}+b_{2}=0
\end{array}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& a_{2} v_{2}^{4}-2 a_{3} v_{2}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}+2 b_{2} v_{1} v_{2}^{3}+b_{2} v_{2}^{4}-b_{3} v_{2}^{4}-a_{1} v_{2}^{3} \tag{7E}\\
& \quad+b_{1} v_{1} v_{2}^{2}-a_{2} v_{2}^{2}-4 b_{2} v_{1} v_{2}-2 b_{2} v_{2}^{2}-b_{3} v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{2} v_{2}^{2}+2 b_{2} v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}-4 b_{2} v_{1} v_{2}+\left(a_{2}-2 a_{3}+b_{2}-b_{3}\right) v_{2}^{4} \tag{8E}\\
& \quad-a_{1} v_{2}^{3}+\left(-a_{2}-2 b_{2}-b_{3}\right) v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-2 b_{1} & =0 \\
-4 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 b_{2}-b_{3} & =0 \\
a_{2}-2 a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=-b_{3} \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-y-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{x y+y^{2}-1}\right)(-y-x) \\
& =-\frac{y}{x y+y^{2}-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y}{x y+y^{2}-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y^{2}}{2}-x y+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{x y+y^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-y \\
& S_{y}=-y-x+\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

Which simplifies to

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{x y+y^{2}-1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+S(R T)}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow{\rightarrow-4}$	$S--\frac{y^{2}}{}$	
$\rightarrow \rightarrow \cdots$	$S=-\frac{y}{2}-x y+\ln (y)$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot
Verification of solutions

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

Verified OK.

1.33.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x y+y^{2}-1\right) \mathrm{d} y & =\left(-y^{2}\right) \mathrm{d} x \\
\left(y^{2}\right) \mathrm{d} x+\left(x y+y^{2}-1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} \\
N(x, y) & =x y+y^{2}-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x y+y^{2}-1\right) \\
& =y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y+y^{2}-1}((2 y)-(y)) \\
& =\frac{y}{x y+y^{2}-1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y^{2}}((y)-(2 y)) \\
& =-\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (y)} \\
& =\frac{1}{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y}\left(y^{2}\right) \\
& =y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y}\left(x y+y^{2}-1\right) \\
& =\frac{x y+y^{2}-1}{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(y)+\left(\frac{x y+y^{2}-1}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{~d} x \\
\phi & =x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x y+y^{2}-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x y+y^{2}-1}{y}=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{2}-1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{2}-1}{y}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y+\frac{y^{2}}{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y+\frac{y^{2}}{2}-\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2}+y x-\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{2}+y x-\ln (y)=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24
dsolve($(y(x) \sim 2)+\left(x * y(x)+y(x)^{\wedge} 2-1\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(-\mathrm{e}^{2}-Z-2 \mathrm{e}^{Z} x+2 c_{1}+2 _Z\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 30
DSolve $\left[(y[x] \sim 2)+(x * y[x]+y[x] \sim 2-1) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=\frac{\log (y(x))-\frac{y(x)^{2}}{2}}{y(x)}+\frac{c_{1}}{y(x)}, y(x)\right]
$$

1.34 problem 34

$$
\text { 1.34.1 Solving as exact ode . } 282
$$

Internal problem ID [3179]
Internal file name [OUTPUT/2671_Sunday_June_05_2022_08_38_36_AM_81695143/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational]

$$
3 y^{2}+x\left(x^{2}+3 y^{2}+6 y\right) y^{\prime}=-3 x^{2}
$$

1.34.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x\left(x^{2}+3 y^{2}+6 y\right)\right) \mathrm{d} y & =\left(-3 x^{2}-3 y^{2}\right) \mathrm{d} x \\
\left(3 x^{2}+3 y^{2}\right) \mathrm{d} x+\left(x\left(x^{2}+3 y^{2}+6 y\right)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 x^{2}+3 y^{2} \\
N(x, y) & =x\left(x^{2}+3 y^{2}+6 y\right)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}+3 y^{2}\right) \\
& =6 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x\left(x^{2}+3 y^{2}+6 y\right)\right) \\
& =3 x^{2}+3 y^{2}+6 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x\left(x^{2}+3 y^{2}+6 y\right)}\left((6 y)-\left(3 x^{2}+3 y^{2}+6 y\right)\right) \\
& =\frac{-3 x^{2}-3 y^{2}}{x\left(x^{2}+3 y^{2}+6 y\right)}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{3 x^{2}+3 y^{2}}\left(\left(3 x^{2}+3 y^{2}+6 y\right)-(6 y)\right) \\
& =1
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int 1 \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{y} \\
& =\mathrm{e}^{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{y}\left(3 x^{2}+3 y^{2}\right) \\
& =3\left(x^{2}+y^{2}\right) \mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{y}\left(x\left(x^{2}+3 y^{2}+6 y\right)\right) \\
& =x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(3\left(x^{2}+y^{2}\right) \mathrm{e}^{y}\right)+\left(x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3\left(x^{2}+y^{2}\right) \mathrm{e}^{y} \mathrm{~d} x \\
\phi & =\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)+6 \mathrm{e}^{y} x y+f^{\prime}(y) \tag{4}\\
& =x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}=x\left(x^{2}+3 y^{2}+6 y\right) \mathrm{e}^{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
\mathrm{e}^{y} x\left(x^{2}+3 y^{2}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 22

```
dsolve(3*( }\mp@subsup{x}{}{\wedge}2+y(x\mp@subsup{)}{}{\wedge}2)+x*(\mp@subsup{x}{}{\wedge}2+3*y(x)^2+6*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all
```

$$
c_{1}+\frac{\mathrm{e}^{y(x)} x^{3}}{3}+\mathrm{e}^{y(x)} x y(x)^{2}=0
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 26
DSolve $\left[3 *\left(x^{\wedge} 2+y[x] \sim 2\right)+x *\left(x^{\wedge} 2+3 * y[x] \wedge 2+6 * y[x]\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->\operatorname{Tr}$

Solve $\left[x^{3} e^{y(x)}+3 x e^{y(x)} y(x)^{2}=c_{1}, y(x)\right]$

1.35 problem 35

1.35.1 Solving as first order ode lie symmetry calculated ode 288
1.35.2 Solving as exact ode . 294

Internal problem ID [3180]
Internal file name [OUTPUT/2672_Sunday_June_05_2022_08_38_37_AM_1189778/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 35.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational]

$$
2 y(x+y+2)+\left(y^{2}-x^{2}-4 x-1\right) y^{\prime}=0
$$

1.35.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 y(x+y+2)}{-x^{2}+y^{2}-4 x-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y(x+y+2)\left(b_{3}-a_{2}\right)}{-x^{2}+y^{2}-4 x-1}-\frac{4 y^{2}(x+y+2)^{2} a_{3}}{\left(-x^{2}+y^{2}-4 x-1\right)^{2}} \\
& -\left(-\frac{2 y}{-x^{2}+y^{2}-4 x-1}+\frac{2 y(x+y+2)(-2 x-4)}{\left(-x^{2}+y^{2}-4 x-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2(x+y+2)}{-x^{2}+y^{2}-4 x-1}-\frac{2 y}{-x^{2}+y^{2}-4 x-1}\right. \\
& \left.+\frac{4 y^{2}(x+y+2)}{\left(-x^{2}+y^{2}-4 x-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} b_{2}+4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+4 x^{2} y^{2} b_{2}+2 x^{2} y^{2} b_{3}-4 x y^{3} a_{2}+4 x y^{3} a_{3}+4 x y^{3} b_{3}-2 y^{4} a_{2}+2 y^{4} a_{3}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} b_{2}-4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3}-4 x^{2} y^{2} b_{2}-2 x^{2} y^{2} b_{3}+4 x y^{3} a_{2} \\
& -4 x y^{3} a_{3}-4 x y^{3} b_{3}+2 y^{4} a_{2}-2 y^{4} a_{3}+y^{4} b_{2}-2 y^{4} b_{3}-2 x^{3} b_{1}-4 x^{3} b_{2} \\
& +2 x^{2} y a_{1}-4 x^{2} y a_{2}-4 x^{2} y b_{1}-16 x^{2} y b_{2}+4 x y^{2} a_{1}-8 x y^{2} a_{3}-2 x y^{2} b_{1} \tag{6E}\\
& -12 x y^{2} b_{2}-8 x y^{2} b_{3}+2 y^{3} a_{1}+4 y^{3} a_{2}-8 y^{3} a_{3}-8 y^{3} b_{3}-12 x^{2} b_{1} \\
& +8 x y a_{1}-4 x y a_{2}-16 x y b_{1}-4 x y b_{2}+8 y^{2} a_{1}-2 y^{2} a_{2}-2 y^{2} a_{3}-4 y^{2} b_{1} \\
& -2 y^{2} b_{2}-2 y^{2} b_{3}-18 x b_{1}+4 x b_{2}+14 y a_{1}-4 y a_{2}-4 y b_{1}-4 b_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 2 a_{2} v_{1}^{2} v_{2}^{2}+4 a_{2} v_{1} v_{2}^{3}+2 a_{2} v_{2}^{4}-2 a_{3} v_{1}^{2} v_{2}^{2}-4 a_{3} v_{1} v_{2}^{3}-2 a_{3} v_{2}^{4}-b_{2} v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2} \\
& \quad-4 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}-2 b_{3} v_{1}^{2} v_{2}^{2}-4 b_{3} v_{1} v_{2}^{3}-2 b_{3} v_{2}^{4}+2 a_{1} v_{1}^{2} v_{2}+4 a_{1} v_{1} v_{2}^{2} \\
& +2 a_{1} v_{2}^{3}-4 a_{2} v_{1}^{2} v_{2}+4 a_{2} v_{2}^{3}-8 a_{3} v_{1} v_{2}^{2}-8 a_{3} v_{2}^{3}-2 b_{1} v_{1}^{3}-4 b_{1} v_{1}^{2} v_{2}-2 b_{1} v_{1} v_{2}^{2} \\
& \quad-4 b_{2} v_{1}^{3}-16 b_{2} v_{1}^{2} v_{2}-12 b_{2} v_{1} v_{2}^{2}-8 b_{3} v_{1} v_{2}^{2}-8 b_{3} v_{2}^{3}+8 a_{1} v_{1} v_{2}+8 a_{1} v_{2}^{2} \\
& -4 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}-12 b_{1} v_{1}^{2}-16 b_{1} v_{1} v_{2}-4 b_{1} v_{2}^{2}-4 b_{2} v_{1} v_{2}-2 b_{2} v_{2}^{2} \\
& -2 b_{3} v_{2}^{2}+14 a_{1} v_{2}-4 a_{2} v_{2}-18 b_{1} v_{1}-4 b_{1} v_{2}+4 b_{2} v_{1}-4 b_{1}+b_{2}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2}+\left(-2 b_{1}-4 b_{2}\right) v_{1}^{3}+\left(2 a_{2}-2 a_{3}-4 b_{2}-2 b_{3}\right) v_{1}^{2} v_{2}^{2} \\
& +\left(2 a_{1}-4 a_{2}-4 b_{1}-16 b_{2}\right) v_{1}^{2} v_{2}-12 b_{1} v_{1}^{2}+\left(4 a_{2}-4 a_{3}-4 b_{3}\right) v_{1} v_{2}^{3} \tag{8E}\\
& +\left(4 a_{1}-8 a_{3}-2 b_{1}-12 b_{2}-8 b_{3}\right) v_{1} v_{2}^{2}+\left(8 a_{1}-4 a_{2}-16 b_{1}-4 b_{2}\right) v_{1} v_{2} \\
& +\left(-18 b_{1}+4 b_{2}\right) v_{1}+\left(2 a_{2}-2 a_{3}+b_{2}-2 b_{3}\right) v_{2}^{4}+\left(2 a_{1}+4 a_{2}-8 a_{3}-8 b_{3}\right) v_{2}^{3} \\
& +\left(8 a_{1}-2 a_{2}-2 a_{3}-4 b_{1}-2 b_{2}-2 b_{3}\right) v_{2}^{2}+\left(14 a_{1}-4 a_{2}-4 b_{1}\right) v_{2}-4 b_{1}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-12 b_{1} & =0 \\
-4 b_{2} & =0 \\
-b_{2} & =0 \\
-18 b_{1}+4 b_{2} & =0 \\
-4 b_{1}+b_{2} & =0 \\
-2 b_{1}-4 b_{2} & =0 \\
14 a_{1}-4 a_{2}-4 b_{1} & =0 \\
4 a_{2}-4 a_{3}-4 b_{3} & =0 \\
2 a_{1}-4 a_{2}-4 b_{1}-16 b_{2} & =0 \\
2 a_{1}+4 a_{2}-8 a_{3}-8 b_{3} & =0 \\
8 a_{1}-4 a_{2}-16 b_{1}-4 b_{2} & =0 \\
2 a_{2}-2 a_{3}-4 b_{2}-2 b_{3} & =0 \\
2 a_{2}-2 a_{3}+b_{2}-2 b_{3} & =0 \\
4 a_{1}-8 a_{3}-2 b_{1}-12 b_{2}-8 b_{3} & =0 \\
8 a_{1}-2 a_{2}-2 a_{3}-4 b_{1}-2 b_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=0 \\
& a_{3}=-b_{3} \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-y \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y(x+y+2)}{-x^{2}+y^{2}-4 x-1}\right)(-y) \\
& =\frac{x^{2} y+2 x y^{2}+y^{3}+4 x y+4 y^{2}+y}{x^{2}-y^{2}+4 x+1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{2} y+2 x y^{2}+y^{3}+4 x y+4 y^{2}+y}{x^{2}-y^{2}+4 x+1}} d y
\end{aligned}
$$

Which results in

$$
S=-\ln \left(x^{2}+2 x y+y^{2}+4 x+4 y+1\right)+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y(x+y+2)}{-x^{2}+y^{2}-4 x-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-2 x-2 y-4}{x^{2}+(2 y+4) x+y^{2}+4 y+1} \\
S_{y} & =\frac{x^{2}-y^{2}+4 x+1}{y\left(x^{2}+2 x y+y^{2}+4 x+4 y+1\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln \left(x^{2}+(2 y+4) x+y^{2}+4 y+1\right)+\ln (y)=c_{1}
$$

Which simplifies to

$$
-\ln \left(x^{2}+(2 y+4) x+y^{2}+4 y+1\right)+\ln (y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln \left(x^{2}+(2 y+4) x+y^{2}+4 y+1\right)+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot

Verification of solutions

$$
-\ln \left(x^{2}+(2 y+4) x+y^{2}+4 y+1\right)+\ln (y)=c_{1}
$$

Verified OK.

1.35.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{2}+y^{2}-4 x-1\right) \mathrm{d} y & =(-2 y(x+y+2)) \mathrm{d} x \\
(2 y(x+y+2)) \mathrm{d} x+\left(-x^{2}+y^{2}-4 x-1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y(x+y+2) \\
N(x, y) & =-x^{2}+y^{2}-4 x-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y(x+y+2)) \\
& =2 x+4 y+4
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{2}+y^{2}-4 x-1\right) \\
& =-2 x-4
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-x^{2}+y^{2}-4 x-1}((2 x+4 y+4)-(-2 x-4)) \\
& =\frac{-4 x-4 y-8}{x^{2}-y^{2}+4 x+1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 y(x+y+2)}((-2 x-4)-(2 x+4 y+4)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(2 y(x+y+2)) \\
& =\frac{2 x+2 y+4}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(-x^{2}+y^{2}-4 x-1\right) \\
& =\frac{-x^{2}+y^{2}-4 x-1}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x+2 y+4}{y}\right)+\left(\frac{-x^{2}+y^{2}-4 x-1}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x+2 y+4}{y} \mathrm{~d} x \\
\phi & =\frac{x(x+2 y+4)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2 x}{y}-\frac{x(x+2 y+4)}{y^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x(x+4)}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x^{2}+y^{2}-4 x-1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x^{2}+y^{2}-4 x-1}{y^{2}}=-\frac{x(x+4)}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{2}-1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{2}-1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =y+\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x+2 y+4)}{y}+y+\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x+2 y+4)}{y}+y+\frac{1}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x(x+2 y+4)}{y}+y+\frac{1}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot

Verification of solutions

$$
\frac{x(x+2 y+4)}{y}+y+\frac{1}{y}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 55
dsolve $\left(2 * y(x) *(x+y(x)+2)+\left(y(x) \wedge 2-x^{\wedge} 2-4 * x-1\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol=all $)$

$$
\begin{aligned}
& y(x)=-x-2+\frac{c_{1}}{2}-\frac{\sqrt{12+c_{1}^{2}+(-4 x-8) c_{1}}}{2} \\
& y(x)=-x-2+\frac{c_{1}}{2}+\frac{\sqrt{12+c_{1}^{2}+(-4 x-8) c_{1}}}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.462 (sec). Leaf size: 74
DSolve $\left[2 * y[x] *(x+y[x]+2)+\left(y[x] \wedge 2-x^{\wedge} 2-4 * x-1\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-2 x-\sqrt{4\left(-4+c_{1}\right) x-4+c_{1}^{2}}-c_{1}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-2 x+\sqrt{4\left(-4+c_{1}\right) x-4+c_{1}^{2}}-c_{1}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.36 problem 36

1.36.1 Solving as first order ode lie symmetry lookup ode 301
1.36.2 Solving as bernoulli ode . 305
1.36.3 Solving as exact ode . 308

Internal problem ID [3181]
Internal file name [OUTPUT/2673_Sunday_June_05_2022_08_38_37_AM_46697388/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 36 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational, _Bernoulli]

$$
y^{2}+2 y y^{\prime}=-2-2 x
$$

1.36.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}+2 x+2}{2 y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 19: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{\mathrm{e}^{-x}}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\mathrm{e}^{-x}}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{x} y^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}+2 x+2}{2 y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{x} y^{2}}{2} \\
S_{y} & =\mathrm{e}^{x} y
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{x}(-x-1) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}(-R-1)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{R} R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{x} y^{2}}{2}=-x \mathrm{e}^{x}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{x} y^{2}}{2}=-x \mathrm{e}^{x}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}+2 x+2}{2 y}$		$\frac{d S}{d R}=\mathrm{e}^{R}(-R-1)$
dithththtathtiththt		
电		$\underset{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}{+1}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}$ STRT ${ }_{\text {d }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }{ }_{\text {a }}$
	$S-\frac{\mathrm{e}^{x} y^{2}}{}$	
$\underbrace{}_{1}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }{ }^{\text {a }}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-22^{2}}$ +
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\mathrm{e}^{x} y^{2}}{2}=-x \mathrm{e}^{x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
\frac{\mathrm{e}^{x} y^{2}}{2}=-x \mathrm{e}^{x}+c_{1}
$$

Verified OK.

1.36.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2}+2 x+2}{2 y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{2} y-x-1 \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{2} \\
f_{1}(x) & =-x-1 \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2}-x-1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2}-x-1 \\
w^{\prime} & =-w-2-2 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-2-2 x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+w(x)=-2-2 x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-2-2 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} w\right) & =\left(\mathrm{e}^{x}\right)(-2-2 x) \\
\mathrm{d}\left(\mathrm{e}^{x} w\right) & =\left(-2 \mathrm{e}^{x}(x+1)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x} w=\int-2 \mathrm{e}^{x}(x+1) \mathrm{d} x \\
& \mathrm{e}^{x} w=-2 x \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
w(x)=-2 \mathrm{e}^{-x} x \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
w(x)=-2 x+c_{1} \mathrm{e}^{-x}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=-2 x+c_{1} \mathrm{e}^{-x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{-2 x+c_{1} \mathrm{e}^{-x}} \\
& y(x)=-\sqrt{-2 x+c_{1} \mathrm{e}^{-x}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-2 x+c_{1} \mathrm{e}^{-x}} \tag{1}\\
& y=-\sqrt{-2 x+c_{1} \mathrm{e}^{-x}} \tag{2}
\end{align*}
$$

Figure 58: Slope field plot

Verification of solutions

$$
y=\sqrt{-2 x+c_{1} \mathrm{e}^{-x}}
$$

Verified OK.

$$
y=-\sqrt{-2 x+c_{1} \mathrm{e}^{-x}}
$$

Verified OK.

1.36.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 y) \mathrm{d} y & =\left(-y^{2}-2 x-2\right) \mathrm{d} x \\
\left(y^{2}+2 x+2\right) \mathrm{d} x+(2 y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y^{2}+2 x+2 \\
& N(x, y)=2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+2 x+2\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y}((2 y)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y^{2}+2 x+2\right) \\
& =\mathrm{e}^{x}\left(y^{2}+2 x+2\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(2 y) \\
& =2 \mathrm{e}^{x} y
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\mathrm{e}^{x}\left(y^{2}+2 x+2\right)\right)+\left(2 \mathrm{e}^{x} y\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x}\left(y^{2}+2 x+2\right) \mathrm{d} x \\
\phi & =\left(y^{2}+2 x\right) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{x} y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 \mathrm{e}^{x} y$. Therefore equation (4) becomes

$$
\begin{equation*}
2 \mathrm{e}^{x} y=2 \mathrm{e}^{x} y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\left(y^{2}+2 x\right) \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\left(y^{2}+2 x\right) \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\left(y^{2}+2 x\right) \mathrm{e}^{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot
Verification of solutions

$$
\left(y^{2}+2 x\right) \mathrm{e}^{x}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 33
dsolve $((2+y(x) \sim 2+2 * x)+(2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{\mathrm{e}^{-x} c_{1}-2 x} \\
& y(x)=-\sqrt{\mathrm{e}^{-x} c_{1}-2 x}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 3.531 (sec). Leaf size: 43
DSolve[(2+y[x] $2+2 * x)+(2 * y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-2 x+c_{1} e^{-x}} \\
& y(x) \rightarrow \sqrt{-2 x+c_{1} e^{-x}}
\end{aligned}
$$

1.37 problem 37

1.37.1 Solving as exact ode

314
Internal problem ID [3182]
Internal file name [OUTPUT/2674_Sunday_June_05_2022_08_38_38_AM_98414307/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 37.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational]

$$
2 y^{2} x-y+\left(y^{2}+x+y\right) y^{\prime}=0
$$

1.37.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2}+x+y\right) \mathrm{d} y & =\left(-2 x y^{2}+y\right) \mathrm{d} x \\
\left(2 x y^{2}-y\right) \mathrm{d} x+\left(y^{2}+x+y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{2}-y \\
N(x, y) & =y^{2}+x+y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{2}-y\right) \\
& =4 x y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}+x+y\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y^{2}+x+y}((4 x y-1)-(1)) \\
& =\frac{4 x y-2}{y^{2}+x+y}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 x y^{2}-y}((1)-(4 x y-1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}\left(2 x y^{2}-y\right) \\
& =\frac{2 x y-1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(y^{2}+x+y\right) \\
& =\frac{y^{2}+x+y}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x y-1}{y}\right)+\left(\frac{y^{2}+x+y}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x y-1}{y} \mathrm{~d} x \\
\phi & =\frac{x(x y-1)}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x^{2}}{y}-\frac{x(x y-1)}{y^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{x}{y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{2}+x+y}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{2}+x+y}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y+1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y+1}{y}\right) \mathrm{d} y \\
f(y) & =y+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x(x y-1)}{y}+y+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x(x y-1)}{y}+y+\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x(y x-1)}{y}+y+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
\frac{x(y x-1)}{y}+y+\ln (y)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 28

```
dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(x^{2} \mathrm{e}^{Z}+\mathrm{e}^{2}-Z_{+}+c_{1} \mathrm{e}^{-}{ }^{Z}+Z \mathrm{e}^{Z}-x\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 22

```
DSolve[(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[x^{2}-\frac{x}{y(x)}+y(x)+\log (y(x))=c_{1}, y(x)\right]$

1.38 problem 38

1.38.1 Solving as exact ode 320

Internal problem ID [3183]
Internal file name [OUTPUT/2675_Sunday_June_05_2022_08_38_39_AM_82102619/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class A`]]

$$
y(y+x)+(x+2 y-1) y^{\prime}=0
$$

1.38.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x+2 y-1) \mathrm{d} y & =(-y(y+x)) \mathrm{d} x \\
(y(y+x)) \mathrm{d} x+(x+2 y-1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y(y+x) \\
N(x, y) & =x+2 y-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y(y+x)) \\
& =x+2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+2 y-1) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x+2 y-1}((x+2 y)-(1)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y(y+x)) \\
& =y(y+x) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(x+2 y-1) \\
& =(x+2 y-1) \mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y(y+x) \mathrm{e}^{x}\right)+\left((x+2 y-1) \mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y(y+x) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =(x-1+y) y \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{x} y+(x-1+y) \mathrm{e}^{x}+f^{\prime}(y) \tag{4}\\
& =(x+2 y-1) \mathrm{e}^{x}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(x+2 y-1) \mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
(x+2 y-1) \mathrm{e}^{x}=(x+2 y-1) \mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(x-1+y) y \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(x-1+y) y \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
(y+x-1) y \mathrm{e}^{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
(y+x-1) y \mathrm{e}^{x}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 63
dsolve($\mathrm{y}(\mathrm{x}) *(\mathrm{x}+\mathrm{y}(\mathrm{x}))+(\mathrm{x}+2 * \mathrm{y}(\mathrm{x})-1) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{x}{2}+\frac{1}{2}-\frac{\sqrt{\mathrm{e}^{x}\left((x-1)^{2} \mathrm{e}^{x}-4 c_{1}\right)} \mathrm{e}^{-x}}{2} \\
& y(x)=-\frac{x}{2}+\frac{1}{2}+\frac{\sqrt{\mathrm{e}^{x}\left((x-1)^{2} \mathrm{e}^{x}-4 c_{1}\right)} \mathrm{e}^{-x}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 11.91 (sec). Leaf size: 80
DSolve $\left[y[x] *(x+y[x])+(x+2 * y[x]-1) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-x-\frac{\sqrt{e^{x}(x-1)^{2}+4 c_{1}}}{\sqrt{e^{x}}}+1\right) \\
& y(x) \rightarrow \frac{1}{2}\left(-x+\frac{\sqrt{e^{x}(x-1)^{2}+4 c_{1}}}{\sqrt{e^{x}}}+1\right)
\end{aligned}
$$

1.39 problem 39

1.39.1 Solving as exact ode 326

Internal problem ID [3184]
Internal file name [OUTPUT/2676_Sunday_June_05_2022_08_38_39_AM_35960000/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78 Problem number: 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
$\left.\left[\begin{array}{l}y= \\ = \\ (x, y \prime\end{array}\right)^{\prime}\right]$

$$
2 x\left(x^{2}-\sin (y)+1\right)+\left(x^{2}+1\right) \cos (y) y^{\prime}=0
$$

1.39.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\left(x^{2}+1\right) \cos (y)\right) \mathrm{d} y & =\left(-2 x\left(x^{2}-\sin (y)+1\right)\right) \mathrm{d} x \\
\left(2 x\left(x^{2}-\sin (y)+1\right)\right) \mathrm{d} x+\left(\left(x^{2}+1\right) \cos (y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x\left(x^{2}-\sin (y)+1\right) \\
N(x, y) & =\left(x^{2}+1\right) \cos (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x\left(x^{2}-\sin (y)+1\right)\right) \\
& =-2 x \cos (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\left(x^{2}+1\right) \cos (y)\right) \\
& =2 x \cos (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\sec (y)}{x^{2}+1}((-2 x \cos (y))-(2 x \cos (y))) \\
& =-\frac{4 x}{x^{2}+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{4 x}{x^{2}+1} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln \left(x^{2}+1\right)} \\
& =\frac{1}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\left(x^{2}+1\right)^{2}}\left(2 x\left(x^{2}-\sin (y)+1\right)\right) \\
& =-\frac{2 x\left(-x^{2}+\sin (y)-1\right)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\left(x^{2}+1\right)^{2}}\left(\left(x^{2}+1\right) \cos (y)\right) \\
& =\frac{\cos (y)}{x^{2}+1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{2 x\left(-x^{2}+\sin (y)-1\right)}{\left(x^{2}+1\right)^{2}}\right)+\left(\frac{\cos (y)}{x^{2}+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x\left(-x^{2}+\sin (y)-1\right)}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x \\
\phi & =\ln \left(x^{2}+1\right)+\frac{\sin (y)}{x^{2}+1}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{\cos (y)}{x^{2}+1}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\cos (y)}{x^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\cos (y)}{x^{2}+1}=\frac{\cos (y)}{x^{2}+1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln \left(x^{2}+1\right)+\frac{\sin (y)}{x^{2}+1}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln \left(x^{2}+1\right)+\frac{\sin (y)}{x^{2}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln \left(x^{2}+1\right)+\frac{\sin (y)}{x^{2}+1}=c_{1} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
\ln \left(x^{2}+1\right)+\frac{\sin (y)}{x^{2}+1}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $\left(2 * x *\left(x^{\wedge} 2-\sin (y(x))+1\right)+\left(x^{\wedge} 2+1\right) * \cos (y(x)) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=-\arcsin \left(\left(x^{2}+1\right)\left(c_{1}+\ln \left(x^{2}+1\right)\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 7.478 (sec). Leaf size: 25
DSolve $\left[2 * x *\left(x^{\wedge} 2-\operatorname{Sin}[y[x]]+1\right)+\left(x^{\wedge} 2+1\right) * \operatorname{Cos}[y[x]] * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow I

$$
y(x) \rightarrow-\arcsin \left(\left(x^{2}+1\right)\left(\log \left(x^{2}+1\right)+8 c_{1}\right)\right)
$$

1.40 problem 41

1.40.1 Solving as homogeneousTypeD2 ode 332
1.40.2 Solving as exact ode . 333
1.40.3 Solving as riccati ode . 339

Internal problem ID [3185]
Internal file name [OUTPUT/2677_Sunday_June_05_2022_08_38_40_AM_78153908/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "exactByInspection", "homogeneousTypeD2"

Maple gives the following as the ode type

```
[[_homogeneous, `class D`], _rational, _Riccati]
```

$$
y+y^{2}-x y^{\prime}=-x^{2}
$$

1.40.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+u(x)^{2} x^{2}-x\left(u^{\prime}(x) x+u(x)\right)=-x^{2}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{u^{2}+1} d u & =x+c_{2} \\
\arctan (u) & =x+c_{2}
\end{aligned}
$$

Solving for u gives these solutions

$$
u_{1}=\tan \left(x+c_{2}\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \tan \left(x+c_{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tan \left(x+c_{2}\right) \tag{1}
\end{equation*}
$$

Figure 63: Slope field plot

Verification of solutions

$$
y=x \tan \left(x+c_{2}\right)
$$

Verified OK.

1.40.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x) \mathrm{d} y & =\left(-x^{2}-y^{2}-y\right) \mathrm{d} x \\
\left(x^{2}+y^{2}+y\right) \mathrm{d} x+(-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x^{2}+y^{2}+y \\
N(x, y) & =-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x^{2}+y^{2}+y\right) \\
& =2 y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{y^{2}+x^{2}}$ is an integrating factor. Therefore by multiplying $M=x^{2}+y+y^{2}$ and $N=-x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{x^{2}+y+y^{2}}{y^{2}+x^{2}} \\
N & =-\frac{x}{y^{2}+x^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{x^{2}+y^{2}+y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{x^{2}+y^{2}+y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(-\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{x^{2}+y^{2}+y}{x^{2}+y^{2}} \\
N(x, y) & =-\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x^{2}+y^{2}+y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{x}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x^{2}+y^{2}+y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =x+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x}{x^{2}+y^{2}}=-\frac{x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x+\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x+\arctan \left(\frac{x}{y}\right)
$$

The solution becomes

$$
y=\frac{x}{\tan \left(-x+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x}{\tan \left(-x+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 64: Slope field plot

Verification of solutions

$$
y=\frac{x}{\tan \left(-x+c_{1}\right)}
$$

Verified OK.

1.40.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}+y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x+\frac{y^{2}}{x}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{x^{2}} \\
f_{1} f_{2} & =\frac{1}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{1}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x}+\frac{u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sin (x)+c_{2} \cos (x)
$$

The above shows that

$$
u^{\prime}(x)=c_{1} \cos (x)-c_{2} \sin (x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(c_{1} \cos (x)-c_{2} \sin (x)\right) x}{c_{1} \sin (x)+c_{2} \cos (x)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)} \tag{1}
\end{equation*}
$$

Figure 65: Slope field plot

Verification of solutions

$$
y=\frac{\left(-c_{3} \cos (x)+\sin (x)\right) x}{c_{3} \sin (x)+\cos (x)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve((x^2+y(x)+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\tan \left(c_{1}+x\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 12
DSolve[($\left.x^{\wedge} 2+y[x]+y[x] \sim 2\right)-x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \tan \left(x+c_{1}\right)
$$

1.41 problem 42

1.41.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3186]
Internal file name [OUTPUT/2678_Sunday_June_05_2022_08_38_41_AM_40029954/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _dAlembert]

$$
-\sqrt{y^{2}+x^{2}}+\left(y-\sqrt{y^{2}+x^{2}}\right) y^{\prime}=-x
$$

1.41.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{x^{2}+y^{2}}-x}{y-\sqrt{x^{2}+y^{2}}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(\sqrt{x^{2}+y^{2}}-x\right)\left(b_{3}-a_{2}\right)}{y-\sqrt{x^{2}+y^{2}}}-\frac{\left(\sqrt{x^{2}+y^{2}}-x\right)^{2} a_{3}}{\left(y-\sqrt{x^{2}+y^{2}}\right)^{2}} \\
& -\left(\frac{\frac{x}{\sqrt{x^{2}+y^{2}}}-1}{y-\sqrt{x^{2}+y^{2}}}+\frac{\left(\sqrt{x^{2}+y^{2}}-x\right) x}{\left(y-\sqrt{x^{2}+y^{2}}\right)^{2} \sqrt{x^{2}+y^{2}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{y}{\sqrt{x^{2}+y^{2}}\left(y-\sqrt{x^{2}+y^{2}}\right)}\right. \\
& \left.-\frac{\left(\sqrt{x^{2}+y^{2}}-x\right)\left(1-\frac{y}{\sqrt{x^{2}+y^{2}}}\right)}{\left(y-\sqrt{x^{2}+y^{2}}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\underline{2 \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}+2 x^{2} y b_{3}-2 x y^{2} a_{2}-2 x^{2} y a_{2}-x^{2} y b_{2}+x y^{2} a_{3}+2 x y^{2} b_{3}-x y a_{1}+x y b}$
$=0$
Setting the numerator to zero gives

$$
\begin{align*}
& 2 \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}+2 x^{2} y b_{3}-2 x y^{2} a_{2}-2 x^{2} y a_{2}-x^{2} y b_{2} \\
& +x y^{2} a_{3}+2 x y^{2} b_{3}-x y a_{1}+x y b_{1}+2 x^{3} a_{3}+x^{3} b_{2}+x^{3} b_{3}-y^{3} a_{2}-y^{3} a_{3} \\
& \quad-2 y^{3} b_{2}+x^{2} b_{1}-y^{2} a_{1}-x^{3} a_{2}+y^{3} b_{3}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{2}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3} \tag{6E}\\
& +\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{2}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{3}-\sqrt{x^{2}+y^{2}} x^{2} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} b_{2} \\
& +\sqrt{x^{2}+y^{2}} y^{2} a_{3}+\sqrt{x^{2}+y^{2}} y^{2} b_{2}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
2 & \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}-x^{2} y a_{2}+x^{2} y a_{3}+x^{2} y b_{2}-x y^{2} a_{3} \\
& -x y^{2} b_{2}+x y^{2} b_{3}-x y a_{1}+x y b_{1}-2\left(x^{2}+y^{2}\right) x a_{2}+x^{3} a_{2}-y^{3} b_{3} \\
& +x^{2} a_{1}-y^{2} b_{1}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{2}-\left(x^{2}+y^{2}\right)^{\frac{3}{2}} a_{3}+\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{2} \tag{6E}\\
& -\left(x^{2}+y^{2}\right)^{\frac{3}{2}} b_{3}-\left(x^{2}+y^{2}\right) a_{1}+\left(x^{2}+y^{2}\right) b_{1}+2\left(x^{2}+y^{2}\right) x a_{3} \\
& +\left(x^{2}+y^{2}\right) x b_{2}+\left(x^{2}+y^{2}\right) x b_{3}-\left(x^{2}+y^{2}\right) y a_{2}-\left(x^{2}+y^{2}\right) y a_{3} \\
& -2\left(x^{2}+y^{2}\right) y b_{2}+2\left(x^{2}+y^{2}\right) y b_{3}-\sqrt{x^{2}+y^{2}} x^{2} a_{3}-\sqrt{x^{2}+y^{2}} x^{2} b_{2} \\
& +\sqrt{x^{2}+y^{2}} y^{2} a_{3}+\sqrt{x^{2}+y^{2}} y^{2} b_{2}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 2 \sqrt{x^{2}+y^{2}} x y a_{2}-2 \sqrt{x^{2}+y^{2}} x y b_{3}+x^{2} \sqrt{x^{2}+y^{2}} a_{2}-x^{2} \sqrt{x^{2}+y^{2}} b_{3}+2 x^{2} y b_{3} \\
& \quad-2 x y^{2} a_{2}-2 x^{2} y a_{2}-x^{2} y b_{2}+x y^{2} a_{3}+2 x y^{2} b_{3}-x y a_{1}+x y b_{1}+\sqrt{x^{2}+y^{2}} y^{2} a_{2} \\
& \quad-\sqrt{x^{2}+y^{2}} y^{2} b_{3}+2 x^{3} a_{3}+x^{3} b_{2}+x^{3} b_{3}-y^{3} a_{2}-y^{3} a_{3}-2 y^{3} b_{2}+x^{2} b_{1}-y^{2} a_{1}-x^{3} a_{2} \\
& +y^{3} b_{3}-2 \sqrt{x^{2}+y^{2}} x^{2} a_{3}+2 \sqrt{x^{2}+y^{2}} y^{2} b_{2}-\sqrt{x^{2}+y^{2}} x b_{1}+\sqrt{x^{2}+y^{2}} y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}+y^{2}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}+y^{2}}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{2}+v_{1}^{2} v_{3} a_{2}-2 v_{1} v_{2}^{2} a_{2}+2 v_{3} v_{1} v_{2} a_{2}-v_{2}^{3} a_{2}+v_{3} v_{2}^{2} a_{2} \\
& +2 v_{1}^{3} a_{3}-2 v_{3} v_{1}^{2} a_{3}+v_{1} v_{2}^{2} a_{3}-v_{2}^{3} a_{3}+v_{1}^{3} b_{2}-v_{1}^{2} v_{2} b_{2}-2 v_{2}^{3} b_{2} \tag{7E}\\
& +2 v_{3} v_{2}^{2} b_{2}+v_{1}^{3} b_{3}+2 v_{1}^{2} v_{2} b_{3}-v_{1}^{2} v_{3} b_{3}+2 v_{1} v_{2}^{2} b_{3}-2 v_{3} v_{1} v_{2} b_{3}+v_{2}^{3} b_{3} \\
& -v_{3} v_{2}^{2} b_{3}-v_{1} v_{2} a_{1}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}+v_{1}^{2} b_{1}+v_{1} v_{2} b_{1}-v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}+2 a_{3}+b_{2}+b_{3}\right) v_{1}^{3}+\left(-2 a_{2}-b_{2}+2 b_{3}\right) v_{1}^{2} v_{2}+\left(a_{2}-2 a_{3}-b_{3}\right) v_{1}^{2} v_{3} \tag{8E}\\
& \quad+v_{1}^{2} b_{1}+\left(-2 a_{2}+a_{3}+2 b_{3}\right) v_{1} v_{2}^{2}+\left(2 a_{2}-2 b_{3}\right) v_{1} v_{2} v_{3}+\left(-a_{1}+b_{1}\right) v_{1} v_{2} \\
& \quad-v_{3} v_{1} b_{1}+\left(-a_{2}-a_{3}-2 b_{2}+b_{3}\right) v_{2}^{3}+\left(a_{2}+2 b_{2}-b_{3}\right) v_{2}^{2} v_{3}-v_{2}^{2} a_{1}+v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
-a_{1}+b_{1} & =0 \\
2 a_{2}-2 b_{3} & =0 \\
-2 a_{2}+a_{3}+2 b_{3} & =0 \\
-2 a_{2}-b_{2}+2 b_{3} & =0 \\
a_{2}-2 a_{3}-b_{3} & =0 \\
a_{2}+2 b_{2}-b_{3} & =0 \\
-a_{2}-a_{3}-2 b_{2}+b_{3} & =0 \\
-a_{2}+2 a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{\sqrt{x^{2}+y^{2}}-x}{y-\sqrt{x^{2}+y^{2}}}\right)(x) \\
& =\frac{x \sqrt{x^{2}+y^{2}}+y \sqrt{x^{2}+y^{2}}-x^{2}-y^{2}}{-y+\sqrt{x^{2}+y^{2}}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x \sqrt{x^{2}+y^{2}}+y \sqrt{x^{2}+y^{2}}-x^{2}-y^{2}}{-y+\sqrt{x^{2}+y^{2}}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln \left(y+\sqrt{x^{2}+y^{2}}\right)}{2}-\frac{x \ln \left(\frac{2 x^{2}+2 \sqrt{x^{2}} \sqrt{x^{2}+y^{2}}}{y}\right)}{2 \sqrt{x^{2}}}+\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sqrt{x^{2}+y^{2}}-x}{y-\sqrt{x^{2}+y^{2}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{(-y-x) \sqrt{x^{2}+y^{2}}-2 x^{2}-x y-y^{2}}{2 \sqrt{x^{2}+y^{2}} x\left(y+\sqrt{x^{2}+y^{2}}\right)} \\
S_{y} & =\frac{(2 x-y) \sqrt{x^{2}+y^{2}}+2 x^{2}-x y+y^{2}}{2 \sqrt{x^{2}+y^{2}} y\left(\sqrt{x^{2}+y^{2}}+x\right)}
\end{aligned}
$$

Substituting all the above in（2）and simplifying gives the ode in canonical coordinates．

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{3\left(x \sqrt{x^{2}+y^{2}}+x^{2}+y^{2}\right)}{2 x \sqrt{x^{2}+y^{2}}\left(\sqrt{x^{2}+y^{2}}+x\right)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only．This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying．This gives

$$
\frac{d S}{d R}=-\frac{3}{2 R}
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{3 \ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}-x}{y-\sqrt{x^{2}+y^{2}}}$		$\frac{d S}{d R}=-\frac{3}{2 R}$
didy		
	$R=x$	
	$\ln (y+\sqrt{x}$	
	$S=-\frac{\ln \left(y+\sqrt{x^{2}}\right.}{2}$	
		O刀A $0^{\text {a }}$
Vivivivitu $x \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$		
		フィィ

Summary

The solution（s）found are the following

$$
-\frac{\ln \left(y+\sqrt{y^{2}+x^{2}}\right)}{2}-\frac{\ln (2)}{2}-\frac{\ln (x)}{2}-\frac{\ln \left(x+\sqrt{y^{2}+x^{2}}\right)}{2}+\ln (y)=-\frac{3 \ln (x)}{2}+\left(x_{i}\right)
$$

Figure 66: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(y+\sqrt{y^{2}+x^{2}}\right)}{2}-\frac{\ln (2)}{2}-\frac{\ln (x)}{2}-\frac{\ln \left(x+\sqrt{y^{2}+x^{2}}\right)}{2}+\ln (y)=-\frac{3 \ln (x)}{2}+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 47
dsolve $\left(\left(x-\operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)\right)+\left(y(x)-\operatorname{sqrt}\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad\right.$ singsol $\left.=a l l\right)$

$$
\frac{(x+y(x)) \sqrt{x^{2}+y(x)^{2}}+\left(-c_{1} x^{2}+1\right) y(x)^{2}+x y(x)+x^{2}}{y(x)^{2} x^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.834 (sec). Leaf size: 34
DSolve $\left[\left(x-S q r t\left[x^{\wedge} 2+y[x]^{\wedge} 2\right]\right)+\left(y[x]-S q r t\left[x^{\wedge} 2+y[x] \sim 2\right]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{c_{1}}\left(2 x+e^{c_{1}}\right)}{2\left(x+e^{c_{1}}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.42 problem 43

1.42.1 Solving as exact ode

350
Internal problem ID [3187]
Internal file name [OUTPUT/2679_Sunday_June_05_2022_08_38_41_AM_85031265/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 43.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, - with_symmetry_ $[F(x) * G(y), 0] `]$

$$
y \sqrt{y^{2}+1}+\left(x \sqrt{y^{2}+1}-y\right) y^{\prime}=0
$$

1.42.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x \sqrt{y^{2}+1}-y\right) \mathrm{d} y & =\left(-y \sqrt{y^{2}+1}\right) \mathrm{d} x \\
\left(y \sqrt{y^{2}+1}\right) \mathrm{d} x+\left(x \sqrt{y^{2}+1}-y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \sqrt{y^{2}+1} \\
N(x, y) & =x \sqrt{y^{2}+1}-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \sqrt{y^{2}+1}\right) \\
& =\frac{2 y^{2}+1}{\sqrt{y^{2}+1}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x \sqrt{y^{2}+1}-y\right) \\
& =\sqrt{y^{2}+1}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x \sqrt{y^{2}+1}-y}\left(\left(\sqrt{y^{2}+1}+\frac{y^{2}}{\sqrt{y^{2}+1}}\right)-\left(\sqrt{y^{2}+1}\right)\right) \\
& =\frac{y^{2}}{\left(x \sqrt{y^{2}+1}-y\right) \sqrt{y^{2}+1}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y \sqrt{y^{2}+1}}\left(\left(\sqrt{y^{2}+1}\right)-\left(\sqrt{y^{2}+1}+\frac{y^{2}}{\sqrt{y^{2}+1}}\right)\right) \\
& =-\frac{y}{y^{2}+1}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{y}{y^{2}+1} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln \left(y^{2}+1\right)}{2}} \\
& =\frac{1}{\sqrt{y^{2}+1}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{y^{2}+1}}\left(y \sqrt{y^{2}+1}\right) \\
& =y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{y^{2}+1}}\left(x \sqrt{y^{2}+1}-y\right) \\
& =\frac{x \sqrt{y^{2}+1}-y}{\sqrt{y^{2}+1}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
(y)+\left(\frac{x \sqrt{y^{2}+1}-y}{\sqrt{y^{2}+1}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{~d} x \\
\phi & =x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x \sqrt{y^{2}+1}-y}{\sqrt{y^{2}+1}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x \sqrt{y^{2}+1}-y}{\sqrt{y^{2}+1}}=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{\sqrt{y^{2}+1}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{\sqrt{y^{2}+1}}\right) \mathrm{d} y \\
f(y) & =-\sqrt{y^{2}+1}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y-\sqrt{y^{2}+1}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y-\sqrt{y^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y x-\sqrt{y^{2}+1}=c_{1} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y x-\sqrt{y^{2}+1}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve $((y(x) * \operatorname{sqrt}(1+y(x) \sim 2))+(x * \operatorname{sqrt}(1+y(x) \sim 2)-y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all $)$

$$
\frac{x y(x)-\sqrt{y(x)^{2}+1}-c_{1}}{y(x)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.479 (sec). Leaf size: 82
DSolve $[(y[x] * \operatorname{Sqrt}[1+y[x] \sim 2])+(x * \operatorname{Sqrt}[1+y[x] \sim 2]-y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolution

$$
\begin{aligned}
& y(x) \rightarrow \frac{c_{1} x-\sqrt{x^{2}-1+c_{1}^{2}}}{x^{2}-1} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-1+c_{1}^{2}}+c_{1} x}{x^{2}-1} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

1.43 problem 44

1.43.1 Solving as first order ode lie symmetry calculated ode 357
1.43.2 Solving as exact ode . 362

Internal problem ID [3188]
Internal file name [OUTPUT/2680_Sunday_June_05_2022_08_38_42_AM_5433064/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{2}-\left(y x+x^{3}\right) y^{\prime}=0
$$

1.43.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}}{x\left(x^{2}+y\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y^{2}\left(b_{3}-a_{2}\right)}{x\left(x^{2}+y\right)}-\frac{y^{4} a_{3}}{x^{2}\left(x^{2}+y\right)^{2}}-\left(-\frac{y^{2}}{x^{2}\left(x^{2}+y\right)}-\frac{2 y^{2}}{\left(x^{2}+y\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y}{x\left(x^{2}+y\right)}-\frac{y^{2}}{x\left(x^{2}+y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\frac{x^{6} b_{2}+2 x^{3} y^{2} a_{2}-x^{3} y^{2} b_{3}+3 x^{2} y^{3} a_{3}-2 x^{3} y b_{1}+3 x^{2} y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{x^{2}\left(x^{2}+y\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
x^{6} b_{2}+2 x^{3} y^{2} a_{2}-x^{3} y^{2} b_{3}+3 x^{2} y^{3} a_{3}-2 x^{3} y b_{1}+3 x^{2} y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
b_{2} v_{1}^{6}+2 a_{2} v_{1}^{3} v_{2}^{2}+3 a_{3} v_{1}^{2} v_{2}^{3}-b_{3} v_{1}^{3} v_{2}^{2}+3 a_{1} v_{1}^{2} v_{2}^{2}-2 b_{1} v_{1}^{3} v_{2}+a_{1} v_{2}^{3}-b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
b_{2} v_{1}^{6}+\left(2 a_{2}-b_{3}\right) v_{1}^{3} v_{2}^{2}-2 b_{1} v_{1}^{3} v_{2}+3 a_{3} v_{1}^{2} v_{2}^{3}+3 a_{1} v_{1}^{2} v_{2}^{2}-b_{1} v_{1} v_{2}^{2}+a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
3 a_{1} & =0 \\
3 a_{3} & =0 \\
-2 b_{1} & =0 \\
-b_{1} & =0 \\
2 a_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(\frac{y^{2}}{x\left(x^{2}+y\right)}\right)(x) \\
& =\frac{2 x^{2} y+y^{2}}{x^{2}+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2} y+y^{2}}{x^{2}+y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(y\left(2 x^{2}+y\right)\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}}{x\left(x^{2}+y\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x}{2 x^{2}+y} \\
S_{y} & =\frac{x^{2}+y}{2 x^{2} y+y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y)}{2}+\frac{\ln \left(2 x^{2}+y\right)}{2}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y)}{2}+\frac{\ln \left(2 x^{2}+y\right)}{2}=\ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}}{x\left(x^{2}+y\right)}$		$\frac{d S}{d R}=\frac{1}{R}$
		\cdots
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$	$R=x$	
	$S=\underline{\ln (y)}+\underline{\ln \left(2 x^{2}+y\right)}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$	$S=\frac{1}{2}+\frac{\ln }{2}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{ }$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y)}{2}+\frac{\ln \left(2 x^{2}+y\right)}{2}=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot

Verification of solutions

$$
\frac{\ln (y)}{2}+\frac{\ln \left(2 x^{2}+y\right)}{2}=\ln (x)+c_{1}
$$

Verified OK.

1.43.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-x^{3}-x y\right) \mathrm{d} y & =\left(-y^{2}\right) \mathrm{d} x \\
\left(y^{2}\right) \mathrm{d} x+\left(-x^{3}-x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y^{2} \\
& N(x, y)=-x^{3}-x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-x^{3}-x y\right) \\
& =-3 x^{2}-y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x\left(x^{2}+y\right)}\left((2 y)-\left(-3 x^{2}-y\right)\right) \\
& =-\frac{3}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{3}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (x)} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3}}\left(y^{2}\right) \\
& =\frac{y^{2}}{x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3}}\left(-x^{3}-x y\right) \\
& =\frac{-x^{2}-y}{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y^{2}}{x^{3}}\right)+\left(\frac{-x^{2}-y}{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y^{2}}{x^{3}} \mathrm{~d} x \\
\phi & =-\frac{y^{2}}{2 x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{y}{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x^{2}-y}{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x^{2}-y}{x^{2}}=-\frac{y}{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-1) \mathrm{d} y \\
f(y) & =-y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{y^{2}}{2 x^{2}}-y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{y^{2}}{2 x^{2}}-y
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{2}}{2 x^{2}}-y=c_{1} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot

Verification of solutions

$$
-\frac{y^{2}}{2 x^{2}}-y=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 35

```
dsolve((y(x)^2)-(x*y(x)+x^3)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(-x-\sqrt{x^{2}+c_{1}}\right) x \\
& y(x)=\left(-x+\sqrt{x^{2}+c_{1}}\right) x
\end{aligned}
$$

Solution by Mathematica
Time used: 0.551 (sec). Leaf size: 67
DSolve $\left[(y[x] \sim 2)-\left(x * y[x]+x^{\wedge} 3\right) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-x^{2}\left(1+\sqrt{\frac{1}{x^{3}}} \sqrt{x\left(x^{2}+c_{1}\right)}\right) \\
& y(x) \rightarrow x^{2}\left(-1+\sqrt{\frac{1}{x^{3}}} \sqrt{x\left(x^{2}+c_{1}\right)}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.44 problem 45

1.44.1 Solving as homogeneousTypeD ode 368
1.44.2 Solving as homogeneousTypeD2 ode 370
1.44.3 Solving as first order ode lie symmetry lookup ode 372

Internal problem ID [3189]
Internal file name [OUTPUT/2681_Sunday_June_05_2022_08_38_43_AM_6111692/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class D`]]
```

$$
y-2 x^{3} \tan \left(\frac{y}{x}\right)-x y^{\prime}=0
$$

1.44.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-2 \tan \left(\frac{y}{x}\right) x^{2}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =-2 x^{2} \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\tan \left(\frac{y}{x}\right)
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=-2 x \tan (u(x))
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-2 x \tan (u)
\end{aligned}
$$

Where $f(x)=-2 x$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =-2 x d x \\
\int \frac{1}{\tan (u)} d u & =\int-2 x d x \\
\ln (\sin (u)) & =-x^{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{-x^{2}+c_{1}}
$$

Which simplifies to

$$
\sin (u)=c_{2} \mathrm{e}^{-x^{2}}
$$

Therefore the solution is

$$
\begin{aligned}
y & =u x \\
& =x \arcsin \left(c_{2} \mathrm{e}^{-x^{2}+c_{1}}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(c_{2} \mathrm{e}^{-x^{2}+c_{1}}\right) \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot

Verification of solutions

$$
y=x \arcsin \left(c_{2} \mathrm{e}^{-x^{2}+c_{1}}\right)
$$

Verified OK.

1.44.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x-2 x^{3} \tan (u(x))-x\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-2 \tan (u) x
\end{aligned}
$$

Where $f(x)=-2 x$ and $g(u)=\tan (u)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (u)} d u & =-2 x d x \\
\int \frac{1}{\tan (u)} d u & =\int-2 x d x \\
\ln (\sin (u)) & =-x^{2}+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (u)=\mathrm{e}^{-x^{2}+c_{2}}
$$

Which simplifies to

$$
\sin (u)=c_{3} \mathrm{e}^{-x^{2}}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \arcsin \left(c_{3} \mathrm{e}^{-x^{2}+c_{2}}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin \left(c_{3} \mathrm{e}^{-x^{2}+c_{2}}\right) \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot

Verification of solutions

$$
y=x \arcsin \left(c_{3} \mathrm{e}^{-x^{2}+c_{2}}\right)
$$

Verified OK.

1.44.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-y+2 x^{3} \tan \left(\frac{y}{x}\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 21: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-y+2 x^{3} \tan \left(\frac{y}{x}\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\cot \left(\frac{y}{x}\right)}{2 x^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\cot (R) S(R)^{3}}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives these solutions

$$
\begin{array}{r}
S(R)=\frac{1}{\sqrt{c_{1}-\ln (\sin (R))}} \tag{4}\\
S(R)=-\frac{1}{\sqrt{c_{1}-\ln (\sin (R))}}
\end{array}
$$

Each will now be processed. To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=\frac{1}{\sqrt{c_{1}-\ln \left(\sin \left(\frac{y}{x}\right)\right)}}
$$

Which simplifies to

$$
-\frac{1}{x}=\frac{1}{\sqrt{c_{1}-\ln \left(\sin \left(\frac{y}{x}\right)\right)}}
$$

Which gives

$$
y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-y+2 x^{3} \tan \left(\frac{y}{x}\right)}{x}$		$\frac{d S}{d R}=\frac{\cot (R) S(R)^{3}}{2}$
	$R=\underline{y}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \boldsymbol{A}$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=-\frac{1}{\sqrt{c_{1}-\ln \left(\sin \left(\frac{y}{x}\right)\right)}}
$$

Which simplifies to

$$
-\frac{1}{x}=-\frac{1}{\sqrt{c_{1}-\ln \left(\sin \left(\frac{y}{x}\right)\right)}}
$$

Which gives

$$
y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-y+2 x^{3} \tan \left(\frac{y}{x}\right)}{x}$		$\frac{d S}{d R}=\frac{\cot (R) S(R)^{3}}{2}$
1 + A		
$4 x^{2}\left(x_{0}+1\right.$		
	$R=\frac{y}{x}$	
	$S=-\frac{1}{x}$	
	x	
${ }^{+} 914$		

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x \tag{1}\\
& y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x \tag{2}
\end{align*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x
$$

Verified OK.

$$
y=\arcsin \left(\mathrm{e}^{-x^{2}+c_{1}}\right) x
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(y(x)-2*x^3*\operatorname{tan}(y(x)/x)-x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\arcsin \left(c_{1} \mathrm{e}^{-x^{2}}\right) x
$$

Solution by Mathematica
Time used: 59.679 (sec). Leaf size: 23
DSolve $\left[y[x]-2 * x^{\wedge} 3 * \operatorname{Tan}[y[x] / x]-x * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x \arcsin \left(e^{-x^{2}+c_{1}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.45 problem 46

1.45.1 Solving as first order ode lie symmetry calculated ode 380
1.45.2 Solving as exact ode . 386

Internal problem ID [3190]
Internal file name [OUTPUT/2682_Sunday_June_05_2022_08_38_44_AM_51242300/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
2 y^{2} x^{2}+y+\left(y x^{3}-x\right) y^{\prime}=0
$$

1.45.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(2 x^{2} y+1\right)}{x\left(x^{2} y-1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(2 x^{2} y+1\right)\left(b_{3}-a_{2}\right)}{x\left(x^{2} y-1\right)}-\frac{y^{2}\left(2 x^{2} y+1\right)^{2} a_{3}}{x^{2}\left(x^{2} y-1\right)^{2}} \\
& -\left(-\frac{4 y^{2}}{x^{2} y-1}+\frac{y\left(2 x^{2} y+1\right)}{x^{2}\left(x^{2} y-1\right)}+\frac{2 y^{2}\left(2 x^{2} y+1\right)}{\left(x^{2} y-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 x^{2} y+1}{x\left(x^{2} y-1\right)}-\frac{2 y x}{x^{2} y-1}+\frac{y\left(2 x^{2} y+1\right) x}{\left(x^{2} y-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{6} y^{2} b_{2}-6 x^{4} y^{4} a_{3}+2 x^{5} y^{2} b_{1}-2 x^{4} y^{3} a_{1}-6 x^{4} y b_{2}-6 x^{3} y^{2} a_{2}-3 x^{3} y^{2} b_{3}-9 x^{2} y^{3} a_{3}-4 x^{3} y b_{1}-5 x^{2} y^{2} a_{1}-x}{\left(x^{2} y-1\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{array}{r}
3 x^{6} y^{2} b_{2}-6 x^{4} y^{4} a_{3}+2 x^{5} y^{2} b_{1}-2 x^{4} y^{3} a_{1}-6 x^{4} y b_{2}-6 x^{3} y^{2} a_{2} \tag{6E}\\
-3 x^{3} y^{2} b_{3}-9 x^{2} y^{3} a_{3}-4 x^{3} y b_{1}-5 x^{2} y^{2} a_{1}-x b_{1}+y a_{1}=0
\end{array}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -6 a_{3} v_{1}^{4} v_{2}^{4}+3 b_{2} v_{1}^{6} v_{2}^{2}-2 a_{1} v_{1}^{4} v_{2}^{3}+2 b_{1} v_{1}^{5} v_{2}^{2}-6 a_{2} v_{1}^{3} v_{2}^{2}-9 a_{3} v_{1}^{2} v_{2}^{3} \tag{7E}\\
& -6 b_{2} v_{1}^{4} v_{2}-3 b_{3} v_{1}^{3} v_{2}^{2}-5 a_{1} v_{1}^{2} v_{2}^{2}-4 b_{1} v_{1}^{3} v_{2}+a_{1} v_{2}-b_{1} v_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{6} v_{2}^{2}+2 b_{1} v_{1}^{5} v_{2}^{2}-6 a_{3} v_{1}^{4} v_{2}^{4}-2 a_{1} v_{1}^{4} v_{2}^{3}-6 b_{2} v_{1}^{4} v_{2}+\left(-6 a_{2}-3 b_{3}\right) v_{1}^{3} v_{2}^{2} \tag{8E}\\
& \quad-4 b_{1} v_{1}^{3} v_{2}-9 a_{3} v_{1}^{2} v_{2}^{3}-5 a_{1} v_{1}^{2} v_{2}^{2}-b_{1} v_{1}+a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-5 a_{1} & =0 \\
-2 a_{1} & =0 \\
-9 a_{3} & =0 \\
-6 a_{3} & =0 \\
-4 b_{1} & =0 \\
-b_{1} & =0 \\
2 b_{1} & =0 \\
-6 b_{2} & =0 \\
3 b_{2} & =0 \\
-6 a_{2}-3 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{y\left(2 x^{2} y+1\right)}{x\left(x^{2} y-1\right)}\right)(x) \\
& =\frac{3 y}{x^{2} y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{3 y}{x^{2} y-1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2} y}{3}-\frac{\ln (y)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(2 x^{2} y+1\right)}{x\left(x^{2} y-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 x y}{3} \\
S_{y} & =\frac{x^{2} y-1}{3 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{3 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2} y}{3}-\frac{\ln (y)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2} y}{3}-\frac{\ln (y)}{3}=-\frac{\ln (x)}{3}+c_{1}
$$

Which gives

$$
y=-\frac{\text { LambertW }\left(-\mathrm{e}^{-3 c_{1}} x^{3}\right)}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(2 x^{2} y+1\right)}{x\left(x^{2} y-1\right)}$		$\frac{d S}{d R}=-\frac{1}{3 R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$
		$\rightarrow \rightarrow+\infty$
		(R) +1 + $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
	$R=x$	\cdots
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
	$S=\underline{x^{2} y}-\underline{\ln (y)}$	
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 为
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { LambertW }\left(-\mathrm{e}^{-3 c_{1}} x^{3}\right)}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot
Verification of solutions

$$
y=-\frac{\operatorname{LambertW}\left(-\mathrm{e}^{-3 c_{1}} x^{3}\right)}{x^{2}}
$$

Verified OK.

1.45.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{3} y-x\right) \mathrm{d} y & =\left(-2 y^{2} x^{2}-y\right) \mathrm{d} x \\
\left(2 y^{2} x^{2}+y\right) \mathrm{d} x+\left(x^{3} y-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y^{2} x^{2}+y \\
N(x, y) & =x^{3} y-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{2} x^{2}+y\right) \\
& =4 x^{2} y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{3} y-x\right) \\
& =3 x^{2} y-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{3} y-x}\left(\left(4 x^{2} y+1\right)-\left(3 x^{2} y-1\right)\right) \\
& =\frac{x^{2} y+2}{x^{3} y-x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 y^{2} x^{2}+y}\left(\left(3 x^{2} y-1\right)-\left(4 x^{2} y+1\right)\right) \\
& =\frac{-x^{2} y-2}{2 y^{2} x^{2}+y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(3 x^{2} y-1\right)-\left(4 x^{2} y+1\right)}{x\left(2 y^{2} x^{2}+y\right)-y\left(x^{3} y-x\right)} \\
& =-\frac{1}{x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{1}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{1}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (t)} \\
& =\frac{1}{t}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x y}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x y}\left(2 y^{2} x^{2}+y\right) \\
& =\frac{2 x^{2} y+1}{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x y}\left(x^{3} y-x\right) \\
& =\frac{x^{2} y-1}{y}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x^{2} y+1}{x}\right)+\left(\frac{x^{2} y-1}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x^{2} y+1}{x} \mathrm{~d} x \\
\phi & =x^{2} y+\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2} y-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2} y-1}{y}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{2} y+\ln (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{2} y+\ln (x)-\ln (y)
$$

The solution becomes

$$
y=-\frac{\text { LambertW }\left(-x^{3} \mathrm{e}^{-c_{1}}\right)}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { LambertW }\left(-x^{3} \mathrm{e}^{-c_{1}}\right)}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot

Verification of solutions

$$
y=-\frac{\text { LambertW }\left(-x^{3} \mathrm{e}^{-c_{1}}\right)}{x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 19

```
dsolve((2*x^2*y(x)^2+y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-x^{3} \mathrm{e}^{-3 c_{1}}\right)}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 2.365 (sec). Leaf size: 33
DSolve $\left[\left(2 * x^{\wedge} 2 * y[x] \wedge 2+y[x]\right)+\left(x^{\wedge} 3 * y[x]-x\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{W\left(e^{-1+\frac{9 c_{1}}{2^{2 / 3}}} x^{3}\right)}{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.46 problem 47

1.46.1 Solving as first order ode lie symmetry calculated ode 393
1.46.2 Solving as exact ode . 398

Internal problem ID [3191]
Internal file name [OUTPUT/2683_Sunday_June_05_2022_08_38_44_AM_51986505/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
y^{2}+(y x+\tan (y x)) y^{\prime}=0
$$

1.46.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{2}}{x y+\tan (x y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y^{2}\left(b_{3}-a_{2}\right)}{x y+\tan (x y)}-\frac{y^{4} a_{3}}{(x y+\tan (x y))^{2}} \\
& -\frac{y^{2}\left(y+y\left(1+\tan (x y)^{2}\right)\right)\left(x a_{2}+y a_{3}+a_{1}\right)}{(x y+\tan (x y))^{2}} \tag{5E}\\
& -\left(-\frac{2 y}{x y+\tan (x y)}+\frac{y^{2}\left(x+x\left(1+\tan (x y)^{2}\right)\right)}{(x y+\tan (x y))^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$-\underline{\tan (x y)^{2} x^{2} y^{2} b_{2}+\tan (x y)^{2} x y^{3} a_{2}+\tan (x y)^{2} x y^{3} b_{3}+\tan (x y)^{2} y^{4} a_{3}+\tan (x y)^{2} x y^{2} b_{1}+\tan (x y)^{2} y^{3} a}$
$=0$

Setting the numerator to zero gives

$$
\begin{align*}
& -\tan (x y)^{2} x^{2} y^{2} b_{2}-\tan (x y)^{2} x y^{3} a_{2}-\tan (x y)^{2} x y^{3} b_{3} \\
& -\tan (x y)^{2} y^{4} a_{3}-\tan (x y)^{2} x y^{2} b_{1}-\tan (x y)^{2} y^{3} a_{1}+x^{2} y^{2} b_{2} \tag{6E}\\
& -x y^{3} a_{2}-x y^{3} b_{3}-3 y^{4} a_{3}+4 \tan (x y) x y b_{2}+\tan (x y) y^{2} a_{2} \\
& +\tan (x y) y^{2} b_{3}-2 y^{3} a_{1}+\tan (x y)^{2} b_{2}+2 \tan (x y) y b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \tan (x y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \tan (x y)=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3}^{2} v_{1} v_{2}^{3} a_{2}-v_{3}^{2} v_{2}^{4} a_{3}-v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{2}-v_{3}^{2} v_{1} v_{2}^{3} b_{3}-v_{3}^{2} v_{2}^{3} a_{1}-v_{3}^{2} v_{1} v_{2}^{2} b_{1}-v_{1} v_{2}^{3} a_{2}-3 v_{2}^{4} a_{3} \tag{7E}\\
& \quad+v_{1}^{2} v_{2}^{2} b_{2}-v_{1} v_{2}^{3} b_{3}-2 v_{2}^{3} a_{1}+v_{3} v_{2}^{2} a_{2}+4 v_{3} v_{1} v_{2} b_{2}+v_{3} v_{2}^{2} b_{3}+2 v_{3} v_{2} b_{1}+v_{3}^{2} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{gather*}
-v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{2}+v_{1}^{2} v_{2}^{2} b_{2}+\left(-a_{2}-b_{3}\right) v_{1} v_{2}^{3} v_{3}^{2}+\left(-a_{2}-b_{3}\right) v_{1} v_{2}^{3}-v_{3}^{2} v_{1} v_{2}^{2} b_{1}+4 v_{3} v_{1} v_{2} b_{2} \tag{8E}\\
-v_{3}^{2} v_{2}^{4} a_{3}-3 v_{2}^{4} a_{3}-v_{3}^{2} v_{2}^{3} a_{1}-2 v_{2}^{3} a_{1}+\left(a_{2}+b_{3}\right) v_{2}^{2} v_{3}+2 v_{3} v_{2} b_{1}+v_{3}^{2} b_{2}=0
\end{gather*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
-3 a_{3} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
2 b_{1} & =0 \\
-b_{2} & =0 \\
4 b_{2} & =0 \\
-a_{2}-b_{3} & =0 \\
a_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{x y+\tan (x y)}\right)(-x) \\
& =\frac{\tan (x y) y}{x y+\tan (x y)} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{\tan (x y) y}{x y+\tan (x y)}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (\sin (x y))+\ln (x y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{x y+\tan (x y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cot (x y) y+\frac{1}{x} \\
S_{y} & =\cot (x y) x+\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{x y+\tan (x y)}$		$\frac{d S}{d R}=\frac{1}{R}$
		1. b^{+}
		$\rightarrow-9 \times 1+1$
		$\cdots \rightarrow x+1$ at
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}$	$R=x$	$\rightarrow \rightarrow \rightarrow \Delta a x+1$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$S=\ln (\sin (x y))+\ln (x)$	边
	$S=\ln (\sin (x y))+\ln (x)$	
		+ 4
入1.		W9 $\quad 1$
		+4,

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (\sin (y x))+\ln (x)+\ln (y)=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
\ln (\sin (y x))+\ln (x)+\ln (y)=\ln (x)+c_{1}
$$

Verified OK.

1.46.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x y+\tan (x y)) \mathrm{d} y & =\left(-y^{2}\right) \mathrm{d} x \\
\left(y^{2}\right) \mathrm{d} x+(x y+\tan (x y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} \\
N(x, y) & =x y+\tan (x y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x y+\tan (x y)) \\
& =y\left(1+\sec (x y)^{2}\right)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y+\tan (x y)}\left((2 y)-\left(y+y\left(1+\tan (x y)^{2}\right)\right)\right) \\
& =-\frac{y \tan (x y)^{2}}{x y+\tan (x y)}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y^{2}}\left(\left(y+y\left(1+\tan (x y)^{2}\right)\right)-(2 y)\right) \\
& =\frac{\tan (x y)^{2}}{y}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(y+y\left(1+\tan (x y)^{2}\right)\right)-(2 y)}{x\left(y^{2}\right)-y(x y+\tan (x y))} \\
& =-\tan (x y)
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\tan (t)
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int(-\tan (t)) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\cos (t))} \\
& =\cos (t)
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\cos (x y)
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\cos (x y)\left(y^{2}\right) \\
& =y^{2} \cos (x y)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\cos (x y)(x y+\tan (x y)) \\
& =y \cos (x y) x+\sin (x y)
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2} \cos (x y)\right)+(y \cos (x y) x+\sin (x y)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \cos (x y) \mathrm{d} x \\
\phi & =y \sin (x y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=y \cos (x y) x+\sin (x y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y \cos (x y) x+\sin (x y)$. Therefore equation (4) becomes

$$
\begin{equation*}
y \cos (x y) x+\sin (x y)=y \cos (x y) x+\sin (x y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \sin (x y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \sin (x y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y \sin (y x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y \sin (y x)=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 18
dsolve $((y(x) \sim 2)+(x * y(x)+\tan (x * y(x))) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol $=a l l)$

$$
y(x)=\frac{\operatorname{RootOf}\left(_Z c_{1} \sin \left(_Z\right)-x\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.271 (sec). Leaf size: 14
DSolve $\left[(y[x] \sim 2)+(x * y[x]+\operatorname{Tan}[x * y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[y(x) \sin (x y(x))=c_{1}, y(x)\right]
$$

1.47 problem 48

Internal problem ID [3192]
Internal file name [OUTPUT/2684_Sunday_June_05_2022_08_38_45_AM_41111291/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational]
Unable to solve or complete the solution.

$$
2 y^{4} x-y+\left(4 y^{3} x^{3}-x\right) y^{\prime}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = -3*y(x)/x+(-16*x+6)*y(x)^2+(-48*x^3+24
trying to solve the Abel ODE ...
Looking for potential symmetries
Looking for potential symmetries
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $\left((2 * x * y(x) \wedge 4-y(x))+\left(4 * x^{\wedge} 3 * y(x) \wedge 3-x\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[(2 * x * y[x] \wedge 4-y[x])+(4 * x \wedge 3 * y[x] \wedge 3-x) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

Not solved

1.48 problem 49

Internal problem ID [3193]
Internal file name [OUTPUT/2685_Sunday_June_05_2022_08_38_47_AM_81204172/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational]
$\underline{\text { Unable to solve or complete the solution. }}$

$$
y^{3}+y+\left(x^{3}+y^{2}-x\right) y^{\prime}=-x^{2}
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve((x^2+y(x)^3+y(x))+( x^3+y(x)^2-x )*diff(y(x),x)=0,y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left(x^{\wedge} 2+y[x] \wedge 3+y[x]\right)+\left(x^{\wedge} 3+y[x] \wedge 2-x\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

Not solved

1.49 problem 50

1.49.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3194]
Internal file name [OUTPUT/2686_Sunday_June_05_2022_08_38_47_AM_79769673/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]]]

$$
y\left(y^{2}+1\right)+x\left(y^{2}-x+1\right) y^{\prime}=0
$$

1.49.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(y^{2}+1\right)}{x\left(y^{2}-x+1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+x^{2} y a_{8}+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \\
& -\frac{y\left(y^{2}+1\right)\left(-3 x^{2} a_{7}+x^{2} b_{8}-2 x y a_{8}+2 x y b_{9}-y^{2} a_{9}+3 y^{2} b_{10}-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{x\left(y^{2}-x+1\right)} \\
& -\frac{y^{2}\left(y^{2}+1\right)^{2}\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}\left(y^{2}-x+1\right)^{2}} \\
& -\left(\frac{y\left(y^{2}+1\right)}{x^{2}\left(y^{2}-x+1\right)}-\frac{y\left(y^{2}+1\right)}{x\left(y^{2}-x+1\right)^{2}}\right)\left(x^{3} a_{7}+x^{2} y a_{8}\right. \\
& \left.+x y^{2} a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(-\frac{y^{2}+1}{x\left(y^{2}-x+1\right)}-\frac{2 y^{2}}{x\left(y^{2}-x+1\right)}+\frac{2 y^{2}\left(y^{2}+1\right)}{x\left(y^{2}-x+1\right)^{2}}\right)\left(x^{3} b_{7}\right. \\
& \left.+x^{2} y b_{8}+x y^{2} b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
\left.x^{2} y^{5} a_{9}+4 x^{3} y^{3} a_{7}-4 x y^{5} a_{9}-4 x y^{5} b_{10}-x^{4} y a_{7}+x^{2} y^{3} a_{9}+2 x^{2} y^{3} b_{10}+2 x^{3} y a_{7}-2 x y^{3} a_{9}-2 x y^{3} b_{10}+2 x\right\}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& x^{2} y^{5} a_{9}+4 x^{3} y^{3} a_{7}-4 x y^{5} a_{9}-4 x y^{5} b_{10}-x^{4} y a_{7}+x^{2} y^{3} a_{9}+2 x^{2} y^{3} b_{10} \\
& +2 x^{3} y a_{7}-2 x y^{3} a_{9}-2 x y^{3} b_{10}+2 x y^{6} a_{10}+2 x y^{4} a_{10}+3 x^{3} y^{4} b_{4} \\
& +x^{2} y^{5} a_{4}+x^{2} y^{5} b_{5}+2 b_{2} x^{2}-2 y^{2} a_{3}+2 x^{2} y^{4} b_{2}-5 x^{3} y^{2} b_{2}+x^{2} y^{3} a_{2} \\
& -2 x^{2} y^{3} b_{3}+2 x y^{4} a_{3}+x y^{4} b_{1}-3 x^{2} y^{2} b_{1}+4 x^{2} y^{2} b_{2}+2 x y^{3} a_{1} \\
& +x^{2} y a_{2}+2 x y^{2} a_{3}+2 x y^{2} b_{1}+2 x y a_{1}+3 x^{6} b_{7}-7 x^{5} b_{7}-4 y^{8} a_{10} \\
& -8 y^{6} a_{10}-4 y^{4} a_{10}+2 x^{3} y b_{8}+y b_{5} x^{2}+4 x^{4} b_{7}+4 x^{4} y^{4} b_{7}-9 x^{5} y^{2} b_{7} \tag{6E}\\
& +8 x^{4} y^{2} b_{7}+2 x^{3} y^{5} b_{8}-6 x^{4} y^{3} b_{8}+2 x^{5} y b_{8}+4 x^{3} y^{3} b_{8}-4 x^{4} y b_{8} \\
& -3 x^{3} y^{4} b_{9}+x^{4} y^{2} b_{9}-x^{3} y^{2} b_{9}+2 x^{3} y^{5} a_{7}-2 x y^{7} a_{9}-2 x y^{7} b_{10} \\
& -x^{4} y^{3} a_{7}-2 y^{6} a_{3}-y^{5} a_{1}+x^{4} b_{2}-4 y^{4} a_{3}-3 x^{3} b_{2}-2 y^{3} a_{1}-x^{2} b_{1} \\
& +x b_{1}-x y^{2} b_{6}-6 y^{5} a_{6}-5 x^{4} b_{4}-3 y^{3} a_{6}-3 y^{7} a_{6}+2 x^{5} b_{4}-4 x^{3} y^{3} b_{5} \\
& +x^{2} y^{4} a_{5}-x^{2} y^{4} b_{6}+2 x y^{5} a_{6}+x^{2} y^{2} b_{6}+2 x y^{3} a_{6}+x^{2} y a_{4}-x y^{2} a_{5} \\
& +x^{4} y b_{5}+6 x^{3} y^{2} b_{4}+2 x^{2} y^{3} a_{4}+2 x^{2} y^{3} b_{5}-x y^{6} a_{5}-x y^{6} b_{6}-7 x^{4} y^{2} b_{4} \\
& +3 x^{3} b_{4}-2 x y^{4} a_{5}-2 x y^{4} b_{6}-2 x^{3} y b_{5}+x^{2} y^{2} a_{5}-y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{2}-2 v_{2}^{2} a_{3}+3 v_{1}^{6} b_{7}-7 v_{1}^{5} b_{7}-4 v_{2}^{8} a_{10}-8 v_{2}^{6} a_{10}-4 v_{2}^{4} a_{10}+4 v_{1}^{4} b_{7} \\
& \quad-2 v_{2}^{6} a_{3}-v_{2}^{5} a_{1}+v_{1}^{4} b_{2}-4 v_{2}^{4} a_{3}-3 v_{1}^{3} b_{2}-2 v_{2}^{3} a_{1}-v_{1}^{2} b_{1}+v_{1} b_{1}-6 v_{2}^{5} a_{6} \\
& -5 v_{1}^{4} b_{4}-3 v_{2}^{3} a_{6}-3 v_{2}^{7} a_{6}+2 v_{1}^{5} b_{4}+3 v_{1}^{3} b_{4}-v_{2} a_{1}+v_{1}^{2} v_{2}^{5} a_{9}+4 v_{1}^{3} v_{2}^{3} a_{7} \\
& -4 v_{1} v_{2}^{5} a_{9}-4 v_{1} v_{2}^{5} b_{10}-v_{1}^{4} v_{2} a_{7}+v_{1}^{2} v_{2}^{3} a_{9}+2 v_{1}^{2} v_{2}^{3} b_{10}+2 v_{1}^{3} v_{2} a_{7} \\
& -2 v_{1} v_{2}^{3} a_{9}-2 v_{1} v_{2}^{3} b_{10}+2 v_{1} v_{2}^{6} a_{10}+2 v_{1} v_{2}^{4} a_{10}+3 v_{1}^{3} v_{2}^{4} b_{4}+v_{1}^{2} v_{2}^{5} a_{4} \\
& +v_{1}^{2} v_{2}^{5} b_{5}+2 v_{1}^{2} v_{2}^{4} b_{2}-5 v_{1}^{3} v_{2}^{2} b_{2}+v_{1}^{2} v_{2}^{3} a_{2}-2 v_{1}^{2} v_{2}^{3} b_{3}+2 v_{1} v_{2}^{4} a_{3}+v_{1} v_{2}^{4} b_{1} \tag{7E}\\
& -3 v_{1}^{2} v_{2}^{2} b_{1}+4 v_{1}^{2} v_{2}^{2} b_{2}+2 v_{1} v_{2}^{3} a_{1}-2 v_{1} v_{2}^{7} a_{9}-2 v_{1} v_{2}^{7} b_{10}-v_{1}^{4} v_{2}^{3} a_{7} \\
& -v_{1} v_{2}^{2} b_{6}-4 v_{1}^{3} v_{2}^{3} b_{5}+v_{1}^{2} v_{2}^{4} a_{5}-v_{1}^{2} v_{2}^{4} b_{6}+2 v_{1} v_{2}^{5} a_{6}+v_{1}^{2} v_{2}^{2} b_{6}+2 v_{1} v_{2}^{3} a_{6} \\
& +v_{1}^{2} v_{2} a_{4}-v_{1} v_{2}^{2} a_{5}+v_{1}^{4} v_{2} b_{5}+6 v_{1}^{3} v_{2}^{2} b_{4}+2 v_{1}^{2} v_{2}^{3} a_{4}+2 v_{1}^{2} v_{2}^{3} b_{5}-v_{1} v_{2}^{6} a_{5} \\
& -v_{1} v_{2}^{6} b_{6}-7 v_{1}^{4} v_{2}^{2} b_{4}-2 v_{1} v_{2}^{4} a_{5}-2 v_{1} v_{2}^{4} b_{6}-2 v_{1}^{3} v_{2} b_{5}+v_{1}^{2} v_{2}^{2} a_{5} \\
& +v_{1}^{2} v_{2} a_{2}+2 v_{1} v_{2}^{2} a_{3}+2 v_{1} v_{2}^{2} b_{1}+2 v_{1} v_{2} a_{1}+2 v_{1}^{3} v_{2} b_{8}+v_{2} b_{5} v_{1}^{2} \\
& +4 v_{1}^{4} v_{2}^{4} b_{7}-9 v_{1}^{5} v_{2}^{2} b_{7}+8 v_{1}^{4} v_{2}^{2} b_{7}+2 v_{1}^{3} v_{2}^{5} b_{8}-6 v_{1}^{4} v_{2}^{3} b_{8}+2 v_{1}^{5} v_{2} b_{8} \\
& +4 v_{1}^{3} v_{2}^{3} b_{8}-4 v_{1}^{4} v_{2} b_{8}-3 v_{1}^{3} v_{2}^{4} b_{9}+v_{1}^{4} v_{2}^{2} b_{9}-v_{1}^{3} v_{2}^{2} b_{9}+2 v_{1}^{3} v_{2}^{5} a_{7}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -2 v_{2}^{2} a_{3}+3 v_{1}^{6} b_{7}-4 v_{2}^{8} a_{10}+v_{1} b_{1}-3 v_{2}^{7} a_{6}-v_{2} a_{1}+\left(a_{9}+2 b_{10}+a_{2}-2 b_{3}+2 a_{4}+2 b_{5}\right) v_{2}^{3} v_{1}^{2} \\
& +\left(2 a_{7}-2 b_{5}+2 b_{8}\right) v_{2} v_{1}^{3}+\left(-2 a_{9}-2 b_{10}+2 a_{1}+2 a_{6}\right) v_{2}^{3} v_{1}+\left(2 a_{10}-a_{5}-b_{6}\right) v_{2}^{6} v_{1} \\
& +\left(2 a_{10}+2 a_{3}+b_{1}-2 a_{5}-2 b_{6}\right) v_{2}^{4} v_{1}+\left(3 b_{4}-3 b_{9}\right) v_{2}^{4} v_{1}^{3}+\left(a_{5}+2 b_{2}-b_{6}\right) v_{2}^{4} v_{1}^{2} \\
& +\left(-5 b_{2}+6 b_{4}-b_{9}\right) v_{2}^{2} v_{1}^{3}+\left(a_{5}-3 b_{1}+4 b_{2}+b_{6}\right) v_{2}^{2} v_{1}^{2}+\left(-2 a_{9}-2 b_{10}\right) v_{2}^{7} v_{1} \\
& +\left(-a_{7}-6 b_{8}\right) v_{2}^{3} v_{1}^{4}+\left(a_{9}+a_{4}+b_{5}\right) v_{2}^{5} v_{1}^{2}+\left(4 a_{7}-4 b_{5}+4 b_{8}\right) v_{2}^{3} v_{1}^{3}+\left(-4 a_{9}-4 b_{10}+2 a_{6}\right) v_{2}^{5} v_{1} \\
& +\left(-a_{7}+b_{5}-4 b_{8}\right) v_{2} v_{1}^{4}+\left(2 a_{3}-a_{5}+2 b_{1}-b_{6}\right) v_{2}^{2} v_{1}+\left(a_{2}+a_{4}+b_{5}\right) v_{2} v_{1}^{2} \\
& +\left(-7 b_{4}+8 b_{7}+b_{9}\right) v_{2}^{2} v_{1}^{4}+\left(2 b_{8}+2 a_{7}\right) v_{2}^{5} v_{1}^{3}+\left(-3 b_{2}+3 b_{4}\right) v_{1}^{3}+\left(-2 a_{1}-3 a_{6}\right) v_{2}^{3} \\
& +\left(-b_{1}+2 b_{2}\right) v_{1}^{2}+\left(-7 b_{7}+2 b_{4}\right) v_{1}^{5}+\left(-8 a_{10}-2 a_{3}\right) v_{2}^{6}+\left(-4 a_{10}-4 a_{3}\right) v_{2}^{4} \\
& +\left(4 b_{7}+b_{2}-5 b_{4}\right) v_{1}^{4}+\left(-a_{1}-6 a_{6}\right) v_{2}^{5}+2 v_{1} v_{2} a_{1}+4 v_{1}^{4} v_{2}^{4} b_{7}-9 v_{1}^{5} v_{2}^{2} b_{7}+2 v_{1}^{5} v_{2} b_{8}=0 \tag{8E}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& b_{1}=0 \\
&-a_{1}=0 \\
& 2 a_{1}=0 \\
&-2 a_{3}=0 \\
&-3 a_{6}=0 \\
&-4 a_{10}=0 \\
&-9 b_{7}=0 \\
& 3 b_{7}=0 \\
& 4 b_{7}=0 \\
& 2 b_{8}=0 \\
&-2 a_{1}-3 a_{6}=0 \\
&-a_{1}-6 a_{6}=0 \\
&-a_{7}-6 b_{8}=0 \\
&-2 a_{9}-2 b_{10}=0 \\
&-8 a_{10}-2 a_{3}=0 \\
&-4 a_{10}-4 a_{3}=0 \\
&-b_{1}+2 b_{2}=0 \\
&-3 b_{2}+3 b_{4}=0 \\
& 3 b_{4}-3 b_{9}=0 \\
&-7 a_{7}+2 b_{4}=0 \\
& 2 a_{8}+2 a_{7}=0 \\
& a_{5}-2 a_{3}-3 b_{10}+2 a_{3}+4 b_{2}+b_{6}+2 a_{6}=0 \\
&+b_{1}-2 a_{5}-2 b_{6}=0 \\
& a_{2}+a_{4}+b_{5}=0 \\
& a_{5}+2 b_{2}-b_{6}=0 \\
&-a_{7}+b_{5}-4 b_{8}=0 \\
& 2 a_{7}-2 b_{5}+2 b_{8}=0 \\
& 4 a_{7}-4 b_{5}+4 b_{8}=0 \\
&-4 a_{9}-4 b_{10}+2 a_{6}=0 \\
& a_{9}+a_{4}+b_{5}=0 \\
& 2 a_{10}-a_{5}-b_{6}=0 \\
&-5 b_{2}+6 b_{4}-b_{9}=0 \\
&-7 b_{4}+8 b_{7}+b_{9}=0 \\
& \hline=0 \\
& 2 b_{4}=0 \\
& 2
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{10} \\
a_{3} & =0 \\
a_{4} & =b_{10} \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =0 \\
a_{8} & =a_{8} \\
a_{9} & =-b_{10} \\
a_{10} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{10} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =0 \\
b_{9} & =0 \\
b_{10} & =b_{10}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x^{2} y \\
\eta & =0
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =0-\left(-\frac{y\left(y^{2}+1\right)}{x\left(y^{2}-x+1\right)}\right)\left(x^{2} y\right) \\
& =\frac{-y^{4} x-x y^{2}}{-y^{2}+x-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-y^{4} x-x y^{2}}{-y^{2}+x-1}} d y
\end{aligned}
$$

Which results in

$$
S=\arctan (y)+\frac{1}{y}-\frac{1}{x y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(y^{2}+1\right)}{x\left(y^{2}-x+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x^{2} y} \\
S_{y} & =\frac{y^{2}-x+1}{y^{2}\left(y^{2}+1\right) x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\arctan (y) x y+x-1}{x y}=c_{1}
$$

Which simplifies to

$$
\frac{\arctan (y) x y+x-1}{x y}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\arctan (y) x y+x-1}{x y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
\frac{\arctan (y) x y+x-1}{x y}=c_{1}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = 2/x/(x-1)*y(x)+(2+x)/(x-1)^2/x*y(x)^2+
trying to solve the Abel ODE ...
<- Abel successful
equivalence to an Abel ODE successful, Abel ODE has been solved`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 138

```
dsolve((y(x)*(y(x)~2+1))+( x*(y(x)~ 2-x+1))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
-\frac{\left(\operatorname{arctanh}\left(\frac{\sqrt{\frac{x^{2} y(x)^{2}}{(x-1)\left(y(x)^{2}-x+1\right)}}(x-1)}{\sqrt{\frac{x-1}{x-1-y(x)^{2}}} x}\right)-c_{1}\right) \sqrt{\frac{x^{2} y(x)^{2}}{(x-1)\left(y(x)^{2}-x+1\right)}}-\frac{\sqrt{\frac{2 x-2}{x-1-y(x)^{2}}} \sqrt{2}}{\sqrt{\frac{x^{2} y(x)^{2}}{(x-1)\left(y(x)^{2}-x+1\right)}}}=0=0 \text {, }}{\sqrt{2}}=
$$

Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 34
DSolve $[(y[x] *(y[x] \sim 2+1))+(x *(y[x] \sim 2-x+1)) * y '[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True $]$

$$
\text { Solve }\left[\frac{1}{2}\left(-\arctan (y(x))-\frac{1}{y(x)}\right)+\frac{1}{2 x y(x)}=c_{1}, y(x)\right]
$$

1.50 problem 51

1.50.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3195]
Internal file name [OUTPUT/2687_Sunday_June_05_2022_08_38_48_AM_23160464/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 51.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{2}+\left(-y+\mathrm{e}^{x}\right) y^{\prime}=0
$$

1.50.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{2}}{-y+\mathrm{e}^{x}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}-\frac{y^{2}\left(b_{3}-a_{2}\right)}{-y+\mathrm{e}^{x}}-\frac{y^{4} a_{3}}{\left(-y+\mathrm{e}^{x}\right)^{2}}-\frac{y^{2} \mathrm{e}^{x}\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(-y+\mathrm{e}^{x}\right)^{2}} \tag{5E}\\
-\left(-\frac{2 y}{-y+\mathrm{e}^{x}}-\frac{y^{2}}{\left(-y+\mathrm{e}^{x}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{-\mathrm{e}^{x} x y^{2} a_{2}-\mathrm{e}^{x} y^{3} a_{3}-y^{4} a_{3}+2 \mathrm{e}^{x} x y b_{2}-\mathrm{e}^{x} y^{2} a_{1}+\mathrm{e}^{x} y^{2} a_{2}+\mathrm{e}^{x} y^{2} b_{3}-x y^{2} b_{2}-y^{3} a_{2}+\mathrm{e}^{2 x} b_{2}+2 \mathrm{e}^{x} y b_{1}-2 \mathrm{e}^{2}}{\left(-y+\mathrm{e}^{x}\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\mathrm{e}^{x} x y^{2} a_{2}-\mathrm{e}^{x} y^{3} a_{3}-y^{4} a_{3}+2 \mathrm{e}^{x} x y b_{2}-\mathrm{e}^{x} y^{2} a_{1}+\mathrm{e}^{x} y^{2} a_{2}+\mathrm{e}^{x} y^{2} b_{3} \tag{6E}\\
& \quad-x y^{2} b_{2}-y^{3} a_{2}+\mathrm{e}^{2 x} b_{2}+2 \mathrm{e}^{x} y b_{1}-2 \mathrm{e}^{x} y b_{2}-y^{2} b_{1}+y^{2} b_{2}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\mathrm{e}^{x} x y^{2} a_{2}-\mathrm{e}^{x} y^{3} a_{3}-y^{4} a_{3}+2 \mathrm{e}^{x} x y b_{2}-\mathrm{e}^{x} y^{2} a_{1}+\mathrm{e}^{x} y^{2} a_{2}+\mathrm{e}^{x} y^{2} b_{3} \tag{6E}\\
& \quad-x y^{2} b_{2}-y^{3} a_{2}+\mathrm{e}^{2 x} b_{2}+2 \mathrm{e}^{x} y b_{1}-2 \mathrm{e}^{x} y b_{2}-y^{2} b_{1}+y^{2} b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{x}=v_{3}, \mathrm{e}^{2 x}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3} v_{1} v_{2}^{2} a_{2}-v_{2}^{4} a_{3}-v_{3} v_{2}^{3} a_{3}-v_{3} v_{2}^{2} a_{1}-v_{2}^{3} a_{2}+v_{3} v_{2}^{2} a_{2}-v_{1} v_{2}^{2} b_{2} \tag{7E}\\
& +2 v_{3} v_{1} v_{2} b_{2}+v_{3} v_{2}^{2} b_{3}-v_{2}^{2} b_{1}+2 v_{3} v_{2} b_{1}+v_{2}^{2} b_{2}-2 v_{3} v_{2} b_{2}+v_{4} b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{3} v_{1} v_{2}^{2} a_{2}-v_{1} v_{2}^{2} b_{2}+2 v_{3} v_{1} v_{2} b_{2}-v_{2}^{4} a_{3}-v_{3} v_{2}^{3} a_{3}-v_{2}^{3} a_{2} \tag{8E}\\
& +\left(-a_{1}+a_{2}+b_{3}\right) v_{2}^{2} v_{3}+\left(-b_{1}+b_{2}\right) v_{2}^{2}+\left(2 b_{1}-2 b_{2}\right) v_{2} v_{3}+v_{4} b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-a_{2} & =0 \\
-a_{3} & =0 \\
-b_{2} & =0 \\
2 b_{2} & =0 \\
-b_{1}+b_{2} & =0 \\
2 b_{1}-2 b_{2} & =0 \\
-a_{1}+a_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{3} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{-y+\mathrm{e}^{x}}\right) \\
& =\frac{y \mathrm{e}^{x}}{-y+\mathrm{e}^{x}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y \mathrm{e}^{x}}{-y+\mathrm{e}^{x}}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\mathrm{e}^{-x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{-y+\mathrm{e}^{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\mathrm{e}^{-x} y \\
S_{y} & =\frac{-\mathrm{e}^{-x} y+1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (y)-\mathrm{e}^{-x} y=c_{1}
$$

Which simplifies to

$$
\ln (y)-\mathrm{e}^{-x} y=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-x+c_{1}}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{-y+\mathrm{e}^{x}}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29}$ 为
	$R=x$	
$\xrightarrow{\sim}$	$S=\ln (y)-\mathrm{e}^{-x} y$	
1 込		
$\mathrm{Lb}^{\text {den }}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-{ }^{2} \xrightarrow{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\sim+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-x+c_{1}}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 78: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-x+c_{1}}\right)+c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 16
dsolve $((y(x) \sim 2)+(\exp (x)-y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=-\mathrm{e}^{x} \text { LambertW }\left(-\mathrm{e}^{-x} c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 6.706 (sec). Leaf size: 306
DSolve[(y[x] 2)+(Exp[x]-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[\frac{1}{9} 2^{2 / 3}\left(\frac{\left(\frac{e^{x}-\frac{3 e^{2 x}}{e^{x} e^{y(x)}}}{\sqrt[3]{e^{3 x}}}+2\right)\left(\frac{e^{x}\left(y(x)+2 e^{x}\right)}{\sqrt[3]{e^{3 x}}\left(e^{x}-y(x)\right)}+1\right)\left(\left(\frac{e^{x}-\frac{3 e^{2 x}}{e^{x}-y(x)}}{\sqrt[3]{e^{3 x}}}-1\right) \log \left(2^{2 / 3}\left(\frac{e^{x}-\frac{3 e^{2 x}}{e^{x}-y(x)}}{\sqrt[3]{e^{3 x}}}+2\right)\right)+(\right.}{\frac{\left(y(x)+2 e^{x}\right)^{3}}{\left(e^{x}-y(x)\right)^{3}}-\frac{3 e^{x}\left(y(x)+2 e^{x}\right)}{\sqrt[3]{e^{3 x}}\left(e^{x}-y(x)\right)}-2}\right.\right.$

1.51 problem 52

1.51.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3196]
Internal file name [OUTPUT/2688_Sunday_June_05_2022_08_38_48_AM_12918249/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 52 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
y^{2} x^{2}-2 y+\left(y x^{3}-x\right) y^{\prime}=0
$$

1.51.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y\left(x^{2} y-2\right)}{x\left(x^{2} y-1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(x^{2} y-2\right)\left(b_{3}-a_{2}\right)}{x\left(x^{2} y-1\right)}-\frac{y^{2}\left(x^{2} y-2\right)^{2} a_{3}}{x^{2}\left(x^{2} y-1\right)^{2}} \\
& -\left(-\frac{2 y^{2}}{x^{2} y-1}+\frac{y\left(x^{2} y-2\right)}{x^{2}\left(x^{2} y-1\right)}+\frac{2 y^{2}\left(x^{2} y-2\right)}{\left(x^{2} y-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{x^{2} y-2}{x\left(x^{2} y-1\right)}-\frac{y x}{x^{2} y-1}+\frac{y\left(x^{2} y-2\right) x}{\left(x^{2} y-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{2 x^{6} y^{2} b_{2}-2 x^{4} y^{4} a_{3}+x^{5} y^{2} b_{1}-x^{4} y^{3} a_{1}-4 x^{4} y b_{2}+2 x^{3} y^{2} a_{2}+x^{3} y^{2} b_{3}+9 x^{2} y^{3} a_{3}-2 x^{3} y b_{1}+5 x^{2} y^{2} a_{1}+3 b_{2} x}{\left(x^{2} y-1\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{6} y^{2} b_{2}-2 x^{4} y^{4} a_{3}+x^{5} y^{2} b_{1}-x^{4} y^{3} a_{1}-4 x^{4} y b_{2}+2 x^{3} y^{2} a_{2}+x^{3} y^{2} b_{3} \tag{6E}\\
& +9 x^{2} y^{3} a_{3}-2 x^{3} y b_{1}+5 x^{2} y^{2} a_{1}+3 b_{2} x^{2}-6 y^{2} a_{3}+2 x b_{1}-2 y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{gather*}
-2 a_{3} v_{1}^{4} v_{2}^{4}+2 b_{2} v_{1}^{6} v_{2}^{2}-a_{1} v_{1}^{4} v_{2}^{3}+b_{1} v_{1}^{5} v_{2}^{2}+2 a_{2} v_{1}^{3} v_{2}^{2}+9 a_{3} v_{1}^{2} v_{2}^{3}-4 b_{2} v_{1}^{4} v_{2} \tag{7E}\\
+b_{3} v_{1}^{3} v_{2}^{2}+5 a_{1} v_{1}^{2} v_{2}^{2}-2 b_{1} v_{1}^{3} v_{2}-6 a_{3} v_{2}^{2}+3 b_{2} v_{1}^{2}-2 a_{1} v_{2}+2 b_{1} v_{1}=0
\end{gather*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{6} v_{2}^{2}+b_{1} v_{v}^{5} v_{2}^{2}-2 a_{3} v_{1}^{4} v_{2}^{4}-a_{1} v_{1}^{4} v_{2}^{3}-4 b_{2} v_{1}^{4} v_{2}+\left(2 a_{2}+b_{3}\right) v_{1}^{3} v_{2}^{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}^{3} v_{2}+9 a_{3} v_{1}^{2} v_{2}^{3}+5 a_{1} v_{1}^{2} v_{2}^{2}+3 b_{2} v_{1}^{2}+2 b_{1} v_{1}-6 a_{3} v_{2}^{2}-2 a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-2 a_{1} & =0 \\
-a_{1} & =0 \\
5 a_{1} & =0 \\
-6 a_{3} & =0 \\
-2 a_{3} & =0 \\
9 a_{3} & =0 \\
-2 b_{1} & =0 \\
2 b_{1} & =0 \\
-4 b_{2} & =0 \\
2 b_{2} & =0 \\
3 b_{2} & =0 \\
2 a_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{y\left(x^{2} y-2\right)}{x\left(x^{2} y-1\right)}\right)(x) \\
& =-\frac{y^{2} x^{2}}{x^{2} y-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y^{2} x^{2}}{x^{2} y-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{x^{2} y}-\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y\left(x^{2} y-2\right)}{x\left(x^{2} y-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2}{x^{3} y} \\
S_{y} & =\frac{-x^{2} y+1}{y^{2} x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-\ln (y) x^{2} y-1}{x^{2} y}=\ln (x)+c_{1}
$$

Which simplifies to

$$
\frac{-\ln (y) x^{2} y-1}{x^{2} y}=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{1}{x^{2} \operatorname{LambertW}\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y\left(x^{2} y-2\right)}{x\left(x^{2} y-1\right)}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \Delta x d_{\text {a }} \rightarrow$
		\rightarrow ardy
		aray
		SSRT: ${ }^{\text {P }}$
		1
	$R=x$	+ 1
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$	S $-\ln (y) x^{2} y-1$	
	$S=\frac{(1)}{x^{2} y}$	
		- ${ }^{\text {a }}$
		- ${ }^{4}$
		$\rightarrow \rightarrow \rightarrow \infty$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x^{2} \text { LambertW }\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)} \tag{1}
\end{equation*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x^{2} \operatorname{LambertW}\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve($\left(x^{\wedge} 2 * y(x)^{\wedge} 2-2 * y(x)\right)+\left(x^{\wedge} 3 * y(x)-x\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=-\frac{1}{\text { LambertW }\left(-\frac{c_{1}}{x}\right) x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 6.74 (sec). Leaf size: 35
DSolve $\left[\left(x^{\wedge} 2 * y[x] \sim 2-2 * y[x]\right)+\left(x^{\wedge} 3 * y[x]-x\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{x^{2} W\left(\frac{e^{-1+\frac{9 c_{1}}{2^{2 / 3}}}}{x}\right)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.52 problem 53

1.52.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3197]
Internal file name [OUTPUT/2689_Sunday_June_05_2022_08_38_48_AM_50370268/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 53.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order__ode__lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational]
```

$$
2 y x^{3}+y^{3}-\left(x^{4}+2 y^{2} x\right) y^{\prime}=0
$$

1.52.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(2 x^{3}+y^{2}\right)}{x\left(x^{3}+2 y^{2}\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y\left(2 x^{3}+y^{2}\right)\left(b_{3}-a_{2}\right)}{x\left(x^{3}+2 y^{2}\right)}-\frac{y^{2}\left(2 x^{3}+y^{2}\right)^{2} a_{3}}{x^{2}\left(x^{3}+2 y^{2}\right)^{2}} \\
& -\left(\frac{6 y x}{x^{3}+2 y^{2}}-\frac{y\left(2 x^{3}+y^{2}\right)}{x^{2}\left(x^{3}+2 y^{2}\right)}-\frac{3 y\left(2 x^{3}+y^{2}\right) x}{\left(x^{3}+2 y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 x^{3}+y^{2}}{x\left(x^{3}+2 y^{2}\right)}+\frac{2 y^{2}}{x\left(x^{3}+2 y^{2}\right)}-\frac{4 y^{2}\left(2 x^{3}+y^{2}\right)}{x\left(x^{3}+2 y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{8} b_{2}+2 x^{6} y^{2} a_{3}+2 x^{7} b_{1}-2 x^{6} y a_{1}-5 x^{5} y^{2} b_{2}+9 x^{4} y^{3} a_{2}-6 x^{4} y^{3} b_{3}+8 x^{3} y^{4} a_{3}-x^{4} y^{2} b_{1}+4 x^{3} y^{3} a_{1}-2 x^{2} y}{\left(x^{3}+2 y^{2}\right)^{2} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{8} b_{2}-2 x^{6} y^{2} a_{3}-2 x^{7} b_{1}+2 x^{6} y a_{1}+5 x^{5} y^{2} b_{2}-9 x^{4} y^{3} a_{2}+6 x^{4} y^{3} b_{3} \tag{6E}\\
& \quad-8 x^{3} y^{4} a_{3}+x^{4} y^{2} b_{1}-4 x^{3} y^{3} a_{1}+2 x^{2} y^{4} b_{2}+y^{6} a_{3}-2 x y^{4} b_{1}+2 y^{5} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{3} v_{1}^{6} v_{2}^{2}-b_{2} v_{1}^{8}+2 a_{1} v_{1}^{6} v_{2}-9 a_{2} v_{1}^{4} v_{2}^{3}-8 a_{3} v_{1}^{3} v_{2}^{4}-2 b_{1} v_{1}^{7}+5 b_{2} v_{1}^{5} v_{2}^{2} \tag{7E}\\
& +6 b_{3} v_{1}^{4} v_{2}^{3}-4 a_{1} v_{1}^{3} v_{2}^{3}+a_{3} v_{2}^{6}+b_{1} v_{1}^{4} v_{2}^{2}+2 b_{2} v_{1}^{2} v_{2}^{4}+2 a_{1} v_{2}^{5}-2 b_{1} v_{1} v_{2}^{4}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -b_{2} v_{1}^{8}-2 b_{1} v_{1}^{7}-2 a_{3} v_{1}^{6} v_{2}^{2}+2 a_{1} v_{1}^{6} v_{2}+5 b_{2} v_{1}^{5} v_{2}^{2}+\left(-9 a_{2}+6 b_{3}\right) v_{1}^{4} v_{2}^{3} \tag{8E}\\
& \quad+b_{1} v_{1}^{4} v_{2}^{2}-8 a_{3} v_{1}^{3} v_{2}^{4}-4 a_{1} v_{1}^{3} v_{2}^{3}+2 b_{2} v_{1}^{2} v_{2}^{4}-2 b_{1} v_{1} v_{2}^{4}+a_{3} v_{2}^{6}+2 a_{1} v_{2}^{5}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{3} & =0 \\
b_{1} & =0 \\
-4 a_{1} & =0 \\
2 a_{1} & =0 \\
-8 a_{3} & =0 \\
-2 a_{3} & =0 \\
-2 b_{1} & =0 \\
-b_{2} & =0 \\
2 b_{2} & =0 \\
5 b_{2} & =0 \\
-9 a_{2}+6 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =\frac{3 a_{2}}{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=\frac{3 y}{2}
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =\frac{3 y}{2}-\left(\frac{y\left(2 x^{3}+y^{2}\right)}{x\left(x^{3}+2 y^{2}\right)}\right)(x) \\
& =\frac{-x^{3} y+4 y^{3}}{2 x^{3}+4 y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{3} y+4 y^{3}}{2 x^{3}+4 y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}-2 \ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(2 x^{3}+y^{2}\right)}{x\left(x^{3}+2 y^{2}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{9 x^{2}}{2 x^{3}-8 y^{2}} \\
S_{y} & =-\frac{12 y}{x^{3}-4 y^{2}}-\frac{2}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}-2 \ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}-2 \ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(2 x^{3}+y^{2}\right)}{x\left(x^{3}+2 y^{2}\right)}$		$\frac{d S}{d R}=\frac{1}{2 R}$
乐		
成 1		$\xrightarrow[\rightarrow \rightarrow \rightarrow-S(R)]{\rightarrow \rightarrow \rightarrow \rightarrow}$
$\triangle \rightarrow$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$3 \ln \left(-x^{3}+4 y^{2}\right)$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{\rightarrow \rightarrow \rightarrow-\infty}$
	$S=\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}$	\rightarrow
	2	1
		$\rightarrow \rightarrow \rightarrow+\infty$
		$\cdots \times \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
		+ + , , ,

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}-2 \ln (y)=\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
\frac{3 \ln \left(-x^{3}+4 y^{2}\right)}{2}-2 \ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 1.281 (sec). Leaf size: 149
dsolve($\left(2 * x^{\wedge} 3 * y(x)+y(x) \wedge 3\right)-\left(x^{\wedge} 4+2 * x * y(x) \wedge 2\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)
$y(x)$
$=\frac{-x^{\frac{3}{2}} \operatorname{RootOf}\left(-16+x^{7} c_{1} _Z^{12}-4 c_{1} x^{\frac{11}{2}}-Z^{10}+6 c_{1} x^{4}-Z^{8}+\left(128 x^{\frac{9}{2}}-4 x^{\frac{5}{2}} c_{1}\right) _Z^{6}+\left(-192 x^{3}+c_{1} x\right)-\right.}{2 \operatorname{RootOf}\left(-16+x^{7} c_{1} _Z^{12}-4 c_{1} x^{\frac{11}{2}}-Z^{10}+6 c_{1} x^{4}-Z^{8}+\left(128 x^{\frac{9}{2}}-4 x^{\frac{5}{2}} c_{1}\right)-Z^{6}+\left(-192 x^{3}+c_{1} x\right)\right.}$

Solution by Mathematic

Time used: 60.151 (sec). Leaf size: 2023
$y(x)$
$\rightarrow \sqrt{48 x^{3}+\frac{e^{4 c_{1}} x^{2}}{\sqrt[3]{-3456 e^{2 c_{1}} x^{7}+144 e^{4 c_{1}} x^{5}-e^{6 c_{1}} x^{3}+192 \sqrt{3} \sqrt{-e^{4 c_{1}} x^{12}\left(-108 x^{2}+e^{2 c_{1}}\right)}}}+\sqrt[3]{-3456 e^{2 c_{1}} x^{7}}}$
$\begin{aligned} y(x) & \rightarrow \\ & -\sqrt{\frac{i(\sqrt{3}+i) e^{4 c_{1}} x^{2}+96 x^{3} \sqrt[3]{-3456 e^{2 c_{1}} x^{7}+144 e^{4 c_{1}} x^{5}-e^{6 c_{1}} x^{3}+192 \sqrt{3} \sqrt{-e^{4 c_{1}} x^{12}\left(-108 x^{2}+e^{2 c_{1}}\right)}-2 e^{2 c_{1} x}(}}{}} \begin{array}{l}\sqrt[3]{-3456 \epsilon}\end{array}\end{aligned}$
$y(x)$
$\rightarrow \sqrt{\frac{i(\sqrt{3}+i) e^{4 c_{1}} x^{2}+96 x^{3} \sqrt[3]{-3456 e^{2 c_{1}} x^{7}+144 e^{4 c_{1}} x^{5}-e^{6 c_{1}} x^{3}+192 \sqrt{3} \sqrt{-e^{4 c_{1}} x^{12}\left(-108 x^{2}+e^{2 c_{1}}\right)}-2 e^{2 c_{1} x}(48 i}}{\sqrt[3]{-3456 e^{2 c}}}}$
$y(x) \rightarrow$
$-\sqrt{\frac{-i(\sqrt{3}-i) e^{4 c_{1}} x^{2}+96 x^{3}}{\sqrt[3]{-3456 e^{2 c_{1}} x^{7}+144 e^{4 c_{1}} x^{5}-e^{6 c_{1}} x^{3}+192 \sqrt{3} \sqrt{-e^{4 c_{1}} x^{12}\left(-108 x^{2}+e^{2 c_{1}}\right)}+i(\sqrt{3}+}} \sqrt[3]{-34566}}$
$y(x)$
$\rightarrow \sqrt{\frac{-i(\sqrt{3}-i) e^{4 c_{1}} x^{2}+96 x^{3} \sqrt[3]{-3456 e^{2 c_{1}} x^{7}+144 e^{4 c_{1}} x^{5}-e^{6 c_{1}} x^{3}+192 \sqrt{3} \sqrt{-e^{4 c_{1}} x^{12}\left(-108 x^{2}+e^{2 c_{1}}\right)}+i(\sqrt{3}+i)}}{\sqrt[3]{-3456 e^{2 c}}}}$

1.53 problem 54

> 1.53.1 Solving as linear ode
1.53.2 Maple step by step solution . 447

Internal problem ID [3198]
Internal file name [OUTPUT/2690_Sunday_June_05_2022_08_38_51_AM_15825738/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 54.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
\cos (x) y-y^{\prime} \sin (x)=-1
$$

1.53.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\cot (x) \\
q(x) & =\csc (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \cot (x)=\csc (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\cot (x) d x} \\
& =\frac{1}{\sin (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\csc (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\csc (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\csc (x) y) & =(\csc (x))(\csc (x)) \\
\mathrm{d}(\csc (x) y) & =\csc (x)^{2} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \csc (x) y=\int \csc (x)^{2} \mathrm{~d} x \\
& \csc (x) y=-\cot (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\csc (x)$ results in

$$
y=-\cot (x) \sin (x)+c_{1} \sin (x)
$$

which simplifies to

$$
y=c_{1} \sin (x)-\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sin (x)-\cos (x) \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=c_{1} \sin (x)-\cos (x)
$$

Verified OK.

1.53.2 Maple step by step solution

Let's solve

$$
\cos (x) y-y^{\prime} \sin (x)=-1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{\cos (x) y}{\sin (x)}+\frac{1}{\sin (x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{\cos (x) y}{\sin (x)}=\frac{1}{\sin (x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{\cos (x) y}{\sin (x)}\right)=\frac{\mu(x)}{\sin (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{\cos (x) y}{\sin (x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x) \cos (x)}{\sin (x)}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{\sin (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{\sin (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{\sin (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sin (x)}$
$y=\sin (x)\left(\int \frac{1}{\sin (x)^{2}} d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=\sin (x)\left(-\cot (x)+c_{1}\right)
$$

- Simplify
$y=c_{1} \sin (x)-\cos (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve $((1+y(x) * \cos (x))-(\sin (x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \sin (x)-\cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 15
DSolve $[(1+y[x] * \operatorname{Cos}[x])-(\operatorname{Sin}[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\cos (x)+c_{1} \sin (x)
$$

1.54 problem 55

1.54.1 Solving as quadrature ode . 450
1.54.2 Maple step by step solution . 451

Internal problem ID [3199]
Internal file name [OUTPUT/2691_Sunday_June_05_2022_08_38_51_AM_59993157/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 55.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(\sin (y)^{2}+x \cot (y)\right) y^{\prime}=0
$$

1.54.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=c_{1}
$$

Verified OK.

1.54.2 Maple step by step solution

Let's solve

$$
\left(\sin (y)^{2}+x \cot (y)\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x $\int\left(\sin (y)^{2}+x \cot (y)\right) y^{\prime} d x=\int 0 d x+c_{1}$
- Cannot compute integral $\int\left(\sin (y)^{2}+x \cot (y)\right) y^{\prime} d x=c_{1}$

Maple trace

[^0]
Solution by Maple

Time used: 0.047 (sec). Leaf size: 1635
dsolve($\left(\sin (y(x))^{\wedge} 2+x * \cot (y(x))\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x) \\
& =\arctan \left(-\frac{\sqrt{\frac{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}}{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}}}{6}, \frac{\sqrt{\frac{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}}{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}}\left(\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right.\right.}{36 x\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}\right. \\
& y(x)=\arctan \left(\frac{\sqrt{\frac{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}}{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}}}{6},\right. \\
& \left.-\frac{\sqrt{\frac{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}}{\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}\left(\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}\right)}}{36 x\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{1}{3}}}\right)
\end{aligned}
$$

$y(x)$
$=\arctan \left(-\frac{\sqrt{\frac{i\left(-\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x^{6}+27 x^{4}}\right)^{\frac{2}{3}}-12 x^{2}\right) \sqrt{3}-\left(108 x^{2}+12 \sqrt{3} \sqrt{\left.4 x^{6}+27 x^{4}\right)^{\frac{2}{3}}+12 x^{2}}\right.}{\left(108 x^{2}+12 \sqrt{3} \sqrt{\left.4 x^{6}+27 x^{4}\right)^{\frac{1}{3}}}\right.}} 6}{6},-i\left(\left(108 x^{2}+12 \sqrt{3} \sqrt{4 x}\right.\right.\right.$
$y(x)$

1.55 problem 56

1.55.1 Solving as separable ode . 454
1.55.2 Maple step by step solution . 456

Internal problem ID [3200]
Internal file name [OUTPUT/2692_Sunday_June_05_2022_08_38_53_AM_37364604/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 56.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
-(y-2 y x) y^{\prime}=-1
$$

1.55.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{1}{y(2 x-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x-1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{1}{2 x-1} d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{1}{2 x-1} d x \\
\frac{y^{2}}{2} & =-\frac{\ln (2 x-1)}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-\ln (2 x-1)+2 c_{1}} \\
& y=-\sqrt{-\ln (2 x-1)+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{-\ln (2 x-1)+2 c_{1}} \tag{1}\\
& y=-\sqrt{-\ln (2 x-1)+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 83: Slope field plot

Verification of solutions

$$
y=\sqrt{-\ln (2 x-1)+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{-\ln (2 x-1)+2 c_{1}}
$$

Verified OK.

1.55.2 Maple step by step solution

Let's solve

$$
-(y-2 y x) y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
y y^{\prime}=-\frac{1}{2 x-1}
$$

- Integrate both sides with respect to x

$$
\int y y^{\prime} d x=\int-\frac{1}{2 x-1} d x+c_{1}
$$

- Evaluate integral
$\frac{y^{2}}{2}=-\frac{\ln (2 x-1)}{2}+c_{1}$
- \quad Solve for y

$$
\left\{y=\sqrt{-\ln (2 x-1)+2 c_{1}}, y=-\sqrt{-\ln (2 x-1)+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve(1-(y(x)-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{-\ln (2 x-1)+c_{1}} \\
& y(x)=-\sqrt{-\ln (2 x-1)+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 45
DSolve[1-($\mathrm{y}[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-\log (1-2 x)+2 c_{1}} \\
& y(x) \rightarrow \sqrt{-\log (1-2 x)+2 c_{1}}
\end{aligned}
$$

1.56 problem 57

1.56.1 Solving as exact ode

458
Internal problem ID [3201]
Internal file name [OUTPUT/2693_Sunday_June_05_2022_08_38_54_AM_62708748/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78 Problem number: 57.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type

```
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
```

$$
-(1+2 x \tan (y)) y^{\prime}=-1
$$

1.56.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-1-2 x \tan (y)) \mathrm{d} y & =(-1) \mathrm{d} x \\
(1) \mathrm{d} x+(-1-2 x \tan (y)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1 \\
N(x, y) & =-1-2 x \tan (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-1-2 x \tan (y)) \\
& =-2 \tan (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-1-2 x \tan (y)}((0)-(-2 \tan (y))) \\
& =-\frac{2 \tan (y)}{1+2 x \tan (y)}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =1((-2 \tan (y))-(0)) \\
& =-2 \tan (y)
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-2 \tan (y) \mathrm{d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (\cos (y))} \\
& =\cos (y)^{2}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\cos (y)^{2}(1) \\
& =\cos (y)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\cos (y)^{2}(-1-2 x \tan (y)) \\
& =(-1-2 x \tan (y)) \cos (y)^{2}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\cos (y)^{2}\right)+\left((-1-2 x \tan (y)) \cos (y)^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}=0
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (y)^{2} \mathrm{~d} x \\
\phi & =x \cos (y)^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-2 \sin (y) \cos (y) x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(-1-2 x \tan (y)) \cos (y)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
(-1-2 x \tan (y)) \cos (y)^{2}=-x \sin (2 y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-2 \cos (y)^{2} x \tan (y)-\cos (y)^{2}+x \sin (2 y) \\
& =-\cos (y)^{2}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\cos (y)^{2}\right) \mathrm{d} y \\
f(y) & =-\frac{\cos (y) \sin (y)}{2}-\frac{y}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x \cos (y)^{2}-\frac{\cos (y) \sin (y)}{2}-\frac{y}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x \cos (y)^{2}-\frac{\cos (y) \sin (y)}{2}-\frac{y}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x \cos (y)^{2}-\frac{\cos (y) \sin (y)}{2}-\frac{y}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
x \cos (y)^{2}-\frac{\cos (y) \sin (y)}{2}-\frac{y}{2}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 39
dsolve(1-(1+2*x*tan $(y(x))) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\frac{2 x \cos (2 y(x))-2 y(x)-\sin (2 y(x))+c_{1}+2 x}{2 \cos (2 y(x))+2}=0
$$

\checkmark Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 36
DSolve[1-(1+2*x*Tan [y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\text { Solve }\left[x=\left(\frac{y(x)}{2}+\frac{1}{4} \sin (2 y(x))\right) \sec ^{2}(y(x))+c_{1} \sec ^{2}(y(x)), y(x)\right]
$$

1.57 problem 58

1.57.1 Solving as first order ode lie symmetry calculated ode 465
1.57.2 Solving as exact ode . 470

Internal problem ID [3202]
Internal file name [OUTPUT/2694_Sunday_June_05_2022_08_38_54_AM_98552836/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 58.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
\left(y^{3}+\frac{x}{y}\right) y^{\prime}=1
$$

1.57.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y}{y^{4}+x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
\xi & =x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta & =x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y^{4}+x}-\frac{y^{2} a_{3}}{\left(y^{4}+x\right)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(y^{4}+x\right)^{2}} \tag{5E}\\
\quad-\left(\frac{1}{y^{4}+x}-\frac{4 y^{4}}{\left(y^{4}+x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{y^{8} b_{2}+5 x y^{4} b_{2}-y^{5} a_{2}+4 y^{5} b_{3}+3 y^{4} b_{1}-x b_{1}+y a_{1}}{\left(y^{4}+x\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
y^{8} b_{2}+5 x y^{4} b_{2}-y^{5} a_{2}+4 y^{5} b_{3}+3 y^{4} b_{1}-x b_{1}+y a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
b_{2} v_{2}^{8}-a_{2} v_{2}^{5}+5 b_{2} v_{1} v_{2}^{4}+4 b_{3} v_{2}^{5}+3 b_{1} v_{2}^{4}+a_{1} v_{2}-b_{1} v_{1}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
5 b_{2} v_{1} v_{2}^{4}-b_{1} v_{1}+b_{2} v_{2}^{8}+\left(-a_{2}+4 b_{3}\right) v_{2}^{5}+3 b_{1} v_{2}^{4}+a_{1} v_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-b_{1} & =0 \\
3 b_{1} & =0 \\
5 b_{2} & =0 \\
-a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =4 b_{3} \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=y \\
& \eta=0
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =0-\left(\frac{y}{y^{4}+x}\right)(y) \\
& =-\frac{y^{2}}{y^{4}+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y^{2}}{y^{4}+x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y^{3}}{3}+\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y^{4}+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y} \\
S_{y} & =\frac{-y^{4}-x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{y^{3}}{3}+\frac{x}{y}=c_{1}
$$

Which simplifies to

$$
-\frac{y^{3}}{3}+\frac{x}{y}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{y^{4}+x}$		$\frac{d S}{d R}=0$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2]{ }$		
－+1 ¢タミイン	$R=x$	\rightarrow
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+1 / 2}$	$y^{3} \quad x$	
	$S=-\frac{y}{3}+\frac{x}{y}$	
		\rightarrow
$\xrightarrow{\rightarrow \rightarrow \rightarrow \longrightarrow \longrightarrow}$＋		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$

Summary
The solution（s）found are the following

$$
\begin{equation*}
-\frac{y^{3}}{3}+\frac{x}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
-\frac{y^{3}}{3}+\frac{x}{y}=c_{1}
$$

Verified OK.

1.57.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{3}+\frac{x}{y}\right) \mathrm{d} y & =\mathrm{d} x \\
-\mathrm{d} x+\left(y^{3}+\frac{x}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-1 \\
N(x, y) & =y^{3}+\frac{x}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{3}+\frac{x}{y}\right) \\
& =\frac{1}{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{y}{y^{4}+x}\left((0)-\left(\frac{1}{y}\right)\right) \\
& =-\frac{1}{y^{4}+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-1\left(\left(\frac{1}{y}\right)-(0)\right) \\
& =-\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (y)} \\
& =\frac{1}{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y}(-1) \\
& =-\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y}\left(y^{3}+\frac{x}{y}\right) \\
& =\frac{y^{4}+x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{1}{y}\right)+\left(\frac{y^{4}+x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{y} \mathrm{~d} x \\
\phi & =-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{4}+x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{4}+x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x}{y}+\frac{y^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x}{y}+\frac{y^{3}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3}-\frac{x}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
\frac{y^{3}}{3}-\frac{x}{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve($(y(x) \wedge 3+x / y(x)) * \operatorname{diff}(y(x), x)=1, y(x)$, singsol=all)

$$
-c_{1} y(x)+x-\frac{y(x)^{4}}{3}=0
$$

\checkmark Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 997

```
DSolve[(y[x]^3+x/y[x])*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{2} \sqrt{\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{4 \sqrt[3]{2 x}}{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}
$$

$$
-\frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}-\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}{ }^{4}}}}{\sqrt[3]{2}}-\frac{6 c_{1}}{\sqrt{\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{\sqrt[3]{9 c_{1}}}{\sqrt{2}}}}
$$

$$
y(x) \rightarrow \frac{1}{2} \sqrt{\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}}-\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}
$$

$$
+\frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}-\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{6 c_{1}}{\sqrt{\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{\sqrt[3]{9 c_{1}}}{\sqrt[3]{9}}}}
$$

$$
y(x) \rightarrow-\frac{1}{2} \sqrt{\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}
$$

$$
-\frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}-\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}+\frac{6 c_{1}}{\sqrt{\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{\sqrt[3]{9 c_{1}}}{\sqrt{2}}}}
$$

$$
y(x)
$$

$$
\rightarrow \frac{1}{2} \sqrt{\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}-\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}+\frac{6 c_{1}}{\sqrt{\frac{\sqrt[3]{9 c_{1}^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{\sqrt[3]{9 c_{1}^{2}}}{\sqrt{2}}}}
$$

$$
-\frac{1}{2} \sqrt{\frac{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}{\sqrt[3]{2}}-\frac{4 \sqrt[3]{2} x}{\sqrt[3]{9 c_{1}{ }^{2}-\sqrt{256 x^{3}+81 c_{1}^{4}}}}}
$$

1.58 problem 59

1.58.1 Solving as first order ode lie symmetry calculated ode 478
1.58.2 Solving as exact ode . 483

Internal problem ID [3203]
Internal file name [OUTPUT/2695_Sunday_June_05_2022_08_38_55_AM_97845022/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 59.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_1st_order, _with_exponential_symmetries]]

$$
\left(x-y^{2}\right) y^{\prime}=-1
$$

1.58.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1}{y^{2}-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{equation*}
b_{2}+\frac{b_{3}-a_{2}}{y^{2}-x}-\frac{a_{3}}{\left(y^{2}-x\right)^{2}}-\frac{x a_{2}+y a_{3}+a_{1}}{\left(y^{2}-x\right)^{2}}+\frac{2 y\left(x b_{2}+y b_{3}+b_{1}\right)}{\left(y^{2}-x\right)^{2}}=0 \tag{5E}
\end{equation*}
$$

Putting the above in normal form gives

$$
\frac{y^{4} b_{2}-2 x y^{2} b_{2}+x^{2} b_{2}+2 x y b_{2}-y^{2} a_{2}+3 y^{2} b_{3}-x b_{3}-y a_{3}+2 y b_{1}-a_{1}-a_{3}}{\left(-y^{2}+x\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
y^{4} b_{2}-2 x y^{2} b_{2}+x^{2} b_{2}+2 x y b_{2}-y^{2} a_{2}+3 y^{2} b_{3}-x b_{3}-y a_{3}+2 y b_{1}-a_{1}-a_{3}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
b_{2} v_{2}^{4}-2 b_{2} v_{1} v_{2}^{2}-a_{2} v_{2}^{2}+b_{2} v_{1}^{2}+2 b_{2} v_{1} v_{2}+3 b_{3} v_{2}^{2}-a_{3} v_{2}+2 b_{1} v_{2}-b_{3} v_{1}-a_{1}-a_{3}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes
$b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}^{2}+2 b_{2} v_{1} v_{2}-b_{3} v_{1}+b_{2} v_{2}^{4}+\left(-a_{2}+3 b_{3}\right) v_{2}^{2}+\left(-a_{3}+2 b_{1}\right) v_{2}-a_{1}-a_{3}=0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-2 b_{2} & =0 \\
2 b_{2} & =0 \\
-b_{3} & =0 \\
-a_{1}-a_{3} & =0 \\
-a_{2}+3 b_{3} & =0 \\
-a_{3}+2 b_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =-2 b_{1} \\
a_{2} & =0 \\
a_{3} & =2 b_{1} \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 y-2 \\
\eta & =1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{1}{y^{2}-x}\right)(2 y-2) \\
& =\frac{-y^{2}+x+2 y-2}{-y^{2}+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-y^{2}+x+2 y-2}{-y^{2}+x}} d y
\end{aligned}
$$

Which results in

$$
S=y+\ln \left(y^{2}-x-2 y+2\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1}{y^{2}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{-y^{2}+x+2 y-2} \\
S_{y} & =\frac{-y^{2}+x}{-y^{2}+x+2 y-2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y+\ln \left(y^{2}-x-2 y+2\right)=c_{1}
$$

Which simplifies to

$$
y+\ln \left(y^{2}-x-2 y+2\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y+\ln \left(y^{2}-x-2 y+2\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y+\ln \left(y^{2}-x-2 y+2\right)=c_{1}
$$

Verified OK.

1.58.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-y^{2}+x\right) \mathrm{d} y & =(-1) \mathrm{d} x \\
(1) \mathrm{d} x+\left(-y^{2}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =1 \\
N(x, y) & =-y^{2}+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(1) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-y^{2}+x\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-y^{2}+x}((0)-(1)) \\
& =-\frac{1}{-y^{2}+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int 1 \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{y} \\
& =\mathrm{e}^{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{y}(1) \\
& =\mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{y}\left(-y^{2}+x\right) \\
& =\left(-y^{2}+x\right) \mathrm{e}^{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{y}\right)+\left(\left(-y^{2}+x\right) \mathrm{e}^{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{y} \mathrm{~d} x \\
\phi & =x \mathrm{e}^{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \mathrm{e}^{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\left(-y^{2}+x\right) \mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\left(-y^{2}+x\right) \mathrm{e}^{y}=x \mathrm{e}^{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{y} y^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{y} y^{2}\right) \mathrm{d} y \\
f(y) & =-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x \mathrm{e}^{y}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x \mathrm{e}^{y}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x \mathrm{e}^{y}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
x \mathrm{e}^{y}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(1+(x-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
x-y(x)^{2}+2 y(x)-2-\mathrm{e}^{-y(x)} c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 24
DSolve[1+($x-y[x] \sim 2) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=y(x)^{2}-2 y(x)+c_{1} e^{-y(x)}+2, y(x)\right]
$$

1.59 problem 60

1.59.1 Solving as first order ode lie symmetry calculated ode 489
1.59.2 Solving as exact ode . 494

Internal problem ID [3204]
Internal file name [OUTPUT/2696_Sunday_June_05_2022_08_38_56_AM_86314611/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 60.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type

```
[[_1st_order, _with_linear_symmetries], _rational]
```

$$
y^{2}+\left(y x+y^{2}-1\right) y^{\prime}=0
$$

1.59.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y^{2}}{x y+y^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-\frac{y^{2}\left(b_{3}-a_{2}\right)}{x y+y^{2}-1}-\frac{y^{4} a_{3}}{\left(x y+y^{2}-1\right)^{2}}-\frac{y^{3}\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(x y+y^{2}-1\right)^{2}} \tag{5E}\\
& \quad-\left(-\frac{2 y}{x y+y^{2}-1}+\frac{y^{2}(x+2 y)}{\left(x y+y^{2}-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\frac{2 x^{2} y^{2} b_{2}+2 x y^{3} b_{2}+y^{4} a_{2}-2 y^{4} a_{3}+y^{4} b_{2}-y^{4} b_{3}+x y^{2} b_{1}-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-2 y^{2} b_{2}-y^{2} b_{3}-2 y b_{1}+l}{\left(x y+y^{2}-1\right)^{2}}$
$=0$

Setting the numerator to zero gives

$$
\begin{array}{r}
2 x^{2} y^{2} b_{2}+2 x y^{3} b_{2}+y^{4} a_{2}-2 y^{4} a_{3}+y^{4} b_{2}-y^{4} b_{3}+x y^{2} b_{1} \tag{6E}\\
-y^{3} a_{1}-4 x y b_{2}-y^{2} a_{2}-2 y^{2} b_{2}-y^{2} b_{3}-2 y b_{1}+b_{2}=0
\end{array}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& a_{2} v_{2}^{4}-2 a_{3} v_{2}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}+2 b_{2} v_{1} v_{2}^{3}+b_{2} v_{2}^{4}-b_{3} v_{2}^{4}-a_{1} v_{2}^{3} \tag{7E}\\
& \quad+b_{1} v_{1} v_{2}^{2}-a_{2} v_{2}^{2}-4 b_{2} v_{1} v_{2}-2 b_{2} v_{2}^{2}-b_{3} v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 b_{2} v_{1}^{2} v_{2}^{2}+2 b_{2} v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}-4 b_{2} v_{1} v_{2}+\left(a_{2}-2 a_{3}+b_{2}-b_{3}\right) v_{2}^{4} \tag{8E}\\
& \quad-a_{1} v_{2}^{3}+\left(-a_{2}-2 b_{2}-b_{3}\right) v_{2}^{2}-2 b_{1} v_{2}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-a_{1} & =0 \\
-2 b_{1} & =0 \\
-4 b_{2} & =0 \\
2 b_{2} & =0 \\
-a_{2}-2 b_{2}-b_{3} & =0 \\
a_{2}-2 a_{3}+b_{2}-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=-b_{3} \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =-y-x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{x y+y^{2}-1}\right)(-y-x) \\
& =-\frac{y}{x y+y^{2}-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y}{x y+y^{2}-1}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{y^{2}}{2}-x y+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{x y+y^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-y \\
& S_{y}=-y-x+\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

Which simplifies to

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{x y+y^{2}-1}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+S(R T)}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow{\rightarrow-4}$	$S--\frac{y^{2}}{}$	
$\rightarrow \rightarrow \cdots$	$S=-\frac{y}{2}-x y+\ln (y)$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot
Verification of solutions

$$
-\frac{y^{2}}{2}-y x+\ln (y)=c_{1}
$$

Verified OK.

1.59.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x y+y^{2}-1\right) \mathrm{d} y & =\left(-y^{2}\right) \mathrm{d} x \\
\left(y^{2}\right) \mathrm{d} x+\left(x y+y^{2}-1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} \\
N(x, y) & =x y+y^{2}-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}\right) \\
& =2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x y+y^{2}-1\right) \\
& =y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x y+y^{2}-1}((2 y)-(y)) \\
& =\frac{y}{x y+y^{2}-1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y^{2}}((y)-(2 y)) \\
& =-\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (y)} \\
& =\frac{1}{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y}\left(y^{2}\right) \\
& =y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y}\left(x y+y^{2}-1\right) \\
& =\frac{x y+y^{2}-1}{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
(y)+\left(\frac{x y+y^{2}-1}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{~d} x \\
\phi & =x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x y+y^{2}-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x y+y^{2}-1}{y}=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{2}-1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{2}-1}{y}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y+\frac{y^{2}}{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y+\frac{y^{2}}{2}-\ln (y)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2}+y x-\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{2}+y x-\ln (y)=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve($y(x) \sim 2+\left(x * y(x)+y(x)^{\wedge} 2-1\right) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\mathrm{e}^{\operatorname{RootOf}\left(-\mathrm{e}^{2}-Z-2 \mathrm{e}^{Z} x+2 c_{1}+2 _Z\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 30
DSolve $\left[y[x] \sim 2+(x * y[x]+y[x] \sim 2-1) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\text { Solve }\left[x=\frac{\log (y(x))-\frac{y(x)^{2}}{2}}{y(x)}+\frac{c_{1}}{y(x)}, y(x)\right]
$$

1.60 problem 61

1.60.1 Solving as exact ode

501
Internal problem ID [3205]
Internal file name [OUTPUT/2697_Sunday_June_05_2022_08_38_56_AM_58537924/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 61.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_1st_order, `_with_symmetry_ \([F(x) * G(y), 0] `]\)

$$
y-\left(\mathrm{e}^{y}+2 y x-2 x\right) y^{\prime}=0
$$

1.60.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\mathrm{e}^{y}-2 x y+2 x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(-\mathrm{e}^{y}-2 x y+2 x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \\
& N(x, y)=-\mathrm{e}^{y}-2 x y+2 x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\mathrm{e}^{y}-2 x y+2 x\right) \\
& =-2 y+2
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{\mathrm{e}^{y}+(2 y-2) x}((1)-(-2 y+2)) \\
& =\frac{1-2 y}{\mathrm{e}^{y}+(2 y-2) x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((-2 y+2)-(1)) \\
& =\frac{1-2 y}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{1-2 y}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 y+\ln (y)} \\
& =y \mathrm{e}^{-2 y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =y \mathrm{e}^{-2 y}(y) \\
& =y^{2} \mathrm{e}^{-2 y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =y \mathrm{e}^{-2 y}\left(-\mathrm{e}^{y}-2 x y+2 x\right) \\
& =-\left(\mathrm{e}^{y}+2 x y-2 x\right) y \mathrm{e}^{-2 y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2} \mathrm{e}^{-2 y}\right)+\left(-\left(\mathrm{e}^{y}+2 x y-2 x\right) y \mathrm{e}^{-2 y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \mathrm{e}^{-2 y} \mathrm{~d} x \\
\phi & =y^{2} \mathrm{e}^{-2 y} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =2 y \mathrm{e}^{-2 y} x-2 y^{2} \mathrm{e}^{-2 y} x+f^{\prime}(y) \tag{4}\\
& =-2 x \mathrm{e}^{-2 y} y(y-1)+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\left(\mathrm{e}^{y}+2 x y-2 x\right) y \mathrm{e}^{-2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\left(\mathrm{e}^{y}+2 x y-2 x\right) y \mathrm{e}^{-2 y}=-2 x \mathrm{e}^{-2 y} y(y-1)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\mathrm{e}^{y} \mathrm{e}^{-2 y} y \\
& =-\mathrm{e}^{-y} y
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{-y} y\right) \mathrm{d} y \\
f(y) & =(y+1) \mathrm{e}^{-y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y^{2} \mathrm{e}^{-2 y} x+(y+1) \mathrm{e}^{-y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y^{2} \mathrm{e}^{-2 y} x+(y+1) \mathrm{e}^{-y}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y^{2} \mathrm{e}^{-2 y} x+(y+1) \mathrm{e}^{-y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
y^{2} \mathrm{e}^{-2 y} x+(y+1) \mathrm{e}^{-y}=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.079 (sec). Leaf size: 62

```
dsolve(y(x)=(exp(y(x))+2*x*y(x)-2*x)*diff (y(x),x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)=\operatorname{RootOf} & \left(x _Z^{2}-c_{1}+_Z\right. \\
& \left.+\mathrm{e}^{\operatorname{RootOf}\left(-x \mathrm{e}^{2}-Z-Z^{2}+_Z \mathrm{e}^{Z}+c_{1}-\mathrm{e}-{ }^{Z}\right)}\right) \mathrm{e}^{-\operatorname{RootOf}\left(-x \mathrm{e}^{2}-Z-Z^{2}+_Z \mathrm{e}^{Z}+c_{1}-\mathrm{e}^{Z}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 34
DSolve $[y[x]==(\operatorname{Exp}[y[x]]+2 * x * y[x]-2 * x) * y '[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

Solve $\left[x=\frac{e^{y(x)}(-y(x)-1)}{y(x)^{2}}+\frac{c_{1} e^{2 y(x)}}{y(x)^{2}}, y(x)\right]$

1.61 problem 62

1.61.1 Solving as linear ode . 507
1.61.2 Maple step by step solution . 509

Internal problem ID [3206]
Internal file name [OUTPUT/2698_Sunday_June_05_2022_08_38_57_AM_38294634/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 62.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
(2 x+3) y^{\prime}-y=\sqrt{2 x+3}
$$

1.61.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{2 x+3} \\
q(x) & =\frac{1}{\sqrt{2 x+3}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2 x+3}=\frac{1}{\sqrt{2 x+3}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2 x+3} d x} \\
& =\frac{1}{\sqrt{2 x+3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{\sqrt{2 x+3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\sqrt{2 x+3}}\right) & =\left(\frac{1}{\sqrt{2 x+3}}\right)\left(\frac{1}{\sqrt{2 x+3}}\right) \\
\mathrm{d}\left(\frac{y}{\sqrt{2 x+3}}\right) & =\frac{1}{2 x+3} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\sqrt{2 x+3}}=\int \frac{1}{2 x+3} \mathrm{~d} x \\
& \frac{y}{\sqrt{2 x+3}}=\frac{\ln (2 x+3)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{2 x+3}}$ results in

$$
y=\frac{\sqrt{2 x+3} \ln (2 x+3)}{2}+c_{1} \sqrt{2 x+3}
$$

which simplifies to

$$
y=\left(\frac{\ln (2 x+3)}{2}+c_{1}\right) \sqrt{2 x+3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{\ln (2 x+3)}{2}+c_{1}\right) \sqrt{2 x+3} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=\left(\frac{\ln (2 x+3)}{2}+c_{1}\right) \sqrt{2 x+3}
$$

Verified OK.

1.61.2 Maple step by step solution

Let's solve

$$
(2 x+3) y^{\prime}-y=\sqrt{2 x+3}
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Isolate the derivative

$$
y^{\prime}=\frac{y}{2 x+3}+\frac{1}{\sqrt{2 x+3}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}-\frac{y}{2 x+3}=\frac{1}{\sqrt{2 x+3}}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{2 x+3}\right)=\frac{\mu(x)}{\sqrt{2 x+3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{2 x+3}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{2 x+3}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\sqrt{2 x+3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{\sqrt{2 x+3}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{\sqrt{2 x+3}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{\sqrt{2 x+3}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\sqrt{2 x+3}}$
$y=\sqrt{2 x+3}\left(\int \frac{1}{2 x+3} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\left(\frac{\ln (2 x+3)}{2}+c_{1}\right) \sqrt{2 x+3}$
- Simplify
$y=\frac{\left(\ln (2 x+3)+2 c_{1}\right) \sqrt{2 x+3}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve $((2 * x+3) * \operatorname{diff}(y(x), x)=y(x)+\operatorname{sqrt}(2 * x+3), y(x)$, singsol=all)

$$
y(x)=\frac{\left(\ln (3+2 x)+2 c_{1}\right) \sqrt{3+2 x}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 29
DSolve $[(2 * x+3) * y$ ' $[x]==y[x]+$ Sqrt $[2 * x+3], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} \sqrt{2 x+3}\left(\log (2 x+3)+2 c_{1}\right)
$$

1.62 problem 63

1.62.1 Solving as first order ode lie symmetry calculated ode 512
1.62.2 Solving as exact ode . 517]

Internal problem ID [3207]
Internal file name [OUTPUT/2699_Sunday_June_05_2022_08_38_57_AM_41906111/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 63.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y+\left(y^{2} \mathrm{e}^{y}-x\right) y^{\prime}=0
$$

1.62.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{\mathrm{e}^{y} y^{2}-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{y\left(b_{3}-a_{2}\right)}{\mathrm{e}^{y} y^{2}-x}-\frac{y^{2} a_{3}}{\left(\mathrm{e}^{y} y^{2}-x\right)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(\mathrm{e}^{y} y^{2}-x\right)^{2}} \tag{5E}\\
& -\left(-\frac{1}{\mathrm{e}^{y} y^{2}-x}+\frac{y\left(\mathrm{e}^{y} y^{2}+2 y \mathrm{e}^{y}\right)}{\left(\mathrm{e}^{y} y^{2}-x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{2 y} y^{4} b_{2}-\mathrm{e}^{y} x y^{3} b_{2}-\mathrm{e}^{y} y^{4} b_{3}-3 \mathrm{e}^{y} x y^{2} b_{2}+\mathrm{e}^{y} y^{3} a_{2}-\mathrm{e}^{y} y^{3} b_{1}-2 \mathrm{e}^{y} y^{3} b_{3}-\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}}{\left(\mathrm{e}^{y} y^{2}-x\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& \mathrm{e}^{2 y} y^{4} b_{2}-\mathrm{e}^{y} x y^{3} b_{2}-\mathrm{e}^{y} y^{4} b_{3}-3 \mathrm{e}^{y} x y^{2} b_{2}+\mathrm{e}^{y} y^{3} a_{2} \tag{6E}\\
& \quad-\mathrm{e}^{y} y^{3} b_{1}-2 \mathrm{e}^{y} y^{3} b_{3}-\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& \mathrm{e}^{2 y} y^{4} b_{2}-\mathrm{e}^{y} x y^{3} b_{2}-\mathrm{e}^{y} y^{4} b_{3}-3 \mathrm{e}^{y} x y^{2} b_{2}+\mathrm{e}^{y} y^{3} a_{2} \tag{6E}\\
& \quad-\mathrm{e}^{y} y^{3} b_{1}-2 \mathrm{e}^{y} y^{3} b_{3}-\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{y}, \mathrm{e}^{2 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{y}=v_{3}, \mathrm{e}^{2 y}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{3} v_{1} v_{2}^{3} b_{2}+v_{4} v_{2}^{4} b_{2}-v_{3} v_{2}^{4} b_{3}+v_{3} v_{2}^{3} a_{2}-v_{3} v_{2}^{3} b_{1} \tag{7E}\\
& \quad-3 v_{3} v_{1} v_{2}^{2} b_{2}-2 v_{3} v_{2}^{3} b_{3}-v_{3} v_{2}^{2} b_{1}+v_{2} a_{1}-v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes
$-v_{3} v_{1} v_{2}^{3} b_{2}-3 v_{3} v_{1} v_{2}^{2} b_{2}-v_{1} b_{1}-v_{3} v_{2}^{4} b_{3}+v_{4} v_{2}^{4} b_{2}+\left(a_{2}-b_{1}-2 b_{3}\right) v_{2}^{3} v_{3}-v_{3} v_{2}^{2} b_{1}+v_{2} a_{1}=0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-b_{1} & =0 \\
-3 b_{2} & =0 \\
-b_{2} & =0 \\
-b_{3} & =0 \\
a_{2}-b_{1}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =y \\
\eta & =0
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =0-\left(-\frac{y}{\mathrm{e}^{y} y^{2}-x}\right)(y) \\
& =\frac{y^{2}}{\mathrm{e}^{y} y^{2}-x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{2}}{\mathrm{e}^{y} y^{2}-x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x}{y}+\mathrm{e}^{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{\mathrm{e}^{y} y^{2}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y} \\
S_{y} & =\frac{\mathrm{e}^{y} y^{2}-x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{y} y+x}{y}=c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{y} y+x}{y}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{\mathrm{e}^{y} y^{2}-x}$		$\frac{d S}{d R}=0$
$\rightarrow \rightarrow \rightarrow \rightarrow$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2]{ }$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 为	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$ +
	$y \mathrm{e}^{y}+x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty$		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+2}$ 为
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

Figure 93: Slope field plot
Verification of solutions

$$
\frac{\mathrm{e}^{y} y+x}{y}=c_{1}
$$

Verified OK.

1.62.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y} y^{2}-x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(\mathrm{e}^{y} y^{2}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \\
& N(x, y)=\mathrm{e}^{y} y^{2}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y} y^{2}-x\right) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{\mathrm{e}^{y} y^{2}-x}((1)-(-1)) \\
& =-\frac{2}{-\mathrm{e}^{y} y^{2}+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((-1)-(1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(y) \\
& =\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(\mathrm{e}^{y} y^{2}-x\right) \\
& =\frac{\mathrm{e}^{y} y^{2}-x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{1}{y}\right)+\left(\frac{\mathrm{e}^{y} y^{2}-x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{y} \mathrm{~d} x \\
\phi & =\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\mathrm{e}^{y} y^{2}-x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\mathrm{e}^{y} y^{2}-x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x}{y}+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x}{y}+\mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x}{y}+\mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
\frac{x}{y}+\mathrm{e}^{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve $(y(x)+(y(x) \sim 2 * \exp (y(x))-x) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\mathrm{e}^{y(x)} y(x)-c_{1} y(x)+x=0
$$

\checkmark Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 19
DSolve[y[x]+(y[x] $2 * \operatorname{Exp}[y[x]]-x) * y{ }^{\prime}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=-e^{y(x)} y(x)+c_{1} y(x), y(x)\right]
$$

1.63 problem 64

1.63.1 Solving as linear ode . 524
1.63.2 Maple step by step solution . 526

Internal problem ID [3208]
Internal file name [OUTPUT/2700_Sunday_June_05_2022_08_38_58_AM_75200012/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 64 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-3 y \tan (x)=1
$$

1.63.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-3 \tan (x) \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y \tan (x)=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-3 \tan (x) d x} \\
& =\cos (x)^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos (x)^{3} y\right) & =\cos (x)^{3} \\
\mathrm{~d}\left(\cos (x)^{3} y\right) & =\cos (x)^{3} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \cos (x)^{3} y=\int \cos (x)^{3} \mathrm{~d} x \\
& \cos (x)^{3} y=\frac{\left(2+\cos (x)^{2}\right) \sin (x)}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)^{3}$ results in

$$
y=\frac{\sec (x)^{3}\left(2+\cos (x)^{2}\right) \sin (x)}{3}+c_{1} \sec (x)^{3}
$$

which simplifies to

$$
y=\frac{\tan (x)}{3}+\frac{2 \tan (x) \sec (x)^{2}}{3}+c_{1} \sec (x)^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\tan (x)}{3}+\frac{2 \tan (x) \sec (x)^{2}}{3}+c_{1} \sec (x)^{3} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
y=\frac{\tan (x)}{3}+\frac{2 \tan (x) \sec (x)^{2}}{3}+c_{1} \sec (x)^{3}
$$

Verified OK.

1.63.2 Maple step by step solution

Let's solve

$$
y^{\prime}-3 y \tan (x)=1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=1+3 y \tan (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-3 y \tan (x)=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}-3 y \tan (x)\right)=\mu(x)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$

$$
\mu(x)\left(y^{\prime}-3 y \tan (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}
$$

- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-3 \mu(x) \tan (x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\cos (x)^{3}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}
$$

- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) d x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\cos (x)^{3}$

$$
y=\frac{\int \cos (x)^{3} d x+c_{1}}{\cos (x)^{3}}
$$

- Evaluate the integrals on the rhs

$$
y=\frac{\frac{\left(2+\cos (x)^{2}\right) \sin (x)}{3}+c_{1}}{\cos (x)^{3}}
$$

- Simplify

$$
y=\frac{\tan (x)}{3}+\frac{2 \tan (x) \sec (x)^{2}}{3}+c_{1} \sec (x)^{3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23
dsolve(diff $(y(x), x)=1+3 * y(x) * \tan (x), y(x), \quad$ singsol=all)

$$
y(x)=\frac{\tan (x)}{3}+\sec (x)^{3} c_{1}+\frac{2 \sec (x)^{2} \tan (x)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 26
DSolve $[y$ ' $[x]==1+3 * y[x] * \operatorname{Tan}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{12} \sec ^{3}(x)\left(9 \sin (x)+\sin (3 x)+12 c_{1}\right)
$$

1.64 problem 65

> 1.64.1 Solving as linear ode
1.64.2 Maple step by step solution . 531

Internal problem ID [3209]
Internal file name [OUTPUT/2701_Sunday_June_05_2022_08_38_59_AM_98974110/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 65.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
(\cos (x)+1) y^{\prime}-\sin (x)(\sin (x)+\sin (x) \cos (x)-y)=0
$$

1.64.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{\sin (x)}{\cos (x)+1} \\
& q(x)=\sin (x)^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{\sin (x) y}{\cos (x)+1}=\sin (x)^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{\sin (x)}{\cos (x)+1} d x} \\
& =\frac{1}{\cos (x)+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\sin (x)^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\cos (x)+1}\right) & =\left(\frac{1}{\cos (x)+1}\right)\left(\sin (x)^{2}\right) \\
\mathrm{d}\left(\frac{y}{\cos (x)+1}\right) & =\left(\frac{\sin (x)^{2}}{\cos (x)+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\cos (x)+1}=\int \frac{\sin (x)^{2}}{\cos (x)+1} \mathrm{~d} x \\
& \frac{y}{\cos (x)+1}=-\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}+x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\cos (x)+1}$ results in

$$
y=(\cos (x)+1)\left(-\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}+x\right)+c_{1}(\cos (x)+1)
$$

which simplifies to

$$
y=(\cos (x)+1)\left(c_{1}+x-\sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(\cos (x)+1)\left(c_{1}+x-\sin (x)\right) \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
y=(\cos (x)+1)\left(c_{1}+x-\sin (x)\right)
$$

Verified OK.

1.64.2 Maple step by step solution

Let's solve

$$
(\cos (x)+1) y^{\prime}-\sin (x)(\sin (x)+\sin (x) \cos (x)-y)=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-\frac{\sin (x) y}{\cos (x)+1}+\sin (x)^{2}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}+\frac{\sin (x) y}{\cos (x)+1}=\sin (x)^{2}
$$

- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{\sin (x) y}{\cos (x)+1}\right)=\mu(x) \sin (x)^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{\sin (x) y}{\cos (x)+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) \sin (x)}{\cos (x)+1}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{\cos (x)+1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sin (x)^{2} d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) \sin (x)^{2} d x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int \mu(x) \sin (x)^{2} d x+c_{1}}{\mu(x)}
$$

- \quad Substitute $\mu(x)=\frac{1}{\cos (x)+1}$
$y=(\cos (x)+1)\left(\int \frac{\sin (x)^{2}}{\cos (x)+1} d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=(\cos (x)+1)\left(-\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}+x+c_{1}\right)
$$

- Simplify
$y=(\cos (x)+1)\left(c_{1}+x-\sin (x)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve $((1+\cos (x)) * \operatorname{diff}(y(x), x)=\sin (x) *(\sin (x)+\sin (x) * \cos (x)-y(x)), y(x)$, singsol=all)

$$
y(x)=\left(-\sin (x)+x+c_{1}\right)(\cos (x)+1)
$$

\checkmark Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 24
DSolve $\left[(1+\operatorname{Cos}[x]) * y{ }^{\prime}[x]==\operatorname{Sin}[x] *(\operatorname{Sin}[x]+\operatorname{Sin}[x] * \operatorname{Cos}[x]-y[x]), y[x], x\right.$, IncludeSingularSolution

$$
y(x) \rightarrow \cos ^{2}\left(\frac{x}{2}\right)\left(2 x-2 \sin (x)+c_{1}\right)
$$

1.65 problem 66

1.65.1 Solving as linear ode . 534
1.65.2 Maple step by step solution . 536

Internal problem ID [3210]
Internal file name [OUTPUT/2702_Sunday_June_05_2022_08_38_59_AM_39178359/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 66.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\left(\sin (x)^{2}-y\right) \cos (x)=0
$$

1.65.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cos (x) \\
q(x) & =\sin (x)^{2} \cos (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\cos (x) y=\sin (x)^{2} \cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\sin (x)^{2} \cos (x)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\mathrm{e}^{\sin (x)}\right)\left(\sin (x)^{2} \cos (x)\right) \\
\mathrm{d}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\sin (x)^{2} \cos (x) \mathrm{e}^{\sin (x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\sin (x)} y=\int \sin (x)^{2} \cos (x) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
& \mathrm{e}^{\sin (x)} y=\sin (x)^{2} \mathrm{e}^{\sin (x)}-2 \sin (x) \mathrm{e}^{\sin (x)}+2 \mathrm{e}^{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x)^{2} \mathrm{e}^{\sin (x)}-2 \sin (x) \mathrm{e}^{\sin (x)}+2 \mathrm{e}^{\sin (x)}\right)+c_{1} \mathrm{e}^{-\sin (x)}
$$

which simplifies to

$$
y=\sin (x)^{2}-2 \sin (x)+2+c_{1} \mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)^{2}-2 \sin (x)+2+c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot

Verification of solutions

$$
y=\sin (x)^{2}-2 \sin (x)+2+c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.65.2 Maple step by step solution

Let's solve
$y^{\prime}-\left(\sin (x)^{2}-y\right) \cos (x)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\cos (x) y+\sin (x)^{2} \cos (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\cos (x) y=\sin (x)^{2} \cos (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\cos (x) y\right)=\mu(x) \sin (x)^{2} \cos (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\cos (x) y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cos (x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \sin (x)^{2} \cos (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \sin (x)^{2} \cos (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \sin (x)^{2} \cos (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\sin (x)}$
$y=\frac{\int \sin (x)^{2} \cos (x) \mathrm{e}^{\sin (x)} d x+c_{1}}{\mathrm{e}^{\sin (x)}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\sin (x)^{2} \mathrm{e}^{\sin (x)}-2 \sin (x) \mathrm{e}^{\sin (x)}+2 \mathrm{e}^{\sin (x)}+c_{1}}{\mathrm{e}^{\sin (x)}}
$$

- Simplify

$$
y=-2 \sin (x)-\cos (x)^{2}+3+c_{1} \mathrm{e}^{-\sin (x)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x)=( sin(x)^2-y(x))*cos(x),y(x), singsol=all)
```

$$
y(x)=3+\mathrm{e}^{-\sin (x)} c_{1}-\cos (x)^{2}-2 \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 30

```
DSolve[y'[x]==( Sin[x] 2-y[x])*Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-2 \sin (x)-\frac{1}{2} \cos (2 x)+c_{1} e^{-\sin (x)}+\frac{5}{2}
$$

1.66 problem 68

1.66.1 Solving as linear ode . 538
1.66.2 Maple step by step solution . 540

Internal problem ID [3211]
Internal file name [OUTPUT/2703_Sunday_June_05_2022_08_39_00_AM_74786523/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 68.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
(x+1) y^{\prime}-y=x(x+1)^{2}
$$

1.66.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x+1} \\
& q(x)=x(x+1)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x+1}=x(x+1)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x+1} d x} \\
& =\frac{1}{x+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x(x+1)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x+1}\right) & =\left(\frac{1}{x+1}\right)(x(x+1)) \\
\mathrm{d}\left(\frac{y}{x+1}\right) & =x \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x+1}=\int x \mathrm{~d} x \\
& \frac{y}{x+1}=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x+1}$ results in

$$
y=\frac{x^{2}(x+1)}{2}+c_{1}(x+1)
$$

which simplifies to

$$
y=\frac{(x+1)\left(x^{2}+2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(x+1)\left(x^{2}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot

Verification of solutions

$$
y=\frac{(x+1)\left(x^{2}+2 c_{1}\right)}{2}
$$

Verified OK.

1.66.2 Maple step by step solution

Let's solve

$$
(x+1) y^{\prime}-y=x(x+1)^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=\frac{y}{x+1}+x(x+1)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x+1}=x(x+1)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x+1}\right)=\mu(x) x(x+1)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x+1}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x+1}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x(x+1) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x(x+1) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x(x+1) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x+1}$
$y=(x+1)\left(\int x d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=(x+1)\left(\frac{x^{2}}{2}+c_{1}\right)$
- Simplify
$y=\frac{(x+1)\left(x^{2}+2 c_{1}\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve($(1+x) * \operatorname{diff}(y(x), x)-y(x)=x *(1+x) \wedge 2, y(x)$, singsol=all)

$$
y(x)=\frac{\left(x^{2}+2 c_{1}\right)(x+1)}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 20
DSolve $\left[(1+x) * y^{\prime}[x]-y[x]==x *(1+x)^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}(x+1)\left(x^{2}+2 c_{1}\right)
$$

1.67 problem 69

1.67.1 Solving as differentialType ode 543
1.67.2 Solving as first order ode lie symmetry calculated ode 545
1.67.3 Solving as exact ode . 551
1.67.4 Maple step by step solution . 555

Internal problem ID [3212]
Internal file name [OUTPUT/2704_Sunday_June_05_2022_08_39_00_AM_6394563/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_exact, _rational, [_1st_order, ` _with_symmetry_ [F(x)*G(y) ,0] []

$$
y+\left(x-y(y+1)^{2}\right) y^{\prime}=-1
$$

1.67.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-1-y}{x-y(y+1)^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(-y^{3}-2 y^{2}-y\right) d y=(-x) d y+(-y-1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y-1) d x=d(-(y+1) x)
$$

Hence (2) becomes

$$
\left(-y^{3}-2 y^{2}-y\right) d y=d(-(y+1) x)
$$

Integrating both sides gives gives the solution as

$$
-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}=-(y+1) x+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}=-(y+1) x+c_{1} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot

Verification of solutions

$$
-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}=-(y+1) x+c_{1}
$$

Verified OK.

1.67.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+1}{y^{3}+2 y^{2}-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2}+\frac{(y+1)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{y^{3}+2 y^{2}-x+y} \\
& \quad-\frac{(y+1)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{\left(y^{3}+2 y^{2}-x+y\right)^{2}} \tag{5E}\\
& \quad-\frac{(y+1)\left(x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right)}{\left(y^{3}+2 y^{2}-x+y\right)^{2}}-\left(\frac{1}{y^{3}+2 y^{2}-x+y}\right. \\
& \left.\quad-\frac{(y+1)\left(3 y^{2}+4 y+1\right)}{\left(y^{3}+2 y^{2}-x+y\right)^{2}}\right)\left(x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
$\underline{2 x y^{6} b_{4}+y^{7} b_{5}+8 x y^{5} b_{4}+y^{6} b_{2}+4 y^{6} b_{5}-2 x^{2} y^{3} b_{4}-2 x y^{4} a_{4}+12 x y^{4} b_{4}+x y^{4} b_{5}-y^{5} a_{5}+4 y^{5} b_{2}+6 y^{5} b_{5}+}$ $=0$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x y^{6} b_{4}+y^{7} b_{5}+8 x y^{5} b_{4}+y^{6} b_{2}+4 y^{6} b_{5}-2 x^{2} y^{3} b_{4}-2 x y^{4} a_{4}+12 x y^{4} b_{4} \\
& +x y^{4} b_{5}-y^{5} a_{5}+4 y^{5} b_{2}+6 y^{5} b_{5}+4 y^{5} b_{6}-3 x^{2} y^{2} b_{4}-6 x y^{3} a_{4}+8 x y^{3} b_{4} \\
& +4 x y^{3} b_{5}-y^{4} a_{2}-3 y^{4} a_{5}+6 y^{4} b_{2}+3 y^{4} b_{3}+4 y^{4} b_{5}+11 y^{4} b_{6}+3 x^{3} b_{4} \\
& +x^{2} y a_{4}+x^{2} y b_{5}-6 x y^{2} a_{4}-x y^{2} a_{5}+x y^{2} b_{2}+2 x y^{2} b_{4}+5 x y^{2} b_{5}-x y^{2} b_{6} \tag{6E}\\
& -3 y^{3} a_{2}-3 y^{3} a_{5}-3 y^{3} a_{6}+2 y^{3} b_{1}+4 y^{3} b_{2}+8 y^{3} b_{3}+y^{3} b_{5}+10 y^{3} b_{6}+x^{2} a_{4} \\
& +2 x^{2} b_{2}+x^{2} b_{4}-x^{2} b_{5}-2 x y a_{4}-2 x y a_{5}+2 x y b_{2}+2 x y b_{5}-2 x y b_{6}-3 y^{2} a_{2} \\
& -2 y^{2} a_{3}-y^{2} a_{5}-5 y^{2} a_{6}+5 y^{2} b_{1}+y^{2} b_{2}+7 y^{2} b_{3}+3 y^{2} b_{6}-x a_{5}+x b_{1} \\
& +x b_{2}-x b_{3}-y a_{1}-y a_{2}-3 y a_{3}-2 y a_{6}+4 y b_{1}+2 y b_{3}-a_{1}-a_{3}+b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 2 b_{4} v_{1} v_{2}^{6}+b_{5} v_{2}^{7}+b_{2} v_{2}^{6}+8 b_{4} v_{1} v_{2}^{5}+4 b_{5} v_{2}^{6}-2 a_{4} v_{1} v_{2}^{4}-a_{5} v_{2}^{5}+4 b_{2} v_{2}^{5} \\
& \quad-2 b_{4} v_{1}^{2} v_{2}^{3}+12 b_{4} v_{1} v_{2}^{4}+b_{5} v_{1} v_{2}^{4}+6 b_{5} v_{2}^{5}+4 b_{6} v_{2}^{5}-a_{2} v_{2}^{4}-6 a_{4} v_{1} v_{2}^{3} \\
& \quad-3 a_{5} v_{2}^{4}+6 b_{2} v_{2}^{4}+3 b_{3} v_{2}^{4}-3 b_{4} v_{1}^{2} v_{2}^{2}+8 b_{4} v_{1} v_{2}^{3}+4 b_{5} v_{1} v_{2}^{3}+4 b_{5} v_{2}^{4} \\
& \quad+11 b_{6} v_{2}^{4}-3 a_{2} v_{2}^{3}+a_{4} v_{1}^{2} v_{2}-6 a_{4} v_{1} v_{2}^{2}-a_{5} v_{1} v_{2}^{2}-3 a_{5} v_{2}^{3}-3 a_{6} v_{2}^{3} \\
& +2 b_{1} v_{2}^{3}+b_{2} v_{1} v_{2}^{2}+4 b_{2} v_{2}^{3}+8 b_{3} v_{2}^{3}+3 b_{4} v_{1}^{3}+2 b_{4} v_{1} v_{2}^{2}+b_{5} v_{1}^{2} v_{2}+5 b_{5} v_{1} v_{2}^{2} \\
& +b_{5} v_{2}^{3}-b_{6} v_{1} v_{2}^{2}+10 b_{6} v_{2}^{3}-3 a_{2} v_{2}^{2}-2 a_{3} v_{2}^{2}+a_{4} v_{1}^{2}-2 a_{4} v_{1} v_{2}-2 a_{5} v_{1} v_{2} \\
& \quad-a_{5} v_{2}^{2}-5 a_{6} v_{2}^{2}+5 b_{1} v_{2}^{2}+2 b_{2} v_{1}^{2}+2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+7 b_{3} v_{2}^{2}+b_{4} v_{1}^{2} \\
& \quad-b_{5} v_{1}^{2}+2 b_{5} v_{1} v_{2}-2 b_{6} v_{1} v_{2}+3 b_{6} v_{2}^{2}-a_{1} v_{2}-a_{2} v_{2}-3 a_{3} v_{2}-a_{5} v_{1} \\
& \quad-2 a_{6} v_{2}+b_{1} v_{1}+4 b_{1} v_{2}+b_{2} v_{1}-b_{3} v_{1}+2 b_{3} v_{2}-a_{1}-a_{3}+b_{1}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{4} v_{1}^{3}-2 b_{4} v_{1}^{2} v_{2}^{3}-3 b_{4} v_{1}^{2} v_{2}^{2}+\left(a_{4}+b_{5}\right) v_{1}^{2} v_{2}+\left(a_{4}+2 b_{2}+b_{4}-b_{5}\right) v_{1}^{2} \\
& \quad+2 b_{4} v_{1} v_{2}^{6}+8 b_{4} v_{1} v_{2}^{5}+\left(-2 a_{4}+12 b_{4}+b_{5}\right) v_{1} v_{2}^{4} \\
& \quad+\left(-6 a_{4}+8 b_{4}+4 b_{5}\right) v_{1} v_{2}^{3}+\left(-6 a_{4}-a_{5}+b_{2}+2 b_{4}+5 b_{5}-b_{6}\right) v_{1} v_{2}^{2} \\
& +\left(-2 a_{4}-2 a_{5}+2 b_{2}+2 b_{5}-2 b_{6}\right) v_{1} v_{2}+\left(-a_{5}+b_{1}+b_{2}-b_{3}\right) v_{1} \tag{8E}\\
& +b_{5} v_{2}^{7}+\left(b_{2}+4 b_{5}\right) v_{2}^{6}+\left(-a_{5}+4 b_{2}+6 b_{5}+4 b_{6}\right) v_{2}^{5} \\
& +\left(-a_{2}-3 a_{5}+6 b_{2}+3 b_{3}+4 b_{5}+11 b_{6}\right) v_{2}^{4} \\
& +\left(-3 a_{2}-3 a_{5}-3 a_{6}+2 b_{1}+4 b_{2}+8 b_{3}+b_{5}+10 b_{6}\right) v_{2}^{3} \\
& +\left(-3 a_{2}-2 a_{3}-a_{5}-5 a_{6}+5 b_{1}+b_{2}+7 b_{3}+3 b_{6}\right) v_{2}^{2} \\
& +\left(-a_{1}-a_{2}-3 a_{3}-2 a_{6}+4 b_{1}+2 b_{3}\right) v_{2}-a_{1}-a_{3}+b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{5} & =0 \\
-3 b_{4} & =0 \\
-2 b_{4} & =0 \\
2 b_{4} & =0 \\
3 b_{4} & =0 \\
8 b_{4} & =0 \\
a_{4}+b_{5} & =0 \\
b_{2}+4 b_{5} & =0 \\
-a_{1}-a_{3}+b_{1} & =0 \\
-6 a_{4}+8 b_{4}+4 b_{5} & =0 \\
-2 a_{4}+12 b_{4}+b_{5} & =0 \\
a_{4}+2 b_{2}+b_{4}-b_{5} & =0 \\
-a_{5}+b_{1}+b_{2}-b_{3} & =0 \\
-a_{5}+4 b_{2}+6 b_{5}+4 b_{6} & =0 \\
-2 a_{4}-2 a_{5}+2 b_{2}+2 b_{5}-2 b_{6} & =0 \\
-a_{1}-a_{2}-3 a_{3}-2 a_{6}+4 b_{1}+2 b_{3} & =0 \\
-a_{2}-3 a_{5}+6 b_{2}+3 b_{3}+4 b_{5}+11 b_{6} & =0 \\
-6 a_{4}-a_{5}+b_{2}+2 b_{4}+5 b_{5}-b_{6} & =0 \\
-3 a_{2}-2 a_{3}-a_{5}-5 a_{6}+5 b_{1}+b_{2}+7 b_{3}+3 b_{6} & =0 \\
-3 a_{2}-3 a_{5}-3 a_{6}+2 b_{1}+4 b_{2}+8 b_{3}+b_{5}+10 b_{6} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =\frac{b_{3}}{3} \\
a_{2} & =3 b_{3} \\
a_{3} & =\frac{2 b_{3}}{3} \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =\frac{b_{3}}{3} \\
b_{1} & =b_{3} \\
b_{2} & =0 \\
b_{3} & =b_{3} \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=\frac{1}{3} y^{2}+3 x+\frac{2}{3} y+\frac{1}{3} \\
& \eta=y+1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+1-\left(\frac{y+1}{y^{3}+2 y^{2}-x+y}\right)\left(\frac{1}{3} y^{2}+3 x+\frac{2}{3} y+\frac{1}{3}\right) \\
& =\frac{-3 y^{4}-8 y^{3}+12 x y-6 y^{2}+12 x+1}{-3 y^{3}-6 y^{2}+3 x-3 y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-3 y^{4}-8 y^{3}+12 x-6 y^{2}+12 x+1}{-3 y^{3}-6 y^{2}+3 x-3 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(3 y^{4}+8 y^{3}-12 x y+6 y^{2}-12 x-1\right)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+1}{y^{3}+2 y^{2}-x+y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{3}{-3 y^{3}-5 y^{2}+12 x-y+1} \\
S_{y} & =\frac{-3 y^{3}-6 y^{2}+3 x-3 y}{(y+1)\left(-3 y^{3}-5 y^{2}+12 x-y+1\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (-1-y)}{4}+\frac{\ln \left(-3 y^{3}-5 y^{2}+12 x-y+1\right)}{4}=c_{1}
$$

Which simplifies to

$$
\frac{\ln (-1-y)}{4}+\frac{\ln \left(-3 y^{3}-5 y^{2}+12 x-y+1\right)}{4}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (-1-y)}{4}+\frac{\ln \left(-3 y^{3}-5 y^{2}+12 x-y+1\right)}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot

Verification of solutions

$$
\frac{\ln (-1-y)}{4}+\frac{\ln \left(-3 y^{3}-5 y^{2}+12 x-y+1\right)}{4}=c_{1}
$$

Verified OK.

1.67.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x-y(y+1)^{2}\right) \mathrm{d} y & =(-y-1) \mathrm{d} x \\
(y+1) \mathrm{d} x+\left(x-y(y+1)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y+1 \\
N(x, y) & =x-y(y+1)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y+1) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x-y(y+1)^{2}\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y+1 \mathrm{~d} x \\
\phi & =(y+1) x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x-y(y+1)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x-y(y+1)^{2}=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y(y+1)^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-y(y+1)^{2}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{4} y^{4}-\frac{2}{3} y^{3}-\frac{1}{2} y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y+1) x-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y+1) x-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}+(y+1) x=c_{1} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}+(y+1) x=c_{1}
$$

Verified OK.

1.67.4 Maple step by step solution

Let's solve
$y+\left(x-y(y+1)^{2}\right) y^{\prime}=-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$1=1$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(y+1) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=(y+1) x+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$x-y(y+1)^{2}=x+\frac{d}{d y} f_{1}(y)$
- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-y(y+1)^{2}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{1}{4} y^{4}-\frac{2}{3} y^{3}-\frac{1}{2} y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=(y+1) x-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
(y+1) x-\frac{y^{4}}{4}-\frac{2 y^{3}}{3}-\frac{y^{2}}{2}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Root} O f\left(3 _Z^{4}+8 _Z^{3}+6 _Z^{2}-12 _Z x+12 c_{1}-12 x\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

```
dsolve((1+y(x))+(x-y(x)*(1+y(x))^2)* diff(y(x),x)=0,y(x), singsol=all)
```

$$
x+\frac{-3 y(x)^{4}-8 y(x)^{3}-6 y(x)^{2}-12 c_{1}}{12 y(x)+12}=0
$$

Solution by Mathematica

Time used: 33.714 (sec). Leaf size: 1594

```
DSolve[(1+y[x])+(x-y[x]*(1+y[x])~2)* y'[x]==0,y[x],x,IncludeSingularSolutions ->> True]
```


$$
\begin{aligned}
& y(x) \\
& \rightarrow \frac{1}{6}\left(-\sqrt{\frac{-24 x+6+72 c_{1}}{\sqrt[3]{27 x^{2}-\frac{1}{432} \sqrt{186624\left(27 x^{2}+1+12 c_{1}\right)^{2}-4\left(-144 x+36+432 c_{1}\right)^{3}}+1+12 c_{1}}}+6 \sqrt[3]{27 x^{2}-}}\right. \\
& +3-\frac{-24 x+6+72 c_{1}}{4 \sqrt{\frac{3}{\sqrt[3]{27 x^{2}-\frac{1}{432} \sqrt{186624\left(27 x^{2}+1+12 c_{1}\right)^{2}-4\left(-144 x+36+432 c_{1}\right)^{3}}+1+12 c_{1}}}+6 \sqrt[3]{27}}}
\end{aligned}
$$

1.68 problem 71.1

1.68.1 Solving as riccati ode

558
Internal problem ID [3213]
Internal file name [OUTPUT/2705_Sunday_June_05_2022_08_39_01_AM_70722247/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 71.1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}+y^{2}=x^{2}+1
$$

1.68.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =x^{2}-y^{2}+1
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x^{2}-y^{2}+1
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x^{2}+1, f_{1}(x)=0$ and $f_{2}(x)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =x^{2}+1
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(x)+\left(x^{2}+1\right) u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{x^{2}}{2}}\left(c_{1}+\operatorname{erf}(x) c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(x \sqrt{\pi}\left(c_{1}+\operatorname{erf}(x) c_{2}\right) \mathrm{e}^{x^{2}}+2 c_{2}\right) \mathrm{e}^{-\frac{x^{2}}{2}}}{\sqrt{\pi}}
$$

Using the above in (1) gives the solution

$$
y=\frac{\left(x \sqrt{\pi}\left(c_{1}+\operatorname{erf}(x) c_{2}\right) \mathrm{e}^{x^{2}}+2 c_{2}\right)\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right)^{2}}{\sqrt{\pi}\left(c_{1}+\operatorname{erf}(x) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{2 \mathrm{e}^{-x^{2}}+x \sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \mathrm{e}^{-x^{2}}+x \sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot

Verification of solutions

$$
y=\frac{2 \mathrm{e}^{-x^{2}}+x \sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)}{\sqrt{\pi}\left(c_{3}+\operatorname{erf}(x)\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
    <- Riccati particular polynomial solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

```
dsolve(diff(y(x),x)+y(x)^2=1+x^2,y(x), singsol=all)
```

$$
y(x)=\frac{\sqrt{\pi} \operatorname{erf}(x) x-2 c_{1} x+2 \mathrm{e}^{-x^{2}}}{\sqrt{\pi} \operatorname{erf}(x)-2 c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 36

```
DSolve[y'[x]+y[x]^2==1+x^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow x+\frac{2 e^{-x^{2}}}{\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}} \\
& y(x) \rightarrow x
\end{aligned}
$$

1.69 problem 72

$$
\text { 1.69.1 Solving as bernoulli ode . } 556
$$

Internal problem ID [3214]
Internal file name [OUTPUT/2706_Sunday_June_05_2022_08_39_01_AM_942369/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 72 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
3 x y^{\prime}-3 x y^{4} \ln (x)-y=0
$$

1.69.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(3 x y^{3} \ln (x)+1\right)}{3 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{3 x} y+\ln (x) y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{3 x} \\
f_{1}(x) & =\ln (x) \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=\frac{1}{3 x y^{3}}+\ln (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =\frac{w(x)}{3 x}+\ln (x) \\
w^{\prime} & =-\frac{w}{x}-3 \ln (x) \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-3 \ln (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x}=-3 \ln (x)
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-3 \ln (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)(-3 \ln (x)) \\
\mathrm{d}(x w) & =(-3 \ln (x) x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x w=\int-3 \ln (x) x \mathrm{~d} x \\
& x w=-\frac{3 \ln (x) x^{2}}{2}+\frac{3 x^{2}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
w(x)=\frac{-\frac{3 \ln (x) x^{2}}{2}+\frac{3 x^{2}}{4}}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
w(x)=\frac{-6 \ln (x) x^{2}+3 x^{2}+4 c_{1}}{4 x}
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=\frac{-6 \ln (x) x^{2}+3 x^{2}+4 c_{1}}{4 x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}}{6 \ln (x) x^{2}-3 x^{2}-4 c_{1}} \\
& y(x)=-\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}} \\
& y(x)=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}}{6 \ln (x) x^{2}-3 x^{2}-4 c_{1}} \tag{1}\\
& y=-\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}} \tag{2}\\
& y=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}} \tag{3}
\end{align*}
$$

Figure 103: Slope field plot

Verification of solutions

$$
y=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}}{6 \ln (x) x^{2}-3 x^{2}-4 c_{1}}
$$

Verified OK.

$$
y=-\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}}
$$

Verified OK.

$$
y=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 162

```
dsolve(3*x*diff (y (x),x)-3*x*y(x)~4*\operatorname{ln}(x)-y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}}{6 \ln (x) x^{2}-3 x^{2}-4 c_{1}} \\
& y(x)=-\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}} \\
& y(x)=\frac{2^{\frac{2}{3}}\left(-x\left(6 \ln (x) x^{2}-3 x^{2}-4 c_{1}\right)^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{12 \ln (x) x^{2}-6 x^{2}-8 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.25 (sec). Leaf size: 120
DSolve $[3 * x * y$ ' $[x]-3 * x * y[x] \sim 4 * \log [x]-y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{(-2)^{2 / 3} \sqrt[3]{x}}{\sqrt[3]{3 x^{2}-6 x^{2} \log (x)+4 c_{1}}} \\
& y(x) \rightarrow \frac{2^{2 / 3} \sqrt[3]{x}}{\sqrt[3]{3 x^{2}-6 x^{2} \log (x)+4 c_{1}}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-12^{2 / 3} \sqrt[3]{x}}}{\sqrt[3]{3 x^{2}-6 x^{2} \log (x)+4 c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.70 problem 73

1.70.1 Solving as first order ode lie symmetry calculated ode 568
1.70.2 Solving as exact ode . 574

Internal problem ID [3215]
Internal file name [OUTPUT/2707_Sunday_June_05_2022_08_39_02_AM_17707126/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 73 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, ` class B`]]

$$
y^{\prime}-\frac{4 x^{3} y^{2}}{y x^{4}+2}=0
$$

1.70.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{4 x^{3} y^{2}}{x^{4} y+2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{4 x^{3} y^{2}\left(b_{3}-a_{2}\right)}{x^{4} y+2}-\frac{16 x^{6} y^{4} a_{3}}{\left(x^{4} y+2\right)^{2}}-\left(\frac{12 x^{2} y^{2}}{x^{4} y+2}-\frac{16 x^{6} y^{3}}{\left(x^{4} y+2\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{8 x^{3} y}{x^{4} y+2}-\frac{4 x^{7} y^{2}}{\left(x^{4} y+2\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{3 x^{8} y^{2} b_{2}+12 x^{6} y^{4} a_{3}+4 x^{7} y^{2} b_{1}-4 x^{6} y^{3} a_{1}+12 x^{4} y b_{2}+32 x^{3} y^{2} a_{2}+8 x^{3} y^{2} b_{3}+24 x^{2} y^{3} a_{3}+16 x^{3} y b_{1}+24 x^{2}}{\left(x^{4} y+2\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -3 x^{8} y^{2} b_{2}-12 x^{6} y^{4} a_{3}-4 x^{7} y^{2} b_{1}+4 x^{6} y^{3} a_{1}-12 x^{4} y b_{2}-32 x^{3} y^{2} a_{2} \tag{6E}\\
& -8 x^{3} y^{2} b_{3}-24 x^{2} y^{3} a_{3}-16 x^{3} y b_{1}-24 x^{2} y^{2} a_{1}+4 b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -12 a_{3} v_{1}^{6} v_{2}^{4}-3 b_{2} v_{1}^{8} v_{2}^{2}+4 a_{1} v_{1}^{6} v_{2}^{3}-4 b_{1} v_{1}^{7} v_{2}^{2}-32 a_{2} v_{1}^{3} v_{2}^{2}-24 a_{3} v_{1}^{2} v_{2}^{3} \tag{7E}\\
& \quad-12 b_{2} v_{1}^{4} v_{2}-8 b_{3} v_{1}^{3} v_{2}^{2}-24 a_{1} v_{1}^{2} v_{2}^{2}-16 b_{1} v_{1}^{3} v_{2}+4 b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -3 b_{2} v_{1}^{8} v_{2}^{2}-4 b_{1} v_{1}^{7} v_{2}^{2}-12 a_{3} v_{1}^{6} v_{2}^{4}+4 a_{1} v_{1}^{6} v_{2}^{3}-12 b_{2} v_{1}^{4} v_{2} \tag{8E}\\
& \quad+\left(-32 a_{2}-8 b_{3}\right) v_{1}^{3} v_{2}^{2}-16 b_{1} v_{1}^{3} v_{2}-24 a_{3} v_{1}^{2} v_{2}^{3}-24 a_{1} v_{1}^{2} v_{2}^{2}+4 b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-24 a_{1} & =0 \\
4 a_{1} & =0 \\
-24 a_{3} & =0 \\
-12 a_{3} & =0 \\
-16 b_{1} & =0 \\
-4 b_{1} & =0 \\
-12 b_{2} & =0 \\
-3 b_{2} & =0 \\
4 b_{2} & =0 \\
-32 a_{2}-8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-4 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-4 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-4 y-\left(\frac{4 x^{3} y^{2}}{x^{4} y+2}\right)(x) \\
& =\frac{-8 x^{4} y^{2}-8 y}{x^{4} y+2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-8 x^{4} y^{2}-8 y}{x^{4} y+2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{4} y+1\right)}{8}-\frac{\ln (y)}{4}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{4 x^{3} y^{2}}{x^{4} y+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x^{3} y}{2 x^{4} y+2} \\
S_{y} & =\frac{-x^{4} y-2}{8 y\left(x^{4} y+1\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y x^{4}+1\right)}{8}-\frac{\ln (y)}{4}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y x^{4}+1\right)}{8}-\frac{\ln (y)}{4}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y x^{4}+1\right)}{8}-\frac{\ln (y)}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 104: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y x^{4}+1\right)}{8}-\frac{\ln (y)}{4}=c_{1}
$$

Verified OK.

1.70.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{4} y+2\right) \mathrm{d} y & =\left(4 x^{3} y^{2}\right) \mathrm{d} x \\
\left(-4 x^{3} y^{2}\right) \mathrm{d} x+\left(x^{4} y+2\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-4 x^{3} y^{2} \\
N(x, y) & =x^{4} y+2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-4 x^{3} y^{2}\right) \\
& =-8 x^{3} y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{4} y+2\right) \\
& =4 x^{3} y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{4} y+2}\left(\left(-8 x^{3} y\right)-\left(4 x^{3} y\right)\right) \\
& =-\frac{12 x^{3} y}{x^{4} y+2}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{4 x^{3} y^{2}}\left(\left(4 x^{3} y\right)-\left(-8 x^{3} y\right)\right) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}\left(-4 x^{3} y^{2}\right) \\
& =-\frac{4 x^{3}}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{4} y+2\right) \\
& =\frac{x^{4} y+2}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{4 x^{3}}{y}\right)+\left(\frac{x^{4} y+2}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{4 x^{3}}{y} \mathrm{~d} x \\
\phi & =-\frac{x^{4}}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{4}}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{4} y+2}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{4} y+2}{y^{3}}=\frac{x^{4}}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y^{3}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{4}}{y}-\frac{1}{y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{4}}{y}-\frac{1}{y^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{4}}{y}-\frac{1}{y^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot

Verification of solutions

$$
-\frac{x^{4}}{y}-\frac{1}{y^{2}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.594 (sec). Leaf size: 45
dsolve(diff $(y(x), x)=\left(4 * x^{\wedge} 3 * y(x)^{\wedge} 2\right) /\left(x^{\wedge} 4 * y(x)+2\right), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{4}-\sqrt{x^{8}+4 c_{1}}}{2 c_{1}} \\
& y(x)=\frac{x^{4}+\sqrt{x^{8}+4 c_{1}}}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 56
DSolve[y'[x]==(4*x^3*y[x]~2)/(x^4*y[x]+2),y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2}{-x^{4}+\sqrt{x^{8}+4 c_{1}}} \\
& y(x) \rightarrow-\frac{2}{x^{4}+\sqrt{x^{8}+4 c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.71 problem 74

1.71.1 Solving as bernoulli ode

Internal problem ID [3216]
Internal file name [OUTPUT/2708_Sunday_June_05_2022_08_39_03_AM_61626433/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 74 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_rational, _Bernoulli]

$$
y\left(6 y^{2}-x-1\right)+2 x y^{\prime}=0
$$

1.71.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y\left(6 y^{2}-x-1\right)}{2 x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{-x-1}{2 x} y-\frac{3}{x} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{-x-1}{2 x} \\
f_{1}(x) & =-\frac{3}{x} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{-x-1}{2 x y^{2}}-\frac{3}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{(-x-1) w(x)}{2 x}-\frac{3}{x} \\
w^{\prime} & =\frac{(-x-1) w}{x}+\frac{6}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x-1}{x} \\
& q(x)=\frac{6}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{(-x-1) w(x)}{x}=\frac{6}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x-1}{x} d x} \\
& =\mathrm{e}^{x+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=x \mathrm{e}^{x}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{6}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x \mathrm{e}^{x} w\right) & =\left(x \mathrm{e}^{x}\right)\left(\frac{6}{x}\right) \\
\mathrm{d}\left(x \mathrm{e}^{x} w\right) & =\left(6 \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x \mathrm{e}^{x} w=\int 6 \mathrm{e}^{x} \mathrm{~d} x \\
& x \mathrm{e}^{x} w=6 \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x \mathrm{e}^{x}$ results in

$$
w(x)=\frac{6 \mathrm{e}^{-x} \mathrm{e}^{x}}{x}+\frac{c_{1} \mathrm{e}^{-x}}{x}
$$

which simplifies to

$$
w(x)=\frac{c_{1} \mathrm{e}^{-x}+6}{x}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=\frac{c_{1} \mathrm{e}^{-x}+6}{x}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6} \\
& y(x)=-\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6} \tag{1}\\
& y=-\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6} \tag{2}
\end{align*}
$$

Figure 106: Slope field plot
Verification of solutions

$$
y=\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6}
$$

Verified OK.

$$
y=-\frac{\sqrt{\left(c_{1} \mathrm{e}^{-x}+6\right) x}}{c_{1} \mathrm{e}^{-x}+6}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 54

```
dsolve(y(x)*(6*y(x)^2-x-1)+2*x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\sqrt{\left(\mathrm{e}^{-x} c_{1}+6\right) x}}{\mathrm{e}^{-x} c_{1}+6} \\
& y(x)=-\frac{\sqrt{\left(\mathrm{e}^{-x} c_{1}+6\right) x}}{\mathrm{e}^{-x} c_{1}+6}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.709 (sec). Leaf size: 65
DSolve $[y[x] *(6 * y[x] \sim 2-x-1)+2 * x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{e^{x / 2} \sqrt{x}}{\sqrt{6 e^{x}+c_{1}}} \\
& y(x) \rightarrow \frac{e^{x / 2} \sqrt{x}}{\sqrt{6 e^{x}+c_{1}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.72 problem 75

1.72.1 Solving as bernoulli ode

Internal problem ID [3217]
Internal file name [OUTPUT/2709_Sunday_June_05_2022_08_39_04_AM_11853043/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 75 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

$$
(x+1)\left(y^{\prime}+y^{2}\right)-y=0
$$

1.72.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y(x y+y-1)}{x+1}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x+1} y-y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x+1} \\
f_{1}(x) & =-1 \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{1}{(x+1) y}-1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\frac{w(x)}{x+1}-1 \\
w^{\prime} & =-\frac{w}{x+1}+1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x+1} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{w(x)}{x+1}=1
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x+1} d x} \\
=x+1
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}((x+1) w) & =x+1 \\
\mathrm{~d}((x+1) w) & =x+1 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (x+1) w=\int x+1 \mathrm{~d} x \\
& (x+1) w=x+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x+1$ results in

$$
w(x)=\frac{x+\frac{1}{2} x^{2}}{x+1}+\frac{c_{1}}{x+1}
$$

which simplifies to

$$
w(x)=\frac{x^{2}+2 c_{1}+2 x}{2+2 x}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\frac{x^{2}+2 c_{1}+2 x}{2+2 x}
$$

Or

$$
y=\frac{2+2 x}{x^{2}+2 c_{1}+2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2+2 x}{x^{2}+2 c_{1}+2 x} \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot

Verification of solutions

$$
y=\frac{2+2 x}{x^{2}+2 c_{1}+2 x}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve($(1+x) *\left(\operatorname{diff}(y(x), x)+y(x)^{\wedge} 2\right)-y(x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\frac{2 x+2}{x^{2}+2 c_{1}+2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.201 (sec). Leaf size: 28
DSolve $\left[(1+x) *\left(y^{\prime}[x]+y[x] \sim 2\right)-y[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2(x+1)}{x^{2}+2 x+2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.73 problem 76

$$
\text { 1.73.1 Solving as bernoulli ode . } 591
$$

Internal problem ID [3218]
Internal file name [OUTPUT/2710_Sunday_June_05_2022_08_39_05_AM_50437549/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 76 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
x y y^{\prime}+y^{2}=\sin (x)
$$

1.73.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-y^{2}+\sin (x)}{x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{\sin (x)}{x} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{\sin (x)}{x} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{x}+\frac{\sin (x)}{x} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+\frac{\sin (x)}{x} \\
w^{\prime} & =-\frac{2 w}{x}+\frac{2 \sin (x)}{x} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =\frac{2 \sin (x)}{x}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{2 w(x)}{x}=\frac{2 \sin (x)}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{2 \sin (x)}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} w\right) & =\left(x^{2}\right)\left(\frac{2 \sin (x)}{x}\right) \\
\mathrm{d}\left(x^{2} w\right) & =(2 x \sin (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{2} w=\int 2 x \sin (x) \mathrm{d} x \\
& x^{2} w=2 \sin (x)-2 \cos (x) x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
w(x)=\frac{2 \sin (x)-2 \cos (x) x}{x^{2}}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
w(x)=\frac{2 \sin (x)-2 \cos (x) x+c_{1}}{x^{2}}
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\frac{2 \sin (x)-2 \cos (x) x+c_{1}}{x^{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x} \\
& y(x)=-\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x} \tag{1}\\
& y=-\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x} \tag{2}
\end{align*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x}
$$

Verified OK.

$$
y=-\frac{\sqrt{2 \sin (x)-2 \cos (x) x+c_{1}}}{x}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 42
dsolve $(x * y(x) * \operatorname{diff}(y(x), x)+y(x) \sim 2-\sin (x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\sqrt{2 \sin (x)-2 x \cos (x)+c_{1}}}{x} \\
& y(x)=-\frac{\sqrt{2 \sin (x)-2 x \cos (x)+c_{1}}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.367 (sec). Leaf size: 50
DSolve[x*y[x]*y'[x]+y[x]~2-Sin[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{2 \sin (x)-2 x \cos (x)+c_{1}}}{x} \\
& y(x) \rightarrow \frac{\sqrt{2 \sin (x)-2 x \cos (x)+c_{1}}}{x}
\end{aligned}
$$

1.74 problem 77

1.74.1 Solving as bernoulli ode

Internal problem ID [3219]
Internal file name [OUTPUT/2711_Sunday_June_05_2022_08_39_06_AM_73609574/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 77.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class D`], _rational, _Bernoulli]

$$
-y^{4}+x y^{3} y^{\prime}=-2 x^{3}
$$

1.74.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{4}-2 x^{3}}{x y^{3}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{x} y-2 x^{2} \frac{1}{y^{3}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{x} \\
f_{1}(x) & =-2 x^{2} \\
n & =-3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{3}}$ gives

$$
\begin{equation*}
y^{\prime} y^{3}=\frac{y^{4}}{x}-2 x^{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{4} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=4 y^{3} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{4} & =\frac{w(x)}{x}-2 x^{2} \\
w^{\prime} & =\frac{4 w}{x}-8 x^{2} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=-8 x^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{4 w(x)}{x}=-8 x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-8 x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(-8 x^{2}\right) \\
\mathrm{d}\left(\frac{w}{x^{4}}\right) & =\left(-\frac{8}{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{4}}=\int-\frac{8}{x^{2}} \mathrm{~d} x \\
& \frac{w}{x^{4}}=\frac{8}{x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{4}}$ results in

$$
w(x)=c_{1} x^{4}+8 x^{3}
$$

Replacing w in the above by y^{4} using equation (5) gives the final solution.

$$
y^{4}=c_{1} x^{4}+8 x^{3}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=-\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=-i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \tag{1}\\
& y=i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \tag{2}\\
& y=-\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \tag{3}\\
& y=-i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \tag{4}
\end{align*}
$$

Figure 109: Slope field plot
Verification of solutions

$$
y=\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
$$

Verified OK.

$$
y=i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
$$

Verified OK.

$$
y=-\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
$$

Verified OK.

$$
y=-i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65

```
dsolve((2*x^3-y(x)^4)+(x*y(x)^3)*diff (y (x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=-\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=-i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}} \\
& y(x)=i\left(x^{3}\left(c_{1} x+8\right)\right)^{\frac{1}{4}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 88

```
DSolve[(2*x^3-y[x]^4)+(x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow-x^{3 / 4} \sqrt[4]{8+c_{1} x} \\
& y(x) \rightarrow-i x^{3 / 4} \sqrt[4]{8+c_{1} x} \\
& y(x) \rightarrow i x^{3 / 4} \sqrt[4]{8+c_{1} x} \\
& y(x) \rightarrow x^{3 / 4} \sqrt[4]{8+c_{1} x}
\end{aligned}
$$

1.75 problem 78

1.75.1 Solving as bernoulli ode

Internal problem ID [3220]
Internal file name [OUTPUT/2712_Sunday_June_05_2022_08_39_06_AM_24935528/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 78.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_Bernoulli]

$$
y^{\prime}-y \tan (x)+y^{2} \cos (x)=0
$$

1.75.1 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\tan (x) y-\cos (x) y^{2}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\tan (x) y-\cos (x) y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\tan (x) \\
f_{1}(x) & =-\cos (x) \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{\tan (x)}{y}-\cos (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =\tan (x) w(x)-\cos (x) \\
w^{\prime} & =-\tan (x) w+\cos (x) \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\tan (x) \\
q(x) & =\cos (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\tan (x) w(x)=\cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \tan (x) d x} \\
& =\frac{1}{\cos (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sec (x)
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sec (x) w) & =(\sec (x))(\cos (x)) \\
\mathrm{d}(\sec (x) w) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sec (x) w=\int \mathrm{d} x \\
& \sec (x) w=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sec (x)$ results in

$$
w(x)=\cos (x) x+c_{1} \cos (x)
$$

which simplifies to

$$
w(x)=\cos (x)\left(x+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=\cos (x)\left(x+c_{1}\right)
$$

Or

$$
y=\frac{1}{\cos (x)\left(x+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\cos (x)\left(x+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=\frac{1}{\cos (x)\left(x+c_{1}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve($\operatorname{diff}(y(x), x)-y(x) * \tan (x)+y(x)^{\wedge} 2 * \cos (x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{\sec (x)}{c_{1}+x}
$$

\checkmark Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 19
DSolve[y'[x]-y[x]*Tan[x]+y[x] $2 * \operatorname{Cos}[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sec (x)}{x+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.76 problem 79

1.76.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [3221]
Internal file name [OUTPUT/2713_Sunday_June_05_2022_08_39_07_AM_44701922/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 79.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
    class B`]]
```

$$
6 y^{2}-x\left(2 x^{3}+y\right) y^{\prime}=0
$$

1.76.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{6 y^{2}}{x\left(2 x^{3}+y\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{6 y^{2}\left(b_{3}-a_{2}\right)}{x\left(2 x^{3}+y\right)}-\frac{36 y^{4} a_{3}}{x^{2}\left(2 x^{3}+y\right)^{2}} \\
& -\left(-\frac{6 y^{2}}{x^{2}\left(2 x^{3}+y\right)}-\frac{36 y^{2} x}{\left(2 x^{3}+y\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{12 y}{x\left(2 x^{3}+y\right)}-\frac{6 y^{2}}{x\left(2 x^{3}+y\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{4 x^{8} b_{2}-20 x^{5} y b_{2}+36 x^{4} y^{2} a_{2}-12 x^{4} y^{2} b_{3}+48 x^{3} y^{3} a_{3}-24 x^{4} y b_{1}+48 x^{3} y^{2} a_{1}-5 x^{2} y^{2} b_{2}-30 y^{4} a_{3}-6 x y^{2} b_{1}}{x^{2}\left(2 x^{3}+y\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 x^{8} b_{2}-20 x^{5} y b_{2}+36 x^{4} y^{2} a_{2}-12 x^{4} y^{2} b_{3}+48 x^{3} y^{3} a_{3}-24 x^{4} y b_{1} \tag{6E}\\
& \quad+48 x^{3} y^{2} a_{1}-5 x^{2} y^{2} b_{2}-30 y^{4} a_{3}-6 x y^{2} b_{1}+6 y^{3} a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{8}+36 a_{2} v_{1}^{4} v_{2}^{2}+48 a_{3} v_{1}^{3} v_{2}^{3}-20 b_{2} v_{1}^{5} v_{2}-12 b_{3} v_{1}^{4} v_{2}^{2}+48 a_{1} v_{1}^{3} v_{2}^{2} \tag{7E}\\
& \quad-24 b_{1} v_{1}^{4} v_{2}-30 a_{3} v_{2}^{4}-5 b_{2} v_{1}^{2} v_{2}^{2}+6 a_{1} v_{2}^{3}-6 b_{1} v_{1} v_{2}^{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{8}-20 b_{2} v_{1}^{5} v_{2}+\left(36 a_{2}-12 b_{3}\right) v_{1}^{4} v_{2}^{2}-24 b_{1} v_{1}^{4} v_{2}+48 a_{3} v_{1}^{3} v_{2}^{3} \tag{8E}\\
& +48 a_{1} v_{1}^{3} v_{2}^{2}-5 b_{2} v_{1}^{2} v_{2}^{2}-6 b_{1} v_{1} v_{2}^{2}-30 a_{3} v_{2}^{4}+6 a_{1} v_{2}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
48 a_{1} & =0 \\
-30 a_{3} & =0 \\
48 a_{3} & =0 \\
-24 b_{1} & =0 \\
-6 b_{1} & =0 \\
-20 b_{2} & =0 \\
-5 b_{2} & =0 \\
4 b_{2} & =0 \\
36 a_{2}-12 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =3 y-\left(\frac{6 y^{2}}{x\left(2 x^{3}+y\right)}\right)(x) \\
& =\frac{6 x^{3} y-3 y^{2}}{2 x^{3}+y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{6 x^{3} y-3 y^{2}}{2 x^{3}+y}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}+\frac{\ln (y)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{6 y^{2}}{x\left(2 x^{3}+y\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{4 x^{2}}{2 x^{3}-y} \\
S_{y} & =\frac{2}{6 x^{3}-3 y}+\frac{1}{3 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}+\frac{\ln (y)}{3}=-2 \ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}+\frac{\ln (y)}{3}=-2 \ln (x)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{6 y^{2}}{x\left(2 x^{3}+y\right)}$		$\frac{d S}{d R}=-\frac{2}{R}$
	$R=x$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$	$2 \ln \left(-2 x^{3}+y\right)$	
	$S=-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow-\infty]{ }$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}+\frac{\ln (y)}{3}=-2 \ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
-\frac{2 \ln \left(-2 x^{3}+y\right)}{3}+\frac{\ln (y)}{3}=-2 \ln (x)+c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.578 (sec). Leaf size: 193

```
dsolve(6*y(x)^2-(x*(2*x^3+y(x)))*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{x^{3}\left(-x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}-4 c_{1}\right)}{2 c_{1}} \\
& y(x)=\frac{x^{3}\left(x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}+4 c_{1}\right)}{2 c_{1}} \\
& y(x)=-\frac{x^{3}\left(-x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}-4 c_{1}\right)}{2 c_{1}} \\
& y(x)=\frac{x^{3}\left(x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}+4 c_{1}\right)}{2 c_{1}} \\
& y(x)=-\frac{x^{3}\left(-x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}-4 c_{1}\right)}{2 c_{1}} \\
& y(x)=\frac{x^{3}\left(x^{3}+\sqrt{x^{3}\left(x^{3}+8 c_{1}\right)}+4 c_{1}\right)}{2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.396 (sec). Leaf size: 123
DSolve $\left[6 * y[x] \sim 2-\left(x *\left(2 * x^{\wedge} 3+y[x]\right)\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 2 x^{3}\left(-1+\frac{2}{1-\frac{4 x^{3 / 2}}{\sqrt{16 x^{3}+c_{1}}}}\right) \\
& y(x) \rightarrow 2 x^{3}\left(-1+\frac{2}{1+\frac{4 x^{3 / 2}}{\sqrt{16 x^{3}+c_{1}}}}\right) \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 2 x^{3} \\
& y(x) \rightarrow \frac{2\left(\left(x^{3}\right)^{3 / 2}-x^{9 / 2}\right)}{x^{3 / 2}+\sqrt{x^{3}}}
\end{aligned}
$$

1.77 problem 80

1.77.1 Solving as clairaut ode . 614

Internal problem ID [3222]
Internal file name [OUTPUT/2714_Sunday_June_05_2022_08_39_08_AM_40232232/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 80.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
x y^{\prime 3}-y y^{2}=-1
$$

1.77.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
x p^{3}-y p^{2}=-1
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x p^{3}+1}{p^{2}} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p x+\frac{1}{p^{2}} \\
& =p x+\frac{1}{p^{2}}
\end{aligned}
$$

Writing the ode as

$$
y=p x+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=p x+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{1}{p^{2}}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{1}{c_{1}^{2}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{1}{p^{2}}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{2}{p^{3}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{x} \\
& p_{2}=-\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}+\frac{i \sqrt{3} 2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x} \\
& p_{3}=-\frac{2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}-\frac{i \sqrt{3} 2^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2 x}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}} \\
& y_{2}=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})} \\
& y_{3}=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(-1+i \sqrt{3})}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{1}{c_{1}^{2}} \tag{1}\\
& y=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}} \tag{2}\\
& y=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})} \tag{3}\\
& y=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(-1+i \sqrt{3})} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{c_{1}^{2}}
$$

Verified OK.

$$
y=\frac{3 x^{2} 2^{\frac{1}{3}}}{2\left(x^{2}\right)^{\frac{2}{3}}}
$$

Verified OK.

$$
y=-\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(1+i \sqrt{3})}
$$

Verified OK.

$$
y=\frac{3 x^{2} 2^{\frac{1}{3}}}{\left(x^{2}\right)^{\frac{2}{3}}(-1+i \sqrt{3})}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 66
dsolve $\left(x *(\operatorname{diff}(y(x), x))^{\wedge} 3-y(x) *(\operatorname{diff}(y(x), x))^{\wedge} 2+1=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}}{2} \\
& y(x)=-\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4} \\
& y(x)=\frac{32^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4} \\
& y(x)=c_{1} x+\frac{1}{c_{1}^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 69
DSolve $\left[x *\left(y^{\prime}[x]\right)^{\wedge} 3-y[x] *\left(y^{\prime}[x]\right)^{\wedge} 2+1==0, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x+\frac{1}{c_{1}^{2}} \\
& y(x) \rightarrow 3\left(-\frac{1}{2}\right)^{2 / 3} x^{2 / 3} \\
& y(x) \rightarrow \frac{3 x^{2 / 3}}{2^{2 / 3}} \\
& y(x) \rightarrow-\frac{3 \sqrt[3]{-1} x^{2 / 3}}{2^{2 / 3}}
\end{aligned}
$$

1.78 problem 81

1.78.1 Solving as clairaut ode . 619

Internal problem ID [3223]
Internal file name [OUTPUT/2715_Sunday_June_05_2022_08_39_10_AM_81734703/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 81.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
y-x y^{\prime}-y^{\prime 3}=0
$$

1.78.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
-p^{3}-x p+y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=p^{3}+x p \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =p^{3}+x p \\
& =p^{3}+x p
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=p^{3}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1}^{3}+c_{1} x
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=p^{3}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =3 p^{2}+x \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{\sqrt{-3 x}}{3} \\
& p_{2}=-\frac{\sqrt{-3 x}}{3}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=-\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9} \\
& y_{2}=\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1}^{3}+c_{1} x \tag{1}\\
& y=-\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9} \tag{2}\\
& y=\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=c_{1}^{3}+c_{1} x
$$

Verified OK.

$$
y=-\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9}
$$

Verified OK.

$$
y=\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.094 (sec). Leaf size: 37

```
dsolve(y(x)=x*diff(y(x),x)+(diff(y(x),x))^3,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9} \\
& y(x)=-\frac{2 \sqrt{3}(-x)^{\frac{3}{2}}}{9} \\
& y(x)=c_{1}\left(c_{1}^{2}+x\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 54
DSolve[y[x]==x*y'[x]+(y'[x])^3,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(x+c_{1}^{2}\right) \\
& y(x) \rightarrow-\frac{2 i x^{3 / 2}}{3 \sqrt{3}} \\
& y(x) \rightarrow \frac{2 i x^{3 / 2}}{3 \sqrt{3}}
\end{aligned}
$$

1.79 problem 82

1.79.1 Maple step by step solution 624

Internal problem ID [3224]
Internal file name [OUTPUT/2716_Sunday_June_05_2022_08_39_11_AM_40883080/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 82.
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x\left(-1+{y^{\prime}}^{2}\right)-2 y^{\prime}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{1+\sqrt{x^{2}+1}}{x} \tag{1}\\
& y^{\prime}=-\frac{-1+\sqrt{x^{2}+1}}{x} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1+\sqrt{x^{2}+1}}{x} \mathrm{~d} x \\
& =\int \frac{1+\sqrt{x^{2}+1}}{x} d x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int \frac{1+\sqrt{x^{2}+1}}{x} d x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int \frac{1+\sqrt{x^{2}+1}}{x} d x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{-1+\sqrt{x^{2}+1}}{x} \mathrm{~d} x \\
& =\int-\frac{-1+\sqrt{x^{2}+1}}{x} d x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int-\frac{-1+\sqrt{x^{2}+1}}{x} d x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int-\frac{-1+\sqrt{x^{2}+1}}{x} d x+c_{2}
$$

Verified OK.

1.79.1 Maple step by step solution

Let's solve

$$
x\left(-1+y^{\prime 2}\right)-2 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int\left(x\left(-1+y^{\prime 2}\right)-2 y^{\prime}\right) d x=\int 0 d x+c_{1}$
- Cannot compute integral

$$
\int\left(x\left(-1+y^{\prime 2}\right)-2 y^{\prime}\right) d x=c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 49

```
dsolve(x*( (diff(y(x),x))^2-1)=2*diff(y(x),x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{x^{2}+1}-\operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2}+1}}\right)+\ln (x)+c_{1} \\
& y(x)=-\sqrt{x^{2}+1}+\operatorname{arctanh}\left(\frac{1}{\sqrt{x^{2}+1}}\right)+\ln (x)+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 59
DSolve[x*(($\left.\left.y^{\prime}[x]\right)^{\sim} 2-1\right)==2 * y^{\prime}[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \sqrt{x^{2}+1}+\log \left(\sqrt{x^{2}+1}-1\right)+c_{1} \\
& y(x) \rightarrow-\sqrt{x^{2}+1}+\log \left(\sqrt{x^{2}+1}+1\right)+c_{1}
\end{aligned}
$$

1.80 problem 83

1.80.1 Solving as dAlembert ode . 626

Internal problem ID [3225]
Internal file name [OUTPUT/2717_Sunday_June_05_2022_08_39_11_AM_45878433/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 83.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime}\left(y^{\prime}+2\right)-y=0
$$

1.80.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p(p+2)-y=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=x p(p+2) \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=p(p+2) \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-p(p+2)=x(2 p+2) p^{\prime}(x) \tag{2A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-p(p+2)=0
$$

Solving for p from the above gives

$$
\begin{aligned}
& p=-1 \\
& p=0
\end{aligned}
$$

Substituting these in (1A) gives

$$
\begin{aligned}
& y=-x \\
& y=0
\end{aligned}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-p(x)(p(x)+2)}{x(2 p(x)+2)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
p^{\prime}(x)+p(x) p(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
p^{\prime}(x)+\frac{p(x)}{2 x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu p & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\sqrt{x} p) & =0
\end{aligned}
$$

Integrating gives

$$
\sqrt{x} p=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{x}$ results in

$$
p(x)=\frac{c_{1}}{\sqrt{x}}
$$

Substituing the above solution for p in (2A) gives

$$
y=\sqrt{x} c_{1}\left(\frac{c_{1}}{\sqrt{x}}+2\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =-x \tag{1}\\
y & =0 \tag{2}\\
y & =\sqrt{x} c_{1}\left(\frac{c_{1}}{\sqrt{x}}+2\right) \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=-x
$$

Verified OK.

$$
y=0
$$

Verified OK.

$$
y=\sqrt{x} c_{1}\left(\frac{c_{1}}{\sqrt{x}}+2\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful
```

Solution by Maple
Time used: 0.063 (sec). Leaf size: 40

```
dsolve(x*diff (y(x),x)*(diff(y(x),x)+2)=y(x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x \\
& y(x)=\frac{\sqrt{c_{1} x}\left(\sqrt{c_{1} x}+2 x\right)}{x} \\
& y(x)=-2 \sqrt{c_{1} x}+c_{1}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 63
DSolve[x*y'[x]*(y'[x]+2)==y[x],y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow e^{c_{1}}-2 e^{\frac{c_{1}}{2}} \sqrt{x} \\
& y(x) \rightarrow 2 e^{-\frac{c_{1}}{2}} \sqrt{x}+e^{-c_{1}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-x
\end{aligned}
$$

1.81 problem 84

1.81.1 Maple step by step solution

633
Internal problem ID [3226]
Internal file name [OUTPUT/2718_Sunday_June_05_2022_08_39_12_AM_61153006/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 84 .
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
-y^{\prime} \sqrt{1+y^{\prime 2}}=-x
$$

Solving the given ode for y^{\prime} results in 4 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} \tag{2}\\
& y^{\prime}=\frac{\sqrt{-2-2 \sqrt{4 x^{2}+1}}}{2} \tag{3}\\
& y^{\prime}=-\frac{\sqrt{-2-2 \sqrt{4 x^{2}+1}}}{2} \tag{4}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} \mathrm{~d} x \\
& =\int \frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{1}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\int \frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int \frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{1}
$$

Verified OK.
Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} \mathrm{~d} x \\
& =\int-\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\int-\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\int-\frac{\sqrt{2 \sqrt{4 x^{2}+1}-2}}{2} d x+c_{2}
$$

Verified OK.
Solving equation (3)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{-2-2 \sqrt{4 x^{2}+1}}}{2} \mathrm{~d} x \\
& =-\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\left.\sqrt{4 x^{2}+1}\right)}\right.}{32 \sqrt{\pi}}+c_{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=-\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\sqrt{4 x^{2}+1}}\right)}{32 \sqrt{\pi}}+c(1)
$$

Verification of solutions

$$
y=-\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\sqrt{4 x^{2}+1}}\right)}{32 \sqrt{\pi}}+c_{3}
$$

Verified OK.

Solving equation (4)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{-2-2 \sqrt{4 x^{2}+1}}}{2} \mathrm{~d} x \\
& =\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\sqrt{4 x^{2}+1}}\right)}{32 \sqrt{\pi}}+c_{4}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\sqrt{4 x^{2}+1}}\right)}{32 \sqrt{\pi}}+c_{4}(1)
$$

Verification of solutions

$$
y=\frac{i \sqrt{2}\left(-\frac{256 \sqrt{2} \sqrt{\pi} x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}-\frac{8 \sqrt{2} \sqrt{\pi}\left(-\frac{64}{3} x^{4}-\frac{8}{3} x^{2}+\frac{2}{3}\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{\sqrt{4 x^{2}+1}}\right)}{32 \sqrt{\pi}}+c_{4}
$$

Verified OK.

1.81.1 Maple step by step solution

Let's solve
$-y^{\prime} \sqrt{1+y^{\prime 2}}=-x$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int-y^{\prime} \sqrt{1+{y^{\prime 2}}^{2}} d x=\int-x d x+c_{1}$
- Cannot compute integral

$$
\int-y^{\prime} \sqrt{1+y^{\prime 2}} d x=-\frac{x^{2}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 147

```
dsolve(x=diff(y(x),x)*sqrt((diff(y(x),x))^2+1),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{i\left(-32 x^{4}-4 x^{2}+1\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3 \sqrt{4 x^{2}+1}}-\frac{16 i x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}+c_{1} \\
& y(x)=\frac{i\left(-32 x^{4}-4 x^{2}+1\right) \sinh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3 \sqrt{4 x^{2}+1}}+\frac{16 i x^{3} \cosh \left(\frac{3 \operatorname{arcsinh}(2 x)}{2}\right)}{3}+c_{1} \\
& y(x)=-\frac{\left(\int \sqrt{2 \sqrt{4 x^{2}+1}-2} d x\right)}{2}+c_{1} \\
& y(x)=\frac{\left(\int \sqrt{2 \sqrt{4 x^{2}+1}-2} d x\right)}{2}+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 207
DSolve[x==y'[x]*Sqrt[(y'[x])~2+1],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{2} x\left(\sqrt{4 x^{2}+1}-2\right)}{3 \sqrt{\sqrt{4 x^{2}+1}-1}}+c_{1} \\
& y(x) \rightarrow \frac{\sqrt{2} x\left(\sqrt{4 x^{2}+1}-2\right)}{3 \sqrt{\sqrt{4 x^{2}+1}-1}+c_{1}} \\
& y(x) \rightarrow-\frac{\sqrt{2} x\left(4 x^{2}+3 \sqrt{4 x^{2}+1}+3\right)}{3\left(-\sqrt{4 x^{2}+1}-1\right)^{3 / 2}}+c_{1} \\
& y(x) \rightarrow \frac{\sqrt{2} x\left(4 x^{2}+3 \sqrt{4 x^{2}+1}+3\right)}{3\left(-\sqrt{4 x^{2}+1}-1\right)^{3 / 2}}+c_{1}
\end{aligned}
$$

1.82 problem 85

1.82.1 Solving as clairaut ode

Internal problem ID [3227]
Internal file name [OUTPUT/2719_Sunday_June_05_2022_08_39_14_AM_16286413/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 85.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "clairaut"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _Clairaut]

$$
2 y^{\prime 2}\left(-x y^{\prime}+y\right)=1
$$

1.82.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

$$
y=x y^{\prime}+g\left(y^{\prime}\right)
$$

Where g is function of $y^{\prime}(x)$. Let $p=y^{\prime}$ the ode becomes

$$
2 p^{2}(-x p+y)=1
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{2 p^{3} x+1}{2 p^{2}} \tag{1~A}
\end{equation*}
$$

The above ode is a Clairaut ode which is now solved. We start by replacing y^{\prime} by p which gives

$$
\begin{aligned}
y & =x p+\frac{1}{2 p^{2}} \\
& =x p+\frac{1}{2 p^{2}}
\end{aligned}
$$

Writing the ode as

$$
y=x p+g(p)
$$

We now write $g \equiv g(p)$ to make notation simpler but we should always remember that g is function of p which in turn is function of x. Hence the above becomes

$$
\begin{equation*}
y=x p+g \tag{1}
\end{equation*}
$$

Then we see that

$$
g=\frac{1}{2 p^{2}}
$$

Taking derivative of (1) w.r.t. x gives

$$
\begin{aligned}
& p=\frac{d}{d x}(x p+g) \\
& p=\left(p+x \frac{d p}{d x}\right)+\left(g^{\prime} \frac{d p}{d x}\right) \\
& p=p+\left(x+g^{\prime}\right) \frac{d p}{d x} \\
& 0=\left(x+g^{\prime}\right) \frac{d p}{d x}
\end{aligned}
$$

Where g^{\prime} is derivative of $g(p)$ w.r.t. p. The general solution is given by

$$
\begin{aligned}
\frac{d p}{d x} & =0 \\
p & =c_{1}
\end{aligned}
$$

Substituting this in (1) gives the general solution as

$$
y=c_{1} x+\frac{1}{2 c_{1}^{2}}
$$

The singular solution is found from solving for p from

$$
x+g^{\prime}(p)=0
$$

And substituting the result back in (1). Since we found above that $g=\frac{1}{2 p^{2}}$, then the above equation becomes

$$
\begin{aligned}
x+g^{\prime}(p) & =x-\frac{1}{p^{3}} \\
& =0
\end{aligned}
$$

Solving the above for p results in

$$
\begin{aligned}
& p_{1}=\frac{1}{x^{\frac{1}{3}}} \\
& p_{2}=-\frac{1}{2 x^{\frac{1}{3}}}+\frac{i \sqrt{3}}{2 x^{\frac{1}{3}}} \\
& p_{3}=-\frac{1}{2 x^{\frac{1}{3}}}-\frac{i \sqrt{3}}{2 x^{\frac{1}{3}}}
\end{aligned}
$$

Substituting the above back in (1) results in

$$
\begin{aligned}
& y_{1}=\frac{3 x^{\frac{2}{3}}}{2} \\
& y_{2}=-\frac{3 x^{\frac{2}{3}}}{1+i \sqrt{3}} \\
& y_{3}=\frac{3 x^{\frac{2}{3}}}{-1+i \sqrt{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=c_{1} x+\frac{1}{2 c_{1}^{2}} \tag{1}\\
& y=\frac{3 x^{\frac{2}{3}}}{2} \tag{2}\\
& y=-\frac{3 x^{\frac{2}{3}}}{1+i \sqrt{3}} \tag{3}\\
& y=\frac{3 x^{\frac{2}{3}}}{-1+i \sqrt{3}} \tag{4}
\end{align*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{1}{2 c_{1}^{2}}
$$

Verified OK.

$$
y=\frac{3 x^{\frac{2}{3}}}{2}
$$

Verified OK.

$$
y=-\frac{3 x^{\frac{2}{3}}}{1+i \sqrt{3}}
$$

Verified OK.

$$
y=\frac{3 x^{\frac{2}{3}}}{-1+i \sqrt{3}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    <- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 53
dsolve($2 *(\operatorname{diff}(y(x), x))^{\wedge} 2 *(y(x)-x * \operatorname{diff}(y(x), x))=1, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{3 x^{\frac{2}{3}}}{2} \\
& y(x)=-\frac{3 x^{\frac{2}{3}}(1+i \sqrt{3})}{4} \\
& y(x)=\frac{3 x^{\frac{2}{3}}(i \sqrt{3}-1)}{4} \\
& y(x)=c_{1} x+\frac{1}{2 c_{1}^{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 67
DSolve[2*($\left.\mathrm{y}^{\prime}[\mathrm{x}]\right)^{\wedge} 2 *\left(\mathrm{y}[\mathrm{x}]-\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]\right)==1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
y(x) & \rightarrow c_{1} x+\frac{1}{2 c_{1}{ }^{2}} \\
y(x) & \rightarrow \frac{3 x^{2 / 3}}{2} \\
y(x) & \rightarrow-\frac{3}{2} \sqrt[3]{-1} x^{2 / 3} \\
y(x) & \rightarrow \frac{3}{2}(-1)^{2 / 3} x^{2 / 3}
\end{aligned}
$$

1.83 problem 86

Internal problem ID [3228]
Internal file name [OUTPUT/2720_Sunday_June_05_2022_08_39_16_AM_49114467/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 86 .
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y-2 x y^{\prime}-y^{2} y^{\prime 3}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{equation*}
y^{\prime}=\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{6 y}-\frac{4 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

$y^{\prime}=-\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{12 y}+\frac{2 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.}+\frac{i \sqrt{3}\left(\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32}\right.}{6 y}\right.}{}$
$y^{\prime}=-\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{12 y}+\frac{2 x}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.}-\frac{i \sqrt{3}\left(\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32}\right.}{6 y}\right.}{}$

Now each one of the above ODE is solved.
Solving equation (1)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{aligned}
& b_{2}+\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(b_{3}-a_{2}\right)}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)^{2} a_{3}}{36 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}-24}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& \left.-\frac{32\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac{216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}}{9 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}}\right. \\
& -\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& \left.-\frac{\left(\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{18 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}}\right)\left(x b_{2}\right. \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{5} b_{3}-\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} x b_{2}+\sqrt{2^{2}}}{} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{5} b_{3} \\
& +\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} x b_{2} \\
& -\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} y a_{2} \\
& +2 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} y b_{3} \\
& +6 b_{2} y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}} \\
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} y^{4} b_{1} \\
& -12960 \sqrt{3} x^{2} y^{4} b_{2}-20736 \sqrt{3} x y^{5} b_{3} \\
& +8 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} x a_{3} \\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} y^{3} b_{3} \\
& +13824 \sqrt{3} x^{4} y a_{2}-9216 \sqrt{3} x^{3} y^{2} a_{3} \\
& -12960 \sqrt{3} x y^{4} b_{1}-96 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x^{2} a_{3} \tag{6E}\\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} y^{2} b_{1} \\
& -4320 \sqrt{27 y^{4}+32 x^{3}} x^{2} y^{2} b_{2} \\
& -6912 \sqrt{27 y^{4}+32 x^{3}} x y^{3} b_{3}+4608 \sqrt{3} x^{3} y a_{1} \\
& -4320 \sqrt{27 y^{4}+32 x^{3}} x y^{2} b_{1}+15552 \sqrt{3} x y^{5} a_{2} \\
& -18432 \sqrt{3} x^{4} y b_{3}+5184 \sqrt{27 y^{4}+32 x^{3}} x y^{3} a_{2} \\
& -216\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x y^{4} b_{2} \\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{3} y a_{2} \\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{2} y^{2} a_{3} \\
& -72 \sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}\right. \\
& \left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x y^{2} b_{2} \\
& -192\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} \sqrt{3} x^{2} y a_{1} \\
& -3888 \sqrt{3} y^{6} a_{3}-9216 \sqrt{3} x^{5} b_{2} \\
& +7776 \sqrt{3} y^{5} a_{1}-9216 \sqrt{3}{ }^{6}{ }^{4} b_{1} \\
& +\sqrt{27 y^{4}+32 x^{3}}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{5}{3}} b_{1}
\end{align*}
$$

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 648 v_{4} \sqrt{3} v_{2}^{4} b_{1}-77760 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}-124416 \sqrt{3} v_{1} v_{2}^{5} b_{3}+864 v_{5} v_{4} v_{2}^{3} b_{3} \\
& +82944 \sqrt{3} v_{1}^{4} v_{2} a_{2}-55296 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}-77760 \sqrt{3} v_{1} v_{2}^{4} b_{1} \\
& \quad-576 v_{5} v_{4} v_{1}^{2} a_{3}+216 v_{5} v_{4} v_{2}^{2} b_{1}-25920 v_{5} v_{1}^{2} v_{2}^{2} b_{2}-41472 v_{5} v_{1} v_{2}^{3} b_{3} \\
& +27648 \sqrt{3} v_{1}^{3} v_{2} a_{1}-25920 v_{5} v_{1} v_{2}^{2} b_{1}+93312 \sqrt{3} v_{1} v_{2}^{5} a_{2} \\
& -110592 \sqrt{3} v_{1}^{4} v_{2} b_{3}-648 v_{4} v_{5} v_{2}^{3} a_{2}+3888 v_{3} v_{5} v_{2}^{4} b_{2} \\
& +2304 \sqrt{3} v_{1}^{3} v_{4} b_{1}-1944 \sqrt{3} v_{4} v_{2}^{5} a_{2}+11664 \sqrt{3} v_{3} v_{2}^{6} b_{2} \tag{7E}\\
& +2304 \sqrt{3} v_{1}^{4} v_{4} b_{2}+18432 \sqrt{3} v_{1}^{4} v_{3} a_{3}+31104 v_{5} v_{1} v_{2}^{3} a_{2} \\
& +2592 v_{4} \sqrt{3} v_{2}^{5} b_{3}+5184 v_{1} v_{3} v_{5} v_{2}^{2} a_{3}+4608 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3} \\
& +13824 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+15552 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+648 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2} \\
& -3456 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2}-1152 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}+216 v_{5} v_{4} v_{1} v_{2}^{2} b_{2} \\
& -1152 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1}-13824 v_{1}^{3} v_{5} a_{3}-23328 \sqrt{3} v_{2}^{6} a_{3}-55296 \sqrt{3} v_{1}^{5} b_{2} \\
& +46656 \sqrt{3} v_{2}^{5} a_{1}-55296 \sqrt{3} v_{1}^{4} b_{1}-7776 v_{5} v_{2}^{4} a_{3}+15552 v_{5} v_{2}^{3} a_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 648 v_{4} \sqrt{3} v_{2}^{4} b_{1}-77760 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2}-55296 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& \quad-77760 \sqrt{3} v_{1} v_{2}^{4} b_{1}-576 v_{5} v_{4} v_{1}^{2} a_{3}+216 v_{5} v_{4} v_{2}^{2} b_{1}-25920 v_{5} v_{1}^{2} v_{2}^{2} b_{2} \\
& +27648 \sqrt{3} v_{1}^{3} v_{2} a_{1}-25920 v_{5} v_{1} v_{2}^{2} b_{1}+3888 v_{3} v_{5} v_{2}^{4} b_{2} \\
& +2304 \sqrt{3} v_{1}^{3} v_{4} b_{1}+11664 \sqrt{3} v_{3} v_{2}^{6} b_{2}+2304 \sqrt{3} v_{1}^{4} v_{4} b_{2} \\
& +18432 \sqrt{3} v_{1}^{4} v_{3} a_{3}+\left(82944 \sqrt{3} a_{2}-110592 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2} \\
& +\left(93312 \sqrt{3} a_{2}-124416 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5} \tag{8E}\\
& +\left(-1944 \sqrt{3} a_{2}+2592 \sqrt{3} b_{3}\right) v_{2}^{5} v_{4}+5184 v_{1} v_{3} v_{5} v_{2}^{2} a_{3} \\
& +13824 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+15552 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+648 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2} \\
& -1152 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}+216 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}-1152 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1} \\
& +\left(-648 a_{2}+864 b_{3}\right) v_{2}^{3} v_{4} v_{5}+\left(-3456 \sqrt{3} a_{2}+4608 \sqrt{3} b_{3}\right) v_{1}^{3} v_{2} v_{4} \\
& +\left(31104 a_{2}-41472 b_{3}\right) v_{1} v_{2}^{3} v_{5}-13824 v_{1}^{3} v_{5} a_{3} \\
& -23328 \sqrt{3} v_{2}^{6} a_{3}-55296 \sqrt{3} v_{1}^{5} b_{2}+46656 \sqrt{3} v_{2}^{5} a_{1} \\
& -55296 \sqrt{3} v_{1}^{4} b_{1}-7776 v_{5} v_{2}^{4} a_{3}+15552 v_{5} v_{2}^{3} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& 15552 a_{1}=0 \\
& -13824 a_{3}=0 \\
& -7776 a_{3}=0 \\
& -576 a_{3}=0 \\
& 5184 a_{3}=0 \\
& -25920 b_{1}=0 \\
& 216 b_{1}=0 \\
& -25920 b_{2}=0 \\
& 216 b_{2}=0 \\
& 3888 b_{2}=0 \\
& -1152 \sqrt{3} a_{1}=0 \\
& 27648 \sqrt{3} a_{1}=0 \\
& 46656 \sqrt{3} a_{1}=0 \\
& -55296 \sqrt{3} a_{3}=0 \\
& -23328 \sqrt{3} a_{3}=0 \\
& -1152 \sqrt{3} a_{3}=0 \\
& 15552 \sqrt{3} a_{3}=0 \\
& 18432 \sqrt{3} a_{3}=0 \\
& -77760 \sqrt{3} b_{1}=0 \\
& -55296 \sqrt{3} b_{1}=0 \\
& 648 \sqrt{3} b_{1}=0 \\
& 2304 \sqrt{3} b_{1}=0 \\
& -77760 \sqrt{3} b_{2}=0 \\
& -55296 \sqrt{3} b_{2}=0 \\
& 648 \sqrt{3} b_{2}=0 \\
& 2304 \sqrt{3} b_{2}=0 \\
& 11664 \sqrt{3} b_{2}=0 \\
& 13824 \sqrt{3} b_{2}=0 \\
& -648 a_{2}+864 b_{3}=0 \\
& 31104 a_{2}-41472 b_{3}=0 \\
& -3456 \sqrt{3} a_{2}+4608 \sqrt{3} b_{3}=0 \\
& -1944 \sqrt{3} a_{2}+2592 \sqrt{3} b_{3}=0 \\
& 82944 \sqrt{3} a_{2}-{ }_{64} 110592 \sqrt{3} b_{3}=0 \\
& 93312 \sqrt{3} a_{2}-124416 \sqrt{3} b_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =\frac{4 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{\frac{4 x}{3}} \\
& =\frac{3 y}{4 x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{\frac{3}{4}}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{\frac{3}{4}}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{\frac{4 x}{3}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\frac{3 \ln (x)}{4}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{6 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{3 y}{4 x^{\frac{7}{4}}} \\
R_{y} & =\frac{1}{x^{\frac{3}{4}}} \\
S_{x} & =\frac{3}{4 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
$\frac{d S}{d R}=\frac{9 x^{\frac{3}{4}} y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{2\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}} x-9 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}-48 x^{2}}$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{9 R 12^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{1}{3}}}{212^{\frac{2}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{2}{3}}-912^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{4}+32}+9 R^{2}\right)^{\frac{1}{3}} R^{2}-48}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{9 R\left(12 \sqrt{81 R^{4}+96}+108 R^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 R^{4}+96}+9 R^{2}\right)^{2}\right)^{\frac{1}{3}}-9 R^{2}\left(12 \sqrt{81 R^{4}+96}+108 R^{2}\right)^{\frac{1}{3}}-48} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{3 \ln (x)}{4}=\int^{\frac{y}{x^{3}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a+c_{1}
$$

Which simplifies to

$$
\frac{3 \ln (x)}{4}=\int^{\frac{y}{x^{\frac{3}{4}}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a+c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{3 \ln (x)}{4} \tag{1}\\
& =\int^{\frac{y}{x^{\frac{3}{4}}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a \\
& \quad+c_{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{3 \ln (x)}{4} \\
& =\int^{\frac{y}{x^{3}}} \frac{9 _a\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}}{418^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{4}+96}+9 _a^{2}\right)^{2}\right)^{\frac{1}{3}}-9 _a^{2}\left(12 \sqrt{81 _a^{4}+96}+108 _a^{2}\right)^{\frac{1}{3}}-48} d _a \\
& \quad+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)
Writing the ode as
$y^{\prime}=\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}$
$y^{\prime}=\omega(x, y)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{aligned}
& b_{2} \\
& +\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)\left(b_{3}-a_{2}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)^{2} a_{3}}{144 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{1152 i x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24 i \sqrt{3}-\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}\right. \\
& \left.-\frac{16\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right) \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{\frac{2 i \sqrt{3}\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{\frac{3\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}{}-\frac{2\left(216 y+\frac{648 \sqrt{3} y^{3}}{\sqrt{27 y^{4}+32 x^{3}}}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}}} \begin{array}{l}
3\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}
\end{array}}{1 .}\right. \\
& -\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x}{12 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x-\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 x\right)\left(216 y+\frac{\sqrt{V}}{}\right.}{36 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 27648 v_{1}^{3} v_{5} a_{3}+15552 v_{5} v_{2}^{4} a_{3}-31104 v_{5} v_{2}^{3} a_{1} \\
& +46656 \sqrt{3} v_{2}^{6} a_{3}+110592 \sqrt{3} v_{1}^{5} b_{2}-93312 \sqrt{3} v_{2}^{5} a_{1} \\
& +110592 \sqrt{3} v_{1}^{4} b_{1}+139968 i v_{2}^{6} a_{3}+331776 i v_{1}^{5} b_{2} \\
& -279936 i v_{2}^{5} a_{1}+331776 i v_{1}^{4} b_{1}-1296 i \sqrt{3} v_{5} v_{4} v_{2}^{3} a_{2} \\
& +1728 i v_{5} v_{4} \sqrt{3} v_{2}^{3} b_{3}+432 i v_{5} v_{4} \sqrt{3} v_{2}^{2} b_{1} \\
& +51840 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{2} b_{2}-62208 i v_{5} \sqrt{3} v_{1} v_{2}^{3} a_{2} \\
& +82944 i v_{5} \sqrt{3} v_{1} v_{2}^{3} b_{3}+51840 i v_{5} \sqrt{3} v_{1} v_{2}^{2} b_{1} \\
& -1152 i v_{5} v_{4} \sqrt{3} v_{1}^{2} a_{3}+432 i v_{5} v_{4} \sqrt{3} v_{1} v_{2}^{2} b_{2} \\
& -6912 i v_{4} v_{1}^{2} v_{2}^{2} a_{3}-6912 i v_{4} v_{1}^{2} v_{2} a_{1}-31104 i v_{5} \sqrt{3} v_{2}^{3} a_{1} \\
& +3888 i v_{4} v_{1} v_{2}^{4} b_{2}-20736 i v_{4} v_{1}^{3} v_{2} a_{2}+27648 i v_{1}^{3} v_{4} v_{2} b_{3} \\
& +15552 i v_{5} \sqrt{3} v_{2}^{4} a_{3}+27648 i \sqrt{3} v_{1}^{3} v_{5} a_{3} \\
& -1296 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2}+6912 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2} \\
& +2304 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}-432 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}+2304 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1} \tag{7E}\\
& -9216 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3}+55296 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2} \\
& +62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3} \\
& +663552 i v_{1}^{4} v_{2} b_{3}+331776 i v_{1}^{3} v_{2}^{2} a_{3}+466560 i v_{1} v_{2}^{4} b_{1} \\
& -11664 i v_{4} v_{2}^{5} a_{2}+1555 i v_{4} v_{2}^{5} b_{3}+13824 i v_{1}^{4} v_{4} b_{2} \\
& +3888 i v_{4} v_{2}^{4} b_{1}+13824 i v_{1}^{3} v_{4} b_{1}+155520 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2} \\
& +248832 \sqrt{3} v_{1} v_{2}^{5} b_{3}-1728 v_{5} v_{4} v_{2}^{3} b_{3}-165888 \sqrt{3} v_{1}^{4} v_{2} a_{2} \\
& +110592 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}+155520 \sqrt{3} v_{1} v_{2}^{4} b_{1} \\
& -432 v_{5} v_{4} v_{2}^{2} b_{1}+51840 v_{5} v_{1}^{2} v_{2}^{2} b_{2}+82944 v_{5} v_{1} v_{2}^{3} b_{3} \\
& -55296 \sqrt{3} v_{1}^{3} v_{2} a_{1}+51840 v_{5} v_{1} v_{2}^{2} b_{1}-62208 v_{5} v_{1} v_{2}^{3} a_{2} \\
& -18624 \sqrt{3} v_{1} v_{2}^{5} a_{2}+221184 \sqrt{3} v_{1}^{4} v_{2} b_{3} \\
& +73728 \sqrt{3} v_{1}^{4} v_{3} a_{3}-4608 \sqrt{3} v_{1}^{3} v_{4} b_{1}+3888 \sqrt{3} v_{4} v_{2}^{5} a_{2} \\
& +46656 \sqrt{3} v_{3} v_{2}^{6} b_{2}-4608 \sqrt{3} v_{1}^{4} v_{4} b_{2}-165888 i v_{1}^{3} v_{2} a_{1} \\
& +466560 i v_{2}^{2} v_{2}^{4} b_{2}-559872 i v_{1} v_{2}^{5} a_{2}+746496 i v_{1} v_{2}^{5} b_{3} \\
& -49 v_{2} v_{5} v_{3} v_{2}^{4} b_{2}+1152 v_{5} v_{4} v_{1}^{2} a_{3} \\
& -5 v_{2}^{4} b_{1}+1296 v_{5} v_{4} v_{2}^{3} a_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-497664 i a_{2}+663552 i b_{3}-165888 \sqrt{3} a_{2}\right. \\
& \left.+221184 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2}+\left(13824 i b_{2}-4608 \sqrt{3} b_{2}\right) v_{1}^{4} v_{4} \\
& +\left(331776 i a_{3}+110592 \sqrt{3} a_{3}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(-165888 i a_{1}-55296 \sqrt{3} a_{1}\right) v_{1}^{3} v_{2} \\
& +\left(13824 i b_{1}-4608 \sqrt{3} b_{1}\right) v_{1}^{3} v_{4} \\
& +\left(27648 i \sqrt{3} a_{3}+27648 a_{3}\right) v_{1}^{3} v_{5} \\
& +\left(466560 i b_{2}+155520 \sqrt{3} b_{2}\right) v_{1}^{2} v_{2}^{4} \\
& +\left(-559872 i a_{2}+746496 i b_{3}-186624 \sqrt{3} a_{2}\right. \\
& \left.+248832 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5}+\left(466560 i b_{1}+155520 \sqrt{3} b_{1}\right) v_{1} v_{2}^{4} \\
& +\left(-11664 i a_{2}+15552 i b_{3}+3888 \sqrt{3} a_{2}-5184 \sqrt{3} b_{3}\right) v_{2}^{5} v_{4} \\
& +\left(3888 i b_{1}-1296 \sqrt{3} b_{1}\right) v_{2}^{4} v_{4} \\
& +\left(15552 i \sqrt{3} a_{3}+15552 a_{3}\right) v_{2}^{4} v_{5} \\
& +\left(-31104 i \sqrt{3} a_{1}-31104 a_{1}\right) v_{2}^{3} v_{5} \\
& +\left(432 i \sqrt{3} b_{2}-432 b_{2}\right) v_{1} v_{2}^{2} v_{4} v_{5} \\
& +\left(331776 i b_{2}+110592 \sqrt{3} b_{2}\right) v_{1}^{5} \tag{8E}\\
& +\left(-1152 i \sqrt{3} a_{3}+1152 a a_{5} 4_{1}^{2} v_{4} v_{5}\right. \\
& +\left(3888 i b_{2}-1296 \sqrt{3} b_{2}\right) v_{1} v_{2}^{4} v_{4}+\left(-62208 i \sqrt{3} a_{2}\right. \\
& +\left(331776 i b_{1}+110592 \sqrt{3} b_{1}\right) v_{1}^{4} \\
& +\left(139968 i a_{3}+46656 \sqrt{3} a_{3}\right) v_{2}^{6} \\
& +\left(-279936 i a_{1}-93312 \sqrt{3} a_{1}\right) v_{2}^{5} \\
& +\left(-1296 i \sqrt{3} a_{2}+1728 i \sqrt{3} b_{3}+1296 a_{2}-1728 b_{3}\right) v_{2}^{3} v_{4} v_{5} \\
& +\left(432 i \sqrt{3} b_{1}-432 b_{1}\right) v_{2}^{2} v_{4} v_{5}+55296 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2} \\
& +62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3}+20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3} \\
& +73728 \sqrt{3} v_{1}^{4} v_{3} a_{3}+46656 \sqrt{3} v_{3} v_{2}^{6} b_{2}+15552 v_{5} v_{3} v_{2}^{4} b_{2} \\
& +\left(-20736 i a_{2}+27648 i b_{3}+6912 \sqrt{3} a_{2}\right. \\
& \left.+9216 \sqrt{3} b_{3}\right) v_{1}^{3} v_{2} v_{4}+\left(-6912 i a_{3}+2304 \sqrt{3} a_{3}\right) v_{1}^{2} v_{2}^{2} v_{4} \\
& +\left(51840 i \sqrt{3} b_{2}+51840 b_{2}\right) v_{1}^{2} v_{2}^{2} v_{5} \\
& +\left(-6912 i a_{1}+2304 \sqrt{3} a_{1}\right) v_{1}^{2} v_{2} v_{4} \\
& +(-150
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
20736 a_{3} & =0 \\
15552 b_{2} & =0 \\
62208 \sqrt{3} a_{3} & =0 \\
73728 \sqrt{3} a_{3} & =0 \\
46656 \sqrt{3} b_{2} & =0 \\
55296 \sqrt{3} b_{2} & =0 \\
-279936 i a_{1}-93312 \sqrt{3} a_{1} & =0 \\
-165888 i a_{1}-55296 \sqrt{3} a_{1} & =0 \\
-6912 i a_{1}+2304 \sqrt{3} a_{1} & =0 \\
-6912 i a_{3}+2304 \sqrt{3} a_{3} & =0 \\
3888 i b_{1}-1296 \sqrt{3} b_{1} & =0 \\
3888 i b_{2}-1296 \sqrt{3} b_{2} & =0 \\
13824 i b_{1}-4608 \sqrt{3} b_{1} & =0 \\
13824 i b_{2}-4608 \sqrt{3} b_{2} & =0 \\
139968 i a_{3}+46656 \sqrt{3} a_{3} & =0 \\
331776 i a_{3}+110592 \sqrt{3} a_{3} & =0 \\
331776 i b_{1}+110592 \sqrt{3} b_{1} & =0 \\
331776 i b_{2}+110592 \sqrt{3} b_{2} & =0 \\
466560 i b_{1}+155520 \sqrt{3} b_{1} & =0 \\
-62208 i \sqrt{3} a_{2}+82944 i \sqrt{3} b_{3}-62208 a_{2}+82944 b_{3} & =0 \\
-1296 i \sqrt{3} a_{2}+1728 i \sqrt{3} b_{3}+1296 a_{2}-1728 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =\frac{4 x}{3} \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2} \tag{5E}\\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(b_{3}-a_{2}\right)}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)^{2} a_{3}}{144 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}} \\
& -\left(-\frac{\frac{1152 i x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}+24 i \sqrt{3}+\frac{384 \sqrt{3} x^{2}}{\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}} \sqrt{27 y^{4}+32 x^{3}}}-24\right.}}{12 y\left(108 y^{2}+12 \sqrt{3} \sqrt{\left.27 y^{4}+32 x^{3}\right)^{\frac{1}{3}}}\right.}\right. \\
& \left.+\frac{16\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right) \sqrt{3} x^{2}}{y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}} \sqrt{27 y^{4}+32 x^{3}}}\right)
\end{align*}
$$

$$
\begin{aligned}
& +\frac{i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x}{12 y^{2}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}} \\
& +\frac{\left(i \sqrt{3}\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}+24 i \sqrt{3} x+\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}-24 x\right)\left(216 y+\frac{6}{\sqrt{2}}\right.}{36 y\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{aligned}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}, \sqrt{27 y^{4}+32 x^{3}}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(108 y^{2}+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{1}{3}}=v_{3},\left(108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{27 y^{4}+32 x^{3}}\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{4}+32 x^{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& 62208 i v_{5} \sqrt{3} v_{1} v_{2}^{3} a_{2}-82944 i v_{5} \sqrt{3} v_{1} v_{2}^{3} b_{3} \\
& -51840 i v_{5} \sqrt{3} v_{1} v_{2}^{2} b_{1}+1296 i \sqrt{3} v_{5} v_{4} v_{2}^{3} a_{2} \\
& -1728 i v_{5} v_{4} \sqrt{3} v_{2}^{3} b_{3}-432 i v_{5} v_{4} \sqrt{3} v_{2}^{2} b_{1} \\
& +1152 i v_{5} v_{4} \sqrt{3} v_{1}^{2} a_{3}-51840 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{2} b_{2} \\
& -27648 i \sqrt{3} v_{1}^{3} v_{5} a_{3}-3888 i v_{4} v_{1} v_{2}^{4} b_{2}+20736 i v_{4} v_{1}^{3} v_{2} a_{2} \\
& -27648 i v_{1}^{3} v_{4} v_{2} b_{3}+6912 i v_{4} v_{1}^{2} v_{2}^{2} a_{3}+6912 i v_{4} v_{1}^{2} v_{2} a_{1} \\
& +20736 v_{1} v_{5} v_{3} v_{2}^{2} a_{3}-9216 \sqrt{3} v_{1}^{3} v_{4} v_{2} b_{3} \\
& +55296 \sqrt{3} v_{1}^{3} v_{3} v_{2}^{2} b_{2}+62208 \sqrt{3} v_{1} v_{3} v_{2}^{4} a_{3} \\
& -1296 v_{4} \sqrt{3} v_{1} v_{2}^{4} b_{2}+6912 v_{4} \sqrt{3} v_{1}^{3} v_{2} a_{2} \\
& +2304 v_{4} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{3}-432 v_{5} v_{4} v_{1} v_{2}^{2} b_{2}+2304 v_{4} \sqrt{3} v_{1}^{2} v_{2} a_{1} \\
& +31104 i v_{5} \sqrt{3} v_{2}^{3} a_{1}-15552 i v_{5} \sqrt{3} v_{2}^{4} a_{3} \\
& -4608 \sqrt{3} v_{1}^{3} v_{4} b_{1}+3888 \sqrt{3} v_{4} v_{2}^{5} a_{2}+46656 \sqrt{3} v_{3} v_{2}^{6} b_{2} \\
& +1296 v_{5} v_{4} v_{2}^{3} a_{2}+15552 v_{5} v_{3} v_{2}^{4} b_{2}-186624 \sqrt{3} v_{1} v_{2}^{5} a_{2} \\
& +221184 \sqrt{3} v_{1}^{4} v_{2} b_{3}-62208 v_{5} v_{1} v_{2}^{3} a_{2}+1152 v_{5} v_{4} v_{1}^{2} a_{3} \\
& -5184 v_{4} \sqrt{3} v_{2}^{5} b_{3}-1296 v_{4} \sqrt{3} v_{2}^{4} b_{1}+155520 \sqrt{3} v_{1}^{2} v_{2}^{4} b_{2} \\
& +248832 \sqrt{3} v_{1} v_{2}^{5} b_{3}-1728 v_{5} v_{4} v_{2}^{3} b_{3}-165888 \sqrt{3} v_{1}^{4} v_{2} a_{2} \\
& +110592 \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}+155520 \sqrt{3} v_{1} v_{2}^{4} b_{1} \\
& -432 v_{5} v_{4} v_{2}^{2} b_{1}+51840 v_{5} v_{1}^{2} v_{2}^{2} b_{2}+82944 v_{5} v_{1} v_{2}^{3} b_{3} \\
& -55296 \sqrt{3} v_{1}^{3} v_{2} a_{1}+51840 v_{5} v_{1} v_{2}^{2} b_{1}+11664 i v_{4} v_{2}^{5} a_{2} \\
& -15552 i v_{4} v_{2}^{5} b_{3}-13824 i v_{1}^{4} v_{4} b_{2}-3888 i v_{4} v_{2}^{4} b_{1} \\
& -13824 i v_{1}^{3} v_{4} b_{1}-466560 i v_{1}^{2} v_{2}^{4} b_{2}+73728 \sqrt{3} v_{1}^{4} v_{3} a_{3} \\
& -4608 \sqrt{3} v_{1}^{4} v_{4} b_{2}-432 i v_{5} v_{4} \sqrt{3} v_{1} v_{2}^{2} b_{2} \\
& +559872 i v_{1} v_{2}^{5} a_{2}-746496 i v_{1} v_{2}^{5} b_{3}+497664 i v_{1}^{4} v_{2} a_{2} \\
& -663552 i v_{1}^{4} v_{2} b_{3}-331776 i v_{1}^{3} v_{2}^{2} a_{3}-466560 i v_{1} v_{2}^{4} b_{1} \\
& +165888 i v_{1}^{3} v_{2} a_{1}-139968 i v_{2}^{6} a_{3}-331776 i v_{1}^{5} b_{2} \\
& +279936 i v_{2}^{5} a_{1}-331776 i v_{1}^{4} b_{1}+27648 v_{1}^{3} v_{5} a_{3} \\
& +110592 \sqrt{3} v_{1}^{5} b_{2}-93312 \sqrt{3} v_{2}^{5} a_{1}+110592 \sqrt{3} v_{1}^{4} b_{1} \\
& +15552 v_{5} v_{2}^{4} a_{3}-31104 v_{5} v_{2}^{3} a_{1}+46656 \sqrt{3} v_{2}^{6} a_{3}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-331776 i b_{2}+110592 \sqrt{3} b_{2}\right) v_{1}^{5} \\
& +\left(-331776 i b_{1}+110592 \sqrt{3} b_{1}\right) v_{1}^{4} \\
& +\left(-139968 i a_{3}+46656 \sqrt{3} a_{3}\right) v_{2}^{6} \\
& +\left(279936 i a_{1}-93312 \sqrt{3} a_{1}\right) v_{2}^{5} \\
& +\left(-15552 i \sqrt{3} a_{3}+15552 a_{3}\right) v_{2}^{4} v_{5} \\
& +\left(31104 i \sqrt{3} a_{1}-31104 a_{1}\right) v_{2}^{3} v_{5}+\left(497664 i a_{2}\right. \\
& \left.-663552 i b_{3}-165888 \sqrt{3} a_{2}+221184 \sqrt{3} b_{3}\right) v_{1}^{4} v_{2} \\
& +\left(-13824 i b_{2}-4608 \sqrt{3} b_{2}\right) v_{1}^{4} v_{4} \\
& +\left(-331776 i a_{3}+110592 \sqrt{3} a_{3}\right) v_{1}^{3} v_{2}^{2} \\
& +\left(165888 i a_{1}-55296 \sqrt{3} a_{1}\right) v_{1}^{3} v_{2} \\
& +\left(-13824 i b_{1}-4608 \sqrt{3} b_{1}\right) v_{1}^{3} v_{4} \\
& +\left(-27648 i \sqrt{3} a_{3}+27648 a_{3}\right) v_{1}^{3} v_{5} \\
& +\left(-466560 i b_{2}+155520 \sqrt{3} b_{2}\right) v_{1}^{2} v_{2}^{4}+\left(559872 i a_{2}\right. \\
& \left.-746496 i b_{3}-186624 \sqrt{3} a_{2}+248832 \sqrt{3} b_{3}\right) v_{1} v_{2}^{5} \\
& +\left(-466560 i b_{1}+155520 \sqrt{3} b_{1}\right) v_{1} v_{2}^{4} \tag{8E}\\
& +\left(-51840 i \sqrt{3} b_{1}+5184 \circledast 66_{1}\right) v_{1} v_{2}^{2} v_{5} \\
& +\left(1296 i \sqrt{3} a_{2}-1728 i \sqrt{3} b_{3}+1296 a_{2}-1728 b_{3}\right) v_{2}^{3} v_{4} v_{5}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
20736 a_{3} & =0 \\
15552 b_{2} & =0 \\
62208 \sqrt{3} a_{3} & =0 \\
73728 \sqrt{3} a_{3} & =0 \\
46656 \sqrt{3} b_{2} & =0 \\
55296 \sqrt{3} b_{2} & =0 \\
-466560 i b_{1}+155520 \sqrt{3} b_{1} & =0 \\
-466560 i b_{2}+155520 \sqrt{3} b_{2} & =0 \\
-331776 i a_{3}+110592 \sqrt{3} a_{3} & =0 \\
-331776 i b_{1}+110592 \sqrt{3} b_{1} & =0 \\
-331776 i b_{2}+110592 \sqrt{3} b_{2} & =0 \\
-139968 i a_{3}+46656 \sqrt{3} a_{3} & =0 \\
-13824 i b_{1}-4608 \sqrt{3} b_{1} & =0 \\
-13824 i b_{2}-4608 \sqrt{3} b_{2} & =0 \\
-3888 i b_{1}-1296 \sqrt{3} b_{1} & =0 \\
-3888 i b_{2}-1296 \sqrt{3} b_{2} & =0 \\
6912 i a_{1}+2304 \sqrt{3} a_{1} & =0 \\
6912 i a_{3}+2304 \sqrt{3} a_{3} & =0 \\
62208 i \sqrt{3} a_{2}-82944 i \sqrt{3} b_{3}-62208 a_{2}+82944 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =\frac{4 b_{3}}{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=\frac{4 x}{3} \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace
-Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
-, --> Computing symmetries using: way $=2$
-, --> Computing symmetries using: way $=2$
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
\rightarrow Calling odsolve with the ODE`, \(\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=\left(-2 * \mathrm{y}(\mathrm{x})^{\wedge} 2 * \mathrm{x}^{\wedge} 3-\mathrm{y}(\mathrm{x})\right) /\left(2 * \mathrm{x}^{\wedge} 4 * \mathrm{y}(\mathrm{x})+\mathrm{x}\right), \mathrm{y}(\) Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful <- 1st order, parametric methods successful`
\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 97
dsolve $(y(x)=2 * x * \operatorname{diff}(y(x), x)+y(x) \wedge 2 *(\operatorname{diff}(y(x), x)) \wedge 3, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{2\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=\frac{2\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=-\frac{2 i\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=\frac{2 i\left(-x^{3}\right)^{\frac{1}{4}} 6^{\frac{1}{4}}}{3} \\
& y(x)=0 \\
& y(x)=\sqrt{c_{1}\left(c_{1}^{2}+2 x\right)} \\
& y(x)=-\sqrt{c_{1}\left(c_{1}^{2}+2 x\right)}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 119
DSolve $\left[y[x]==2 * x * y^{\prime}[x]+y[x] \sim 2 *(y '[x]) \sim 3, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{2 c_{1} x+c_{1}^{3}} \\
& y(x) \rightarrow \sqrt{2 c_{1} x+c_{1}^{3}} \\
& y(x) \rightarrow(-1-i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(1-i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(-1+i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4} \\
& y(x) \rightarrow(1+i)\left(\frac{2}{3}\right)^{3 / 4} x^{3 / 4}
\end{aligned}
$$

1.84 problem 87

Internal problem ID [3229]
Internal file name [OUTPUT/2721_Sunday_June_05_2022_08_39_18_AM_77622382/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 87 .
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y^{\prime 3}+y^{2}-x y y^{\prime}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}{6}+\frac{2 y x}{\left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right.} \\
& y^{\prime}=-\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}{12}-\frac{y x}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3}}\right.}{6}\right.}{12}-\frac{(2)}{\left(-108 y^{2}+12 \sqrt{-12 y^{3} x^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(-108 y^{2}+12 \sqrt{-12 y^{3}}\right.}{6}\right.}{y^{\prime}=-\frac{\left(-108 y^{2}+12 \sqrt{\left.-12 y^{3} x^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right.}{12}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{6\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{\left(\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(b_{3}-a_{2}\right)}{6\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& -\underline{\left(\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)^{2} a_{3}} \\
& 36\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \\
& -\left(\frac{-\frac{144 y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}+12 y}{6\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}\right. \\
& \left.+\frac{12\left(\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right) y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(\frac{\frac{-144 y+\frac{2\left(-216 x^{3} y^{2}+1944 y^{3}\right)}{3 \sqrt{-12 x^{3} y^{3}+81 y^{4}}}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+12 x}{6\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}\right. \\
& \left.-\frac{\left(\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(-216 y+\frac{-216 x^{3} y^{2}+1944 y^{3}}{\sqrt{-12 x^{3} y^{3}+81 y^{4}}}\right)}{18\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}}}\right)\left(x b_{2}\right. \\
& \left.+y b_{3}+b_{1}\right)=0 \tag{5E}
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y a_{3}+24\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-}}{=0}
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y a_{3} \\
& -24\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} x^{2} y^{2} a_{3} \\
& +72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y b_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{4} y^{2} b_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{3} a_{2} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{3} b_{3} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{2} y^{4} a_{3} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{3} y^{2} b_{1} \\
& +72\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x^{2} y^{3} a_{1} \\
& -648\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} x y^{3} b_{2} \\
& +72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} y^{2} b_{3} \tag{6E}\\
& +432 \sqrt{-12 x^{3} y^{3}+81 y^{4}} x^{2} y^{2} b_{2} \\
& +2592 \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y^{3} a_{2} \\
& -864 \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y^{3} b_{3}+72\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} y b_{1} \\
& +432 \sqrt{-12 x^{3} y^{3}+81 y^{4}} x y^{2} b_{1} \\
& -24\left(-12 x^{3} y^{3}+81 y^{4}\right)^{\frac{3}{2}} a_{3}+23328 y^{6} a_{3}-11664 y^{5} a_{1} \\
& -23328 x y^{5} a_{2}+2592 x^{4} y^{4} a_{2}-4320 x^{3} y^{5} a_{3} \\
& +864 x^{3} y^{4} a_{1}+864 x^{5} y^{3} b_{2}-864 x^{4} y^{4} b_{3}+864 x^{4} y^{3} b_{1} \\
& -3888 x^{2} y^{4} b_{2}+7776 x y^{5} b_{3}-3888 x y^{4} b_{1}-\left(-108 y^{2}\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{5}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} a_{2} \\
& +\left(-108 y^{2} \quad 669\right. \\
& \left.+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{5}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} b_{3}
\end{align*}
$$

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -72 v_{2}\left(-24 v_{3} \sqrt{3} v_{1}^{3} v_{2}^{2} a_{3}-6 v_{5} v_{3} \sqrt{3} v_{1} b_{2}-9 v_{5} v_{3} \sqrt{3} v_{2} a_{2}\right. \\
& +3 v_{5} v_{3} \sqrt{3} v_{2} b_{3}-36 v_{3} \sqrt{3} v_{1}^{2} v_{2} b_{2}-216 v_{3} \sqrt{3} v_{1} v_{2}^{2} a_{2}+72 v_{3} \sqrt{3} v_{1} v_{2}^{2} b_{3} \\
& +54 v_{4} v_{3} \sqrt{3} v_{2} b_{2}-36 v_{3} \sqrt{3} v_{1} v_{2} b_{1}-108 v_{3} \sqrt{3} v_{2}^{2} a_{1}-48 v_{4} v_{1}^{4} v_{2}^{3} a_{3} \\
& -6 v_{5} v_{1}^{4} v_{2} b_{2}-18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}+6 v_{5} v_{1}^{3} v_{2}^{2} b_{3}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{3}-6 v_{5} v_{1}^{3} v_{2} b_{1} \tag{7E}\\
& -6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}+72 v_{4} v_{1}^{3} v_{2}^{2} b_{2}+324 v_{4} v_{1} v_{2}^{4} a_{3}+54 v_{5} v_{1} v_{2}^{2} b_{2}+216 v_{3} \sqrt{3} v_{2}^{3} a_{3} \\
& -6 v_{5} v_{3} \sqrt{3} b_{1}-1944 v_{2}^{5} a_{3}+972 v_{2}^{4} a_{1}+324 v_{2}^{3} v_{1}^{2} b_{2}+1944 v_{2}^{4} v_{1} a_{2} \\
& +324 v_{2}^{3} v_{1} b_{1}-72 v_{1}^{5} v_{2}^{2} b_{2}-216 v_{1}^{4} v_{2}^{3} a_{2}+72 v_{1}^{4} v_{2}^{3} b_{3}+360 v_{1}^{3} v_{2}^{4} a_{3} \\
& -72 v_{1}^{4} v_{2}^{2} b_{1}-72 v_{1}^{3} v_{2}^{3} a_{1}-648 v_{1} v_{2}^{4} b_{3}+81 v_{5} v_{2}^{3} a_{2}-27 v_{5} v_{2}^{3} b_{3} \\
& \left.+54 v_{5} v_{2}^{2} b_{1}-486 v_{4} v_{2}^{3} b_{2}+2 v_{5} v_{3} \sqrt{3} v_{1}^{2} v_{2} a_{3}-36 v_{4} v_{3} \sqrt{3} v_{1} v_{2}^{2} a_{3}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -5184 b_{2} v_{4} v_{1}^{3} v_{2}^{3}+\left(1296 a_{2}-432 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3} \\
& +432 b_{1} v_{5} v_{1}^{3} v_{2}^{2}+432 a_{3} v_{5} v_{1}^{2} v_{2}^{4}+432 a_{1} v_{5} v_{1}^{2} v_{2}^{3} \\
& +3456 a_{3} v_{4} v_{1}^{4} v_{2}^{4}+\left(15552 a_{2}-5184 b_{3}\right) v_{1}^{4} v_{2}^{4}+432 b_{2} v_{5} v_{1}^{4} v_{2}^{2} \\
& +\left(648 \sqrt{3} a_{2}-216 \sqrt{3} b_{3}\right) v_{3} v_{5} v_{2}^{2}+2592 \sqrt{3} b_{2} v_{3} v_{1}^{2} v_{2}^{2} \\
& +2592 \sqrt{3} b_{1} v_{3} v_{1} v_{2}^{2}-3888 \sqrt{3} b_{2} v_{3} v_{4} v_{2}^{2}+432 v_{5} v_{3} \sqrt{3} b_{1} v_{2} \\
& -23328 a_{3} v_{4} v_{1} v_{2}^{5}+\left(-139968 a_{2}+46656 b_{3}\right) v_{1} v_{2}^{5} \tag{8E}\\
& +\left(15552 \sqrt{3} a_{2}-5184 \sqrt{3} b_{3}\right) v_{3} v_{1} v_{2}^{3}-3888 b_{2} v_{5} v_{1} v_{2}^{3} \\
& -15552 \sqrt{3} a_{3} v_{3} v_{2}^{4}+7776 \sqrt{3} a_{1} v_{3} v_{2}^{3}+1728 \sqrt{3} a_{3} v_{3} v_{1}^{3} v_{2}^{3} \\
& +139968 a_{3} v_{2}^{6}-69984 a_{1} v_{2}^{5}-144 \sqrt{3} a_{3} v_{3} v_{5} v_{1}^{2} v_{2}^{2} \\
& +2592 \sqrt{3} a_{3} v_{3} v_{4} v_{1} v_{2}^{3}+432 \sqrt{3} b_{2} v_{3} v_{5} v_{1} v_{2}-23328 b_{1} v_{1} v_{2}^{4} \\
& +34992 b_{2} v_{4} v_{2}^{4}+\left(-5832 a_{2}+1944 b_{3}\right) v_{5} v_{2}^{4}-3888 b_{1} v_{5} v_{2}^{3}+5184 v_{2}^{3} b_{2} v_{1}^{5} \\
& +5184 b_{1} v_{1}^{4} v_{2}^{3}-25920 a_{3} v_{1}^{3} v_{2}^{5}+5184 a_{1} v_{1}^{3} v_{2}^{4}-23328 b_{2} v_{1}^{2} v_{2}^{4}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-69984 a_{1} & =0 \\
432 a_{1} & =0 \\
5184 a_{1} & =0 \\
-25920 a_{3} & =0 \\
-23328 a_{3} & =0 \\
432 a_{3} & =0 \\
3456 a_{3} & =0 \\
139968 a_{3} & =0 \\
-23328 b_{1} & =0 \\
-3888 b_{1} & =0 \\
432 b_{1} & =0 \\
5184 b_{1} & =0 \\
-23328 b_{2} & =0 \\
-5184 b_{2} & =0 \\
-3888 b_{2} & =0 \\
432 b_{2} & =0 \\
5184 b_{2} & =0 \\
34992 b_{2} & =0 \\
7776 \sqrt{3} a_{1} & =0 \\
648 \sqrt{3} a_{2}-216 \sqrt{3} b_{3} & =0 \\
15552 \sqrt{3} a_{2} 6754 \sqrt{3} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{3 y}{x} \\
& =\frac{3 y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x^{3}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x^{3}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{6\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{3 y}{x^{4}} \\
R_{y} & =\frac{1}{x^{3}} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{6 x^{3}\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 x^{3} y^{3}+27 y^{4}}\right)^{\frac{1}{3}}}{\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 x^{3} y^{3}+27 y^{4}}\right)^{\frac{2}{3}} x+12 x^{2} y-18 y\left(-108 y^{2}+12 \sqrt{3} \sqrt{-4 x^{3} y^{3}+27 y^{4}}\right)^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives
$\frac{d S}{d R}=\frac{612^{\frac{1}{3}}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{1}{3}}}{\sqrt{R}\left(12^{\frac{2}{3}}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{2}{3}}-1812^{\frac{1}{3}} \sqrt{R}(\sqrt{3} \sqrt{27 R-4}-9 \sqrt{R})^{\frac{1}{3}}+12\right)}$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{6(12 \sqrt{81 R-12}-108 \sqrt{R})^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left((\sqrt{81 R-12}-9 \sqrt{R})^{2}\right)^{\frac{1}{3}}-18 \sqrt{R}(12 \sqrt{81 R-12}-108 \sqrt{R})^{\frac{1}{3}}+12\right) \sqrt{R}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln (x)=\int^{\frac{y}{x^{3}}} \frac{6\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(\sqrt{81 _a-12}-9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-18 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}} d
$$

Which simplifies to

$$
\ln (x)=\int^{\frac{y}{x^{3}}} \frac{6\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(\sqrt{81 _a-12}-9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-18 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}} d
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& \ln (x) \\
& =\int^{\frac{y}{x^{3}}} \frac{6\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(\sqrt{81 _a-12}-9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-18 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}}{ }^{(1)} \text { a } \\
& \quad+c_{1}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
& \ln (x) \\
& =\int^{\frac{y}{x^{3}}} \frac{6\left(12 \sqrt{81 _a-12}-108 \sqrt{-a}\right)^{\frac{1}{3}}}{\left(218^{\frac{1}{3}}\left(\left(\sqrt{81 _a-12}-9 \sqrt{-^{a}}\right)^{2}\right)^{\frac{1}{3}}-18 \sqrt{-^{a}}\left(12 \sqrt{81 _a-12}-108 \sqrt{-^{a}}\right)^{\frac{1}{3}}+12\right) \sqrt{-^{a}}} d \underline{a} \\
& \quad+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2} \tag{5E}\\
& \begin{array}{l}
+\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)\left(b_{3}-\right.}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
-\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)^{2} a_{3}}{144\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}}
\end{array} \\
& -\left(\frac{-\frac{144 i \sqrt{3} y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}-12 i \sqrt{3} y+\frac{144 y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}-12 y}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}\right. \\
& +\frac{6\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right) y^{3} x}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}} \\
& \left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}} \\
& \left.+y a_{3}+a_{1}\right) \\
& -\left(\frac{\frac{2 i \sqrt{3}\left(-216 y+\frac{-216 x^{3} y^{2}+1944 y^{3}}{\sqrt{-12 x^{3} y^{3}+81 y^{4}}}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 i \sqrt{3} x-\frac{2\left(-216 y+\frac{-216 x^{3} y^{2}+1944 y^{3}}{\sqrt{-12 x^{3} y^{3}+81 y^{4}}}\right)}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 x}{3\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12\right. \\
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x-\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 x y\right)(-}{36\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 144 v_{2}\left(-144 v_{4} v_{1}^{3} v_{2}^{2} b_{2}-648 v_{4} v_{1} v_{2}^{4} a_{3}+216 \sqrt{3} v_{3} v_{2}^{3} a_{3}\right. \\
& +54 v_{5} v_{1} v_{2}^{2} b_{2}-6 \sqrt{3} v_{5} v_{3} b_{1}-108 \sqrt{3} v_{3} v_{2}^{2} a_{1}-1944 i \sqrt{3} v_{2}^{5} a_{3} \\
& +972 i \sqrt{3} v_{2}^{4} a_{1}+648 i v_{3} v_{2}^{3} a_{3}+18 i v_{5} v_{3} b_{1}-324 i v_{3} v_{2}^{2} a_{1} \\
& +6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{2} a_{1}-54 i \sqrt{3} v_{5} v_{1} v_{2}^{2} b_{2}-6 i v_{5} v_{3} v_{1}^{2} v_{2} a_{3} \\
& +324 v_{2}^{3} v_{1}^{2} b_{2}+1944 v_{2}^{4} v_{1} a_{2}+324 v_{2}^{3} v_{1} b_{1}-216 v_{1}^{4} v_{2}^{3} a_{2} \\
& +72 v_{1}^{4} v_{2}^{3} b_{3}+360 v_{1}^{3} v_{2}^{4} a_{3}-72 v_{1}^{4} v_{2}^{2} b_{1}-72 v_{1}^{3} v_{2}^{3} a_{1}-648 v_{1} v_{2}^{4} b_{3} \\
& +81 v_{5} v_{2}^{3} a_{2}-27 v_{5} v_{2}^{3} b_{3}+54 v_{5} v_{2}^{2} b_{1}+972 v_{4} v_{2}^{3} b_{2}-72 v_{1}^{5} v_{2}^{2} b_{2} \\
& -6 v_{5} v_{1}^{4} v_{2} b_{2}-18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}+6 v_{5} v_{1}^{3} v_{2}^{2} b_{3}-6 v_{5} v_{1}^{2} v_{2}^{3} a_{3} \\
& -6 v_{5} v_{1}^{3} v_{2} b_{1}-6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}+96 v_{4} v_{1}^{4} v_{2}^{3} a_{3}-1944 v_{2}^{5} a_{3} \\
& +972 v_{2}^{4} a_{1}-6 \sqrt{3} v_{5} v_{3} v_{1} b_{2}-9 \sqrt{3} v_{5} v_{3} v_{2} a_{2}+3 \sqrt{3} v_{5} v_{3} v_{2} b_{3} \\
& -36 \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{2}-216 \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{2}+72 \sqrt{3} v_{3} v_{1} v_{2}^{2} b_{3} \tag{7E}\\
& -108 \sqrt{3} v_{4} v_{3} v_{2} b_{2}-36 \sqrt{3} v_{3} v_{1} v_{2} b_{1}-24 \sqrt{3} v_{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& -72 i \sqrt{3} v_{1}^{5} v_{2}^{2} b_{2}-216 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{2}+72 i \sqrt{3} v_{1}^{4} v_{2}^{3} b_{3} \\
& +360 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{3}-72 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{1}-72 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1} \\
& -81 i \sqrt{3} v_{5} v_{2}^{3} a_{2}+27 i \sqrt{3} v_{5} v_{2}^{3} b_{3}+324 i \sqrt{3} v_{2}^{3} v_{1}^{2} b_{2} \\
& +1944 i \sqrt{3} v_{2}^{4} v_{1} a_{2}-648 i \sqrt{3} v_{1} v_{2}^{4} b_{3}-72 i v_{3} v_{1}^{3} v_{2}^{2} a_{3} \\
& -54 i \sqrt{3} v_{5} v_{2}^{2} b_{1}+324 i \sqrt{3} v_{2}^{3} v_{1} b_{1}+18 i v_{5} v_{3} v_{1} b_{2} \\
& +27 i v_{5} v_{3} v_{2} a_{2}-9 i v_{5} v_{3} v_{2} b_{3}-108 i v_{3} v_{1}^{2} v_{2} b_{2}-648 i v_{3} v_{1} v_{2}^{2} a_{2} \\
& +216 i v_{3} v_{1} v_{2}^{2} b_{3}-108 i v_{3} v_{1} v_{2} b_{1}+2 \sqrt{3} v_{5} v_{3} v_{1}^{2} v_{2} a_{3} \\
& +72 \sqrt{3} v_{4} v_{3} v_{1} v_{2}^{2} a_{3}+6 i \sqrt{3} v_{5} v_{1}^{4} v_{2} b_{2}+18 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} a_{2} \\
& \left.-6 i \sqrt{3} v_{5} v_{1}^{3} v_{2}^{2} b_{3}+6 i \sqrt{3} v_{5} v_{1}^{2} v_{2}^{3} a_{3}+6 i \sqrt{3} v_{5} v_{1}^{3} v_{2} b_{1}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 139968 b_{2} v_{4} v_{2}^{4}+\left(279936 i \sqrt{3} a_{2}-93312 i \sqrt{3} b_{3}+279936 a_{2}\right. \\
& \\
& \left.-93312 b_{3}\right) v_{1} v_{2}^{5}+\left(46656 i \sqrt{3} b_{1}+46656 b_{1}\right) v_{1} v_{2}^{4} \\
& +\left(46656 i \sqrt{3} b_{2}+46656 b_{2}\right) v_{1}^{2} v_{2}^{4} \\
& +\left(93312 i a_{3}+31104 \sqrt{3} a_{3}\right) v_{3} v_{2}^{4} \\
& +\left(-11664 i \sqrt{3} a_{2}+3888 i \sqrt{3} b_{3}+11664 a_{2}-3888 b_{3}\right) v_{5} v_{2}^{4} \\
& +\left(-46656 i a_{1}-15552 \sqrt{3} a_{1}\right) v_{3} v_{2}^{3} \\
& +\left(-7776 i \sqrt{3} b_{1}+7776 b_{1}\right) v_{5} v_{2}^{3} \\
& +\left(-10368 i \sqrt{3} b_{2}-10368 b_{2}\right) v_{1}^{5} v_{2}^{3} \\
& +\left(-31104 i \sqrt{3} a_{2}+10368 i \sqrt{3} b_{3}-31104 a_{2}\right. \\
& \left.+10368 b_{3}\right) v_{1}^{4} v_{2}^{4}+\left(-10368 i \sqrt{3} b_{1}-10368 b_{1}\right) v_{1}^{4} v_{2}^{3} \\
& +\left(51840 i \sqrt{3} a_{3}+51840 a_{3}\right) v_{1}^{3} v_{2}^{5} \\
& +\left(-10368 i \sqrt{3} a_{1}-10368 a_{1}\right) v_{1}^{3} v_{2}^{4} \\
& +\left(-7776 i \sqrt{3} b_{2}+7776 b_{2}\right) v_{5} v_{1} v_{2}^{3} \tag{8E}\\
& +\left(-15552 i b_{1}-5184 \sqrt{3} b_{1}\right) v_{3} v_{1} v_{2}^{2}+13824 a_{3} v_{4} v_{1}^{4} v_{2}^{4} \\
& + \\
& +20736 b_{2} v_{4} v_{1}^{3} v_{2}^{3}+\left(-279936 i \sqrt{3} a_{3}-279936 a_{3}\right) v_{2}^{6} \\
& +\left(139968 i \sqrt{3} a_{1}+139968 a_{1}\right) v_{2}^{5} \\
& +\left(2592 i b_{1}-864 \sqrt{3} b_{1}\right) v_{3} v_{5} v_{2}+\left(-93312 i a_{2}\right. \\
& + \\
& +10368 \sqrt{3} a_{3} v_{3} v_{4} v_{1} v_{2}^{3}-15552 \sqrt{3} b_{2} v_{3} v_{4} v_{2}^{2} \\
& +93312 a_{3} v_{4} v_{1} v_{2}^{5}+\left(-864 i a_{3}+288 \sqrt{3} a_{3}\right) v_{3} v_{5} v_{1}^{2} v_{2}^{2} \\
& +\left(2592 i b_{2}-864 \sqrt{3} b_{2}\right) v_{3} v_{5} v_{1} v_{2} \\
& +\left(864 i \sqrt{3} b_{2}-864 b_{2}\right) v_{5} v_{1}^{4} v_{2}^{2} \\
& +\left(-10368 i a_{3}-3456 \sqrt{3} a_{3}\right) v_{3} v_{1}^{3} v_{2}^{3} \\
& +\left(2592 i \sqrt{3} a_{2}-864 i \sqrt{3} b_{3}-2592 a_{2}+864 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3} \\
& +\left(864 i \sqrt{3} b_{1}-864 b_{1}\right) v_{5} v_{1}^{3} v_{2}^{2} \\
& +\left(864 i \sqrt{3} a_{3}-864 a_{3}\right) v_{5} v_{1}^{2} v_{2}^{4} \\
& +\left(864 i \sqrt{3} a_{1}-864 a_{1}\right) v_{5} v_{1}^{2} v_{2}^{3} \\
& +\left(-15552 b_{2}-5184 \sqrt{3} b_{2}\right) v_{3} v_{1}^{2} v_{2}^{2} \\
& +
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-93312 a_{3} & =0 \\
13824 a_{3} & =0 \\
-20736 b_{2} & =0 \\
139968 b_{2} & =0 \\
10368 \sqrt{3} a_{3} & =0 \\
-15552 \sqrt{3} b_{2} & =0 \\
-46656 i a_{1}-15552 \sqrt{3} a_{1} & =0 \\
-15552 i b_{1}-5184 \sqrt{3} b_{1} & =0 \\
-15552 i b_{2}-5184 \sqrt{3} b_{2} & =0 \\
-10368 i a_{3}-3456 \sqrt{3} a_{3} & =0 \\
-864 i a_{3}+288 \sqrt{3} a_{3} & =0 \\
2592 i b_{1}-864 \sqrt{3} b_{1} & =0 \\
2592 i b_{2}-864 \sqrt{3} b_{2} & =0 \\
93312 i a_{3}+31104 \sqrt{3} a_{3} & =0 \\
-279936 i \sqrt{3} a_{3}-279936 a_{3} & =0 \\
-10368 i \sqrt{3} a_{1}-10368 a_{1} & =0 \\
-10368 i \sqrt{3} b_{1}-10368 b_{1} & =0 \\
-10368 i \sqrt{3} b_{2}-10368 b_{2} & =0 \\
-7776 i \sqrt{3} b_{1}+7776 b_{1} & =0 \\
-7776 i \sqrt{3} b_{2}+7776 b_{2} & =0 \\
864 i \sqrt{3} a_{1}-864 a_{1} & =0 \\
85936 i \sqrt{3} a_{2}-93312 i \sqrt{3} a_{3}-864 a_{3} & =0 \\
-9647 b_{3}+279936 a_{2}-93312 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives
b_{2}

$$
\begin{align*}
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)\left(b_{3}\right.}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}} \tag{5E}\\
& -\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)^{2} a_{3}}{144\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}} \\
& -\left(-\frac{144 i \sqrt{3} y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}-12 i \sqrt{3} y-\frac{14 y^{3} x^{2}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}+12 y\right. \\
& -\left(-108 y^{2}+12 \sqrt{\left.-12 x^{3} y^{3}+81 y^{4}\right)^{\frac{1}{3}}}\right. \\
& -\frac{6\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right) y^{3}}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}} \sqrt{-12 x^{3} y^{3}+81 y^{4}}}
\end{align*}
$$

$$
\left.+y a_{3}+a_{1}\right)
$$

$$
-\left(-\frac{\frac{2 i \sqrt{3}\left(-216 y+\frac{-216 x^{3} y^{2}+1944 y^{3}}{\sqrt{-12 x^{3} y^{3}+81 y^{4}}}\right)}{3\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}-12 i \sqrt{3} x+\frac{-144 y+\frac{2\left(-216 x^{3} y^{2}+1944 y^{3}\right)}{3 \sqrt{-12 x^{3} y^{3}+81 y^{4}}}}{12\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+12 x}{\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{1}{3}}}+1\right.
$$

$$
+\frac{\left(i \sqrt{3}\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}-12 i \sqrt{3} y x+\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{2}{3}}+12 x y\right)(-2}{36\left(-108 y^{2}+12 \sqrt{-12 x^{3} y^{3}+81 y^{4}}\right)^{\frac{4}{3}}}
$$

$$
\left.+y b_{3}+b_{1}\right)=0
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2}, \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}=v_{3},\left(-108 y^{2}\right.\right. \\
& \left.\left.+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{1}{3}}=v_{4},\left(-108 y^{2}+12 \sqrt{3} \sqrt{-y^{3}\left(4 x^{3}-27 y\right)}\right)^{\frac{2}{3}}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -144 v_{2}\left(-1944 v_{2}^{4} v_{1} a_{2}+72 v_{1}^{4} v_{2}^{2} b_{1}+648 v_{1} v_{2}^{4} b_{3}\right. \\
& -360 v_{1}^{3} v_{2}^{4} a_{3}-324 v_{2}^{3} v_{1} b_{1}-324 v_{2}^{3} v_{1}^{2} b_{2}+72 v_{1}^{3} v_{2}^{3} a_{1} \\
& -972 v_{4} v_{2}^{3} b_{2}+27 v_{5} v_{2}^{3} b_{3}-54 v_{5} v_{2}^{2} b_{1}-81 v_{5} v_{2}^{3} a_{2} \\
& -1944 i v_{2}^{5} \sqrt{3} a_{3}+972 i v_{2}^{4} \sqrt{3} a_{1}+648 i v_{3} v_{2}^{3} a_{3}+18 i v_{5} v_{3} b_{1} \\
& -324 i v_{3} v_{2}^{2} a_{1}+6 v_{5} v_{1}^{4} v_{2} b_{2}+18 v_{5} v_{1}^{3} v_{2}^{2} a_{2}-6 v_{5} v_{1}^{3} v_{2}^{2} b_{3} \\
& +6 v_{5} v_{1}^{2} v_{2}^{3} a_{3}+6 v_{5} v_{1}^{3} v_{2} b_{1}+6 v_{5} v_{1}^{2} v_{2}^{2} a_{1}+144 v_{4} v_{1}^{3} v_{2}^{2} b_{2} \\
& +648 v_{4} v_{1} v_{2}^{4} a_{3}-54 v_{5} v_{1} v_{2}^{2} b_{2}-216 \sqrt{3} v_{3} v_{2}^{3} a_{3}+6 v_{5} \sqrt{3} v_{3} b_{1} \\
& +108 \sqrt{3} v_{3} v_{2}^{2} a_{1}+24 \sqrt{3} v_{3} v_{1}^{3} v_{2}^{2} a_{3}+6 v_{5} \sqrt{3} v_{3} v_{1} b_{2} \\
& +9 v_{5} \sqrt{3} v_{3} v_{2} a_{2}-3 v_{5} \sqrt{3} v_{3} v_{2} b_{3}+36 \sqrt{3} v_{3} v_{1}^{2} v_{2} b_{2} \\
& +216 \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{2}-72 \sqrt{3} v_{3} v_{1} v_{2}^{2} b_{3}+108 v_{4} \sqrt{3} v_{3} v_{2} b_{2} \\
& +36 \sqrt{3} v_{3} v_{1} v_{2} b_{1}+324 i v_{2}^{3} \sqrt{3} v_{1}^{2} b_{2}+1944 i v_{2}^{4} \sqrt{3} v_{1} a_{2} \\
& -648 i \sqrt{3} v_{1} v_{2}^{4} b_{3}-72 i v_{3} v_{1}^{3} v_{2}^{2} a_{3}-54 i v_{5} \sqrt{3} v_{2}^{2} b_{1} \\
& +324 i v_{2}^{3} \sqrt{3} v_{1} b_{1}+18 i v_{5} v_{3} v_{1} b_{2}+27 i v_{5} v_{3} v_{2} a_{2} \\
& -9 i v_{5} v_{3} v_{2} b_{3}-96 v_{4} v_{1}^{4} v_{2}^{3} a_{3}-108 i v_{3} v_{1}^{2} v_{2} b_{2}-648 i v_{3} v_{1} v_{2}^{2} a_{2} \\
& +216 i v_{3} v_{1} v_{2}^{2} b_{3}-108 i v_{3} v_{1} v_{2} b_{1}-72 i \sqrt{3} v_{1}^{5} v_{2}^{2} b_{2} \\
& -216 i \sqrt{3} v_{1}^{4} v_{2}^{3} a_{2}+72 i \sqrt{3} v_{1}^{4} v_{2}^{3} b_{3}+360 i \sqrt{3} v_{1}^{3} v_{2}^{4} a_{3} \\
& -72 i \sqrt{3} v_{1}^{4} v_{2}^{2} b_{1}-72 i \sqrt{3} v_{1}^{3} v_{2}^{3} a_{1}-81 i v_{5} \sqrt{3} v_{2}^{3} a_{2} \\
& +27 i v_{5} \sqrt{3} v_{2}^{3} b_{3}-6 i v_{5} \sqrt{3} v_{1}^{3} v_{2}^{2} b_{3}+6 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{3} a_{3} \\
& +6 i v_{5} \sqrt{3} v_{1}^{3} v_{2} b_{1}+6 i v_{5} \sqrt{3} v_{1}^{2} v_{2}^{2} a_{1}-54 i v_{5} \sqrt{3} v_{1} v_{2}^{2} b_{2} \\
& -6 i v_{5} v_{3} v_{1}^{2} v_{2} a_{3}+6 i v_{5} \sqrt{3} v_{1}^{4} v_{2} b_{2}+18 i v_{5} \sqrt{3} v_{1}^{3} v_{2}^{2} a_{2} \\
& -2 v_{5} \sqrt{3} v_{3} v_{1}^{2} v_{2} a_{3}-72 v_{4} \sqrt{3} v_{3} v_{1} v_{2}^{2} a_{3}+216 v_{1}^{4} v_{2}^{3} a_{2} \\
& \left.+72 v_{1}^{5} v_{2}^{2} b_{2}-72 v_{1}^{4} v_{2}^{3} b_{3}+144 v_{2}^{5} a_{3}-972 v_{1}^{4} a_{1}\right)=0 \\
& 0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-93312 i a_{3}+31104 \sqrt{3} a_{3}\right) v_{3} v_{2}^{4} \\
& +\left(7776 i \sqrt{3} b_{1}+7776 b_{1}\right) v_{5} v_{2}^{3} \\
& +\left(-51840 i \sqrt{3} a_{3}+51840 a_{3}\right) v_{1}^{3} v_{2}^{5} \\
& +13824 a_{3} v_{4} v_{1}^{4} v_{2}^{4}+\left(-2592 i b_{2}-864 \sqrt{3} b_{2}\right) v_{3} v_{5} v_{1} v_{2} \\
& +\left(864 i a_{3}+288 \sqrt{3} a_{3}\right) v_{3} v_{5} v_{1}^{2} v_{2}^{2} \\
& +\left(-3888 i a_{2}+1296 i b_{3}-1296 \sqrt{3} a_{2}+432 \sqrt{3} b_{3}\right) v_{3} v_{5} v_{2}^{2} \\
& +\left(-2592 i b_{1}-864 \sqrt{3} b_{1}\right) v_{3} v_{5} v_{2}+\left(93312 i a_{2}\right. \\
& \left.-31104 i b_{3}-31104 \sqrt{3} a_{2}+10368 \sqrt{3} b_{3}\right) v_{3} v_{1} v_{2}^{3} \\
& +\left(7776 i \sqrt{3} b_{2}+7776 b_{2}\right) v_{5} v_{1} v_{2}^{3} \\
& +\left(15552 i b_{1}-5184 \sqrt{3} b_{1}\right) v_{3} v_{1} v_{2}^{2} \\
& +\left(10368 i a_{3}-3456 \sqrt{3} a_{3}\right) v_{3} v_{1}^{3} v_{2}^{3} \\
& +\left(-2592 i \sqrt{3} a_{2}+864 i \sqrt{3} b_{3}-2592 a_{2}+864 b_{3}\right) v_{5} v_{1}^{3} v_{2}^{3} \\
& +\left(-864 i \sqrt{3} b_{1}-864 b_{1}\right) v_{5} v_{1}^{3} v_{2}^{2} \\
& +\left(-864 i \sqrt{3} b_{2}-864 b_{2}\right) v_{5} v_{1}^{4} v_{2}^{2} \tag{8E}\\
& +\left(-864 i \sqrt{3} a_{3}-864 a_{3}\right) v_{5} v_{1}^{2} v_{2}^{4} \\
& +93312 i \sqrt{3} b_{3}+279936 a_{2}-986 \\
& +\left(31104 i \sqrt{3} a_{2}-10368 i \sqrt{3} b_{3}-31104 a_{2}+10368 b_{3}\right) v_{1}^{4} v_{v}^{4}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& -93312 a_{3}=0 \\
& 13824 a_{3}=0 \\
& -20736 b_{2}=0 \\
& 139968 b_{2}=0 \\
& 10368 \sqrt{3} a_{3}=0 \\
& -15552 \sqrt{3} b_{2}=0 \\
& -93312 i a_{3}+31104 \sqrt{3} a_{3}=0 \\
& -2592 i b_{1}-864 \sqrt{3} b_{1}=0 \\
& -2592 i b_{2}-864 \sqrt{3} b_{2}=0 \\
& 864 i a_{3}+288 \sqrt{3} a_{3}=0 \\
& 10368 i a_{3}-3456 \sqrt{3} a_{3}=0 \\
& 15552 i b_{1}-5184 \sqrt{3} b_{1}=0 \\
& 15552 i b_{2}-5184 \sqrt{3} b_{2}=0 \\
& 46656 i a_{1}-15552 \sqrt{3} a_{1}=0 \\
& -139968 i \sqrt{3} a_{1}+139968 a_{1}=0 \\
& -51840 i \sqrt{3} a_{3}+51840 a_{3}=0 \\
& -46656 i \sqrt{3} b_{1}+46656 b_{1}=0 \\
& -46656 i \sqrt{3} b_{2}+46656 b_{2}=0 \\
& -864 i \sqrt{3} a_{1}-864 a_{1}=0 \\
& -864 i \sqrt{3} a_{3}-864 a_{3}=0 \\
& -864 i \sqrt{3} b_{1}-864 b_{1}=0 \\
& -864 i \sqrt{3} b_{2}-864 b_{2}=0 \\
& 7776 i \sqrt{3} b_{1}+7776 b_{1}=0 \\
& 7776 i \sqrt{3} b_{2}+7776 b_{2}=0 \\
& 10368 i \sqrt{3} a_{1}-10368 a_{1}=0 \\
& 10368 i \sqrt{3} b_{1}-10368 b_{1}=0 \\
& 10368 i \sqrt{3} b_{2}-10368 b_{2}=0 \\
& 279936 i \sqrt{3} a_{3}-279936 a_{3}=0 \\
& -3888 i a_{2}+1296 i b_{3}-1296 \sqrt{3} a_{2}+432 \sqrt{3} b_{3}=0 \\
& 93312 i a_{2}-31104 i b_{3}-31104 \sqrt{3} a_{2}+10368 \sqrt{3} b_{3}=0 \\
& -279936 i \sqrt{3} a_{2}+93312 i \sqrt{3} b_{3}+279936 a_{2}-93312 b_{3}=0 \\
& -2592 i \sqrt{3} a_{2}+864 i \sqrt{3} b_{3}-2592 a_{2}+864 b_{3}=0 \\
& 11664 i \sqrt{3} a_{2}-3888 i \sqrt{68}{ }^{3} b_{3}+11664 a_{2}-3888 b_{3}=0 \\
& 31104 i \sqrt{3} a_{2}-10368 i \sqrt{3} b_{3}-31104 a_{2}+10368 b_{3}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =3 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=3 y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (2*y(x)*x^3-y(x)^3)/x^4, y(x)` *** Suble
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- 1st order, parametric methods successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 135
dsolve(($\operatorname{diff}(y(x), x))^{\wedge} 3+y(x) \wedge 2=x * y(x) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=\frac{2 x^{3} \sqrt{x^{2}+3 c_{1}}-2 x^{4}-6 x \sqrt{x^{2}+3 c_{1}} c_{1}+3 c_{1} x^{2}-9 c_{1}^{2}}{-27 x+27 \sqrt{x^{2}+3 c_{1}}} \\
& y(x)=\frac{2 x^{3} \sqrt{x^{2}+3 c_{1}}+2 x^{4}-6 x \sqrt{x^{2}+3 c_{1}} c_{1}-3 c_{1} x^{2}+9 c_{1}^{2}}{27 x+27 \sqrt{x^{2}+3 c_{1}}}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve [($\left.y^{\prime}[x]\right)^{\wedge} 3+y[x] \sim 2==x * y[x] * y '[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

Timed out

1.85 problem 88

Internal problem ID [3230]
Internal file name [OUTPUT/2722_Sunday_June_05_2022_08_39_20_AM_61568442/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 88.
ODE order: 1.
ODE degree: 0 .

The type(s) of ODE detected by this program : "first_order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
2 x y^{\prime}-y-y^{\prime} \ln \left(y y^{\prime}\right)=0
$$

Solving the given ode for y^{\prime} results in 1 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{equation*}
y^{\prime}=-\frac{y}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)} \tag{1}
\end{equation*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}-\frac{y\left(b_{3}-a_{2}\right)}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}-\frac{y^{2} a_{3}}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2}} \\
& +\frac{2 y\left(x a_{2}+y a_{3}+a_{1}\right)}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\left(1+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\right)} \tag{5E}\\
& \\
& -\left(-\frac{1}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}\right. \\
& \left.+\frac{2}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\left(1+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\right)}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
b_{2} LambertW $\left(-y^{2} \mathrm{e}^{-2 x}\right)^{3}+$ LambertW $\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2} x b_{2}+$ LambertW $\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2} y a_{2}+2$ LambertW $\left(-y^{2}\right.$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& b_{2} \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{3}+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2} x b_{2} \\
& + \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2} y a_{2}+2 \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) x y a_{2} \\
& +y^{2} a_{3} \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2} b_{1} \tag{6E}\\
& +b_{2} \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)^{2}-\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) x b_{2} \\
& +2 \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) y a_{1}+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) y a_{2} \\
& \text { - LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) y b_{3}-y^{2} a_{3} \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right) b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{-2 x}, \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{-2 x}=v_{3}, \text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 2 v_{4} v_{1} v_{2} a_{2}+v_{4}^{2} v_{2} a_{2}+v_{2}^{2} a_{3} v_{4}+v_{4}^{2} v_{1} b_{2}+b_{2} v_{4}^{3}+2 v_{4} v_{2} a_{1} \tag{7E}\\
& \quad+v_{4} v_{2} a_{2}-v_{2}^{2} a_{3}+v_{4}^{2} b_{1}-v_{4} v_{1} b_{2}+b_{2} v_{4}^{2}-2 v_{4} v_{2} b_{3}-v_{4} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 2 v_{4} v_{1} v_{2} a_{2}+v_{4}^{2} v_{1} b_{2}-v_{4} v_{1} b_{2}+v_{2}^{2} a_{3} v_{4}-v_{2}^{2} a_{3}+v_{4}^{2} v_{2} a_{2} \tag{8E}\\
& \quad+\left(2 a_{1}+a_{2}-2 b_{3}\right) v_{2} v_{4}+b_{2} v_{4}^{3}+\left(b_{1}+b_{2}\right) v_{4}^{2}-v_{4} b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{2} & =0 \\
a_{3} & =0 \\
b_{2} & =0 \\
2 a_{2} & =0 \\
-a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
b_{1}+b_{2} & =0 \\
2 a_{1}+a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =b_{3} \\
a_{2} & =0 \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=1 \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y}{\operatorname{LambertW}\left(-y^{2} \mathrm{e}^{-2 x}\right)}\right) \tag{1}\\
& =\frac{y+y \operatorname{LambertW}\left(-y^{2} \mathrm{e}^{-2 x}\right)}{\operatorname{LambertW}\left(-y^{2} \mathrm{e}^{-2 x}\right)} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y+y \text { LambertW }\left(-y^{2} e^{-2 x}\right)}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{1+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)} \\
S_{y} & =\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{y\left(1+\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)\right)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{2}=-x+c_{1}
$$

Which simplifies to

$$
\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{2}=-x+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{2}=-x+c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\text { LambertW }\left(-y^{2} \mathrm{e}^{-2 x}\right)}{2}=-x+c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
-, `-> Computing symmetries using: way \(=3 `[1, y]\)
\checkmark Solution by Maple
Time used: 0.235 (sec). Leaf size: 68
dsolve(2*x*diff $(y(x), x)-y(x)=\operatorname{diff}(y(x), x) * \ln (y(x) * \operatorname{diff}(y(x), x)), y(x), \quad$ singsol=all)

$$
\begin{aligned}
& y(x)=\mathrm{e}^{x-\frac{1}{2}} \\
& y(x)=-\mathrm{e}^{x-\frac{1}{2}} \\
& y(x)=\sqrt{2} \sqrt{\mathrm{e}^{-2 x+2 c_{1}}\left(-c_{1}+x\right)} \mathrm{e}^{x} \\
& y(x)=-\sqrt{2} \sqrt{\mathrm{e}^{-2 x+2 c_{1}}\left(-c_{1}+x\right)} \mathrm{e}^{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 59
DSolve[2*x*y'[x]-y[x]==y'[x]*Log[y[x]*y'[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-e^{c_{1}} \sqrt{-2 x+i \pi+2 c_{1}} \\
& y(x) \rightarrow e^{c_{1}} \sqrt{-2 x+i \pi+2 c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.86 problem 89

Internal problem ID [3231]
Internal file name [OUTPUT/2723_Sunday_June_05_2022_08_39_21_AM_24446730/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 89.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
y-x y^{\prime}+x^{2} y^{\prime 3}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{equation*}
y^{\prime}=\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}{6 x}+\frac{2}{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \tag{1}
\end{equation*}
$$

$y^{\prime}=-\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}{12 x}-\frac{1}{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-1083\right.\right.}{6 x}\right)}{}$
$y^{\prime}=-\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}{12 x}-\frac{1}{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-1083\right.\right.}{6 x}\right.}{}$

Now each one of the above ODE is solved.
Solving equation (1)

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x}{6 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{aligned}
& b_{2}+\frac{\left(\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(b_{3}-a_{2}\right)}{6 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& -\frac{\left(\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)^{2} a_{3}}{36 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}} \\
& -\left(\frac{-\frac{16 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}+8 \sqrt{3} \sqrt{27 y^{2}-4 x}-72 y}}{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}+12\right. \\
& 6 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}} \\
& -\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x}{6 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& \left.-\frac{\left(\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(-\frac{24 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}}+12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right)}{18 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}}\right)\left(x a_{2}\right. \\
& -\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4 x}-108} \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}}{9\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}}\right. \\
& -\frac{\left.\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(\frac{324 \sqrt{3} y}{\sqrt{272^{2}-4 x}}-108\right)}{18\left(\left(12 b_{2}+y b_{3}+b_{1}\right)\right.} \\
& =0
\end{aligned}
$$

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}, \sqrt{27 y^{2}-4 x}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2}-4 x}=v_{5}\right\}$

The above PDE (6E) now becomes

$$
\begin{align*}
& 72 v_{1}\left(1812^{\frac{2}{3}} v_{4} \sqrt{3} v_{2}^{3} a_{3}+3 v_{5} 12^{\frac{2}{3}} v_{4} v_{1}^{2} b_{2}-6 v_{5} 12^{\frac{2}{3}} v_{4} v_{2}^{2} a_{3}\right. \\
& +212^{\frac{2}{3}} v_{4} \sqrt{3} v_{1}^{2} a_{2}-412^{\frac{2}{3}} v_{4} \sqrt{3} v_{1}^{2} b_{3}+1812^{\frac{2}{3}} v_{4} \sqrt{3} v_{2}^{2} a_{1} \\
& -2 v_{5} 12^{\frac{2}{3}} v_{4} v_{1} a_{3}+3 v_{5} 12^{\frac{2}{3}} v_{4} v_{1} b_{1}-6 v_{5} 12^{\frac{2}{3}} v_{4} v_{2} a_{1} \\
& -212^{\frac{2}{3}} v_{4} \sqrt{3} v_{1} a_{1}-2412^{\frac{1}{3}} v_{3} \sqrt{3} v_{1}^{3} b_{2}+1612^{\frac{1}{3}} v_{3} \sqrt{3} v_{1}^{2} a_{3} \\
& -912^{\frac{2}{3}} v_{4} \sqrt{3} v_{1} v_{2}^{2} a_{2}-912^{\frac{2}{3}} v_{4} \sqrt{3} v_{1}^{2} v_{2} b_{2}+1812^{\frac{2}{3}} v_{4} \sqrt{3} v_{1} v_{2}^{2} b_{3} \\
& +3 v_{5} 12^{\frac{2}{3}} v_{4} v_{1} v_{2} a_{2}-6 v_{5} 12^{\frac{2}{3}} v_{4} v_{1} v_{2} b_{3}-212^{\frac{2}{3}} v_{4} \sqrt{3} v_{1} v_{2} a_{3} \tag{7E}\\
& -912^{\frac{2}{3}} v_{4} \sqrt{3} v_{1} v_{2} b_{1}+16212^{\frac{1}{3}} v_{3} \sqrt{3} v_{1}^{2} v_{2}^{2} b_{2}-54 v_{5} 12^{\frac{1}{3}} v_{3} v_{1}^{2} v_{2} b_{2} \\
& -10812^{\frac{1}{3}} v_{3} \sqrt{3} v_{1} v_{2}^{2} a_{3}+36 v_{5} 11^{\frac{1}{3}} v_{3} v_{1} v_{2} a_{3}-216 \sqrt{3} v_{1}^{2} v_{2}^{2} a_{2} \\
& +432 \sqrt{3} v_{1}^{2} v_{2}^{2} b_{3}+1080 \sqrt{3} v_{1} v_{2}^{3} a_{3}+72 v_{5} v_{1}^{2} v_{2} a_{2}-144 v_{5} v_{1}^{2} v_{2} b_{3} \\
& -360 v_{5} v_{1} v_{2}^{2} a_{3}-168 \sqrt{3} v_{1}^{2} v_{2} a_{3}+108 \sqrt{3} v_{1}^{2} v_{2} b_{1}+108 \sqrt{3} v_{1} v_{2}^{2} a_{1} \\
& -36 v_{5} v_{1} v_{2} a_{1}+108 \sqrt{3} v_{1}^{3} v_{2} b_{2}-48 \sqrt{3} v_{1}^{3} b_{3}+24 v_{5} v_{1}^{2} a_{3} \\
& \left.-36 v_{5} v_{1}^{2} b_{1}-24 \sqrt{3} v_{1}^{2} a_{1}-36 v_{5} v_{1}^{3} b_{2}+24 \sqrt{3} v_{1}^{3} a_{2}\right)=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -777612^{\frac{1}{3}} \sqrt{3} a_{3} v_{2}^{2} v_{3} v_{1}^{2}+259212^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{2} \\
& +129612^{\frac{2}{3}} \sqrt{3} a_{3} v_{2}^{3} v_{4} v_{1}-43212^{\frac{2}{3}} a_{3} v_{2}^{2} v_{4} v_{5} v_{1} \\
& +129612^{\frac{2}{3}} \sqrt{3} a_{1} v_{2}^{2} v_{4} v_{1}-43212^{\frac{2}{3}} a_{1} v_{2} v_{4} v_{5} v_{1} \\
& +1166412^{\frac{1}{3}} \sqrt{3} b_{2} v_{2}^{2} v_{3} v_{1}^{3}-388812^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{3} \\
& -64812^{\frac{2}{3}} \sqrt{3} b_{2} v_{2} v_{4} v_{1}^{3}+7776 \sqrt{3} b_{2} v_{2} v_{1}^{4} \\
& +\left(5184 a_{2}-10368 b_{3}\right) v_{2} v_{5} v_{1}^{3}+77760 \sqrt{3} a_{3} v_{2}^{3} v_{1}^{2} \\
& -172812^{\frac{1}{3}} \sqrt{3} b_{2} v_{3} v_{1}^{4}+115212^{\frac{1}{3}} \sqrt{3} a_{3} v_{3} v_{1}^{3}+21612^{\frac{2}{3}} b_{2} v_{4} v_{5} v_{1}^{3} \\
& +\left(21612^{\frac{2}{3}} a_{2}-43212^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{2}-14412^{\frac{2}{3}} \sqrt{3} a_{1} v_{4} v_{1}^{2} \\
& +\left(-64812^{\frac{2}{3}} \sqrt{3} a_{2}+129612^{\frac{2}{3}} \sqrt{3} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{2}-25920 a_{3} v_{2}^{2} v_{5} v_{1}^{2} \tag{8E}\\
& +7776 \sqrt{3} a_{1} v_{2}^{2} v_{1}^{2}+\left(-14412^{\frac{2}{3}} \sqrt{3} a_{3}-64812^{\frac{2}{3}} \sqrt{3} b_{1}\right) v_{2} v_{4} v_{1}^{2} \\
& -2592 a_{1} v_{2} v_{5} v_{1}^{2}+\left(-14412^{\frac{2}{3}} a_{3}+21612^{\frac{2}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(-12096 \sqrt{3} a_{3}+7776 \sqrt{3} b_{1}\right) v_{2} v_{1}^{3} \\
& +\left(14412^{\frac{2}{3}} \sqrt{3} a_{2}-28812^{\frac{2}{3}} \sqrt{3} b_{3}\right) v_{4} v_{1}^{3}+\left(1728 a_{3}-2592 b_{1}\right) v_{5} v_{1}^{3} \\
& -1728 \sqrt{3} a_{1} v_{1}^{3}-2592 b_{2} v_{5} v_{1}^{4}+\left(1728 \sqrt{3} a_{2}-3456 \sqrt{3} b_{3}\right) v_{1}^{4} \\
& +\left(-15552 \sqrt{3} a_{2}+31104 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-2592 a_{1} & =0 \\
-25920 a_{3} & =0 \\
-2592 b_{2} & =0 \\
-1728 \sqrt{3} a_{1} & =0 \\
7776 \sqrt{3} a_{1} & =0 \\
77760 \sqrt{3} a_{3} & =0 \\
7776 \sqrt{3} b_{2} & =0 \\
259212^{\frac{1}{3}} a_{3} & =0 \\
-388812^{\frac{1}{3}} b_{2} & =0 \\
-43212^{\frac{2}{3}} a_{1} & =0 \\
-43212^{\frac{2}{3}} a_{3} & =0 \\
21612^{\frac{2}{3}} b_{2} & =0 \\
-777612^{\frac{1}{3}} \sqrt{3} a_{3} & =0 \\
115212^{\frac{1}{3}} \sqrt{3} a_{3} & =0 \\
-172812^{\frac{1}{3}} \sqrt{3} b_{2} & =0 \\
1166412^{\frac{1}{3}} \sqrt{3} b_{2} & =0 \\
-14412^{\frac{2}{3}} \sqrt{3} a_{1} & =0 \\
129612^{\frac{2}{3}} \sqrt{3} a_{1} & =0 \\
129612^{\frac{2}{3}} \sqrt{3} a_{3} & =0 \\
-64812^{\frac{2}{3}} \sqrt{3} b_{2} & =0 \\
5184 a_{2}-10368 b_{3} & =0 \\
1728 a_{3}-2592 b_{1} & =0 \\
-14412^{\frac{2}{3}} \sqrt{3} a_{3}-64812^{\frac{2}{3}} \sqrt{3} b_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=2 x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{2 x} \\
& =\frac{y}{2 x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} \sqrt{x}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{\sqrt{x}}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{2 x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\frac{\ln (x)}{2}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x}{6 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{2 x^{\frac{3}{2}}} \\
R_{y} & =\frac{1}{\sqrt{x}} \\
S_{x} & =\frac{1}{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3 \sqrt{x}\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}}}{12^{\frac{2}{3}} x+12^{\frac{1}{3}}\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}-3\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}} y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3\left(\sqrt{3} \sqrt{27 R^{2}-4}-9 R\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\sqrt{3} \sqrt{27 R^{2}-4}-9 R\right)^{\frac{2}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{3} \sqrt{27 R^{2}-4}-9 R\right)^{\frac{1}{3}} R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \frac{3\left(\sqrt{81 R^{2}-12}-9 R\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 R^{2}-12}-9 R\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{81 R^{2}-12}-9 R\right)^{\frac{1}{3}} R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}} _^{a}} d _a+c_{1}
$$

Which simplifies to

$$
\frac{\ln (x)}{2}=\int^{\frac{y}{\sqrt{x}}} \frac{3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}-a} d _a+c_{1}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& \frac{\ln (x)}{2} \\
& =\int^{\frac{y}{\sqrt{x}}} \frac{3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}-a} d _a+c_{1} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& \frac{\ln (x)}{2} \\
& =\int^{\frac{y}{\sqrt{x}}} \frac{3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}}{12^{\frac{1}{3}}\left(\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{2}\right)^{\frac{1}{3}}+12^{\frac{2}{3}}-3\left(\sqrt{81 _a^{2}-12}-9 _a\right)^{\frac{1}{3}}-a} d _a+c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as
$y^{\prime}=\frac{i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}$ $y^{\prime}=\omega(x, y)$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
-\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x\right)\left(\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4}}\right.}{36\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}}
$$

$$
\left.+y b_{3}+b_{1}\right)=0
$$

Putting the above in normal form gives
Expression too large to display

$$
\begin{align*}
& b_{2} \tag{5E}\\
& +\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x\right)\left(b_{3}-a_{2}\right)}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x\right)^{2} a_{3}}{144 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{2 i \sqrt{3}\left(-\frac{24 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}}+12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right)}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}-12 i \sqrt{3}-\frac{2\left(-\frac{24 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}}+12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right)}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}-12}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}\right. \\
& -\frac{i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x}{12 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x-\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 x\right)\left(-\frac{24 \sqrt{3}}{\sqrt{27 y^{2}}}\right.}{36 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}} \\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{2 i \sqrt{3}\left(\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4 x}}-108\right) x}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}-\frac{2\left(\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4 x}}-108\right) x}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}} \frac{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}{}\right.
\end{align*}
$$

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives

Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}, \sqrt{27 y^{2}-4 x}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2}-4 x}=v_{5}\right\}$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-864 i 12^{\frac{2}{3}} \sqrt{3} a_{3}+86412^{\frac{2}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1} \\
& +\left(-864 i 12^{\frac{2}{3}} \sqrt{3} a_{1}+86412^{\frac{2}{3}} a_{1}\right) v_{2} v_{4} v_{5} v_{1} \\
& +\left(432 i 12^{\frac{2}{3}} \sqrt{3} a_{2}-864 i 12^{\frac{2}{3}} \sqrt{3} b_{3}\right. \\
& \left.-43212^{\frac{2}{3}} a_{2}+86412^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{2} \\
& +460812^{\frac{1}{3}} \sqrt{3} a_{3} v_{3} v_{1}^{3}-691212^{\frac{1}{3}} \sqrt{3} b_{2} v_{3} v_{1}^{4} \\
& +\left(-466560 i a_{3}-155520 \sqrt{3} a_{3}\right) v_{2}^{3} v_{1}^{2} \\
& +\left(-46656 i a_{1}-15552 \sqrt{3} a_{1}\right) v_{2}^{2} v_{1}^{2} \\
& +4665612^{\frac{1}{3}} \sqrt{3} b_{2} v_{2}^{2} v_{3} v_{1}^{3}-1555212^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{3} \\
& -3110412^{\frac{1}{3}} \sqrt{3} a_{3} v_{2}^{2} v_{3} v_{1}^{2}+1036812^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{2} \\
& +\left(-10368 i a_{2}+20736 i b_{3}-3456 \sqrt{3} a_{2}+6912 \sqrt{3} b_{3}\right) v_{1}^{4} \\
& +\left(10368 i a_{1}+3456 \sqrt{3} a_{1}\right) v_{1}^{3} \\
& +\left(-3888 i 12^{\frac{2}{3}} b_{2}+129612^{\frac{2}{3}} \sqrt{3} b_{2}\right) v_{2} v_{4} v_{1}^{3} \\
& +\left(-10368 i \sqrt{3} a_{2}+20736 i \sqrt{3} b_{3}\right. \\
& \left.-10368 a_{2}+20736 b_{3}\right) v_{2} v_{5} v_{1}^{3} \\
& +\left(432 i 12^{\frac{2}{3}} \sqrt{3} b_{2}-43212^{\frac{2}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{3}+\left(-3888 i 12^{\frac{2}{3}} a_{2}\right. \\
& \left.+7776 i 12^{\frac{2}{3}} b_{3}+129612^{\frac{2}{3}} \sqrt{3} a_{2}-259212^{\frac{2}{3}} \sqrt{3} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{2} \tag{8E}\\
& +\left(51840 i \sqrt{3} a_{3}+51840 a_{3}\right) v_{2}^{2} v_{5} v_{1}^{2}+\left(-864 i 12^{\frac{2}{3}} a_{3}\right. \\
& \left.-3888 i 12^{\frac{2}{3}} b_{1}+28812^{\frac{2}{3}} \sqrt{3} a_{3}+129612^{\frac{2}{3}} \sqrt{3} b_{1}\right) v_{2} v_{4} v_{1}^{2} \\
& +\left(5184 i \sqrt{3} a_{1}+5184 a_{1}\right) v_{2} v_{5} v_{1}^{2}+\left(-288 i 12^{\frac{2}{3}} \sqrt{3} a_{3}\right. \\
& \left.+432 i 12^{\frac{2}{3}} \sqrt{3} b_{1}+28812^{\frac{2}{3}} a_{3}-43212^{\frac{2}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(7776 i 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} \sqrt{3} a_{3}\right) v_{2}^{3} v_{4} v_{1} \\
& +\left(7776 i 12^{\frac{2}{3}} a_{1}-259212^{\frac{2}{3}} \sqrt{3} a_{1}\right) v_{2}^{2} v_{4} v_{1} \\
& +\left(-864 i 12^{\frac{2}{3}} a_{1}+28812^{\frac{2}{3}} \sqrt{3} a_{1}\right) v_{4} v_{1}^{2} \\
& +\left(-46656 i b_{2}-15552 \sqrt{3} b_{2}\right) v_{2} v_{1}^{4} \\
& +\left(5184 i \sqrt{3} b_{2}+5184 b_{2}\right) v_{5} v_{1}^{4}+\left(93312 i a_{2}\right. \\
& \left.-186624 i b_{3}+31104 \sqrt{3} a_{2}-62208 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{3} \\
& +\left(72576 i a_{3}-46656 i b_{1}{ }_{1} 3^{4192 \sqrt{3}} a_{3}\right. \\
& \left.-15552 \sqrt{3} b_{1}\right) v_{2} v_{1}^{3}+\left(864 i 12^{\frac{2}{3}} a_{2}-1728 i 12^{\frac{2}{3}} b_{3}\right.
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
1036812^{\frac{1}{3}} a_{3} & =0 \\
-1555212^{\frac{1}{3}} b_{2} & =0 \\
-3110412^{\frac{1}{3}} \sqrt{3} a_{3} & =0 \\
460812^{\frac{1}{3}} \sqrt{3} a_{3} & =0 \\
-691212^{\frac{1}{3}} \sqrt{3} b_{2} & =0 \\
4665612^{\frac{1}{3}} \sqrt{3} b_{2} & =0 \\
-466560 i a_{3}-155520 \sqrt{3} a_{3} & =0 \\
-46656 i a_{1}-15552 \sqrt{3} a_{1} & =0 \\
-46656 i b_{2}-15552 \sqrt{3} b_{2} & =0 \\
10368 i a_{1}+3456 \sqrt{3} a_{1} & =0 \\
-3888 i 12^{\frac{2}{3}} b_{2}+129612^{\frac{2}{3}} \sqrt{3} b_{2} & =0 \\
-864 i 12^{\frac{2}{3}} a_{1}+28812^{\frac{2}{3}} \sqrt{3} a_{1} & =0 \\
5184 i \sqrt{3} a_{1}+5184 a_{1} & =0 \\
5184 i \sqrt{3} b_{2}+5184 b_{2} & =0 \\
7776 i 12^{\frac{2}{3}} a_{1}-259212^{\frac{2}{3}} \sqrt{3} a_{1} & =0 \\
7776 i 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} \sqrt{3} a_{3} & =0 \\
51840 i \sqrt{3} a_{3}+51840 a_{3} & =0 \\
-864 i 12^{\frac{2}{3}} \sqrt{3} a_{1}+86412^{\frac{2}{3}} a_{1} & =0 \\
-864 i 12^{\frac{2}{3}} \sqrt{3} a_{3}+86412^{\frac{2}{3}} a_{3} & =0 \\
432 i 12^{\frac{2}{3}} \sqrt{3} b_{2}-43212^{\frac{2}{3}} b_{2} & =0 \\
432 i 12^{\frac{2}{3}} \sqrt{3} a_{2}-864 i 12^{\frac{2}{3}} \sqrt{3} b_{3}-43212^{\frac{2}{3}} a_{2}+86412^{\frac{2}{3}} b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
& b_{2} \tag{5E}\\
& -\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(b_{3}-a_{2}\right)}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& -\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)^{2} a_{3}}{144 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}} \\
& -\left(\frac{\frac{2 i \sqrt{3}\left(-\frac{24 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}}+12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right)}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}-12 i \sqrt{3}+\frac{-\frac{16 \sqrt{3} x}{\sqrt{27 y^{2}-4 x}}+8 \sqrt{3} \sqrt{27 y^{2}-4 x}-72 y}{\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}+12}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}\right. \\
& +\frac{i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x}{12 x^{2}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}} \\
& +\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(-\frac{24 \sqrt{3}}{\sqrt{27 y^{2}}}\right.}{36 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}} \\
& \left.+y a_{3}+a_{1}\right)-\left(-\frac{\frac{2 i \sqrt{3}\left(\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4 x}}-108\right) x}{3\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}+\frac{2\left(\frac{324 \sqrt{3} y}{\left.\sqrt{27 y^{2}-4 x}-108\right) x}\right.}{12 x\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}}{\left.\left.12 \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{1}{3}}}{ }^{12(1)}\right. \\
& +\frac{\left(i \sqrt{3}\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}-12 i \sqrt{3} x+\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{2}{3}}+12 x\right)\left(\frac{324 \sqrt{3} y}{\sqrt{27 y^{2}-4 x}}\right.}{36\left(\left(12 \sqrt{3} \sqrt{27 y^{2}-4 x}-108 y\right) x\right)^{\frac{4}{3}}} \\
& \left.+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives

Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y,\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}, \sqrt{27 y^{2}-4 x}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them
$\left\{x=v_{1}, y=v_{2},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{1}{3}}=v_{3},\left(\left(\sqrt{3} \sqrt{27 y^{2}-4 x}-9 y\right) x\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2}-4 x}=v_{5}\right\}$

The above PDE (6E) now becomes

> Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(10368 i a_{2}-20736 i b_{3}-3456 \sqrt{3} a_{2}+6912 \sqrt{3} b_{3}\right) v_{1}^{4} \\
& +\left(-10368 i a_{1}+3456 \sqrt{3} a_{1}\right) v_{1}^{3}-691212^{\frac{1}{3}} \sqrt{3} b_{2} v_{3} v_{1}^{4} \\
& +460812^{\frac{1}{3}} \sqrt{3} a_{3} v_{3} v_{1}^{3}+\left(-432 i 12^{\frac{2}{3}} \sqrt{3} a_{2}\right. \\
& \left.+864 i 12^{\frac{2}{3}} \sqrt{3} b_{3}-43212^{\frac{2}{3}} a_{2}+86412^{\frac{2}{3}} b_{3}\right) v_{2} v_{4} v_{5} v_{1}^{2} \\
& +\left(864 i 12^{\frac{2}{3}} \sqrt{3} a_{3}+86412^{\frac{2}{3}} a_{3}\right) v_{2}^{2} v_{4} v_{5} v_{1} \\
& +\left(864 i 12^{\frac{2}{3}} \sqrt{3} a_{1}+86412^{\frac{2}{3}} a_{1}\right) v_{2} v_{4} v_{5} v_{1} \\
& +\left(3888 i 12^{\frac{2}{3}} b_{2}+129612^{\frac{2}{3}} \sqrt{3} b_{2}\right) v_{2} v_{4} v_{1}^{3} \\
& +\left(10368 i \sqrt{3} a_{2}-20736 i \sqrt{3} b_{3}\right. \\
& \left.-10368 a_{2}+20736 b_{3}\right) v_{2} v_{5} v_{1}^{3} \\
& +\left(-432 i 12^{\frac{2}{3}} \sqrt{3} b_{2}-43212^{\frac{2}{3}} b_{2}\right) v_{4} v_{5} v_{1}^{3} \\
& +\left(3888 i 12^{\frac{2}{3}} a_{2}-7776 i 12^{\frac{2}{3}} b_{3}\right. \\
& \left.+129612^{\frac{2}{3}} \sqrt{3} a_{2}-259212^{\frac{2}{3}} \sqrt{3} b_{3}\right) v_{2}^{2} v_{4} v_{1}^{2} \\
& +\left(-51840 i \sqrt{3} a_{3}+51840 a_{3}\right) v_{2}^{2} v_{5} v_{1}^{2}+\left(864 i 12^{\frac{2}{3}} a_{3}\right. \\
& \left.+3888 i 12^{\frac{2}{3}} b_{1}+28812^{\frac{2}{3}} \sqrt{3} a_{3}+129612^{\frac{2}{3}} \sqrt{3} b_{1}\right) v_{2} v_{4} v_{1}^{2} \tag{8E}\\
& +\left(-5184 i \sqrt{3} a_{1}+5184 a_{1}\right) v_{2} v_{5} v_{1}^{2}+\left(288 i 12^{\frac{2}{3}} \sqrt{3} a_{3}\right. \\
& \left.-432 i 12^{\frac{2}{3}} \sqrt{3} b_{1}+28812^{\frac{2}{3}} a_{3}-43212^{\frac{2}{3}} b_{1}\right) v_{4} v_{5} v_{1}^{2} \\
& +\left(-7776 i 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} \sqrt{3} a_{3}\right) v_{2}^{3} v_{4} v_{1} \\
& +\left(-7776 i 12^{\frac{2}{3}} a_{1}-259212^{\frac{2}{3}} \sqrt{3} a_{1}\right) v_{2}^{2} v_{4} v_{1} \\
& +1036812^{\frac{1}{3}} a_{3} v_{2} v_{3} v_{5} v_{1}^{2}+4665612^{\frac{1}{3}} \sqrt{3} b_{2} v_{2}^{2} v_{3} v_{1}^{3} \\
& -1555212^{\frac{1}{3}} b_{2} v_{2} v_{3} v_{5} v_{1}^{3}-3110412^{\frac{1}{3}} \sqrt{3} a_{3} v_{2}^{2} v_{3} v_{1}^{2} \\
& +\left(46656 i b_{2}-15552 \sqrt{3} b_{2}\right) v_{2} v_{1}^{4} \\
& +\left(-5184 i \sqrt{3} b_{2}+5184 b_{2}\right) v_{5} v_{1}^{4}+\left(-93312 i a_{2}\right. \\
& \left.+186624 i b_{3}+31104 \sqrt{3} a_{2}-62208 \sqrt{3} b_{3}\right) v_{2}^{2} v_{1}^{3} \\
& +\left(-72576 i a_{3}+46656 i b_{1}+24192 \sqrt{3} a_{3}\right. \\
& \left.-15552 \sqrt{3} b_{1}\right) v_{2} v_{1}^{3}+\left(-864 i 12^{\frac{2}{3}} a_{2}+1728 i 12^{\frac{2}{3}} b_{3}\right. \\
& \left.-28812^{\frac{2}{3}} \sqrt{3} a_{2}+57612^{\frac{2}{3}} \sqrt{3} b_{3}\right) v_{4} v_{1}^{3} \\
& +\left(3456 i \sqrt{3} a_{3}-5184 i \sqrt{3} 16_{1}-3456 a_{3}+5184 b_{1}\right) v_{5} v_{1}^{3} \\
& +\left(466560 i a_{3}-155520 \sqrt{3} a_{3}\right) v_{2}^{3} v_{1}^{2}
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& 1036812^{\frac{1}{3}} a_{3}=0 \\
&-1555212^{\frac{1}{3}} b_{2}=0 \\
&-3110412^{\frac{1}{3}} \sqrt{3} a_{3}=0 \\
& 460812^{\frac{1}{3}} \sqrt{3} a_{3}=0 \\
&-691212^{\frac{1}{3}} \sqrt{3} b_{2}=0 \\
& 4665612^{\frac{1}{3}} \sqrt{3} b_{2}=0 \\
&-10368 i a_{1}+3456 \sqrt{3} a_{1}=0 \\
& 46656 i a_{1}-15552 \sqrt{3} a_{1}=0 \\
& 46656 i b_{2}-15552 \sqrt{3} b_{2}=0 \\
& 466560 i a_{3}-155520 \sqrt{3} a_{3}=0 \\
&-51840 i \sqrt{3} a_{3}+51840 a_{3}=0 \\
&-7776 i 12^{\frac{2}{3}} a_{1}-259212^{\frac{2}{3}} \sqrt{3} a_{1}=0 \\
&-7776 i 12^{\frac{2}{3}} a_{3}-259212^{\frac{2}{3}} \sqrt{3} a_{3}=0 \\
&-5184 i \sqrt{3} a_{1}+5184 a_{1}=0 \\
&-5184 i \sqrt{3} b_{2}+5184 b_{2}=0 \\
& 864 i 12^{\frac{2}{3}} a_{1}+28812^{\frac{2}{3}} \sqrt{3} a_{1}=0 \\
& 3888 i 12^{\frac{2}{3}} b_{2}+129612^{\frac{2}{3}} \sqrt{3} b_{2}=0 \\
&-432 i 12^{\frac{2}{3}} \sqrt{3} b_{2}-43212^{\frac{2}{3}} b_{2}=0 \\
& 864 i 12^{\frac{2}{3}} \sqrt{3} a_{1}+86412^{\frac{2}{3}} a_{1}=0 \\
& 864 i 12^{\frac{2}{3}} \sqrt{3} a_{3}+86412^{\frac{2}{3}} a_{3}=0 \\
&-432 i 12^{\frac{2}{3}} \sqrt{3} a_{2}+864 i 12^{\frac{2}{3} \sqrt{3} b_{3}-43212^{\frac{2}{3}} a_{2}+86412^{\frac{2}{3}} b_{3}}=00 \\
& 288 i 12^{\frac{2}{3}} \sqrt{3} a_{3}-432 i 12^{\frac{2}{3} \sqrt{3} b_{1}+28812^{\frac{2}{3}} a_{3}-43212^{\frac{2}{3}} b_{1}}=00
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =2 b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 x \\
\eta & =y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.
    *** Sublevel 2 ***
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying exact
    Looking for potential symmetries
    trying an equivalence to an Abel ODE
    trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = (3*y(x)*x-(-4*y(x)*x+1)^(1/2)-1)/(x^2*(1+(
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying homogeneous G
    <- homogeneous successful
-> Calling odsolve with the ODE`, diff(y(x), x) = (-3*y(x)*x-(-4*y(x)*x+1)^(1/2)+1)/(x^2*(-1
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying homogeneous types:
    trying homogeneous G
    <- homogeneous successful
<- 1st order, parametric methods successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 123
dsolve($y(x)=x * \operatorname{diff}(y(x), x)-x^{\wedge} 2 *(\operatorname{diff}(y(x), x))^{\wedge} 3, y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & -x^{2} \operatorname{RootOf}\left(4 _Z^{4} c_{1} x^{2}+8 _Z^{2} c_{1} x-_Z+4 c_{1}\right)^{3} \\
& +x \operatorname{RootOf}\left(4 _Z^{4} c_{1} x^{2}+8 _Z^{2} c_{1} x-_Z+4 c_{1}\right) \\
y(x)= & -x^{2} \operatorname{RootOf}\left(4 _Z^{4} c_{1} x^{2}-16 _Z^{2} c_{1} x-_Z+16 c_{1}\right)^{3} \\
& +x \operatorname{RootOf}\left(4 _Z^{4} c_{1} x^{2}-16 _Z^{2} c_{1} x-_Z+16 c_{1}\right)
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

DSolve $\left[y[x]==x * y^{\prime}[x]-x^{\wedge} 2 *\left(y^{\prime}[x]\right)^{\wedge} 3, y[x], x\right.$, IncludeSingularSolutions $->$ True]

Timed out

1.87 problem 90

Internal problem ID [3232]
Internal file name [OUTPUT/2724_Sunday_June_05_2022_08_39_25_AM_11199866/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 90.
ODE order: 1.
ODE degree: 3 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie__symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, 'class G`]]

$$
y\left(y-2 x y^{\prime}\right)^{3}-y^{\prime 2}=0
$$

Solving the given ode for y^{\prime} results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}}{24 y x^{3}}-\frac{24 y^{2} x^{2}-1}{24 y x^{3}\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x\right.} \tag{1}\\
& y^{\prime}=-\frac{\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}}{48 y x^{3}}+\frac{24 y^{2} x^{2}-1}{48 y x^{3}\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3}\right.} \tag{2}\\
& y^{\prime}=-\frac{\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}}{48 y x^{3}}+\frac{24 y^{2} x^{2}-1}{48 y x^{3}\left(-216 y^{4} x^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3}\right.} \tag{3}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)

Writing the ode as

$$
y^{\prime}=\frac{12 y^{2} x^{2}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}-24 y^{2} x^{2}+\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} a}\right.}{24 y x^{3}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-}\right.}
$$

$$
y^{\prime}=\omega(x, y)
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y,\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}},\left(-216 x^{4} y^{4}\right.\right. \\
& \left.\left.+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}, \sqrt{27 y^{2} x^{2}-1}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}\right.\right. \\
& -1)^{\frac{1}{3}}=v_{3},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}\right. \\
& \left.\left.+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2} x^{2}-1}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes
Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
&-62208 a_{1}=0 \\
&-57024 a_{1}=0 \\
&-8640 a_{1}=0 \\
&-2880 a_{1}=0 \\
&-72 a_{1}=0 \\
& 72 a_{1}=0 \\
& 2016 a_{1}=0 \\
& 3744 a_{1}=0 \\
& 25920 a_{1}=0 \\
& 290304 a_{1}=0 \\
&-31104 a_{3}=0 \\
&-3456 a_{3}=0 \\
&-1584 a_{3}=0 \\
&-108 a_{3}=0 \\
&-3 a_{3}=0 \\
& 3 a_{3}=0 \\
& 72 a_{3}=0 \\
& 144 a_{3}=0 \\
& 504 a_{3}=0 \\
& 5184 a_{3}=0 \\
& 72576 a_{3}=0 \\
&-5184 b_{1}=0 \\
&-576 b_{1}=0 \\
&-244 b_{1}=0 \\
& 24 b_{1}=0 \\
&-51152 b_{2}=0 \\
& 288 b_{1}=0 \\
& 864 b_{1}=0 \\
& 1728 b_{1}=0 \\
& 41472 b_{1}=0 \\
& 62208 b_{1}=0 \\
&-62208 b_{2}=0 \\
&-218 b_{2}=0 \\
& 2
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{-x} \\
& =-\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=\frac{c_{1}}{x}
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=x y
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{-x}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\ln (x)
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by
$\omega(x, y)=\frac{12 y^{2} x^{2}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}-24 y^{2} x^{2}+\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{ }\right.}{24 y x^{3}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 ?}\right.}$
Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =y \\
R_{y} & =x \\
S_{x} & =-\frac{1}{x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{24 y x\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x}\right.}{36 y^{2} x^{2}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}-24 y^{2} x^{2}+\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{2}\right.} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{24 R\left(-216 R^{4}+24 \sqrt{3} \sqrt{27 R^{2}-1} R^{3}+\right.}{36 R^{2}\left(-216 R^{4}+24 \sqrt{3} \sqrt{27 R^{2}-1} R^{3}+36 R^{2}-1\right)^{\frac{1}{3}}-24 R^{2}+\left(-216 R^{4}+24 \sqrt{3} \sqrt{27 R^{2}-1} R^{3}\right.}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int-\frac{24 R\left(-216 R^{4}+24 R^{3} \sqrt{81 R^{2}-3}+36 R\right.}{36 R^{2}\left(-216 R^{4}+24 R^{3} \sqrt{81 R^{2}-3}+36 R^{2}-1\right)^{\frac{1}{3}}-24 R^{2}+\left(-216 R^{4}+24 R^{3} \sqrt{81 R^{2}-3}+3\right.} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\ln (x)=\int^{y x}-\frac{24 _a\left(-216 _a^{4}+24 _a^{3} \sqrt{81}\right.}{36 _a^{2}\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36 _a^{2}-1\right)^{\frac{1}{3}}-24 _a^{2}+\left(-216 _a^{4}+24 _a^{3} \sqrt{ }\right.}
$$

Which simplifies to

$$
-\ln (x)=\int^{y x}-\frac{24 _a\left(-216 _a^{4}+24 _a^{3} \sqrt{81}\right.}{36 _a^{2}\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36 _a^{2}-1\right)^{\frac{1}{3}}-24 _a^{2}+\left(-216 _a^{4}+24 _a^{3} \sqrt{ }\right.}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& -\ln (x)=\int^{y x} \tag{1}\\
& \\
& -\frac{24 _a\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36\right.}{} \begin{array}{l}
36 _a^{2}\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36 _a^{2}-1\right)^{\frac{1}{3}}-24 _a^{2}+\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+\right.
\end{array} \\
& \quad+c_{1}
\end{align*}
$$

Verification of solutions
$-\ln (x)=\int^{y x}$

$$
\begin{aligned}
& -\frac{24 _a\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36\right.}{36 _a^{2}\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+36 _a^{2}-1\right)^{\frac{1}{3}}-24 _a^{2}+\left(-216 _a^{4}+24 _a^{3} \sqrt{81 _a^{2}-3}+\right.} \\
& +c_{1}
\end{aligned}
$$

Verified OK.
Solving equation (2)

Writing the ode as
$y^{\prime}=\frac{24 i \sqrt{3} y^{2} x^{2}+24 y^{2} x^{2}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}+i \sqrt{3}\left(-216 x^{4} y^{4}+24 \sqrt{ }\right.}{}$
$y^{\prime}=\omega(x, y)$
The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives
Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives
Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y,\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}},\left(-216 x^{4} y^{4}\right.\right. \\
& \left.\left.+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}, \sqrt{27 y^{2} x^{2}-1}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}\right.\right. \\
& -1)^{\frac{1}{3}}=v_{3},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}\right. \\
& \left.\left.+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2} x^{2}-1}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

> Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-248832 a_{1} & =0 \\
-11520 a_{1} & =0 \\
288 a_{1} & =0 \\
103680 a_{1} & =0 \\
-124416 a_{3} & =0 \\
-432 a_{3} & =0 \\
12 a_{3} & =0 \\
2016 a_{3} & =0 \\
20736 a_{3} & =0 \\
-20736 b_{1} & =0 \\
-2304 b_{1} & =0 \\
96 b_{1} & =0 \\
248832 b_{1} & =0 \\
-248832 b_{2} & =0 \\
-4608 b_{2} & =0 \\
96 b_{2} & =0 \\
62208 b_{2} & =0 \\
-53 P_{90080 \sqrt{3}} a_{1}-570240 i a_{1} & =0 \\
-51840 \sqrt{3} a_{1}+155520 i a_{1} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating

Unable to determine ODE type.
Solving equation (3)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{24 i \sqrt{3} y^{2} x^{2}-24 y^{2} x^{2}\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}}+i \sqrt{3}\left(-216 x^{4} y^{4}+24\right.}{y^{\prime}}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

> Expression too large to display

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives
Expression too large to display

Simplifying the above gives

> Expression too large to display

Since the PDE has radicals, simplifying gives

> Expression too large to display

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\begin{aligned}
& \left\{x, y,\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{1}{3}},\left(-216 x^{4} y^{4}\right.\right. \\
& \left.\left.+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}, \sqrt{27 y^{2} x^{2}-1}\right\}
\end{aligned}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\begin{aligned}
& \left\{x=v_{1}, y=v_{2},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}+36 y^{2} x^{2}\right.\right. \\
& -1)^{\frac{1}{3}}=v_{3},\left(-216 x^{4} y^{4}+24 \sqrt{3} \sqrt{27 y^{2} x^{2}-1} y^{3} x^{3}\right. \\
& \left.\left.+36 y^{2} x^{2}-1\right)^{\frac{2}{3}}=v_{4}, \sqrt{27 y^{2} x^{2}-1}=v_{5}\right\}
\end{aligned}
$$

The above PDE (6E) now becomes
Expression too large to display

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}
$$

Equation (7E) now becomes

> Expression too large to display

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& -248832 a_{1}=0 \\
& -11520 a_{1}=0 \\
& 288 a_{1}=0 \\
& 103680 a_{1}=0 \\
& -124416 a_{3}=0 \\
& -432 a_{3}=0 \\
& 12 a_{3}=0 \\
& 2016 a_{3}=0 \\
& 20736 a_{3}=0 \\
& -20736 b_{1}=0 \\
& -2304 b_{1}=0 \\
& 96 b_{1}=0 \\
& 248832 b_{1}=0 \\
& -248832 b_{2}=0 \\
& -4608 b_{2}=0 \\
& 96 b_{2}=0 \\
& 62208 b_{2}=0 \\
& -214272 \sqrt{3} a_{1}=0 \\
& 6912 \sqrt{3} a_{1}=0 \\
& 746496 \sqrt{3} a_{1}=0 \\
& -13824 \sqrt{3} a_{3}=0 \\
& -7776 \sqrt{3} a_{3}=0 \\
& 288 \sqrt{3} a_{3}=0 \\
& 373248 \sqrt{3} a_{3}=0 \\
& -746496 \sqrt{3} b_{1}=0 \\
& -34560 \sqrt{3} b_{1}=0 \\
& 2304 \sqrt{3} b_{1}=0 \\
& -89856 \sqrt{3} b_{2}=0 \\
& 2304 \sqrt{3} b_{2}=0 \\
& 746496 \sqrt{3} b_{2}=0 \\
& -6912 a_{2}-6912 b_{3}=0 \\
& 192 a_{2}+192 b_{3}=0 \\
& 41472 a_{2}+41472 b_{3}=0 \\
& { }^{73} 190080 \sqrt{3} a_{1}+570240 i a_{1}=0 \\
& -51840 \sqrt{3} a_{1}-155520 i a_{1}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Unable to determine R. Terminating Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 577

```
dsolve(y(x)* (y(x)-2*x*diff(y(x),x))^3= (diff(y(x),x))^2 ,y(x), singsol=all)
```

$y(x)=-\frac{\sqrt{3}}{9 x}$
$y(x)=\frac{\sqrt{3}}{9 x}$
$y(x)=0$
$y(x)$
$=\frac{\operatorname{RootOf}\left(-\ln (x)+c_{1}+24\left(\int^{-}{ }^{Z} \frac{\left(-216 _a^{4}+24 _a^{3} \sqrt{81} _^{a^{2}-3}\right.}{36\left(-216 _a^{4}+24 _a^{3} \sqrt{81} _^{a^{2}-3}+36\right.} _^{2}-1\right)^{\frac{1}{3}}-a^{2}+\left(-216 _a^{4}+24 _a^{3} \sqrt{81} _^{a^{2}-3}-\right.\right.}{x}$
$y(x)$

$$
\begin{aligned}
& =\frac{\operatorname{RootOf}\left(-\ln (x)+c_{1}-48\left(\int^{Z} \overline{{ }_{i(-216}-a^{4}+24 _a^{3} \sqrt{81} _a^{2}-3}+36 _a^{2}-1\right)^{\frac{2}{3}} \sqrt{3}+24 i \sqrt{3} _a^{2}-72\left(-216 _a^{4}+24 _a^{3} v\right.\right.}{y(x)}
\end{aligned}
$$

$$
=\underline{\operatorname{RootOf}\left(-\ln (x)+c_{1}+48\left(\int^{Z} \frac{{ }^{Z}}{i\left(-216 _a^{4}+24 _a^{3} \sqrt{81} _^{2}-3+36\right.} a^{2}-1\right)^{\frac{2}{3}} \sqrt{3}+24 i \sqrt{3} _a^{2}+72\left(-216 _a^{4}+24 _a^{3} v\right.\right.}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y[x]*(y[x]-2*x*y'[x]) $3==\left(y y^{\prime}[x]\right) \wedge 2, y[x], x$, IncludeSingularSolutions \rightarrow True]
Timed out

1.88 problem 91

> 1.88.1 Solving as dAlembert ode

Internal problem ID [3233]
Internal file name [OUTPUT/2725_Sunday_June_05_2022_08_39_28_AM_12257417/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 91.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_homogeneous, `class G`], _dAlembert]

$$
x y^{\prime}+y-4 \sqrt{y^{\prime}}=0
$$

1.88.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
x p+y-4 \sqrt{p}=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=-x p+4 \sqrt{p} \tag{1A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=-p \\
& g=4 \sqrt{p}
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
2 p=\left(-x+\frac{2}{\sqrt{p}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
2 p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=0
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{2 p(x)}{-x+\frac{2}{\sqrt{p(x)}}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=\frac{-x(p)+\frac{2}{\sqrt{p}}}{2 p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{1}{2 p} \\
& q(p)=\frac{1}{p^{\frac{3}{2}}}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{x(p)}{2 p}=\frac{1}{p^{\frac{3}{2}}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{2 p} d p} \\
& =\sqrt{p}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(\frac{1}{p^{\frac{3}{2}}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}(x \sqrt{p}) & =(\sqrt{p})\left(\frac{1}{p^{\frac{3}{2}}}\right) \\
\mathrm{d}(x \sqrt{p}) & =\frac{1}{p} \mathrm{~d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x \sqrt{p}=\int \frac{1}{p} \mathrm{~d} p \\
& x \sqrt{p}=\ln (p)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sqrt{p}$ results in

$$
x(p)=\frac{\ln (p)}{\sqrt{p}}+\frac{c_{1}}{\sqrt{p}}
$$

which simplifies to

$$
x(p)=\frac{\ln (p)+c_{1}}{\sqrt{p}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
\begin{aligned}
& p=\frac{\frac{8+4 \sqrt{4-y x}}{x}-y}{x} \\
& p=\frac{-\frac{4(-2+\sqrt{4-y x})}{x}-y}{x}
\end{aligned}
$$

Substituting the above in the solution for x found above gives

$$
\begin{aligned}
& x=\frac{\ln \left(\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}}} \\
& x=\frac{\ln \left(\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=0 \tag{1}\\
& x=\frac{\ln \left(\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}}} \tag{2}\\
& x=\frac{\ln \left(\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}}} \tag{3}
\end{align*}
$$

Verification of solutions

$$
y=0
$$

Verified OK.

$$
x=\frac{\ln \left(\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x+4 \sqrt{4-y x}+8}{x^{2}}}}
$$

Verified OK.

$$
x=\frac{\ln \left(\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}\right)+c_{1}}{\sqrt{\frac{-y x-4 \sqrt{4-y x}+8}{x^{2}}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 67

```
dsolve(y(x)+x*diff(y(x),x) = 4*sqrt(diff(y(x),x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{8 \sqrt{\frac{\text { LambertW }\left(-\frac{c_{1} x}{2}\right)^{2}}{x^{2}}} x-4 \operatorname{LambertW}\left(-\frac{c_{1} x}{2}\right)^{2}}{x} \\
& y(x)=\frac{-4 \operatorname{LambertW}\left(\frac{c_{1} x}{2}\right)^{2}+8 \sqrt{\frac{\text { LambertW }\left(\frac{c_{1} x}{2}\right)^{2}}{x^{2}}} x}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 1.157 (sec). Leaf size: 94
DSolve $[y[x]+x * y$ ' $[x]==4 *$ Sqrt [y' $[x]], y[x], x$, IncludeSingularSolutions $->$ True]

Solve $\left[\frac{2 e^{-\frac{1}{2} \sqrt{4-x y(x)}}(-2 \sqrt{4-x y(x)}-4)}{y(x)}=c_{1}, y(x)\right]$
Solve $\left[\frac{2 e^{\frac{1}{2} \sqrt{4-x y(x)}}(2 \sqrt{4-x y(x)}-4)}{y(x)}=c_{1}, y(x)\right]$

$$
y(x) \rightarrow 0
$$

1.89 problem 92

1.89.1 Solving as dAlembert ode

Internal problem ID [3234]
Internal file name [OUTPUT/2726_Sunday_June_05_2022_08_39_43_AM_74450280/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 92.
ODE order: 1.
ODE degree: 0 .

The type(s) of ODE detected by this program : "dAlembert"
Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _dAlembert]

$$
2 x y^{\prime}-y-\ln \left(y^{\prime}\right)=0
$$

1.89.1 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
2 x p-y-\ln (p)=0
$$

Solving for y from the above results in

$$
\begin{equation*}
y=2 x p-\ln (p) \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=2 p \\
& g=-\ln (p)
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
-p=\left(2 x-\frac{1}{p}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
-p=0
$$

Solving for p from the above gives

$$
p=0
$$

Substituting these in (1A) gives

$$
y=\infty
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=-\frac{p(x)}{2 x-\frac{1}{p(x)}} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$.
Inverting the above ode gives

$$
\begin{equation*}
\frac{d}{d p} x(p)=-\frac{2 x(p)-\frac{1}{p}}{p} \tag{4}
\end{equation*}
$$

This ODE is now solved for $x(p)$.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
\frac{d}{d p} x(p)+p(p) x(p)=q(p)
$$

Where here

$$
\begin{aligned}
& p(p)=\frac{2}{p} \\
& q(p)=\frac{1}{p^{2}}
\end{aligned}
$$

Hence the ode is

$$
\frac{d}{d p} x(p)+\frac{2 x(p)}{p}=\frac{1}{p^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{p} d p} \\
& =p^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} p}(\mu x) & =(\mu)\left(\frac{1}{p^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} p}\left(p^{2} x\right) & =\left(p^{2}\right)\left(\frac{1}{p^{2}}\right) \\
\mathrm{d}\left(p^{2} x\right) & =\mathrm{d} p
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
p^{2} x & =\int \mathrm{d} p \\
p^{2} x & =p+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=p^{2}$ results in

$$
x(p)=\frac{1}{p}+\frac{c_{1}}{p^{2}}
$$

which simplifies to

$$
x(p)=\frac{p+c_{1}}{p^{2}}
$$

Now we need to eliminate p between the above and (1A). One way to do this is by solving (1) for p. This results in

$$
p=\mathrm{e}^{-\operatorname{LambertW}\left(-2 x \mathrm{e}^{-y}\right)-y}
$$

Substituting the above in the solution for x found above gives

$$
x=-\frac{2\left(-2 c_{1} x+\operatorname{LambertW}\left(-2 x \mathrm{e}^{-y}\right)\right) x}{\text { LambertW }\left(-2 x \mathrm{e}^{-y}\right)^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\infty \tag{1}\\
& x=-\frac{2\left(-2 c_{1} x+\text { LambertW }\left(-2 x \mathrm{e}^{-y}\right)\right) x}{\operatorname{LambertW}\left(-2 x \mathrm{e}^{-y}\right)^{2}} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\infty
$$

Warning, solution could not be verified

$$
x=-\frac{2\left(-2 c_{1} x+\text { LambertW }\left(-2 x \mathrm{e}^{-y}\right)\right) x}{\text { LambertW }\left(-2 x \mathrm{e}^{-y}\right)^{2}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 69

```
dsolve(2*x*diff(y(x),x) -y(x) = ln(diff (y (x),x)),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=1+\sqrt{4 c_{1} x+1}+\ln (2)-\ln \left(\frac{1+\sqrt{4 c_{1} x+1}}{x}\right) \\
& y(x)=1-\sqrt{4 c_{1} x+1}+\ln (2)-\ln \left(\frac{1-\sqrt{4 c_{1} x+1}}{x}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 34
DSolve[2*x*y'[x] $-\mathrm{y}[\mathrm{x}]==\log [y '[\mathrm{x}]$],y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[W\left(-2 x e^{-y(x)}\right)-\log \left(W\left(-2 x e^{-y(x)}\right)+2\right)+y(x)=c_{1}, y(x)\right]$

1.90 problem 111

1.90.1 Solving as first order ode lie symmetry lookup ode 748
1.90.2 Solving as bernoulli ode . 752
1.90.3 Solving as exact ode . 756

Internal problem ID [3235]
Internal file name [OUTPUT/2727_Sunday_June_05_2022_08_39_46_AM_78403092/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 111.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
x y^{2}\left(x y^{\prime}+y\right)=1
$$

1.90.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x y^{3}-1}{y^{2} x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 34: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{y^{2} x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y^{2} x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3} y^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x y^{3}-1}{y^{2} x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y^{3} x^{2} \\
S_{y} & =x^{3} y^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{3} x^{3}}{3}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{3} x^{3}}{3}=\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x y^{3}-1}{y^{2} x^{2}}$		$\frac{d S}{d R}=R$
		b 1
	$R=x$	
	$S=\underline{x^{3} y^{3}}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3} x^{3}}{3}=\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot
Verification of solutions

$$
\frac{y^{3} x^{3}}{3}=\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

1.90.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{x y^{3}-1}{y^{2} x^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\frac{1}{x^{2}} \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\frac{1}{x^{2}} \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-\frac{y^{3}}{x}+\frac{1}{x^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}+\frac{1}{x^{2}} \\
w^{\prime} & =-\frac{3 w}{x}+\frac{3}{x^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{x}=\frac{3}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{3}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} w\right) & =\left(x^{3}\right)\left(\frac{3}{x^{2}}\right) \\
\mathrm{d}\left(x^{3} w\right) & =(3 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} w=\int 3 x \mathrm{~d} x \\
& x^{3} w=\frac{3 x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
w(x)=\frac{3}{2 x}+\frac{c_{1}}{x^{3}}
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=\frac{3}{2 x}+\frac{c_{1}}{x^{3}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}}{2 x} \\
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{4 x} \\
& y(x)=-\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}}{2 x} \tag{1}\\
& y=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{4 x} \tag{2}\\
& y=-\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x} \tag{3}
\end{align*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}}{2 x}
$$

Verified OK.

$$
y=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(-1+i \sqrt{3})}{4 x}
$$

Verified OK.

$$
y=-\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x}
$$

Verified OK.

1.90.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2} x^{2}\right) \mathrm{d} y & =\left(-x y^{3}+1\right) \mathrm{d} x \\
\left(x y^{3}-1\right) \mathrm{d} x+\left(y^{2} x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x y^{3}-1 \\
N(x, y) & =y^{2} x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{3}-1\right) \\
& =3 x y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2} x^{2}\right) \\
& =2 x y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y^{2} x^{2}}\left(\left(3 x y^{2}\right)-\left(2 x y^{2}\right)\right) \\
& =\frac{1}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (x)} \\
& =x
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x\left(x y^{3}-1\right) \\
& =x\left(x y^{3}-1\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x\left(y^{2} x^{2}\right) \\
& =x^{3} y^{2}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(x\left(x y^{3}-1\right)\right)+\left(x^{3} y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x\left(x y^{3}-1\right) \mathrm{d} x \\
\phi & =\frac{1}{3} x^{3} y^{3}-\frac{1}{2} x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{3} y^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{3} y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{3} y^{2}=x^{3} y^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{1}{3} x^{3} y^{3}-\frac{1}{2} x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{1}{3} x^{3} y^{3}-\frac{1}{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3} x^{3}}{3}-\frac{x^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
\frac{y^{3} x^{3}}{3}-\frac{x^{2}}{2}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 74
dsolve($x * y(x)^{\sim} 2 *(x * \operatorname{diff}(y(x), x)+y(x))=1, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}}{2 x} \\
& y(x)=-\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{4 x} \\
& y(x)=\frac{\left(12 x^{2}+8 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{4 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 80
DSolve [x*y $[x] \sim 2 *\left(x * y y^{\prime}[x]+y[x]\right)==1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt[3]{-\frac{1}{2}} \sqrt[3]{3 x^{2}+2 c_{1}}}{x} \\
& y(x) \rightarrow \frac{\sqrt[3]{\frac{3 x^{2}}{2}+c_{1}}}{x} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3} \sqrt[3]{\frac{3 x^{2}}{2}+c_{1}}}{x}
\end{aligned}
$$

1.91 problem 112

Internal problem ID [3236]
Internal file name [OUTPUT/2728_Sunday_June_05_2022_08_39_47_AM_99213743/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 112.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]

$$
5 y+y^{\prime 2}-x\left(x+y^{\prime}\right)=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2} \tag{1}\\
& y^{\prime}=\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(\frac{1}{2}+\frac{5 x}{2 \sqrt{5 x^{2}-20 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)+\frac{5 x b_{2}+5 y b_{3}+5 b_{1}}{\sqrt{5 x^{2}-20 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}+\sqrt{5 x^{2}-20 y} x^{2} a_{3}+10 x^{3} a_{3}+4 \sqrt{5 x^{2}-20 y} x a_{2}-2 \sqrt{5 x^{2}-20 y} x b_{3}+2 \sqrt{5 x^{2}-20 y} y}{4 \sqrt{5}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}-\sqrt{5 x^{2}-20 y} x^{2} a_{3}-10 x^{3} a_{3} \\
& \quad-4 \sqrt{5 x^{2}-20 y} x a_{2}+2 \sqrt{5 x^{2}-20 y} x b_{3}-2 \sqrt{5 x^{2}-20 y} y a_{3} \tag{6E}\\
& -20 x^{2} a_{2}+10 x^{2} b_{3}+30 x y a_{3}-2 \sqrt{5 x^{2}-20 y} a_{1} \\
& +4 b_{2} \sqrt{5 x^{2}-20 y}-10 x a_{1}+20 x b_{2}+40 y a_{2}-20 y b_{3}+20 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}-2\left(5 x^{2}-20 y\right) x a_{3}-\sqrt{5 x^{2}-20 y} x^{2} a_{3} \\
& \quad-2\left(5 x^{2}-20 y\right) a_{2}+2\left(5 x^{2}-20 y\right) b_{3}-4 \sqrt{5 x^{2}-20 y} x a_{2} \tag{6E}\\
& +2 \sqrt{5 x^{2}-20 y} x b_{3}-2 \sqrt{5 x^{2}-20 y} y a_{3}-10 x^{2} a_{2}-10 x y a_{3} \\
& -2 \sqrt{5 x^{2}-20 y} a_{1}+4 b_{2} \sqrt{5 x^{2}-20 y}-10 x a_{1}+20 x b_{2}+20 y b_{3}+20 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -10 x^{3} a_{3}-6 \sqrt{5 x^{2}-20 y} x^{2} a_{3}-20 x^{2} a_{2}+10 x^{2} b_{3}-4 \sqrt{5 x^{2}-20 y} x a_{2} \\
& +2 \sqrt{5 x^{2}-20 y} x b_{3}+30 x y a_{3}+18 \sqrt{5 x^{2}-20 y} y a_{3}-10 x a_{1}+20 x b_{2} \\
& -2 \sqrt{5 x^{2}-20 y} a_{1}+4 b_{2} \sqrt{5 x^{2}-20 y}+40 y a_{2}-20 y b_{3}+20 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{5 x^{2}-20 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{5 x^{2}-20 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -10 v_{1}^{3} a_{3}-6 v_{3} v_{1}^{2} a_{3}-20 v_{1}^{2} a_{2}-4 v_{3} v_{1} a_{2}+30 v_{1} v_{2} a_{3}+18 v_{3} v_{2} a_{3}+10 v_{1}^{2} b_{3} \tag{7E}\\
& +2 v_{3} v_{1} b_{3}-10 v_{1} a_{1}-2 v_{3} a_{1}+40 v_{2} a_{2}+20 v_{1} b_{2}+4 b_{2} v_{3}-20 v_{2} b_{3}+20 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -10 v_{1}^{3} a_{3}-6 v_{3} v_{1}^{2} a_{3}+\left(-20 a_{2}+10 b_{3}\right) v_{1}^{2}+30 v_{1} v_{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& +\left(-10 a_{1}+20 b_{2}\right) v_{1}+18 v_{3} v_{2} a_{3}+\left(40 a_{2}-20 b_{3}\right) v_{2}+\left(-2 a_{1}+4 b_{2}\right) v_{3}+20 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-10 a_{3} & =0 \\
-6 a_{3} & =0 \\
18 a_{3} & =0 \\
30 a_{3} & =0 \\
20 b_{1} & =0 \\
-10 a_{1}+20 b_{2} & =0 \\
-2 a_{1}+4 b_{2} & =0 \\
-20 a_{2}+10 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
40 a_{2}-20 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 \\
\eta & =x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2}\right) \tag{2}\\
& =-\sqrt{5 x^{2}-20 y} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\sqrt{5 x^{2}-20 y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{2}+\frac{\sqrt{5 x^{2}-20 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x}{2 \sqrt{5 x^{2}-20 y}} \\
S_{y} & =-\frac{1}{\sqrt{5 x^{2}-20 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}=-\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}=-\frac{x}{2}+c_{1}
$$

Which gives

$$
y=-5 c_{1}^{2}+5 c_{1} x-x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-5 c_{1}^{2}+5 c_{1} x-x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-5 c_{1}^{2}+5 c_{1} x-x^{2}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\left(\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2}\right)\left(b_{3}-a_{2}\right)-\left(\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2}\right)^{2} a_{3} \tag{5E}\\
& -\left(\frac{1}{2}-\frac{5 x}{2 \sqrt{5 x^{2}-20 y}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)-\frac{5\left(x b_{2}+y b_{3}+b_{1}\right)}{\sqrt{5 x^{2}-20 y}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}+\sqrt{5 x^{2}-20 y} x^{2} a_{3}-10 x^{3} a_{3}+4 \sqrt{5 x^{2}-20 y} x a_{2}-2 \sqrt{5 x^{2}-20 y} x b_{3}+2 \sqrt{5 x^{2}-20 y} y a}{4 \sqrt{5}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}-\sqrt{5 x^{2}-20 y} x^{2} a_{3}+10 x^{3} a_{3} \\
& -4 \sqrt{5 x^{2}-20 y} x a_{2}+2 \sqrt{5 x^{2}-20 y} x b_{3}-2 \sqrt{5 x^{2}-20 y} y a_{3} \tag{6E}\\
& +20 x^{2} a_{2}-10 x^{2} b_{3}-30 x y a_{3}-2 \sqrt{5 x^{2}-20 y} a_{1} \\
& +4 b_{2} \sqrt{5 x^{2}-20 y}+10 x a_{1}-20 x b_{2}-40 y a_{2}+20 y b_{3}-20 b_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -\left(5 x^{2}-20 y\right)^{\frac{3}{2}} a_{3}+2\left(5 x^{2}-20 y\right) x a_{3}-\sqrt{5 x^{2}-20 y} x^{2} a_{3} \\
& +2\left(5 x^{2}-20 y\right) a_{2}-2\left(5 x^{2}-20 y\right) b_{3}-4 \sqrt{5 x^{2}-20 y} x a_{2} \tag{6E}\\
& +2 \sqrt{5 x^{2}-20 y} x b_{3}-2 \sqrt{5 x^{2}-20 y} y a_{3}+10 x^{2} a_{2}+10 x y a_{3} \\
& -2 \sqrt{5 x^{2}-20 y} a_{1}+4 b_{2} \sqrt{5 x^{2}-20 y}+10 x a_{1}-20 x b_{2}-20 y b_{3}-20 b_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 10 x^{3} a_{3}-6 \sqrt{5 x^{2}-20 y} x^{2} a_{3}+20 x^{2} a_{2}-10 x^{2} b_{3}-4 \sqrt{5 x^{2}-20 y} x a_{2} \\
& +2 \sqrt{5 x^{2}-20 y} x b_{3}-30 x y a_{3}+18 \sqrt{5 x^{2}-20 y} y a_{3}+10 x a_{1}-20 x b_{2} \\
& -2 \sqrt{5 x^{2}-20 y} a_{1}+4 b_{2} \sqrt{5 x^{2}-20 y}-40 y a_{2}+20 y b_{3}-20 b_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{5 x^{2}-20 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{5 x^{2}-20 y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 10 v_{1}^{3} a_{3}-6 v_{3} v_{1}^{2} a_{3}+20 v_{1}^{2} a_{2}-4 v_{3} v_{1} a_{2}-30 v_{1} v_{2} a_{3}+18 v_{3} v_{2} a_{3}-10 v_{1}^{2} b_{3} \tag{7E}\\
& +2 v_{3} v_{1} b_{3}+10 v_{1} a_{1}-2 v_{3} a_{1}-40 v_{2} a_{2}-20 v_{1} b_{2}+4 b_{2} v_{3}+20 v_{2} b_{3}-20 b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 10 v_{1}^{3} a_{3}-6 v_{3} v_{1}^{2} a_{3}+\left(20 a_{2}-10 b_{3}\right) v_{1}^{2}-30 v_{1} v_{2} a_{3}+\left(-4 a_{2}+2 b_{3}\right) v_{1} v_{3} \tag{8E}\\
& +\left(10 a_{1}-20 b_{2}\right) v_{1}+18 v_{3} v_{2} a_{3}+\left(-40 a_{2}+20 b_{3}\right) v_{2}+\left(-2 a_{1}+4 b_{2}\right) v_{3}-20 b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-30 a_{3} & =0 \\
-6 a_{3} & =0 \\
10 a_{3} & =0 \\
18 a_{3} & =0 \\
-20 b_{1} & =0 \\
-2 a_{1}+4 b_{2} & =0 \\
10 a_{1}-20 b_{2} & =0 \\
-40 a_{2}+20 b_{3} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
20 a_{2}-10 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =2 b_{2} \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =b_{2} \\
b_{3} & =2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =2 \\
\eta & =x
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{align*}
\eta & =\eta-\omega(x, y) \xi \\
& =x-\left(\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2}\right) \tag{2}\\
& =\sqrt{5 x^{2}-20 y} \\
\xi & =0
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{5 x^{2}-20 y}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{2}-\frac{\sqrt{5 x^{2}-20 y}}{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{2 \sqrt{5 x^{2}-20 y}} \\
S_{y} & =\frac{1}{\sqrt{5 x^{2}-20 y}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{2} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}=-\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{x^{2}-4 y}{2 \sqrt{5 x^{2}-20 y}}=-\frac{x}{2}+c_{1}
$$

Which gives

$$
y=-5 c_{1}^{2}+5 c_{1} x-x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-5 c_{1}^{2}+5 c_{1} x-x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-5 c_{1}^{2}+5 c_{1} x-x^{2}
$$

Verified OK.

Maple trace

```
MMethods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
    <- 1st order, canonical coordinates successful
    <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        1st order, trying the canonical coordinates of the invariance group
        <- 1st order, canonical coordinates successful
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 91
dsolve(5*y $(x)+(\operatorname{diff}(y(x), x))^{\wedge} 2=x *(x+\operatorname{diff}(y(x), x)), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{x^{2}}{4} \\
& y(x)=x \sqrt{5} \sqrt{-c_{1}}-x^{2}+c_{1} \\
& y(x)=-x \sqrt{5} \sqrt{-c_{1}}-x^{2}+c_{1} \\
& y(x)=-x \sqrt{5} \sqrt{-c_{1}}-x^{2}+c_{1} \\
& y(x)=x \sqrt{5} \sqrt{-c_{1}}-x^{2}+c_{1}
\end{aligned}
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[5*y[x]+(y'[x])^2==x*(x+y'[x]),y[x],x,IncludeSingularSolutions -> True]
```

Timed out
1.92 problem 113
1.92.1 Solving as separable ode 775
1.92.2 Solving as linear ode 777
1.92.3 Solving as homogeneousTypeD2 ode 779
1.92.4 Solving as homogeneousTypeMapleC ode 780
1.92.5 Solving as first order ode lie symmetry lookup ode 783
1.92.6 Solving as exact ode 787
1.92.7 Maple step by step solution 791
Internal problem ID [3237]
Internal file name [OUTPUT/2729_Sunday_June_05_2022_08_39_48_AM_99015751/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78 Problem number: 113.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\frac{y+2}{x+1}=0
$$

1.92.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y+2}{x+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x+1}$ and $g(y)=y+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+2} d y & =\frac{1}{x+1} d x \\
\int \frac{1}{y+2} d y & =\int \frac{1}{x+1} d x \\
\ln (y+2) & =\ln (x+1)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+2=\mathrm{e}^{\ln (x+1)+c_{1}}
$$

Which simplifies to

$$
y+2=c_{2}(x+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\ln (x+1)+c_{1}}-2 \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\ln (x+1)+c_{1}}-2
$$

Verified OK.

1.92.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x+1} \\
q(x) & =\frac{2}{x+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x+1}=\frac{2}{x+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x+1} d x} \\
& =\frac{1}{x+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2}{x+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x+1}\right) & =\left(\frac{1}{x+1}\right)\left(\frac{2}{x+1}\right) \\
\mathrm{d}\left(\frac{y}{x+1}\right) & =\left(\frac{2}{(x+1)^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x+1}=\int \frac{2}{(x+1)^{2}} \mathrm{~d} x \\
& \frac{y}{x+1}=-\frac{2}{x+1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x+1}$ results in

$$
y=-2+c_{1}(x+1)
$$

which simplifies to

$$
y=c_{1} x+c_{1}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{1}-2 \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=c_{1} x+c_{1}-2
$$

Verified OK.

1.92.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x) x+2}{x+1}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-u+2}{x(x+1)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x(x+1)}$ and $g(u)=-u+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-u+2} d u & =\frac{1}{x(x+1)} d x \\
\int \frac{1}{-u+2} d u & =\int \frac{1}{x(x+1)} d x \\
-\ln (u-2) & =-\ln (x+1)+\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{u-2}=\mathrm{e}^{-\ln (x+1)+\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{u-2}=c_{3} \mathrm{e}^{-\ln (x+1)+\ln (x)}
$$

Which simplifies to

$$
u(x)=\frac{\left(\frac{2 c_{3} \mathrm{e}^{c_{2} x}}{x+1}+1\right)(x+1) \mathrm{e}^{-c_{2}}}{c_{3} x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{\left(\frac{2 c_{3} \mathrm{e}^{c_{2} x}}{x+1}+1\right)(x+1) \mathrm{e}^{-c_{2}}}{c_{3}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\frac{2 c_{3} \mathrm{e}^{c_{2} x}}{x+1}+1\right)(x+1) \mathrm{e}^{-c_{2}}}{c_{3}} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=\frac{\left(\frac{2 c_{3} \mathrm{e}^{c_{2}} x}{x+1}+1\right)(x+1) \mathrm{e}^{-c_{2}}}{c_{3}}
$$

Verified OK.

1.92.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{Y(X)+y_{0}+2}{X+x_{0}+1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-1 \\
& y_{0}=-2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =0
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. Integrating both sides gives

$$
\begin{aligned}
u(X) & =\int 0 \mathrm{~d} X \\
& =c_{2}
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-2 \\
& X=x-1
\end{aligned}
$$

Then the solution in y becomes

$$
y+2=c_{2}(x+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y+2=c_{2}(x+1) \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot

Verification of solutions

$$
y+2=c_{2}(x+1)
$$

Verified OK.

1.92.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+2}{x+1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 36: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x+1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x+1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y+2}{x+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x+1)^{2}} \\
S_{y} & =\frac{1}{x+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2}{(x+1)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2}{(R+1)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2}{R+1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x+1}=-\frac{2}{x+1}+c_{1}
$$

Which simplifies to

$$
\frac{y}{x+1}=-\frac{2}{x+1}+c_{1}
$$

Which gives

$$
y=c_{1} x+c_{1}-2
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y+2}{x+1}$		$\frac{d S}{d R}=\frac{2}{(R+1)^{2}}$
		$\rightarrow \rightarrow \rightarrow \infty$
-		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=x$	$\rightarrow \rightarrow \rightarrow \infty$ -
	$S=y$	
		$\rightarrow \rightarrow \infty$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		約召
		${ }_{4}+1+8$
$\bigcirc 94+4 x^{2}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{1}-2 \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
y=c_{1} x+c_{1}-2
$$

Verified OK.

1.92.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+2}\right) \mathrm{d} y & =\left(\frac{1}{x+1}\right) \mathrm{d} x \\
\left(-\frac{1}{x+1}\right) \mathrm{d} x+\left(\frac{1}{y+2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x+1} \\
& N(x, y)=\frac{1}{y+2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y+2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x+1} \mathrm{~d} x \\
\phi & =-\ln (x+1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+2}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+2}\right) \mathrm{d} y \\
f(y) & =\ln (y+2)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x+1)+\ln (y+2)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x+1)+\ln (y+2)
$$

The solution becomes

$$
y=\mathrm{e}^{c_{1}} x+\mathrm{e}^{c_{1}}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{1}} x+\mathrm{e}^{c_{1}}-2 \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{c_{1}} x+\mathrm{e}^{c_{1}}-2
$$

Verified OK.

1.92.7 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y+2}{x+1}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y+2}=\frac{1}{x+1}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y+2} d x=\int \frac{1}{x+1} d x+c_{1}$
- Evaluate integral
$\ln (y+2)=\ln (x+1)+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{c_{1}} x+\mathrm{e}^{c_{1}}-2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(x),x)=(y(x)+2)/(x+1),y(x), singsol=all)
```

$$
y(x)=c_{1} x+c_{1}-2
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 18
DSolve $\left[y^{\prime}[x]==(y[x]+2) /(x+1), y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-2+c_{1}(x+1) \\
& y(x) \rightarrow-2
\end{aligned}
$$

1.93 problem 115

1.93.1 Solving as homogeneousTypeD ode 793
1.93.2 Solving as homogeneousTypeD2 ode 795]
1.93.3 Solving as first order ode lie symmetry lookup ode 797

Internal problem ID [3238]
Internal file name [OUTPUT/2730_Sunday_June_05_2022_08_39_49_AM_26650830/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 115.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _dAlembert]
```

$$
x y^{\prime}-y+x \mathrm{e}^{\frac{y}{x}}=0
$$

1.93.1 Solving as homogeneousTypeD ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\mathrm{e}^{\frac{y}{x}}+\frac{y}{x} \tag{A}
\end{equation*}
$$

The given ode has the form

$$
\begin{equation*}
y^{\prime}=\frac{y}{x}+g(x) f\left(b \frac{y}{x}\right)^{\frac{n}{m}} \tag{1}
\end{equation*}
$$

Where b is scalar and $g(x)$ is function of x and n, m are integers. The solution is given in Kamke page 20. Using the substitution $y(x)=u(x) x$ then

$$
\frac{d y}{d x}=\frac{d u}{d x} x+u
$$

Hence the given ode becomes

$$
\begin{align*}
\frac{d u}{d x} x+u & =u+g(x) f(b u)^{\frac{n}{m}} \\
u^{\prime} & =\frac{1}{x} g(x) f(b u)^{\frac{n}{m}} \tag{2}
\end{align*}
$$

The above ode is always separable. This is easily solved for u assuming the integration can be resolved, and then the solution to the original ode becomes $y=u x$. Comapring the given ode (A) with the form (1) shows that

$$
\begin{aligned}
g(x) & =-1 \\
b & =1 \\
f\left(\frac{b x}{y}\right) & =\mathrm{e}^{\frac{y}{x}}
\end{aligned}
$$

Substituting the above in (2) results in the $u(x)$ ode as

$$
u^{\prime}(x)=-\frac{\mathrm{e}^{u(x)}}{x}
$$

Which is now solved as separable In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{u}} d u & =\int-\frac{1}{x} d x \\
-\mathrm{e}^{-u} & =-\ln (x)+c_{1}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}+\ln (x)-c_{1}=0
$$

Therefore the solution is found using $y=u x$. Hence

$$
-\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{1}=0
$$

Verified OK.

1.93.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x\left(u^{\prime}(x) x+u(x)\right)-u(x) x+x \mathrm{e}^{u(x)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{\mathrm{e}^{u}}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\mathrm{e}^{u}$. Integrating both sides gives

$$
\frac{1}{\mathrm{e}^{u}} d u=-\frac{1}{x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\mathrm{e}^{u}} d u & =\int-\frac{1}{x} d x \\
-\mathrm{e}^{-u} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\mathrm{e}^{-u(x)}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& -\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{2}=0 \\
& -\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot

Verification of solutions

$$
-\mathrm{e}^{-\frac{y}{x}}+\ln (x)-c_{2}=0
$$

Verified OK.

1.93.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x \mathrm{e}^{\frac{y}{x}}-y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 39: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=x^{2} \\
& \eta(x, y)=x y \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Therefore

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{x y}{x^{2}} \\
& =\frac{y}{x}
\end{aligned}
$$

This is easily solved to give

$$
y=c_{1} x
$$

Where now the coordinate R is taken as the constant of integration. Hence

$$
R=\frac{y}{x}
$$

And S is found from

$$
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x^{2}}
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =-\frac{1}{x}
\end{aligned}
$$

Where the constant of integration is set to zero as we just need one solution. Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x \mathrm{e}^{\frac{y}{x}}-y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x^{2}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{\mathrm{e}^{-\frac{y}{x}}}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=S(R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \mathrm{e}^{-\mathrm{e}^{-R}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\mathrm{e}^{-\frac{y}{x}}}
$$

Which simplifies to

$$
-\frac{1}{x}=c_{1} \mathrm{e}^{-\mathrm{e}^{-\frac{y}{x}}}
$$

Which gives

$$
y=-\ln \left(-\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x e^{\frac{y}{x}}-y}{x}$		$d S$ $d R$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln \left(-\ln \left(-\frac{1}{c_{1} x}\right)\right) x \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
y=-\ln \left(-\ln \left(-\frac{1}{c_{1} x}\right)\right) x
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve($x * \operatorname{diff}(y(x), x)=y(x)-x * \exp (y(x) / x), y(x)$, singsol=all)

$$
y(x)=-\ln \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.426 (sec). Leaf size: 16
DSolve[x*y'[x]== $y[x]-x * \operatorname{Exp}[y[x] / x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-x \log \left(\log (x)-c_{1}\right)
$$

1.94 problem 116

1.94.1 Solving as first order ode lie symmetry lookup ode 803
1.94.2 Solving as bernoulli ode . 807
1.94.3 Solving as exact ode . 811
1.94.4 Maple step by step solution . 814

Internal problem ID [3239]
Internal file name [OUTPUT/2731_Sunday_June_05_2022_08_39_50_AM_72756352/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 116.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_exact, _Bernoulli]

$$
\sin (2 x) y^{2}-2 y \cos (x)^{2} y^{\prime}=-1
$$

1.94.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\sin (2 x) y^{2}+1}{2 y \cos (x)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 41: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{y \cos (x)^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y \cos (x)^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2} \cos (x)^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\sin (2 x) y^{2}+1}{2 y \cos (x)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\sin (2 x) y^{2}}{2} \\
& S_{y}=y \cos (x)^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2} \cos (x)^{2}}{2}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2} \cos (x)^{2}}{2}=\frac{x}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\sin (2 x) y^{2}+1}{2 y \cos (x)^{2}}$		$\frac{d S}{d R}=\frac{1}{2}$
	$R=x$	
	$S=\underline{y^{2} \cos (x)^{2}}$	
	$S=\frac{2}{2}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2} \cos (x)^{2}}{2}=\frac{x}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot
Verification of solutions

$$
\frac{y^{2} \cos (x)^{2}}{2}=\frac{x}{2}+c_{1}
$$

Verified OK.

1.94.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{\sin (2 x) y^{2}+1}{2 y \cos (x)^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{\sin (x)}{\cos (x)} y+\frac{1}{2 \cos (x)^{2}} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{\sin (x)}{\cos (x)} \\
f_{1}(x) & =\frac{1}{2 \cos (x)^{2}} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{\sin (x) y^{2}}{\cos (x)}+\frac{1}{2 \cos (x)^{2}} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{\sin (x) w(x)}{\cos (x)}+\frac{1}{2 \cos (x)^{2}} \\
w^{\prime} & =\frac{2 \sin (x) w}{\cos (x)}+\frac{1}{\cos (x)^{2}} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \tan (x) \\
& q(x)=\sec (x)^{2}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-2 \tan (x) w(x)=\sec (x)^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \tan (x) d x} \\
& =\cos (x)^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\sec (x)^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\cos (x)^{2} w\right) & =\left(\cos (x)^{2}\right)\left(\sec (x)^{2}\right) \\
\mathrm{d}\left(\cos (x)^{2} w\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \cos (x)^{2} w=\int \mathrm{d} x \\
& \cos (x)^{2} w=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)^{2}$ results in

$$
w(x)=\sec (x)^{2} x+c_{1} \sec (x)^{2}
$$

which simplifies to

$$
w(x)=\sec (x)^{2}\left(x+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=\sec (x)^{2}\left(x+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sec (x) \sqrt{x+c_{1}} \\
& y(x)=-\sec (x) \sqrt{x+c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sec (x) \sqrt{x+c_{1}} \tag{1}\\
& y=-\sec (x) \sqrt{x+c_{1}} \tag{2}
\end{align*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=\sec (x) \sqrt{x+c_{1}}
$$

Verified OK.

$$
y=-\sec (x) \sqrt{x+c_{1}}
$$

Verified OK.

1.94.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-2 y \cos (x)^{2}\right) \mathrm{d} y & =\left(-1-\sin (2 x) y^{2}\right) \mathrm{d} x \\
\left(\sin (2 x) y^{2}+1\right) \mathrm{d} x+\left(-2 y \cos (x)^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\sin (2 x) y^{2}+1 \\
N(x, y) & =-2 y \cos (x)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\sin (2 x) y^{2}+1\right) \\
& =2 y \sin (2 x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-2 y \cos (x)^{2}\right) \\
& =2 y \sin (2 x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \sin (2 x) y^{2}+1 \mathrm{~d} x \\
\phi & =x-\frac{\cos (2 x) y^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-y \cos (2 x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-2 y \cos (x)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
-2 y \cos (x)^{2}=-y \cos (2 x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-2 y \cos (x)^{2}+y \cos (2 x) \\
& =-y
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot
Verification of solutions

$$
x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

1.94.4 Maple step by step solution

Let's solve

$$
\sin (2 x) y^{2}-2 y \cos (x)^{2} y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 y \sin (2 x)=4 y \sin (x) \cos (x)
$$

- Simplify

$$
2 y \sin (2 x)=2 y \sin (2 x)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\sin (2 x) y^{2}+1\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x-\frac{\cos (2 x) y^{2}}{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-2 y \cos (x)^{2}=-y \cos (2 x)+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-2 y \cos (x)^{2}+y \cos (2 x)
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{x-c_{1}}}{\cos (x)}, y=-\frac{\sqrt{x-c_{1}}}{\cos (x)}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 24

```
dsolve((1+y(x)^2*\operatorname{sin}(2*x))-(2*y(x)*\operatorname{cos}(x)^2)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sec (x) \sqrt{c_{1}+x} \\
& y(x)=-\sec (x) \sqrt{c_{1}+x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 32

```
DSolve[(1+y[x]~ 2*Sin[2*x])-(2*y[x]*\operatorname{Cos[x] 2 2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> Tru}
```

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x+c_{1}} \sec (x) \\
& y(x) \rightarrow \sqrt{x+c_{1}} \sec (x)
\end{aligned}
$$

1.95 problem 117

1.95.1 Solving as first order ode lie symmetry calculated ode 817
1.95.2 Solving as exact ode . 823

Internal problem ID [3240]
Internal file name [OUTPUT/2732_Sunday_June_05_2022_08_39_51_AM_92742251/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 117.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
2 \sqrt{y x}-y-x y^{\prime}=0
$$

1.95.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-2 \sqrt{x y}+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(-2 \sqrt{x y}+y)\left(b_{3}-a_{2}\right)}{x}-\frac{(-2 \sqrt{x y}+y)^{2} a_{3}}{x^{2}} \tag{5E}\\
& -\left(\frac{y}{\sqrt{x y} x}+\frac{-2 \sqrt{x y}+y}{x^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{\left(-\frac{x}{\sqrt{x y}}+1\right)\left(x b_{2}+y b_{3}+b_{1}\right)}{x}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{4(x y)^{\frac{3}{2}} a_{3}-x^{2} y b_{3}-5 x y^{2} a_{3}-2 b_{2} \sqrt{x y} x^{2}+2 \sqrt{x y} y^{2} a_{3}+x^{3} b_{2}+x^{2} y a_{2}-x y a_{1}-\sqrt{x y} x b_{1}+\sqrt{x y} y a_{1}+}{\sqrt{x y} x^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -4(x y)^{\frac{3}{2}} a_{3}+2 b_{2} \sqrt{x y} x^{2}-2 \sqrt{x y} y^{2} a_{3}-x^{3} b_{2}-x^{2} y a_{2} \tag{6E}\\
& +x^{2} y b_{3}+5 x y^{2} a_{3}+\sqrt{x y} x b_{1}-\sqrt{x y} y a_{1}-x^{2} b_{1}+x y a_{1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -x^{3} b_{2}+2 b_{2} \sqrt{x y} x^{2}-x^{2} y a_{2}+x^{2} y b_{3}-4 x y \sqrt{x y} a_{3}+5 x y^{2} a_{3} \\
& -2 \sqrt{x y} y^{2} a_{3}-x^{2} b_{1}+\sqrt{x y} x b_{1}+x y a_{1}-\sqrt{x y} y a_{1}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \sqrt{x y}\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1}^{2} v_{2} a_{2}+5 v_{1} v_{2}^{2} a_{3}-4 v_{1} v_{2} v_{3} a_{3}-2 v_{3} v_{2}^{2} a_{3}-v_{1}^{3} b_{2} \tag{7E}\\
& \quad+2 b_{2} v_{3} v_{1}^{2}+v_{1}^{2} v_{2} b_{3}+v_{1} v_{2} a_{1}-v_{3} v_{2} a_{1}-v_{1}^{2} b_{1}+v_{3} v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{1}^{3} b_{2}+\left(b_{3}-a_{2}\right) v_{1}^{2} v_{2}+2 b_{2} v_{3} v_{1}^{2}-v_{1}^{2} b_{1}+5 v_{1} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-4 v_{1} v_{2} v_{3} a_{3}+v_{1} v_{2} a_{1}+v_{3} v_{1} b_{1}-2 v_{3} v_{2}^{2} a_{3}-v_{3} v_{2} a_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-4 a_{3} & =0 \\
-2 a_{3} & =0 \\
5 a_{3} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
2 b_{2} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{-2 \sqrt{x y}+y}{x}\right)(x) \\
& =2 y-2 \sqrt{x y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{2 y-2 \sqrt{x y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln (y-x)}{2}-\frac{\ln (\sqrt{x y}+x)}{2}+\frac{\ln (\sqrt{x y}-x)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-2 \sqrt{x y}+y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}(-2 y+2 x)} \\
S_{y} & =-\frac{\sqrt{x}+\sqrt{y}}{\sqrt{y}(-2 y+2 x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{(\sqrt{x}+\sqrt{y})(\sqrt{y} x-2 \sqrt{x} \sqrt{x y}+\sqrt{x} y)}{x^{\frac{3}{2}} \sqrt{y}(-2 y+2 x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln (y-x)}{2}-\frac{\ln (\sqrt{x} \sqrt{y}+x)}{2}+\frac{\ln (\sqrt{x} \sqrt{y}-x)}{2}=-\frac{\ln (x)}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (y-x)}{2}-\frac{\ln (\sqrt{x} \sqrt{y}+x)}{2}+\frac{\ln (\sqrt{x} \sqrt{y}-x)}{2}=-\frac{\ln (x)}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (y-x)}{2}-\frac{\ln (\sqrt{x} \sqrt{y}+x)}{2}+\frac{\ln (\sqrt{x} \sqrt{y}-x)}{2}=-\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot

Verification of solutions

$$
\frac{\ln (y-x)}{2}-\frac{\ln (\sqrt{x} \sqrt{y}+x)}{2}+\frac{\ln (\sqrt{x} \sqrt{y}-x)}{2}=-\frac{\ln (x)}{2}+c_{1}
$$

Verified OK.

1.95.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-x) \mathrm{d} y & =(-2 \sqrt{x y}+y) \mathrm{d} x \\
(2 \sqrt{x y}-y) \mathrm{d} x+(-x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 \sqrt{x y}-y \\
N(x, y) & =-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 \sqrt{x y}-y) \\
& =\frac{x}{\sqrt{x y}}-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{x}\left(\left(\frac{x}{\sqrt{x y}}-1\right)-(-1)\right) \\
& =-\frac{1}{\sqrt{x y}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 \sqrt{x y}-y}\left((-1)-\left(\frac{x}{\sqrt{x y}}-1\right)\right) \\
& =\frac{x}{(-2 \sqrt{x y}+y) \sqrt{x y}}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(-1)-\left(\frac{x}{\sqrt{x y}}-1\right)}{x(2 \sqrt{x y}-y)-y(-x)} \\
& =-\frac{1}{2 x y}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{1}{2 t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{1}{2 t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{\ln (t)}{2}} \\
& =\frac{1}{\sqrt{t}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{\sqrt{x y}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{\sqrt{x y}}(2 \sqrt{x y}-y) \\
& =-\frac{-2 \sqrt{x y}+y}{\sqrt{x y}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{\sqrt{x y}}(-x) \\
& =-\frac{x}{\sqrt{x y}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{-2 \sqrt{x y}+y}{\sqrt{x y}}\right)+\left(-\frac{x}{\sqrt{x y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{-2 \sqrt{x y}+y}{\sqrt{x y}} \mathrm{~d} x \\
\phi & =2 x-2 \sqrt{x y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x}{\sqrt{x y}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x}{\sqrt{x y}}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x}{\sqrt{x y}}=-\frac{x}{\sqrt{x y}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=2 x-2 \sqrt{x y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=2 x-2 \sqrt{x y}
$$

The solution becomes

$$
y=\frac{c_{1}^{2}-4 c_{1} x+4 x^{2}}{4 x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}^{2}-4 c_{1} x+4 x^{2}}{4 x} \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}^{2}-4 c_{1} x+4 x^{2}}{4 x}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 71
dsolve $((2 * \operatorname{sqrt}(x * y(x))-y(x))-x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\frac{x^{2} c_{1} y(x)-y(x) \sqrt{x y(x)} c_{1} x-c_{1} x^{3}+\sqrt{x y(x)} c_{1} x^{2}+x+\sqrt{x y(x)}}{(-x+y(x))(\sqrt{x y(x)}-x) x}=0
$$

\checkmark Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 26
DSolve[(2*Sqrt [x*y[x]]-y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\left(x+e^{\frac{c_{1}}{2}}\right)^{2}}{x} \\
& y(x) \rightarrow x
\end{aligned}
$$

1.96 problem 119

1.96.1 Solving as homogeneousTypeD2 ode 830
1.96.2 Solving as dAlembert ode . 832

Internal problem ID [3241]
Internal file name [OUTPUT/2733_Sunday_June_05_2022_08_39_52_AM_49446695/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 119.
ODE order: 1.
ODE degree: 0 .

The type(s) of ODE detected by this program : "dAlembert", "homogeneousTypeD2" Maple gives the following as the ode type [[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime}=\mathrm{e}^{\frac{x y^{\prime}}{y}}
$$

1.96.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)=\mathrm{e}^{\frac{d}{d x}(u(x) x)} u(x)
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-\operatorname{LambertW}\left(-\frac{1}{u}\right) u-u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=-$ LambertW $\left(-\frac{1}{u}\right) u-u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{- \text { LambertW }\left(-\frac{1}{u}\right) u-u} d u & =\frac{1}{x} d x \\
\int \frac{1}{-\operatorname{LambertW}\left(-\frac{1}{u}\right) u-u} d u & =\int \frac{1}{x} d x \\
\ln \left(\text { LambertW }\left(-\frac{1}{u}\right)\right) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\operatorname{LambertW}\left(-\frac{1}{u}\right)=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\operatorname{LambertW}\left(-\frac{1}{u}\right)=c_{3} x
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =-\frac{\mathrm{e}^{-c_{2}} \mathrm{e}^{-c_{3} \mathrm{e}^{c_{2} x}}}{c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-c_{2}} \mathrm{e}^{-c_{3} \mathrm{e}^{c_{2} x}}}{c_{3}} \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-c_{2}} \mathrm{e}^{-c_{3} \mathrm{e}^{c_{2} x}}}{c_{3}}
$$

Verified OK.

1.96.2 Solving as dAlembert ode

Let $p=y^{\prime}$ the ode becomes

$$
p=\mathrm{e}^{\frac{x p}{y}}
$$

Solving for y from the above results in

$$
\begin{equation*}
y=\frac{x p}{\ln (p)} \tag{1~A}
\end{equation*}
$$

This has the form

$$
\begin{equation*}
y=x f(p)+g(p) \tag{*}
\end{equation*}
$$

Where f, g are functions of $p=y^{\prime}(x)$. The above ode is dAlembert ode which is now solved. Taking derivative of $\left({ }^{*}\right)$ w.r.t. x gives

$$
\begin{align*}
p & =f+\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \\
p-f & =\left(x f^{\prime}+g^{\prime}\right) \frac{d p}{d x} \tag{2}
\end{align*}
$$

Comparing the form $y=x f+g$ to (1A) shows that

$$
\begin{aligned}
& f=\frac{p}{\ln (p)} \\
& g=0
\end{aligned}
$$

Hence (2) becomes

$$
\begin{equation*}
p-\frac{p}{\ln (p)}=x\left(\frac{1}{\ln (p)}-\frac{1}{\ln (p)^{2}}\right) p^{\prime}(x) \tag{2~A}
\end{equation*}
$$

The singular solution is found by setting $\frac{d p}{d x}=0$ in the above which gives

$$
p-\frac{p}{\ln (p)}=0
$$

Solving for p from the above gives

$$
p=\mathrm{e}
$$

Substituting these in (1A) gives

$$
y=x \mathrm{e}
$$

The general solution is found when $\frac{\mathrm{d} p}{\mathrm{~d} x} \neq 0$. From eq. (2A). This results in

$$
\begin{equation*}
p^{\prime}(x)=\frac{p(x)-\frac{p(x)}{\ln (p(x))}}{x\left(\frac{1}{\ln (p(x))}-\frac{1}{\ln (p(x))^{2}}\right)} \tag{3}
\end{equation*}
$$

This ODE is now solved for $p(x)$. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{\ln (p) p}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(p)=\ln (p) p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\ln (p) p} d p & =\frac{1}{x} d x \\
\int \frac{1}{\ln (p) p} d p & =\int \frac{1}{x} d x \\
\ln (\ln (p)) & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\ln (p)=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\ln (p)=c_{2} x
$$

Substituing the above solution for p in (2A) gives

$$
y=\frac{x \mathrm{e}^{c_{2} \mathrm{e}^{c_{1}} x}}{\ln \left(\mathrm{e}^{c_{2} \mathrm{e}^{c_{1} x}}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x \mathrm{e} \tag{1}\\
& \left.y=\frac{x \mathrm{e}^{c_{2} \mathrm{e}_{1} x}}{\ln \left(\mathrm{e}^{c_{2} \mathrm{e}^{c_{1}} x}\right.}\right) \tag{2}
\end{align*}
$$

Figure 130: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}
$$

Verified OK.

$$
y=\frac{x \mathrm{e}^{c_{2} \mathrm{e}^{c_{1}} x}}{\ln \left(\mathrm{e}^{c_{2} \mathrm{e}^{c_{1}} x}\right)}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying homogeneous B
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 14

```
dsolve(diff (y(x),x)=exp(x*\operatorname{diff}(y(x),x)/y(x)),y(x), singsol=all)
```

$$
y(x)=-\frac{\mathrm{e}^{-c_{1} x}}{c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 21
DSolve[y'[x]==Exp[x*y'[x]/y[x]],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-e^{c_{1}-e^{-c_{1}} x}
$$

2 Chapter 4. Linear Differential Equations. Page 183
2.1 problem 1 837
2.2 problem 2 842
2.3 problem 3 847
2.4 problem 4 852
2.5 problem 5 857
2.6 problem 6 862
2.7 problem 7 868
2.8 problem 8 870
2.9 problem 9 877
2.10 problem 10 884
2.11 problem 11 890
2.12 problem 12 898
2.13 problem 13 908
2.14 problem 14 919
2.15 problem 15 931
2.16 problem 16 943
2.17 problem 17 957
2.18 problem 18 971
2.19 problem 19 981
2.20 problem 20 989
2.21 problem 21 997
2.22 problem 22 1001

2.1 problem 1

2.1.1 Maple step by step solution . 838

Internal problem ID [3242]
Internal file name [OUTPUT/2734_Sunday_June_05_2022_08_39_53_AM_96870353/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 1.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}+\lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=i \\
& \lambda_{3}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{2 x} \\
y_{2} & =\mathrm{e}^{i x} \\
y_{3} & =\mathrm{e}^{-i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

Verified OK.

2.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=2 y_{3}(x)-y_{2}(x)+2 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=2 y_{3}(x)-y_{2}(x)+2 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -1 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -1 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{2 x} c_{1} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \cos (x)+c_{3} \sin (x) \\
c_{2} \sin (x)+c_{3} \cos (x) \\
c_{2} \cos (x)-c_{3} \sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\mathrm{e}^{2 x} c_{1}}{4}+c_{3} \sin (x)-c_{2} \cos (x)$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve (diff $(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{2 x}+\sin (x) c_{2}+\cos (x) c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 24
DSolve[y'''[x]-2*y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{3} e^{2 x}+c_{1} \cos (x)+c_{2} \sin (x)
$$

2.2 problem 2

2.2.1 Maple step by step solution . 843

Internal problem ID [3243]
Internal file name [OUTPUT/2735_Sunday_June_05_2022_08_39_53_AM_88550952/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 2.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}+9 y^{\prime}+9 y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}+9 \lambda+9=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =3 i \\
\lambda_{3} & =-3 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-3 i x} \\
& y_{3}=\mathrm{e}^{3 i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}
$$

Verified OK.

2.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}+9 y^{\prime}+9 y=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-y_{3}(x)-9 y_{2}(x)-9 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{3}(x)-9 y_{2}(x)-9 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-9 & -9 & -1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-9 & -9 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{9} \\
-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{\mathrm{I}}{3} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 x)-I \sin (3 x)) \cdot\left[\begin{array}{c}
-\frac{1}{9} \\
\frac{I}{3} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\cos (3 x)}{9}+\frac{I \sin (3 x)}{9} \\
\frac{\mathrm{I}}{3}(\cos (3 x)-I \sin (3 x)) \\
\cos (3 x)-I \sin (3 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (3 x)}{9} \\
\frac{\sin (3 x)}{3} \\
\cos (3 x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\frac{\sin (3 x)}{9} \\
\frac{\cos (3 x)}{3} \\
-\sin (3 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \cos (3 x)}{9}+\frac{c_{3} \sin (3 x)}{9} \\
\frac{c_{2} \sin (3 x)}{3}+\frac{c_{3} \cos (3 x)}{3} \\
c_{2} \cos (3 x)-c_{3} \sin (3 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=c_{1} \mathrm{e}^{-x}+\frac{c_{3} \sin (3 x)}{9}-\frac{c_{2} \cos (3 x)}{9}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$3)+diff(y(x),x$2)+9*diff (y (x),x)+9*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x} c_{1}+\sin (3 x) c_{2}+c_{3} \cos (3 x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28

```
DSolve[y'''[x]+y''[x]+9*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
y(x)->\mp@subsup{c}{3}{}\mp@subsup{e}{}{-x}+\mp@subsup{c}{1}{}\operatorname{cos}(3x)+\mp@subsup{c}{2}{}\operatorname{sin}(3x)
```


2.3 problem 3

2.3.1 Maple step by step solution . 848

Internal problem ID [3244]
Internal file name [OUTPUT/2736_Sunday_June_05_2022_08_39_53_AM_94318382/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 3 .
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}-\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

Verified OK.

2.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-y_{3}(x)+y_{2}(x)+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{3}(x)+y_{2}(x)+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left(c_{2}(x+1)+c_{1}\right) \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-diff (y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26

```
DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{3} e^{2 x}+c_{1}\right)
$$

2.4 problem 4

2.4.1 Maple step by step solution . 853

Internal problem ID [3245]
Internal file name [OUTPUT/2737_Sunday_June_05_2022_08_39_53_AM_98960955/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 4.
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+8 y=0
$$

The characteristic equation is

$$
\lambda^{3}+8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=1-i \sqrt{3} \\
& \lambda_{3}=1+i \sqrt{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{(1-i \sqrt{3}) x} c_{2}+\mathrm{e}^{(1+i \sqrt{3}) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{(1-i \sqrt{3}) x} \\
& y_{3}=\mathrm{e}^{(1+i \sqrt{3}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{(1-i \sqrt{3}) x} c_{2}+\mathrm{e}^{(1+i \sqrt{3}) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{(1-i \sqrt{3}) x} c_{2}+\mathrm{e}^{(1+i \sqrt{3}) x} c_{3}
$$

Verified OK.

2.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+8 y=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-8 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right],\left[1+\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(1+\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1+\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(1-\mathrm{I} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{1-\mathrm{I} \sqrt{3}} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{8} \\
\frac{\cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}-\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{8} \\
\frac{\cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{4} \\
\cos (\sqrt{3} x)
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}-\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-\frac{\mathrm{e}^{3 x}\left(-\sqrt{3} c_{3}+c_{2}\right) \cos (\sqrt{3} x)}{2}+\frac{\mathrm{e}^{3 x}\left(c_{2} \sqrt{3}+c_{3}\right) \sin (\sqrt{3} x)}{2}+c_{1}\right) \mathrm{e}^{-2 x}}{4}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff (y (x),x$3)+8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{2} \mathrm{e}^{3 x} \sin (\sqrt{3} x)+c_{3} \mathrm{e}^{3 x} \cos (\sqrt{3} x)+c_{1}\right) \mathrm{e}^{-2 x}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42
DSolve[y'' $[\mathrm{x}]+8 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{-2 x}+c_{3} e^{x} \cos (\sqrt{3} x)+c_{2} e^{x} \sin (\sqrt{3} x)
$$

2.5 problem 5

2.5.1 Maple step by step solution . 858

Internal problem ID [3246]
Internal file name [OUTPUT/2738_Sunday_June_05_2022_08_39_54_AM_43057242/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 5 .
ODE order: 3 .
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1-i \sqrt{3} \\
& \lambda_{3}=-1+i \sqrt{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{(-1+i \sqrt{3}) x} c_{2}+\mathrm{e}^{(-1-i \sqrt{3}) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(-1+i \sqrt{3}) x} \\
& y_{3}=\mathrm{e}^{(-1-i \sqrt{3}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{(-1+i \sqrt{3}) x} c_{2}+\mathrm{e}^{(-1-i \sqrt{3}) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{(-1+i \sqrt{3}) x} c_{2}+\mathrm{e}^{(-1-i \sqrt{3}) x} c_{3}
$$

Verified OK.

2.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-8 y=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1+\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1+\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{-1-\mathrm{I} \sqrt{3}} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sin (\sqrt{3} x) \sqrt{3}}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{2 x} c_{1} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sin (\sqrt{3} x) \sqrt{3}}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{4} \\
\cos (\sqrt{3} x)
\end{array}\right]+c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{\mathrm{e}^{-x}\left(\sqrt{3} c_{3}+c_{2}\right) \cos (\sqrt{3} x)}{8}-\frac{\mathrm{e}^{-x}\left(c_{2} \sqrt{3}-c_{3}\right) \sin (\sqrt{3} x)}{8}+\frac{\mathrm{e}^{2 x} c_{1}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$3)-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x} \sin (\sqrt{3} x)+c_{3} \mathrm{e}^{-x} \cos (\sqrt{3} x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42
DSolve[y''' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{1} e^{3 x}+c_{2} \cos (\sqrt{3} x)+c_{3} \sin (\sqrt{3} x)\right)
$$

2.6 problem 6

2.6.1 Maple step by step solution . 863

Internal problem ID [3247]
Internal file name [OUTPUT/2739_Sunday_June_05_2022_08_39_54_AM_97575065/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1-i \\
& \lambda_{2}=1+i \\
& \lambda_{3}=-1-i \\
& \lambda_{4}=-1+i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(-1+i) x} c_{1}+\mathrm{e}^{(-1-i) x} c_{2}+\mathrm{e}^{(1+i) x} c_{3}+\mathrm{e}^{(1-i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(-1+i) x} \\
& y_{2}=\mathrm{e}^{(-1-i) x} \\
& y_{3}=\mathrm{e}^{(1+i) x} \\
& y_{4}=\mathrm{e}^{(1-i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(-1+i) x} c_{1}+\mathrm{e}^{(-1-i) x} c_{2}+\mathrm{e}^{(1+i) x} c_{3}+\mathrm{e}^{(1-i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(-1+i) x} c_{1}+\mathrm{e}^{(-1-i) x} c_{2}+\mathrm{e}^{(1+i) x} c_{3}+\mathrm{e}^{(1-i) x} c_{4}
$$

Verified OK.

2.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-4 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-1-\mathrm{I},\left[\begin{array}{c}\frac{1}{4}+\frac{\mathrm{I}}{4} \\ -\frac{\mathrm{I}}{2} \\ -\frac{1}{2}+\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right],\left[-1+\mathrm{I},\left[\begin{array}{c}\frac{1}{4}-\frac{\mathrm{I}}{4} \\ \frac{\mathrm{I}}{2} \\ -\frac{1}{2}-\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right],\left[1-\mathrm{I},\left[\begin{array}{c}-\frac{1}{4}+\frac{\mathrm{I}}{4} \\ \frac{\mathrm{I}}{2} \\ \frac{1}{2}+\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right],\left[1+\mathrm{I},\left[\begin{array}{c}-\frac{1}{4}-\frac{\mathrm{I}}{4} \\ -\frac{\mathrm{I}}{2} \\ \frac{1}{2}-\frac{\mathrm{I}}{2} \\ 1\end{array}\right]\right]\right.$
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I},\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
\mathrm{e}^{-x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{1}{4}+\frac{\mathrm{I}}{4} \\
-\frac{\mathrm{I}}{2} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
-\frac{\mathrm{I}}{2}(\cos (x)-\mathrm{I} \sin (x)) \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
-\frac{\sin (x)}{2} \\
-\frac{\cos (x)}{2}+\frac{\sin (x)}{2} \\
\cos (x)
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}-\frac{\sin (x)}{4} \\
-\frac{\cos (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-\mathrm{I},\left[\begin{array}{c}
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{(1-\mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\left(-\frac{1}{4}+\frac{\mathrm{I}}{4}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\frac{\mathrm{I}}{2}(\cos (x)-\mathrm{I} \sin (x)) \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
\frac{\cos (x)}{2} \\
\frac{\cos (x)}{2}-\frac{\sin (x)}{2} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
-\frac{\sin (x)}{2} \\
-\frac{\cos (x)}{2}+\frac{\sin (x)}{2} \\
\cos (x)
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{4}-\frac{\sin (x)}{4} \\
-\frac{\cos (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
-\sin (x)
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
-\frac{\cos (x)}{4}+\frac{\sin (x)}{4} \\
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right]+c_{4} \mathrm{e}^{x} .
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(\left(c_{1}+c_{2}\right) \cos (x)+\sin (x)\left(c_{1}-c_{2}\right)\right) \mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}\left(\left(c_{3}-c_{4}\right) \cos (x)-\sin (x)\left(c_{3}+c_{4}\right)\right)}{4}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(x),x$4)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (x) \mathrm{e}^{x}+c_{2} \mathrm{e}^{x} \cos (x)+c_{3} \mathrm{e}^{-x} \sin (x)+c_{4} \mathrm{e}^{-x} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 40
DSolve[y'''I $[x]+4 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(\left(c_{4} e^{2 x}+c_{1}\right) \cos (x)+\left(c_{3} e^{2 x}+c_{2}\right) \sin (x)\right)
$$

2.7 problem 7

Internal problem ID [3248]
Internal file name [OUTPUT/2740_Sunday_June_05_2022_08_39_55_AM_49799157/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 7 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+18 y^{\prime \prime}+81 y=0
$$

The characteristic equation is

$$
\lambda^{4}+18 \lambda^{2}+81=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i \\
& \lambda_{3}=3 i \\
& \lambda_{4}=-3 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 i x} \\
& y_{2}=x \mathrm{e}^{-3 i x} \\
& y_{3}=\mathrm{e}^{3 i x} \\
& y_{4}=x \mathrm{e}^{3 i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve(diff $(y(x), x \$ 4)+18 * \operatorname{diff}(y(x), x \$ 2)+81 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x+c_{2}\right) \cos (3 x)+\sin (3 x)\left(c_{3} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y''' ' $[x]+18 * y$ '' $[x]+81 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \cos (3 x)+\left(c_{4} x+c_{3}\right) \sin (3 x)
$$

2.8 problem 8

2.8.1 Maple step by step solution . 871

Internal problem ID [3249]
Internal file name [OUTPUT/2741_Sunday_June_05_2022_08_39_55_AM_42962800/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 8 .
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-4 \lambda^{2}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-i+\sqrt{3} \\
& \lambda_{2}=i-\sqrt{3} \\
& \lambda_{3}=\sqrt{3}+i \\
& \lambda_{4}=-i-\sqrt{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(i-\sqrt{3}) x} c_{1}+\mathrm{e}^{(-i+\sqrt{3}) x} c_{2}+\mathrm{e}^{(-i-\sqrt{3}) x} c_{3}+\mathrm{e}^{(\sqrt{3}+i) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(i-\sqrt{3}) x} \\
& y_{2}=\mathrm{e}^{(-i+\sqrt{3}) x} \\
& y_{3}=\mathrm{e}^{(-i-\sqrt{3}) x} \\
& y_{4}=\mathrm{e}^{(\sqrt{3}+i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(i-\sqrt{3}) x} c_{1}+\mathrm{e}^{(-i+\sqrt{3}) x} c_{2}+\mathrm{e}^{(-i-\sqrt{3}) x} c_{3}+\mathrm{e}^{(\sqrt{3}+i) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(i-\sqrt{3}) x} c_{1}+\mathrm{e}^{(-i+\sqrt{3}) x} c_{2}+\mathrm{e}^{(-i-\sqrt{3}) x} c_{3}+\mathrm{e}^{(\sqrt{3}+i) x} c_{4}
$$

Verified OK.

2.8.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime}+16 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=4 y_{3}(x)-16 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=4 y_{3}(x)-16 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 4 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 4 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-\mathrm{I}-\sqrt{3},\left[\begin{array}{c}\frac{1}{(-\mathrm{I}-\sqrt{3})^{3}} \\ \frac{1}{(-\mathrm{I}-\sqrt{3})^{2}} \\ \frac{1}{-\mathrm{I}-\sqrt{3}} \\ 1\end{array}\right]\right],\left[-\mathrm{I}+\sqrt{3},\left[\begin{array}{c}\frac{1}{(-\mathrm{I}+\sqrt{3})^{3}} \\ \frac{1}{(-\mathrm{I}+\sqrt{3})^{2}} \\ \frac{1}{-\mathrm{I}+\sqrt{3}} \\ 1\end{array}\right]\right],\left[\mathrm{I}-\sqrt{3},\left[\begin{array}{c}\frac{1}{(\mathrm{I}-\sqrt{3})^{3}} \\ \frac{1}{(\mathrm{I}-\sqrt{3})^{2}} \\ \frac{1}{\mathrm{I}-\sqrt{3}} \\ 1\end{array}\right]\right],[\sqrt{3}+\mathrm{I},[\right.$
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I}-\sqrt{3},\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}-\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}-\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}-\sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\mathrm{I}-\sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}-\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}-\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}-\sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\sqrt{3} x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}-\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}-\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}-\sqrt{3}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\cos (x)-\mathrm{I} \sin (x)}{(-\mathrm{I}-\sqrt{3})^{3}} \\
\frac{\cos (x)-\mathrm{I} \sin (x)}{(-\mathrm{I}-\sqrt{3})^{2}} \\
\frac{\cos (x)-\mathrm{I} \sin (x)}{\mathrm{I}-\sqrt{3}} \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{8} \\
\frac{\cos (x)}{8}-\frac{\sqrt{3} \sin (x)}{8} \\
-\frac{\cos (x) \sqrt{3}}{4}+\frac{\sin (x)}{4} \\
\cos (x)
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{8} \\
-\frac{\cos (x) \sqrt{3}}{8}-\frac{\sin (x)}{8} \\
\frac{\cos (x)}{4}+\frac{\sqrt{3} \sin (x)}{4} \\
-\sin (x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I}+\sqrt{3},\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}+\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}+\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}+\sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\mathrm{I}+\sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}+\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}+\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}+\sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{\sqrt{3} x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I}+\sqrt{3})^{3}} \\
\frac{1}{(-\mathrm{I}+\sqrt{3})^{2}} \\
\frac{1}{-\mathrm{I}+\sqrt{3}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\cos (x)-\mathrm{I} \sin (x)}{(-\mathrm{I}+\sqrt{3})^{3}} \\
\frac{\cos (x)-\mathrm{I} \sin (x)}{(-\mathrm{I}+\sqrt{3})^{2}} \\
\frac{\cos (x)-\mathrm{I} \sin (x)}{-\mathrm{I}+\sqrt{3}} \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{8} \\
\frac{\cos (x)}{8}+\frac{\sqrt{3} \sin (x)}{8} \\
\frac{\cos (x) \sqrt{3}}{4}+\frac{\sin (x)}{4} \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{8} \\
\frac{\cos (x) \sqrt{3}}{8}-\frac{\sin (x)}{8} \\
\frac{\cos (x)}{4}-\frac{\sqrt{3} \sin (x)}{4} \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{8} \\
\frac{\cos (x)}{8}-\frac{\sqrt{3} \sin (x)}{8} \\
-\frac{\cos (x) \sqrt{3}}{4}+\frac{\sin (x)}{4} \\
\cos (x)
\end{array}\right]+c_{2} \mathrm{e}^{-\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{8} \\
-\frac{\cos (x) \sqrt{3}}{8}-\frac{\sin (x)}{8} \\
\frac{\cos (x)}{4}+\frac{\sqrt{3} \sin (x)}{4} \\
-\sin (x)
\end{array}\right]+c_{3} \mathrm{e}^{\sqrt{3} x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{8} \\
\frac{\cos (x)}{8}+\frac{\sqrt{3}}{4} \\
\frac{\cos (x) \sqrt{3}}{4}+\frac{s}{2} \\
\cos (x)
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(c_{1} \sin (x)+c_{2} \cos (x)\right) \mathrm{e}^{-\sqrt{3} x}}{8}+\frac{\mathrm{e}^{\sqrt{3} x}\left(c_{3} \sin (x)+\cos (x) c_{4}\right)}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 48
dsolve(diff $(y(x), x \$ 4)-4 * \operatorname{diff}(y(x), x \$ 2)+16 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=-c_{1} \mathrm{e}^{\sqrt{3} x} \sin (x)+c_{2} \mathrm{e}^{-\sqrt{3} x} \sin (x)+c_{3} \mathrm{e}^{\sqrt{3} x} \cos (x)+c_{4} \mathrm{e}^{-\sqrt{3} x} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 55
DSolve[y''''[x]-4*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-\sqrt{3} x}\left(\left(c_{3} e^{2 \sqrt{3} x}+c_{2}\right) \cos (x)+\left(c_{1} e^{2 \sqrt{3} x}+c_{4}\right) \sin (x)\right)
$$

2.9 problem 9

2.9.1 Maple step by step solution . 878

Internal problem ID [3250]
Internal file name [OUTPUT/2742_Sunday_June_05_2022_08_39_55_AM_83864776/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 9 .
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}-2 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}-2 \lambda^{3}+2 \lambda^{2}-2 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{i x} \\
& y_{4}=\mathrm{e}^{-i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{i x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

Verified OK.

2.9.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}+2 y^{\prime \prime}-2 y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=2 y_{4}(x)-2 y_{3}(x)+2 y_{2}(x)-y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=2 y_{4}(x)-2 y_{3}(x)+2 y_{2}(x)-y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 2 & -2 & 2
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 2 & -2 & 2
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 2 & -2 & 2
\end{array}\right]-1 \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
-c_{3} \sin (x)-\cos (x) c_{4} \\
-c_{3} \cos (x)+\sin (x) c_{4} \\
c_{3} \sin (x)+\cos (x) c_{4} \\
c_{3} \cos (x)-\sin (x) c_{4}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left((x-1) c_{2}+c_{1}\right) \mathrm{e}^{x}-c_{3} \sin (x)-\cos (x) c_{4}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$4)-2*diff(y(x),x$3)+2*\operatorname{diff}(y(x),x$2)-2*\operatorname{diff}(y(x),x)+y(x)=0,y(x), singsol=
```

$$
y(x)=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+c_{3} \sin (x)+c_{4} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 27
DSolve [y''''[x]-2*y'' $[x]+2 * y$ '' $[x]-2 * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{4} x+c_{3}\right)+c_{1} \cos (x)+c_{2} \sin (x)
$$

2.10 problem 10

2.10.1 Maple step by step solution . 885

Internal problem ID [3251]
Internal file name [OUTPUT/2743_Sunday_June_05_2022_08_39_56_AM_70210603/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 10.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+5 y^{\prime \prime}+5 y^{\prime}-6 y=0
$$

The characteristic equation is

$$
\lambda^{4}-5 \lambda^{3}+5 \lambda^{2}+5 \lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =2 \\
\lambda_{3} & =3 \\
\lambda_{4} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x} \\
& y_{4}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{2 x}+\mathrm{e}^{3 x} c_{4}
$$

Verified OK.

2.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime \prime}+5 y^{\prime \prime}+5 y^{\prime}-6 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=5 y_{4}(x)-5 y_{3}(x)-5 y_{2}(x)+6 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=5 y_{4}(x)-5 y_{3}(x)-5 y_{2}(x)+6 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
6 & -5 & -5 & 5
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
6 & -5 & -5 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{3 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{c_{3} \mathrm{e}^{2 x}}{8}+\frac{\mathrm{e}^{3 x} c_{4}}{27}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve (diff $(y(x), x \$ 4)-5 * \operatorname{diff}(y(x), x \$ 3)+5 * \operatorname{diff}(y(x), x \$ 2)+5 * \operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)$, singso

$$
y(x)=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{-x}+c_{4} \mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36
DSolve[y''''[x]-5*y'''[x]+5*y''[x]+5*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow c_{1} e^{-x}+c_{2} e^{x}+c_{3} e^{2 x}+c_{4} e^{3 x}
$$

2.11 problem 11

2.11.1 Maple step by step solution . 891

Internal problem ID [3252]
Internal file name [OUTPUT/2744_Sunday_June_05_2022_08_39_56_AM_32753829/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 11.
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(5)}-6 y^{\prime \prime \prime \prime}+9 y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{5}-6 \lambda^{4}+9 \lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0 \\
& \lambda_{4}=3 \\
& \lambda_{5}=3
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{3 x} c_{4}+x \mathrm{e}^{3 x} c_{5}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=\mathrm{e}^{3 x} \\
& y_{5}=x \mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{3 x} c_{4}+x \mathrm{e}^{3 x} c_{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{3 x} c_{4}+x \mathrm{e}^{3 x} c_{5}
$$

Verified OK.

2.11.1 Maple step by step solution

Let's solve
$y^{(5)}-6 y^{\prime \prime \prime \prime}+9 y^{\prime \prime \prime}=0$

- Highest derivative means the order of the ODE is 5 $y^{(5)}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Define new variable $y_{5}(x)$ $y_{5}(x)=y^{\prime \prime \prime \prime}$
- Isolate for $y_{5}^{\prime}(x)$ using original ODE
$y_{5}^{\prime}(x)=6 y_{5}(x)-9 y_{4}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=6 y_{5}(x)-9 y_{4}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -9 & 6
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -9 & 6
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[3,\left[\begin{array}{c}\frac{1}{81} \\ \frac{1}{27} \\ \frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad First solution from eigenvalue 3

$$
\vec{y}_{4}(x)=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, an

$$
\vec{y}_{5}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{5}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{5}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -9 & 6
\end{array}\right]-3 \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{243} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3

$$
\vec{y}_{5}(x)=\mathrm{e}^{3 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{243} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{3 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+c_{5} \mathrm{e}^{3 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{81} \\
\frac{1}{27} \\
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{243} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left((3 x-1) c_{5}+3 c_{4}\right) \mathrm{e}^{3 x}}{243}+c_{1}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
dsolve(diff $(y(x), x \$ 5)-6 * \operatorname{diff}(y(x), x \$ 4)+9 * \operatorname{diff}(y(x), x \$ 3)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{5} x+c_{4}\right) \mathrm{e}^{3 x}+c_{3} x^{2}+c_{2} x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 35

$$
y(x) \rightarrow \frac{1}{27} e^{3 x}\left(c_{2}(x-1)+c_{1}\right)+x\left(c_{5} x+c_{4}\right)+c_{3}
$$

2.12 problem 12

2.12.1 Maple step by step solution . 899

Internal problem ID [3253]
Internal file name [OUTPUT/2745_Sunday_June_05_2022_08_39_57_AM_29914027/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 12.
ODE order: 6.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(6)}-64 y=0
$$

The characteristic equation is

$$
\lambda^{6}-64=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=\sqrt{-2+2 i \sqrt{3}} \\
& \lambda_{4}=-\sqrt{-2+2 i \sqrt{3}} \\
& \lambda_{5}=\sqrt{-2 i \sqrt{3}-2} \\
& \lambda_{6}=-\sqrt{-2 i \sqrt{3}-2}
\end{aligned}
$$

Therefore the homogeneous solution is
$y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{\sqrt{-2 i \sqrt{3}-2} x} c_{3}+\mathrm{e}^{-\sqrt{-2+2 i \sqrt{3}} x} c_{4}+\mathrm{e}^{\sqrt{-2+2 i \sqrt{3}} x} c_{5}+\mathrm{e}^{-\sqrt{-2 i \sqrt{3}-2} x} c_{6}$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{\sqrt{-2 i \sqrt{3}-2} x} \\
& y_{4}=\mathrm{e}^{-\sqrt{-2+2 i \sqrt{3}} x} \\
& y_{5}=\mathrm{e}^{\sqrt{-2+2 i \sqrt{3}} x} \\
& y_{6}=\mathrm{e}^{-\sqrt{-2 i \sqrt{3}-2} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\left.y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{\sqrt{-2 i \sqrt{3}-2} x} c_{3}+\mathrm{e}^{-\sqrt{-2+2 i \sqrt{3}} x} c_{4}+\mathrm{e}^{\sqrt{-2+2 i \sqrt{3}} x} c_{5}+\mathrm{e}^{-\sqrt{-2 i \sqrt{3}-2}} \boldsymbol{w}_{\boldsymbol{d}}\right)
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{\sqrt{-2 i \sqrt{3}-2} x} c_{3}+\mathrm{e}^{-\sqrt{-2+2 i \sqrt{3}} x} c_{4}+\mathrm{e}^{\sqrt{-2+2 i \sqrt{3}} x} c_{5}+\mathrm{e}^{-\sqrt{-2 i \sqrt{3}-2} x} c_{6}
$$

Verified OK.

2.12.1 Maple step by step solution

Let's solve
$y^{(6)}-64 y=0$

- Highest derivative means the order of the ODE is 6 $y^{(6)}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Define new variable $y_{5}(x)$

$$
y_{5}(x)=y^{\prime \prime \prime \prime}
$$

- Define new variable $y_{6}(x)$
$y_{6}(x)=y^{(5)}$
- Isolate for $y_{6}^{\prime}(x)$ using original ODE
$y_{6}^{\prime}(x)=64 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{6}(x)=y_{5}^{\prime}(x), y_{6}^{\prime}(x)=64 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x) \\
y_{6}(x)
\end{array}\right]
$$

- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 64 & 0 & 0 & 0 & 0 & 0\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix
$A=\left[\begin{array}{cccccc}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 64 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{1}{32} \\
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{32} \\
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{5}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right],\left[-1+\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1+\mathrm{I} \sqrt{3})^{5}} \\
\frac{1}{(-1+\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(-1+\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(-1+\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1+\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right],\right.
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{32} \\
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{32} \\
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{32} \\
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{32} \\
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{5}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{-1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos
$\mathrm{e}^{-x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}\frac{1}{(-1-\mathrm{I} \sqrt{3})^{5}} \\ \frac{1}{(-1-\mathrm{I} \sqrt{3})^{4}} \\ \frac{1}{(-1-\mathrm{I} \sqrt{3})^{3}} \\ \frac{1}{(-1-\mathrm{I} \sqrt{3})^{2}} \\ \frac{1}{-1-\mathrm{I} \sqrt{3}} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{5}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{2}} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\Re\left(\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{5}}\right) \\
\Re\left(\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{4}}\right) \\
\frac{\cos (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sin (\sqrt{3} x) \sqrt{3}}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x) \sqrt{3}}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\Im\left(\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{5}}\right) \\
\Im\left(\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-1-\mathrm{I} \sqrt{3})^{4}}\right) \\
-\frac{\sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x) \sqrt{3}}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\cos (\sqrt{3} x) \sqrt{3}}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
- Solution from eigenpair

$$
\mathrm{e}^{(1-\mathrm{I} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{5}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{1}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{1}{1-\mathrm{I} \sqrt{3}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(1-\mathrm{I} \sqrt{3})^{5}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(1-\mathrm{I} \sqrt{3})^{4}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(1-\mathrm{I} \sqrt{3})^{3}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(1-\mathrm{I} \sqrt{3})^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{1-\mathrm{I} \sqrt{3}} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)+c_{6} \vec{y}_{6}(x)
$$

- Substitute solutions into the general solution
- First component of the vector is the solution to the ODE

$$
y=\left(c_{6} \mathrm{e}^{3 x} \Im\left(\frac{\sin (\sqrt{3} x)+\mathrm{I} \cos (\sqrt{3} x)}{(\sqrt{3}+\mathrm{I})^{5}}\right)+c_{5} \mathrm{e}^{3 x} \Re\left(\frac{\sin (\sqrt{3} x)+\mathrm{I} \cos (\sqrt{3} x)}{(\sqrt{3}+\mathrm{I})^{5}}\right)-c_{4} \Im\left(\frac{\sin (\sqrt{3} x)+\mathrm{I} \cos (\sqrt{3} x)}{(\mathrm{I}-\sqrt{3})^{5}}\right) \mathrm{e}\right.
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 53

```
dsolve(diff(y(x),x$6)-64*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(\left(c_{4} \mathrm{e}^{3 x}+c_{6} \mathrm{e}^{x}\right) \cos (\sqrt{3} x)+\left(c_{3} \mathrm{e}^{3 x}+c_{5} \mathrm{e}^{x}\right) \sin (\sqrt{3} x)+\mathrm{e}^{4 x} c_{1}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 68
DSolve[y'"'C' $[x]-64 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]
$y(x) \rightarrow e^{-2 x}\left(c_{1} e^{4 x}+e^{x}\left(c_{2} e^{2 x}+c_{3}\right) \cos (\sqrt{3} x)+e^{x}\left(c_{6} e^{2 x}+c_{5}\right) \sin (\sqrt{3} x)+c_{4}\right)$

2.13 problem 13

2.13.1 Solving as second order linear constant coeff ode 908
2.13.2 Solving using Kovacic algorithm 911
2.13.3 Maple step by step solution . 916

Internal problem ID [3254]
Internal file name [OUTPUT/2746_Sunday_June_05_2022_08_39_57_AM_76916014/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+6 y^{\prime}+10 y=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
$$

2.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=6, C=10, f(x)=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=6, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(10)} \\
& =-3 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+i \\
& \lambda_{2}=-3-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3+i \\
& \lambda_{2}=-3-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\},\left\{\cos (x) \mathrm{e}^{3 x}, \mathrm{e}^{3 x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x} \cos (x), \mathrm{e}^{-3 x} \sin (x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}+A_{3} \cos (x) \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}+36 A_{3} \cos (x) \mathrm{e}^{3 x}-12 A_{3} \sin (x) \mathrm{e}^{3 x} \\
& +36 A_{4} \mathrm{e}^{3 x} \sin (x)+12 A_{4} \mathrm{e}^{3 x} \cos (x)=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=0, A_{3}=-\frac{1}{20}, A_{4}=-\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60} \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}
$$

Verified OK.

2.13.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 55: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-3 x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 x} \cos (x) c_{1}+\mathrm{e}^{-3 x} \sin (x) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-3 x}, \mathrm{e}^{-3 x}\right\},\left\{\cos (x) \mathrm{e}^{3 x}, \mathrm{e}^{3 x} \sin (x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 x} \cos (x), \mathrm{e}^{-3 x} \sin (x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}+A_{3} \cos (x) \mathrm{e}^{3 x}+A_{4} \mathrm{e}^{3 x} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{1} x \mathrm{e}^{-3 x}+A_{2} \mathrm{e}^{-3 x}+36 A_{3} \cos (x) \mathrm{e}^{3 x}-12 A_{3} \sin (x) \mathrm{e}^{3 x} \\
& +36 A_{4} \mathrm{e}^{3 x} \sin (x)+12 A_{4} \mathrm{e}^{3 x} \cos (x)=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=3, A_{2}=0, A_{3}=-\frac{1}{20}, A_{4}=-\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 x} \cos (x) c_{1}+\mathrm{e}^{-3 x} \sin (x) c_{2}\right)+\left(3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60} \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+3 x \mathrm{e}^{-3 x}-\frac{\cos (x) \mathrm{e}^{3 x}}{20}-\frac{\mathrm{e}^{3 x} \sin (x)}{60}
$$

Verified OK.

2.13.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+10 y=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+10=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-6) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-3-\mathrm{I},-3+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x} \cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-3 x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 x} \cos (x) c_{1}+\mathrm{e}^{-3 x} \sin (x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x \mathrm{e}^{-3 x}-2 \cos (x) \mathrm{e}^{3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 x} \cos (x) & \mathrm{e}^{-3 x} \sin (x) \\
-3 \mathrm{e}^{-3 x} \cos (x)-\mathrm{e}^{-3 x} \sin (x) & -3 \mathrm{e}^{-3 x} \sin (x)+\mathrm{e}^{-3 x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-6 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{-3 x}\left(\cos (x)\left(\int \sin (x)\left(2 \cos (x) \mathrm{e}^{6 x}-3 x\right) d x\right)-\sin (x)\left(\int\left(2 \cos (x)^{2} \mathrm{e}^{6 x}-3 \cos (x) x\right) d\right.\right.
$$

- Compute integrals

$$
y_{p}(x)=\frac{(-3 \cos (x)-\sin (x)) \mathrm{e}^{3 x}}{60}+3 x \mathrm{e}^{-3 x}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{-3 x} \cos (x) c_{1}+\mathrm{e}^{-3 x} \sin (x) c_{2}+\frac{(-3 \cos (x)-\sin (x)) \mathrm{e}^{3 x}}{60}+3 x \mathrm{e}^{-3 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$2)+6*\operatorname{diff}(y(x),x)+10*y(x)=3*x*exp(-3*x)-2*exp(3*x)*\operatorname{cos}(x),y(x), singsol=a
```

$$
y(x)=\left(\cos (x) c_{1}+\sin (x) c_{2}+3 x\right) \mathrm{e}^{-3 x}-\frac{\mathrm{e}^{3 x}\left(\cos (x)+\frac{\sin (x)}{3}\right)}{20}
$$

Solution by Mathematica
Time used: 0.426 (sec). Leaf size: 46
DSolve $[y$ ' $\quad[x]+6 * y$ ' $[x]+10 * y[x]==3 * x * \operatorname{Exp}[-3 * x]-2 * \operatorname{Exp}[3 * x] * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutio

$$
y(x) \rightarrow \frac{1}{60} e^{-3 x}\left(180 x-3\left(e^{6 x}-20 c_{2}\right) \cos (x)-\left(e^{6 x}-60 c_{1}\right) \sin (x)\right)
$$

2.14 problem 14

2.14.1 Solving as second order linear constant coeff ode 919
2.14.2 Solving using Kovacic algorithm 923
2.14.3 Maple step by step solution . 928

Internal problem ID [3255]
Internal file name [OUTPUT/2747_Sunday_June_05_2022_08_39_58_AM_23095541/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-8 y^{\prime}+17 y=\mathrm{e}^{4 x}\left(x^{2}-3 x \sin (x)\right)
$$

2.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-8, C=17, f(x)=\mathrm{e}^{4 x} x(-3 \sin (x)+x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-8 y^{\prime}+17 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-8, C=17$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-8 \lambda \mathrm{e}^{\lambda x}+17 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-8 \lambda+17=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-8, C=17$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-8^{2}-(4)(1)(17)} \\
& =4 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =4+i \\
\lambda_{2} & =4-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4+i \\
& \lambda_{2}=4-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=4$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{4 x} x(-3 \sin (x)+x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x}, \mathrm{e}^{4 x}\right\},\left\{\mathrm{e}^{4 x} \cos (x), \mathrm{e}^{4 x} \sin (x), x \cos (x) \mathrm{e}^{4 x}, \mathrm{e}^{4 x} \sin (x) x\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{4 x} \cos (x), \mathrm{e}^{4 x} \sin (x)\right\}
$$

Since $\mathrm{e}^{4 x} \cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x}, \mathrm{e}^{4 x}\right\},\left\{x \cos (x) \mathrm{e}^{4 x}, x^{2} \cos (x) \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x} \sin (x), \mathrm{e}^{4 x} \sin (x) x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x \mathrm{e}^{4 x}+A_{2} x^{2} \mathrm{e}^{4 x}+A_{3} \mathrm{e}^{4 x}+A_{4} x \cos (x) \mathrm{e}^{4 x} \\
& +A_{5} x^{2} \cos (x) \mathrm{e}^{4 x}+A_{6} x^{2} \mathrm{e}^{4 x} \sin (x)+A_{7} \mathrm{e}^{4 x} \sin (x) x
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{3} \mathrm{e}^{4 x}+2 A_{6} \mathrm{e}^{4 x} \sin (x)+4 A_{6} x \mathrm{e}^{4 x} \cos (x)+2 A_{7} \mathrm{e}^{4 x} \cos (x)-4 A_{5} x \sin (x) \mathrm{e}^{4 x} \\
& +2 A_{5} \cos (x) \mathrm{e}^{4 x}-2 A_{4} \sin (x) \mathrm{e}^{4 x}+2 A_{2} \mathrm{e}^{4 x}+A_{2} x^{2} \mathrm{e}^{4 x}+A_{1} x \mathrm{e}^{4 x}=\mathrm{e}^{4 x} x(-3 \sin (x)+x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1, A_{3}=-2, A_{4}=0, A_{5}=\frac{3}{4}, A_{6}=0, A_{7}=-\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4} \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}
$$

Verified OK.

2.14.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-8 y^{\prime}+17 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-8 \tag{3}\\
& C=17
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 57: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{4 x} \\
& =z_{1}\left(\mathrm{e}^{4 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{4 x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{4 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{4 x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-8 y^{\prime}+17 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{4 x} \cos (x) c_{1}+\mathrm{e}^{4 x} \sin (x) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{4 x} x(-3 \sin (x)+x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x}, \mathrm{e}^{4 x}\right\},\left\{\mathrm{e}^{4 x} \cos (x), \mathrm{e}^{4 x} \sin (x), x \cos (x) \mathrm{e}^{4 x}, \mathrm{e}^{4 x} \sin (x) x\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{4 x} \cos (x), \mathrm{e}^{4 x} \sin (x)\right\}
$$

Since $\mathrm{e}^{4 x} \cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x}, \mathrm{e}^{4 x}\right\},\left\{x \cos (x) \mathrm{e}^{4 x}, x^{2} \cos (x) \mathrm{e}^{4 x}, x^{2} \mathrm{e}^{4 x} \sin (x), \mathrm{e}^{4 x} \sin (x) x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
\begin{aligned}
y_{p}= & A_{1} x \mathrm{e}^{4 x}+A_{2} x^{2} \mathrm{e}^{4 x}+A_{3} \mathrm{e}^{4 x}+A_{4} x \cos (x) \mathrm{e}^{4 x} \\
& +A_{5} x^{2} \cos (x) \mathrm{e}^{4 x}+A_{6} x^{2} \mathrm{e}^{4 x} \sin (x)+A_{7} \mathrm{e}^{4 x} \sin (x) x
\end{aligned}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{gathered}
2 A_{6} \mathrm{e}^{4 x} \sin (x)+4 A_{6} x \mathrm{e}^{4 x} \cos (x)+2 A_{7} \mathrm{e}^{4 x} \cos (x)+2 A_{5} \cos (x) \mathrm{e}^{4 x}-4 A_{5} x \sin (x) \mathrm{e}^{4 x} \\
+A_{3} \mathrm{e}^{4 x}+2 A_{2} \mathrm{e}^{4 x}-2 A_{4} \sin (x) \mathrm{e}^{4 x}+A_{2} x^{2} \mathrm{e}^{4 x}+A_{1} x \mathrm{e}^{4 x}=\mathrm{e}^{4 x} x(-3 \sin (x)+x)
\end{gathered}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1, A_{3}=-2, A_{4}=0, A_{5}=\frac{3}{4}, A_{6}=0, A_{7}=-\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{4 x} \cos (x) c_{1}+\mathrm{e}^{4 x} \sin (x) c_{2}\right)+\left(x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{4 x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+x^{2} \mathrm{e}^{4 x}-2 \mathrm{e}^{4 x}+\frac{3 x^{2} \cos (x) \mathrm{e}^{4 x}}{4}-\frac{3 \mathrm{e}^{4 x} \sin (x) x}{4}
$$

Verified OK.

2.14.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-8 y^{\prime}+17 y=\mathrm{e}^{4 x} x(-3 \sin (x)+x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=-3 \mathrm{e}^{4 x} \sin (x) x+x^{2} \mathrm{e}^{4 x}+8 y^{\prime}-17 y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-8 y^{\prime}+17 y=-\mathrm{e}^{4 x} x(3 \sin (x)-x)$
- Characteristic polynomial of homogeneous ODE $r^{2}-8 r+17=0$
- Use quadratic formula to solve for r
$r=\frac{8 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(4-\mathrm{I}, 4+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{4 x} \cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{4 x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{4 x} \cos (x) c_{1}+\mathrm{e}^{4 x} \sin (x) c_{2}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\mathrm{e}^{4 x} x(3 \sin (x)-x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{4 x} \cos (x) & \mathrm{e}^{4 x} \sin (x) \\
4 \mathrm{e}^{4 x} \cos (x)-\mathrm{e}^{4 x} \sin (x) & 4 \mathrm{e}^{4 x} \sin (x)+\mathrm{e}^{4 x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{8 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{4 x}\left(\cos (x)\left(\int-x \sin (x)(-3 \sin (x)+x) d x\right)-\sin (x)\left(\int-x \cos (x)(-3 \sin (x)+x) d x\right)\right.
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\left(-3 x^{2} \cos (x)+3 x \sin (x)-4 x^{2}+8\right) \mathrm{e}^{4 x}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{4 x} \cos (x) c_{1}+\mathrm{e}^{4 x} \sin (x) c_{2}-\frac{\left(-3 x^{2} \cos (x)+3 x \sin (x)-4 x^{2}+8\right) \mathrm{e}^{4 x}}{4}
$$

Maple trace
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 39

```
dsolve(diff (y(x),x$2)-8*diff(y(x),x)+17*y(x)=exp(4*x)*(x^2-3*x*\operatorname{sin}(x)),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(3 x^{2}+4 c_{1}\right) \cos (x)+\left(-3 x+4 c_{2}\right) \sin (x)+4 x^{2}-8\right) \mathrm{e}^{4 x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.263 (sec). Leaf size: 47
DSolve[y''[x]-8*y'[x]+17*y[x]==Exp[4*x]*(x^2-3*x*Sin[x]),y[x],x,IncludeSingularSolutions \rightarrow

$$
y(x) \rightarrow \frac{1}{8} e^{4 x}\left(8\left(x^{2}-2\right)+\left(6 x^{2}-3+8 c_{2}\right) \cos (x)+\left(-6 x+8 c_{1}\right) \sin (x)\right)
$$

2.15 problem 15

2.15.1 Solving as second order linear constant coeff ode 931
2.15.2 Solving using Kovacic algorithm 935
2.15.3 Maple step by step solution . 940

Internal problem ID [3256]
Internal file name [OUTPUT/2748_Sunday_June_05_2022_08_39_59_AM_87006663/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\left(x+\mathrm{e}^{x}\right) \sin (x)
$$

2.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2, C=2, f(x)=\left(x+\mathrm{e}^{x}\right) \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(x+\mathrm{e}^{x}\right) \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x)\right\},\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x)\right\}
$$

Since $\cos (x) \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{x} x \cos (x), \mathrm{e}^{x} x \sin (x)\right\},\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
$y_{p}=A_{1} \mathrm{e}^{x} x \cos (x)+A_{2} \mathrm{e}^{x} x \sin (x)+A_{3} x \sin (x)+A_{4} \cos (x) x+A_{5} \cos (x)+A_{6} \sin (x)$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& A_{6} \sin (x)+A_{5} \cos (x)-2 A_{4} \sin (x)-2 A_{4} \cos (x)+2 A_{4} \sin (x) x \\
& \quad-2 A_{1} \mathrm{e}^{x} \sin (x)+2 A_{2} \mathrm{e}^{x} \cos (x)-2 A_{3} \sin (x)-2 A_{3} x \cos (x)+A_{3} x \sin (x) \\
& +A_{4} \cos (x) x-2 A_{6} \cos (x)+2 A_{3} \cos (x)+2 A_{5} \sin (x)=\left(x+\mathrm{e}^{x}\right) \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=0, A_{3}=\frac{1}{5}, A_{4}=\frac{2}{5}, A_{5}=\frac{14}{25}, A_{6}=\frac{2}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right) \\
& +\left(-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{x} x \cos (x)}{2} \tag{1}\\
& +\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}
\end{align*}
$$

Figure 135: Slope field plot

Verification of solutions
$y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}$
Verified OK.

2.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 59: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{x} \cos (x) c_{1}+\mathrm{e}^{x} \sin (x) c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\left(x+\mathrm{e}^{x}\right) \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x)\right\},\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{x}, \mathrm{e}^{x} \sin (x)\right\}
$$

Since $\cos (x) \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{x} x \cos (x), \mathrm{e}^{x} x \sin (x)\right\},\{x \sin (x), \cos (x) x, \cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
$y_{p}=A_{1} \mathrm{e}^{x} x \cos (x)+A_{2} \mathrm{e}^{x} x \sin (x)+A_{3} x \sin (x)+A_{4} \cos (x) x+A_{5} \cos (x)+A_{6} \sin (x)$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{3} \sin (x)-2 A_{3} x \cos (x)-2 A_{4} \cos (x)+2 A_{4} \sin (x) x-2 A_{1} \mathrm{e}^{x} \sin (x) \\
& +2 A_{2} \mathrm{e}^{x} \cos (x)-2 A_{4} \sin (x)+A_{5} \cos (x)+A_{6} \sin (x)+2 A_{5} \sin (x) \\
& -2 A_{6} \cos (x)+2 A_{3} \cos (x)+A_{4} \cos (x) x+A_{3} x \sin (x)=\left(x+\mathrm{e}^{x}\right) \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=0, A_{3}=\frac{1}{5}, A_{4}=\frac{2}{5}, A_{5}=\frac{14}{25}, A_{6}=\frac{2}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{x} \cos (x) c_{1}+\mathrm{e}^{x} \sin (x) c_{2}\right) \\
& +\left(-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}\right)
\end{aligned}
$$

Which simplifies to
$y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{x} x \cos (x)}{2} \tag{1}\\
& +\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}
\end{align*}
$$

Figure 136: Slope field plot

Verification of solutions

$y=\mathrm{e}^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{x} x \cos (x)}{2}+\frac{x \sin (x)}{5}+\frac{2 \cos (x) x}{5}+\frac{14 \cos (x)}{25}+\frac{2 \sin (x)}{25}$
Verified OK.

2.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\left(x+\mathrm{e}^{x}\right) \sin (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{2 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(1-\mathrm{I}, 1+\mathrm{I})
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{x} \sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{x} \cos (x) c_{1}+\mathrm{e}^{x} \sin (x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\left(x+\mathrm{e}^{x}\right) \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{x} & \mathrm{e}^{x} \sin (x) \\
-\mathrm{e}^{x} \sin (x)+\cos (x) \mathrm{e}^{x} & \mathrm{e}^{x} \sin (x)+\cos (x) \mathrm{e}^{x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\mathrm{e}^{x}\left(\sin (x)\left(\int \sin (2 x)\left(x \mathrm{e}^{-x}+1\right) d x\right)-2 \cos (x)\left(\int \sin (x)^{2}\left(x \mathrm{e}^{-x}+1\right) d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(-25 x \mathrm{e}^{x}+20 x+28\right) \cos (x)}{50}+\frac{\sin (x)(2+5 x)}{25}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{x} \cos (x) c_{1}+\mathrm{e}^{x} \sin (x) c_{2}+\frac{\left(-25 x \mathrm{e}^{x}+20 x+28\right) \cos (x)}{50}+\frac{\sin (x)(2+5 x)}{25}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff (y (x),x$2)-2*diff (y (x),x)+2*y(x)=(x+exp(x))*\operatorname{sin}(x),y(x), singsol=all)
    y(x)=\frac{((-25x+50\mp@subsup{c}{1}{})\mp@subsup{\textrm{e}}{}{x}+20x+28)\operatorname{cos}(x)}{50}+\frac{(5\mp@subsup{c}{2}{}\mp@subsup{\textrm{e}}{}{x}+x+\frac{2}{5})\operatorname{sin}(x)}{5}
```

\checkmark Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 48
DSolve[y''[x]-2*y'[x]+2*y[x]==(x+Exp[x])*Sin[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{50}\left(\left(-5\left(5 e^{x}-4\right) x+50 c_{2} e^{x}+28\right) \cos (x)+2\left(5 x+25 c_{1} e^{x}+2\right) \sin (x)\right)
$$

2.16 problem 16

2.16.1 Solving as second order linear constant coeff ode 943
2.16.2 Solving using Kovacic algorithm 948
2.16.3 Maple step by step solution . 954

Internal problem ID [3257]
Internal file name [OUTPUT/2749_Sunday_June_05_2022_08_40_00_AM_6769952/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+4 y=\sinh (x) \sin (2 x)
$$

2.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sinh (x) \sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
$$

Which simplifies to

$$
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
$$

Which simplifies to

$$
W=2
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (2 x)^{2} \sinh (x)}{2} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x)^{2} \sinh (x)}{2} d x
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{x}}{8}+\frac{\mathrm{e}^{x} \cos (4 x)}{136}+\frac{\sin (4 x) \mathrm{e}^{x}}{34}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{-x} \cos (4 x)}{136}-\frac{\mathrm{e}^{-x} \sin (4 x)}{34}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (2 x) \sinh (x) \cos (2 x)}{2} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sinh (x) \sin (4 x)}{4} d x
$$

Hence

$$
\begin{aligned}
u_{2}= & -\frac{\mathrm{e}^{x} \cos (4 x)}{34}+\frac{\sin (4 x) \mathrm{e}^{x}}{136}-\frac{\mathrm{e}^{x} \cos (2 x)}{10}+\frac{\mathrm{e}^{x} \sin (2 x)}{20} \\
& -\frac{\mathrm{e}^{x}(-2 \cos (2 x)+\sin (2 x))}{20}+\frac{\mathrm{e}^{-x} \cos (4 x)}{34}+\frac{\mathrm{e}^{-x} \sin (4 x)}{136} \\
& +\frac{\mathrm{e}^{-x} \cos (2 x)}{10}+\frac{\mathrm{e}^{-x} \sin (2 x)}{20}+\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{20}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-17+\cos (4 x)-4 \sin (4 x)) \mathrm{e}^{-x}}{136}+\frac{\mathrm{e}^{x}(-17+\cos (4 x)+4 \sin (4 x))}{136} \\
& u_{2}=\frac{\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \cos (4 x)}{34}+\frac{\sin (4 x)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{136}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{(-17+\cos (4 x)-4 \sin (4 x)) \mathrm{e}^{-x}}{136}+\frac{\mathrm{e}^{x}(-17+\cos (4 x)+4 \sin (4 x))}{136}\right) \cos (2 x) \\
& +\left(\frac{\left(-\mathrm{e}^{x}+\mathrm{e}^{-x}\right) \cos (4 x)}{34}+\frac{\sin (4 x)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{136}\right) \sin (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}
$$

Verified OK.

2.16.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 61: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
$$

Which simplifies to

$$
W=\cos (2 x)^{2}+\sin (2 x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\sin (2 x)^{2} \sinh (x)}{2}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 x)^{2} \sinh (x)}{2} d x
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{x}}{8}+\frac{\mathrm{e}^{x} \cos (4 x)}{136}+\frac{\sin (4 x) \mathrm{e}^{x}}{34}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{-x} \cos (4 x)}{136}-\frac{\mathrm{e}^{-x} \sin (4 x)}{34}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (2 x) \sinh (x) \cos (2 x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\sinh (x) \sin (4 x)}{2} d x
$$

Hence

$$
\begin{aligned}
u_{2}= & -\frac{\mathrm{e}^{x} \cos (4 x)}{17}+\frac{\sin (4 x) \mathrm{e}^{x}}{68}-\frac{\mathrm{e}^{x} \cos (2 x)}{5}+\frac{\mathrm{e}^{x} \sin (2 x)}{10} \\
& -\frac{\mathrm{e}^{x}(-2 \cos (2 x)+\sin (2 x))}{10}+\frac{\mathrm{e}^{-x} \cos (4 x)}{17}+\frac{\mathrm{e}^{-x} \sin (4 x)}{68} \\
& +\frac{\mathrm{e}^{-x} \cos (2 x)}{5}+\frac{\mathrm{e}^{-x} \sin (2 x)}{10}+\frac{\mathrm{e}^{-x}(-\sin (2 x)-2 \cos (2 x))}{10}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-17+\cos (4 x)-4 \sin (4 x)) \mathrm{e}^{-x}}{136}+\frac{\mathrm{e}^{x}(-17+\cos (4 x)+4 \sin (4 x))}{136} \\
& u_{2}=\frac{\left(-4 \mathrm{e}^{x}+4 \mathrm{e}^{-x}\right) \cos (4 x)}{68}+\frac{\sin (4 x)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{68}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{(-17+\cos (4 x)-4 \sin (4 x)) \mathrm{e}^{-x}}{136}+\frac{\mathrm{e}^{x}(-17+\cos (4 x)+4 \sin (4 x))}{136}\right) \cos (2 x) \\
& +\frac{\left(\frac{\left(-4 \mathrm{e}^{x}+4 \mathrm{e}^{-x}\right) \cos (4 x)}{68}+\frac{\sin (4 x)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{68}\right) \sin (2 x)}{2}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}
$$

Verified OK.

2.16.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\sinh (x) \sin (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sinh (x) \sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x)^{2} \sinh (x) d x\right)}{2}+\frac{\sin (2 x)\left(\int \sinh (x) \sin (4 x) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\left(-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\frac{\sin (2 x)\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{34}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 42

```
dsolve(diff(y(x),x$2)+4*y(x)=sinh(x)*sin(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(34 c_{1}-4 \mathrm{e}^{x}-4 \mathrm{e}^{-x}\right) \cos (2 x)}{34}+\left(c_{2}+\frac{\mathrm{e}^{x}}{34}-\frac{\mathrm{e}^{-x}}{34}\right) \sin (2 x)
$$

Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 46
DSolve[y''[x]+4*y[x]==Sinh[x]*Sin[2*x],y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{34}\left(-(4-i) \cos ((2+i) x)-(4+i) \cosh ((1+2 i) x)+34 c_{1} \cos (2 x)+34 c_{2} \sin (2 x)\right)
$$

2.17 problem 17

2.17.1 Solving as second order linear constant coeff ode 957
2.17.2 Solving using Kovacic algorithm 962
2.17.3 Maple step by step solution . 968

Internal problem ID [3258]
Internal file name [OUTPUT/2750_Sunday_June_05_2022_08_40_00_AM_3854497/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cosh (x) \sin (x)
$$

2.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2, C=2, f(x)=\cosh (x) \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(2)} \\
& =-1 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1+i \\
& \lambda_{2}=-1-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (x) \\
& y_{2}=\mathrm{e}^{-x} \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (x)\right) & \frac{d}{d x}\left(\mathrm{e}^{-x} \sin (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x) & -\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x} \cos (x)\right)\left(-\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)\right)-\left(\mathrm{e}^{-x} \sin (x)\right)\left(-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x)\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \sin (x)^{2}+\mathrm{e}^{-2 x} \cos (x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-x} \sin (x)^{2} \cosh (x)}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cosh (x) \sin (x)^{2} \mathrm{e}^{x} d x
$$

Hence

$$
u_{1}=-\frac{(2 \sin (x)-2 \cos (x)) \mathrm{e}^{2 x} \sin (x)}{16}-\frac{\mathrm{e}^{2 x}}{16}+\frac{\sin (x) \cos (x)}{4}-\frac{x}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-x} \cos (x) \cosh (x) \sin (x)}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cosh (x) \sin (2 x) \mathrm{e}^{x}}{2} d x
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{2 x}(2 \sin (2 x)-2 \cos (2 x))}{32}-\frac{\cos (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-2+\cos (2 x)+\sin (2 x)) \mathrm{e}^{2 x}}{16}-\frac{x}{4}+\frac{\sin (2 x)}{8} \\
& u_{2}=\frac{\left(-2 \cos (x)^{2}+2 \sin (x) \cos (x)+1\right) \mathrm{e}^{2 x}}{16}-\frac{\cos (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{(-2+\cos (2 x)+\sin (2 x)) \mathrm{e}^{2 x}}{16}-\frac{x}{4}+\frac{\sin (2 x)}{8}\right) \mathrm{e}^{-x} \cos (x) \\
& +\left(\frac{\left(-2 \cos (x)^{2}+2 \sin (x) \cos (x)+1\right) \mathrm{e}^{2 x}}{16}-\frac{\cos (x)^{2}}{4}\right) \mathrm{e}^{-x} \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)\right)+\left(-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16} \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Verified OK.

2.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =2 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 63: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x} \cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (x)(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x} \cos (x)+c_{2} \mathrm{e}^{-x} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (x) \\
& y_{2}=\mathrm{e}^{-x} \sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (x)\right) & \frac{d}{d x}\left(\mathrm{e}^{-x} \sin (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x) & -\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-x} \cos (x)\right)\left(-\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)\right)-\left(\mathrm{e}^{-x} \sin (x)\right)\left(-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x)\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \sin (x)^{2}+\mathrm{e}^{-2 x} \cos (x)^{2}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-x} \sin (x)^{2} \cosh (x)}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{1}=-\int \cosh (x) \sin (x)^{2} \mathrm{e}^{x} d x
$$

Hence

$$
u_{1}=-\frac{(2 \sin (x)-2 \cos (x)) \mathrm{e}^{2 x} \sin (x)}{16}-\frac{\mathrm{e}^{2 x}}{16}+\frac{\sin (x) \cos (x)}{4}-\frac{x}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-x} \cos (x) \cosh (x) \sin (x)}{\mathrm{e}^{-2 x}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{\cosh (x) \sin (2 x) \mathrm{e}^{x}}{2} d x
$$

Hence

$$
u_{2}=\frac{\mathrm{e}^{2 x}(2 \sin (2 x)-2 \cos (2 x))}{32}-\frac{\cos (x)^{2}}{4}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{(-2+\cos (2 x)+\sin (2 x)) \mathrm{e}^{2 x}}{16}-\frac{x}{4}+\frac{\sin (2 x)}{8} \\
& u_{2}=\frac{\left(-2 \cos (x)^{2}+2 \sin (x) \cos (x)+1\right) \mathrm{e}^{2 x}}{16}-\frac{\cos (x)^{2}}{4}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \left(\frac{(-2+\cos (2 x)+\sin (2 x)) \mathrm{e}^{2 x}}{16}-\frac{x}{4}+\frac{\sin (2 x)}{8}\right) \mathrm{e}^{-x} \cos (x) \\
& +\left(\frac{\left(-2 \cos (x)^{2}+2 \sin (x) \cos (x)+1\right) \mathrm{e}^{2 x}}{16}-\frac{\cos (x)^{2}}{4}\right) \mathrm{e}^{-x} \sin (x)
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x} \cos (x)+c_{2} \mathrm{e}^{-x} \sin (x)\right)+\left(-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16} \tag{1}
\end{equation*}
$$

Figure 140: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Verified OK.

2.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\cosh (x) \sin (x)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I},-1+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-x} \cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-x} \sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-x} \cos (x)+c_{2} \mathrm{e}^{-x} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cosh (x) \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (x) & \mathrm{e}^{-x} \sin (x) \\
-\mathrm{e}^{-x} \cos (x)-\mathrm{e}^{-x} \sin (x) & -\mathrm{e}^{-x} \sin (x)+\mathrm{e}^{-x} \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\mathrm{e}^{-x}\left(\sin (x)\left(\int \cosh (x) \sin (2 x) \mathrm{e}^{x} d x\right)-2 \cos (x)\left(\int \cosh (x) \sin (x)^{2} \mathrm{e}^{x} d x\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-x} \cos (x)+c_{2} \mathrm{e}^{-x} \sin (x)-\frac{\mathrm{e}^{-x} \cos (x) x}{4}-\frac{\mathrm{e}^{x}(\cos (x)-\sin (x))}{16}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=cosh(x)*sin(x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(\left(-x+4 c_{1}\right) \cos (x)+4 \sin (x) c_{2}\right) \mathrm{e}^{-x}}{4}-\frac{\mathrm{e}^{x}(-\sin (x)+\cos (x))}{16}
$$

\checkmark Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 47
DSolve $[y$ '' $[x]+2 * y$ ' $[x]+2 * y[x]==\operatorname{Cosh}[x] * \operatorname{Sin}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{16} e^{-x}\left(\left(e^{2 x}+2+16 c_{1}\right) \sin (x)-\left(e^{2 x}+4\left(x-4 c_{2}\right)\right) \cos (x)\right)
$$

2.18 problem 18

$$
\text { 2.18.1 Maple step by step solution . } 975
$$

Internal problem ID [3259]
Internal file name [OUTPUT/2751_Sunday_June_05_2022_08_40_01_AM_96669158/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 18.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}+y^{\prime}=\sin (x)+\cos (x) x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=i \\
& \lambda_{3}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+y^{\prime}=\sin (x)+\cos (x) x
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{ccc}
1 & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
0 & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
0 & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
&|W|=-2 i \mathrm{e}^{i x} \mathrm{e}^{-i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-2 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x}
\end{array}\right] \\
&=-2 i \\
& \begin{aligned}
& W_{2}(x)=\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{-i x} \\
0 & -i \mathrm{e}^{-i x}
\end{array}\right] \\
&=-i \mathrm{e}^{-i x} \\
& \begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{i x} \\
0 & i \mathrm{e}^{i x}
\end{array}\right] \\
& =i \mathrm{e}^{i x}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\sin (x)+\cos (x) x)(-2 i)}{(1)(-2 i)} d x \\
& =\int \frac{-2 i(\sin (x)+\cos (x) x)}{-2 i} d x \\
& =\int(\sin (x)+\cos (x) x) d x \\
& =x \sin (x) \\
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\sin (x)+\cos (x) x)\left(-i \mathrm{e}^{-i x}\right)}{(1)(-2 i)} d x \\
& =-\int \frac{-i(\sin (x)+\cos (x) x) \mathrm{e}^{-i x}}{-2 i} d x \\
& =-\int\left(\frac{(\sin (x)+\cos (x) x) \mathrm{e}^{-i x}}{2}\right) d x \\
& =-\left(\int \frac{(\sin (x)+\cos (x) x) \mathrm{e}^{-i x}}{2} d x\right)
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(\sin (x)+\cos (x) x)\left(i \mathrm{e}^{i x}\right)}{(1)(-2 i)} d x \\
& =\int \frac{i(\sin (x)+\cos (x) x) \mathrm{e}^{i x}}{-2 i} d x \\
& =\int\left(-\frac{(\sin (x)+\cos (x) x) \mathrm{e}^{i x}}{2}\right) d x \\
& =-\frac{x^{2}}{8}-\frac{i x}{4}+\frac{i(-i+2 x) \mathrm{e}^{2 i x}}{16}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =(x \sin (x)) \\
& +\left(-\left(\int \frac{(\sin (x)+\cos (x) x) \mathrm{e}^{-i x}}{2} d x\right)\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(-\frac{x^{2}}{8}-\frac{i x}{4}+\frac{i(-i+2 x) \mathrm{e}^{2 i x}}{16}\right)\left(\mathrm{e}^{-i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{\left(-4 x^{2}-1\right) \cos (x)}{16}-\frac{3 \sin (x)\left(i-\frac{4 x}{3}\right)}{16}
$$

Which simplifies to

$$
y_{p}=\frac{\left(-4 x^{2}-1\right) \cos (x)}{16}-\frac{3 \sin (x)\left(i-\frac{4 x}{3}\right)}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}\right)+\left(\frac{\left(-4 x^{2}-1\right) \cos (x)}{16}-\frac{3 \sin (x)\left(i-\frac{4 x}{3}\right)}{16}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\frac{\left(-4 x^{2}-1\right) \cos (x)}{16}-\frac{3 \sin (x)\left(i-\frac{4 x}{3}\right)}{16} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-i x} c_{3}+\frac{\left(-4 x^{2}-1\right) \cos (x)}{16}-\frac{3 \sin (x)\left(i-\frac{4 x}{3}\right)}{16}
$$

Verified OK.

2.18.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime}=\sin (x)+\cos (x) x
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=\cos (x) x+\sin (x)-y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\cos (x) x+\sin (x)-y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\sin (x)+\cos (x) x
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
\sin (x)+\cos (x) x
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst $\phi(x)=\left[\begin{array}{ccc}1 & -\cos (x) & \sin (x) \\ 0 & \sin (x) & \cos (x) \\ 0 & \cos (x) & -\sin (x)\end{array}\right]$
- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\cos (x) & \sin (x) \\
0 & \sin (x) & \cos (x) \\
0 & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \sin (x) & -\cos (x)+1 \\
0 & \cos (x) & \sin (x) \\
0 & -\sin (x) & \cos (x)
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix
$\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)$
- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution $\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)$
- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{x(\sin (x)-\cos (x) x)}{4} \\
\frac{x^{2} \sin (x)}{4}+\frac{\sin (x)}{4}-\frac{\cos (x) x}{4} \\
\frac{x(\cos (x) x+3 \sin (x))}{4}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{x(\sin (x)-\cos (x) x)}{4} \\
\frac{x^{2} \sin (x)}{4}+\frac{\sin (x)}{4}-\frac{\cos (x) x}{4} \\
\frac{x(\cos (x) x+3 \sin (x))}{4}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-x^{2}-4 c_{2}\right) \cos (x)}{4}+\frac{\left(4 c_{3}+x\right) \sin (x)}{4}+c_{1}
$$

Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
\rightarrow Calling odsolve with the ODE , $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad a\right), \quad, a\right)=\cos \left(_a\right) *_{-} a+\sin \left(_a\right)-_b\left(_a\right)$, _b
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
dsolve(diff $(y(x), x \$ 3)+\operatorname{diff}(y(x), x)=\sin (x)+x * \cos (x), y(x)$, singsol=all)

$$
y(x)=\frac{\left(-x^{2}-4 c_{2}+2\right) \cos (x)}{4}+\frac{\left(x+4 c_{1}\right) \sin (x)}{4}+c_{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 36
DSolve[y'' $\quad[x]+y$ ' $[x]==\operatorname{Sin}[x]+x * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{8}\left(2 x^{2}-3+8 c_{2}\right) \cos (x)+\left(\frac{x}{4}+c_{1}\right) \sin (x)+c_{3}
$$

2.19 problem 19

2.19.1 Maple step by step solution . 983

Internal problem ID [3260]
Internal file name [OUTPUT/2752_Sunday_June_05_2022_08_40_02_AM_40663654/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-2 \lambda^{2}+4 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=2 i \\
& \lambda_{3}=-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{2 i x} \\
& y_{3}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{2 x} \cos (2 x), \mathrm{e}^{2 x} \sin (2 x)\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{2 x}, \mathrm{e}^{-2 i x}, \mathrm{e}^{2 i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{2 x} \cos (2 x)+A_{2} \mathrm{e}^{2 x} \sin (2 x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -8 A_{1} \mathrm{e}^{2 x} \sin (2 x)-16 A_{1} \mathrm{e}^{2 x} \cos (2 x)+8 A_{2} \mathrm{e}^{2 x} \cos (2 x)-16 A_{2} \mathrm{e}^{2 x} \sin (2 x) \\
& -4 A_{5}+4 A_{4}+8 A_{5} x-8 A_{3}-8 A_{4} x-8 A_{5} x^{2}=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{40}, A_{2}=-\frac{1}{20}, A_{3}=0, A_{4}=-\frac{1}{4}, A_{5}=-\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{2 x} \cos (2 x)}{40}-\frac{\mathrm{e}^{2 x} \sin (2 x)}{20}-\frac{x}{4}-\frac{x^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}\right)+\left(-\frac{\mathrm{e}^{2 x} \cos (2 x)}{40}-\frac{\mathrm{e}^{2 x} \sin (2 x)}{20}-\frac{x}{4}-\frac{x^{2}}{4}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}-\frac{\mathrm{e}^{2 x} \cos (2 x)}{40}-\frac{\mathrm{e}^{2 x} \sin (2 x)}{20}-\frac{x}{4}-\frac{x^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}-\frac{\mathrm{e}^{2 x} \cos (2 x)}{40}-\frac{\mathrm{e}^{2 x} \sin (2 x)}{20}-\frac{x}{4}-\frac{x^{2}}{4}
$$

Verified OK.

2.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-2 y^{\prime \prime}+4 y^{\prime}-8 y=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}+2 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}+2 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & 2
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{2 x} \sin (2 x)+2 x^{2}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ \mathrm{e}^{2 x} \sin (2 x)+2 x^{2}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 I x} \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{I}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- \quad Simplify expression

$$
\left[\begin{array}{c}
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{2} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
\frac{\mathrm{e}^{2 x}}{2} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{2 x} & \cos (2 x) & -\sin (2 x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & -\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} \\
\frac{\mathrm{e}^{2 x}}{2} & \frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} \\
\mathrm{e}^{2 x} & \cos (2 x) & -\sin (2 x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
\frac{1}{4} & -\frac{1}{4} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix
$\Phi(x)=\left[\begin{array}{ccc}\frac{\mathrm{e}^{2 x}}{2}+\frac{\cos (2 x)}{2}-\frac{\sin (2 x)}{2} & \frac{\sin (2 x)}{2} & \frac{\mathrm{e}^{2 x}}{8}-\frac{\cos (2 x)}{8}-\frac{\sin (2 x)}{8} \\ \mathrm{e}^{2 x}-\sin (2 x)-\cos (2 x) & \cos (2 x) & \frac{\mathrm{e}^{2 x}}{4}+\frac{\sin (2 x)}{4}-\frac{\cos (2 x)}{4} \\ 2 \mathrm{e}^{2 x}-2 \cos (2 x)+2 \sin (2 x) & -2 \sin (2 x) & \frac{\mathrm{e}^{2 x}}{2}+\frac{\cos (2 x)}{2}+\frac{\sin (2 x)}{2}\end{array}\right]$
Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{(5-\cos (2 x)-2 \sin (2 x)) \mathrm{e}^{2 x}}{40}-\frac{x^{2}}{4}-\frac{x}{4}-\frac{\cos (2 x)}{10}+\frac{3 \sin (2 x)}{40} \\
\frac{(5-3 \cos (2 x)-\sin (2 x)) \mathrm{e}^{2 x}}{20}-\frac{x}{2}+\frac{3 \cos (2 x)}{20}+\frac{\sin (2 x)}{5}-\frac{1}{4} \\
\frac{(5-4 \cos (2 x)+2 \sin (2 x)) \mathrm{e}^{2 x}}{10}+\frac{2 \cos (2 x)}{5}-\frac{3 \sin (2 x)}{10}-\frac{1}{2}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{(5-\cos (2 x)-2 \sin (2 x)) \mathrm{e}^{2 x}}{40}-\frac{x^{2}}{4}-\frac{x}{4}-\frac{\cos (2 x)}{10}+\frac{3 \sin (2 x)}{40} \\
\frac{(5-3 \cos (2 x)-\sin (2 x)) \mathrm{e}^{2 x}}{20}-\frac{x}{2}+\frac{3 \cos (2 x)}{20}+\frac{\sin (2 x)}{5}-\frac{1}{4} \\
\frac{(5-4 \cos (2 x)+2 \sin (2 x)) \mathrm{e}^{2 x}}{10}+\frac{2 \cos (2 x)}{5}-\frac{3 \sin (2 x)}{10}-\frac{1}{2}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(10 c_{1}-\cos (2 x)-2 \sin (2 x)+5\right) \mathrm{e}^{2 x}}{40}+\frac{\left(-2-5 c_{2}\right) \cos (2 x)}{20}+\frac{\left(10 c_{3}+3\right) \sin (2 x)}{40}-\frac{x^{2}}{4}-\frac{x}{4}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
dsolve $(\operatorname{diff}(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)-8 * y(x)=\exp (2 * x) * \sin (2 * x)+2 * x \wedge 2, y(x)$,

$$
\begin{aligned}
y(x)= & \frac{\left(80 c_{2}-2 \cos (2 x)-4 \sin (2 x)-5\right) \mathrm{e}^{2 x}}{80} \\
& +\frac{\left(80 c_{1}-5\right) \cos (2 x)}{80}+\frac{\left(80 c_{3}+5\right) \sin (2 x)}{80}-\frac{x^{2}}{4}-\frac{x}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 61
DSolve $[y$ '' ' $[x]-2 * y$ ' $[x]+4 * y$ ' $[x]-8 * y[x]==\operatorname{Exp}[2 * x] * \operatorname{Sin}[2 * x]+2 * x \wedge 2, y[x], x$, IncludeSingularSoluti
$y(x) \rightarrow \frac{1}{80}\left(-20 x(x+1)+5\left(-1+16 c_{3}\right) e^{2 x}-2\left(e^{2 x}-40 c_{1}\right) \cos (2 x)-4\left(e^{2 x}-20 c_{2}\right) \sin (2 x)\right)$

2.20 problem 20

2.20.1 Maple step by step solution . 991

Internal problem ID [3261]
Internal file name [OUTPUT/2753_Sunday_June_05_2022_08_40_04_AM_76247354/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 20.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}=x^{2}+x \mathrm{e}^{2 x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda^{2}+3 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3 \\
& \lambda_{3}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}=x^{2}+x \mathrm{e}^{2 x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+x \mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{x}, \mathrm{e}^{3 x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{2 x}, \mathrm{e}^{2 x}\right\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \mathrm{e}^{2 x}+A_{2} \mathrm{e}^{2 x}+A_{3} x+A_{4} x^{2}+A_{5} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{2 x}-2 A_{1} x \mathrm{e}^{2 x}-2 A_{2} \mathrm{e}^{2 x}+6 A_{5}-8 A_{4}-24 A_{5} x+3 A_{3}+6 A_{4} x+9 A_{5} x^{2}=x^{2}+x \mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{2}, A_{2}=\frac{1}{4}, A_{3}=\frac{26}{27}, A_{4}=\frac{4}{9}, A_{5}=\frac{1}{9}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}}{4}+\frac{26 x}{27}+\frac{4 x^{2}}{9}+\frac{x^{3}}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}\right)+\left(-\frac{x \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}}{4}+\frac{26 x}{27}+\frac{4 x^{2}}{9}+\frac{x^{3}}{9}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}-\frac{x \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}}{4}+\frac{26 x}{27}+\frac{4 x^{2}}{9}+\frac{x^{3}}{9} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{3 x} c_{3}-\frac{x \mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{2 x}}{4}+\frac{26 x}{27}+\frac{4 x^{2}}{9}+\frac{x^{3}}{9}
$$

Verified OK.

2.20.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+3 y^{\prime}=x^{2}+x \mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=x \mathrm{e}^{2 x}+x^{2}+4 y_{3}(x)-3 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x \mathrm{e}^{2 x}+x^{2}+4 y_{3}(x)-3 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -3 & 4
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
x^{2}+x \mathrm{e}^{2 x}
\end{array}\right]
$$

- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ x^{2}+x \mathrm{e}^{2 x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -3 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)$
Fundamental matrix
- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
0 & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{9} \\
0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{3 x}}{3} \\
0 & \mathrm{e}^{x} & \mathrm{e}^{3 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{lll}
1 & 1 & \frac{1}{9} \\
0 & 1 & \frac{1}{3} \\
0 & 1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{4}{3}+\frac{3 \mathrm{e}^{x}}{2}-\frac{\mathrm{e}^{3 x}}{6} & \frac{1}{3}-\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{3 x}}{6} \\
0 & \frac{3 \mathrm{e}^{x}}{2}-\frac{\mathrm{e}^{3 x}}{2} & -\frac{\mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{3 x}}{2} \\
0 & \frac{3 \mathrm{e}^{x}}{2}-\frac{3 \mathrm{e}^{3 x}}{2} & -\frac{\mathrm{e}^{x}}{2}+\frac{3 \mathrm{e}^{3 x}}{2}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{347}{324}+\frac{(1-2 x) \mathrm{e}^{2 x}}{4}+\frac{x^{3}}{9}+\frac{4 x^{2}}{9}+\frac{26 x}{27}-\frac{3 \mathrm{e}^{x}}{2}+\frac{29 \mathrm{e}^{3 x}}{162} \\
-x \mathrm{e}^{2 x}+\frac{x^{2}}{3}+\frac{8 x}{9}+\frac{29 \mathrm{e}^{3 x}}{54}+\frac{26}{27}-\frac{3 \mathrm{e}^{x}}{2} \\
\frac{8}{9}+(-1-2 x) \mathrm{e}^{2 x}+\frac{2 x}{3}-\frac{3 \mathrm{e}^{x}}{2}+\frac{29 \mathrm{e}^{3 x}}{18}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
\frac{347}{324}+\frac{(1-2 x) \mathrm{e}^{2 x}}{4}+\frac{x^{3}}{9}+\frac{4 x^{2}}{9}+\frac{26 x}{27}-\frac{3 \mathrm{e}^{x}}{2}+\frac{29 \mathrm{e}^{3 x}}{162} \\
-x \mathrm{e}^{2 x}+\frac{x^{2}}{3}+\frac{8 x}{9}+\frac{29 \mathrm{e}^{3 x}}{54}+\frac{26}{27}-\frac{3 \mathrm{e}^{x}}{2} \\
\frac{8}{9}+(-1-2 x) \mathrm{e}^{2 x}+\frac{2 x}{3}-\frac{3 \mathrm{e}^{x}}{2}+\frac{29 \mathrm{e}^{3 x}}{18}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{347}{324}+\frac{(1-2 x) \mathrm{e}^{2 x}}{4}+\frac{\left(29+18 c_{3}\right) \mathrm{e}^{3 x}}{162}+\frac{\left(-3+2 c_{2}\right) \mathrm{e}^{x}}{2}+\frac{x^{3}}{9}+\frac{4 x^{2}}{9}+\frac{26 x}{27}+c_{1}
$$

Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, $\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad\right.\right.$ a), _a) = exp(2*_a)*_a+_a^2-3*_b(_a)+4*
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve(diff $(y(x), x \$ 3)-4 * \operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)=x^{\wedge} 2+x * \exp (2 * x), y(x), \quad$ singsol=all)

$$
y(x)=\frac{(1-2 x) \mathrm{e}^{2 x}}{4}+\frac{x^{3}}{9}+\frac{4 x^{2}}{9}+\frac{c_{1} \mathrm{e}^{3 x}}{3}+c_{2} \mathrm{e}^{x}+\frac{26 x}{27}+c_{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 58
DSolve[y'''[x]-4*y''[x]+3*y'[x]==x^2+x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x^{3}}{9}+\frac{4 x^{2}}{9}+\frac{26 x}{27}+\frac{1}{4} e^{2 x}(1-2 x)+c_{1} e^{x}+\frac{1}{3} c_{2} e^{3 x}+c_{3}
$$

2.21 problem 21

Internal problem ID [3262]
Internal file name [OUTPUT/2754_Sunday_June_05_2022_08_40_05_AM_24257591/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 21.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_y]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}=7 x-3 \cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =i \sqrt{2} \\
\lambda_{4} & =-i \sqrt{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{-i \sqrt{2} x} c_{3}+\mathrm{e}^{i \sqrt{2} x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{-i \sqrt{2} x} \\
& y_{4}=\mathrm{e}^{i \sqrt{2} x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}=7 x-3 \cos (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
7 x-3 \cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\},\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, \mathrm{e}^{i \sqrt{2} x}, \mathrm{e}^{-i \sqrt{2} x}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\},\{\cos (x), \sin (x)\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x^{2}, x^{3}\right\},\{\cos (x), \sin (x)\}\right]
$$

Since there was duplication between the basis functions in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{3}+A_{1} x^{2}+A_{3} \cos (x)+A_{4} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{3} \cos (x)-A_{4} \sin (x)+12 A_{2} x+4 A_{1}=7 x-3 \cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{7}{12}, A_{3}=3, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 x^{3}}{12}+3 \cos (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}+\mathrm{e}^{-i \sqrt{2} x} c_{3}+\mathrm{e}^{i \sqrt{2} x} c_{4}\right)+\left(\frac{7 x^{3}}{12}+3 \cos (x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\mathrm{e}^{-i \sqrt{2} x} c_{3}+\mathrm{e}^{i \sqrt{2} x} c_{4}+\frac{7 x^{3}}{12}+3 \cos (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+\mathrm{e}^{-i \sqrt{2} x} c_{3}+\mathrm{e}^{i \sqrt{2} x} c_{4}+\frac{7 x^{3}}{12}+3 \cos (x)
$$

Verified OK.

Maple trace

```
Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -2*_b(_a)+7*_a-3*cos(_a), _b(
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying high order exact linear fully integrable
    trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
    trying a double symmetry of the form [xi=0, eta=F(x)]
    -> Try solving first the homogeneous part of the ODE
        checking if the LODE has constant coefficients
        <- constant coefficients successful
    <- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$4)+2*diff(y(x),x$2)=7*x-3*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=\frac{7 x^{3}}{12}-\frac{\cos (\sqrt{2} x) c_{1}}{2}-\frac{c_{2} \sin (\sqrt{2} x)}{2}+3 \cos (x)+c_{3} x+c_{4}
$$

Solution by Mathematica

Time used: 0.603 (sec). Leaf size: 51

```
DSolve[y''''[x]+2*y''[x]==7*x-3*Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{7 x^{3}}{12}+3 \cos (x)+c_{4} x-\frac{1}{2} c_{1} \cos (\sqrt{2} x)-\frac{1}{2} c_{2} \sin (\sqrt{2} x)+c_{3}
$$

2.22 problem 22

2.22.1 Maple step by step solution . 1006

Internal problem ID [3263]
Internal file name [OUTPUT/2755_Sunday_June_05_2022_08_40_05_AM_87500085/index.tex]
Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 22.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=\sin (x) \cos (2 x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}+5 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{2 i x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{-i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 i x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=\mathrm{e}^{-2 i x} \\
& y_{4}=\mathrm{e}^{-i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=\sin (x) \cos (2 x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{2 i x} & \mathrm{e}^{i x} & \mathrm{e}^{-2 i x} & \mathrm{e}^{-i x} \\
2 i \mathrm{e}^{2 i x} & i \mathrm{e}^{i x} & -2 i \mathrm{e}^{-2 i x} & -i \mathrm{e}^{-i x} \\
-4 \mathrm{e}^{2 i x} & -\mathrm{e}^{i x} & -4 \mathrm{e}^{-2 i x} & -\mathrm{e}^{-i x} \\
-8 i \mathrm{e}^{2 i x} & -i \mathrm{e}^{i x} & 8 i \mathrm{e}^{-2 i x} & i \mathrm{e}^{-i x}
\end{array}\right] \\
&|W|=72 \mathrm{e}^{2 i x} \mathrm{e}^{i x} \mathrm{e}^{-2 i x} \mathrm{e}^{-i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=72
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{i x} & \mathrm{e}^{-2 i x} & \mathrm{e}^{-i x} \\
i \mathrm{e}^{i x} & -2 i \mathrm{e}^{-2 i x} & -i \mathrm{e}^{-i x} \\
-\mathrm{e}^{i x} & -4 \mathrm{e}^{-2 i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-6 i \mathrm{e}^{-2 i x} \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 i x} & \mathrm{e}^{-2 i x} & \mathrm{e}^{-i x} \\
2 i \mathrm{e}^{2 i x} & -2 i \mathrm{e}^{-2 i x} & -i \mathrm{e}^{-i x} \\
-4 \mathrm{e}^{2 i x} & -4 \mathrm{e}^{-2 i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =-12 i \mathrm{e}^{-i x} \\
& W_{3}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 i x} & \mathrm{e}^{i x} & \mathrm{e}^{-i x} \\
2 i \mathrm{e}^{2 i x} & i \mathrm{e}^{i x} & -i \mathrm{e}^{-i x} \\
-4 \mathrm{e}^{2 i x} & -\mathrm{e}^{i x} & -\mathrm{e}^{-i x}
\end{array}\right] \\
& =6 i \mathrm{e}^{2 i x} \\
& W_{4}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{2 i x} & \mathrm{e}^{i x} & \mathrm{e}^{-2 i x} \\
2 i \mathrm{e}^{2 i x} & i \mathrm{e}^{i x} & -2 i \mathrm{e}^{-2 i x} \\
-4 \mathrm{e}^{2 i x} & -\mathrm{e}^{i x} & -4 \mathrm{e}^{-2 i x}
\end{array}\right] \\
& =12 i \mathrm{e}^{i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{(\sin (x) \cos (2 x))\left(-6 i \mathrm{e}^{-2 i x}\right)}{(1)(72)} d x \\
& =-\int \frac{-6 i \sin (x) \cos (2 x) \mathrm{e}^{-2 i x}}{72} d x \\
& =-\int\left(-\frac{i \sin (x) \cos (2 x) \mathrm{e}^{-2 i x}}{12}\right) d x \\
& =\frac{i\left(-\frac{\mathrm{e}^{-2 i x} \cos (x)}{6}-\frac{i \mathrm{e}^{-2 i x} \sin (x)}{3}-\frac{3 \mathrm{e}^{-2 i x} \cos (3 x)}{10}-\frac{i \mathrm{e}^{-2 i x} \sin (3 x)}{5}\right)}{12}
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\sin (x) \cos (2 x))\left(-12 \mathrm{i}^{-i x}\right)}{(1)(72)} d x \\
& =\int \frac{-12 i \sin (x) \cos (2 x) \mathrm{e}^{-i x}}{72} d x \\
& =\int\left(-\frac{i \sin (x) \cos (2 x) \mathrm{e}^{-i x}}{6}\right) d x \\
& =\int-\frac{i \sin (x) \cos (2 x) \mathrm{e}^{-i x}}{6} d x \\
& U_{3}=(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\sin (x) \cos (2 x))\left(6 i \mathrm{e}^{2 i x}\right)}{(1)(72)} d x \\
& =-\int \frac{6 i \sin (x) \cos (2 x) \mathrm{e}^{2 i x}}{72} d x \\
& =-\int\left(\frac{i \sin (x) \cos (2 x) \mathrm{e}^{2 i x}}{12}\right) d x \\
& =-\frac{i\left(-\frac{\mathrm{e}^{2 i x} \cos (x)}{6}+\frac{i \mathrm{e}^{2 i x} \sin (x)}{3}-\frac{3 \mathrm{e}^{2 i x} \cos (3 x)}{10}+\frac{i \mathrm{e}^{2 i x} \sin (3 x)}{5}\right)}{12} \\
& U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(\sin (x) \cos (2 x))\left(12 i \mathrm{e}^{i x}\right)}{(1)(72)} d x \\
& =\int \frac{12 i \sin (x) \cos (2 x) \mathrm{e}^{i x}}{72} d x \\
& =\int\left(\frac{i \sin (x) \cos (2 x) \mathrm{e}^{i x}}{6}\right) d x \\
& =\int \frac{i \sin (x) \cos (2 x) \mathrm{e}^{i x}}{6} d x
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\frac{i\left(-\frac{\mathrm{e}^{-2 i x} \cos (x)}{6}-\frac{i \mathrm{e}^{-2 i x} \sin (x)}{3}-\frac{3 \mathrm{e}^{-2 i x} \cos (3 x)}{10}-\frac{i \mathrm{e}^{-2 i x} \sin (3 x)}{5}\right)}{12}\right)\left(\mathrm{e}^{2 i x}\right) \\
& +\left(\int-\frac{i \sin (x) \cos (2 x) \mathrm{e}^{-i x}}{6} d x\right)\left(\mathrm{e}^{i x}\right) \\
& +\left(-\frac{i\left(-\frac{\mathrm{e}^{2 i x} \cos (x)}{6}+\frac{i e^{2 i x} \sin (x)}{3}-\frac{3 \mathrm{e}^{2 i x} \cos (3 x)}{10}+\frac{i \mathrm{e}^{2 i x} \sin (3 x)}{5}\right)}{12}\right)\left(\mathrm{e}^{-2 i x}\right) \\
& +\left(\int \frac{i \sin (x) \cos (2 x) \mathrm{e}^{i x}}{6} d x\right)\left(\mathrm{e}^{-i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\frac{2 \cos (x)^{2} \sin (x)}{15}+\frac{\sin (x)}{45}-\frac{i\left(\int \sin (x) \cos (2 x) \mathrm{e}^{-i x} d x\right) \mathrm{e}^{i x}}{6}+\frac{i\left(\int \sin (x) \cos (2 x) \mathrm{e}^{i x} d x\right) \mathrm{e}^{-i x}}{6}
$$

Which simplifies to

$$
y_{p}=-\frac{\left(\int \sin (x)^{2} \cos (2 x) d x\right) \cos (x)}{3}+\frac{2\left(\cos (x)^{2}+\frac{5\left(\int \sin (4 x) d x\right)}{8}+\frac{1}{6}\right) \sin (x)}{15}
$$

Therefore the general solution is

$$
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\mathrm{e}^{2 i x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{-i x} c_{4}\right) \\
& +\left(-\frac{\left(\int \sin (x)^{2} \cos (2 x) d x\right) \cos (x)}{3}+\frac{2\left(\cos (x)^{2}+\frac{5\left(\int \sin (4 x) d x\right)}{8}+\frac{1}{6}\right) \sin (x)}{15}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \mathrm{e}^{2 i x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{-i x} c_{4}-\frac{\left(\int \sin (x)^{2} \cos (2 x) d x\right) \cos (x)}{3} \tag{1}\\
& +\frac{2\left(\cos (x)^{2}+\frac{5\left(\int \sin (4 x) d x\right)}{8}+\frac{1}{6}\right) \sin (x)}{15}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{2 i x} c_{1}+\mathrm{e}^{i x} c_{2}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{-i x} c_{4}-\frac{\left(\int \sin (x)^{2} \cos (2 x) d x\right) \cos (x)}{3} \\
& +\frac{2\left(\cos (x)^{2}+\frac{5\left(\int \sin (4 x) d x\right)}{8}+\frac{1}{6}\right) \sin (x)}{15}
\end{aligned}
$$

Verified OK.

2.22.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=\sin (x) \cos (2 x)$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\sin (x) \cos (2 x)-5 y_{3}(x)-4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\sin (x) \cos (2 x)-5 y_{3}(x)-4 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\sin (x) \cos (2 x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\sin (x) \cos (2 x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} & -\sin (x) & -\cos (x) \\
-\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} & -\cos (x) & \sin (x) \\
\frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} & \sin (x) & \cos (x) \\
\cos (2 x) & -\sin (2 x) & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\frac{\sin (2 x)}{8} & -\frac{\cos (2 x)}{8} & -\sin (x) & -\cos (x) \\
-\frac{\cos (2 x)}{4} & \frac{\sin (2 x)}{4} & -\cos (x) & \sin (x) \\
\frac{\sin (2 x)}{2} & \frac{\cos (2 x)}{2} & \sin (x) & \cos (x) \\
\cos (2 x) & -\sin (2 x) & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cccc}
0 & -\frac{1}{8} & 0 & -1 \\
-\frac{1}{4} & 0 & -1 & 0 \\
0 & \frac{1}{2} & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cccc}
-\frac{2 \cos (x)^{2}}{3}+\frac{1}{3}+\frac{4 \cos (x)}{3} & -\frac{\sin (2 x)}{6}+\frac{4 \sin (x)}{3} & -\frac{2 \cos (x)^{2}}{3}+\frac{1}{3}+\frac{\cos (x)}{3} & -\frac{\sin (2 x)}{6}+\frac{\text { si }}{3} \\
\frac{2 \sin (2 x)}{3}-\frac{4 \sin (x)}{3} & -\frac{2 \cos (x)^{2}}{3}+\frac{1}{3}+\frac{4 \cos (x)}{3} & \frac{2 \sin (2 x)}{3}-\frac{\sin (x)}{3} & -\frac{2 \cos (x)^{2}}{3}+\frac{1}{3}- \\
\frac{8 \cos (x)^{2}}{3}-\frac{4}{3}-\frac{4 \cos (x)}{3} & \frac{2 \sin (2 x)}{3}-\frac{4 \sin (x)}{3} & \frac{8 \cos (x)^{2}}{3}-\frac{4}{3}-\frac{\cos (x)}{3} & \frac{2 \sin (2 x)}{3}-\frac{\text { si }}{3} \\
-\frac{8 \sin (2 x)}{3}+\frac{4 \sin (x)}{3} & \frac{8 \cos (x)^{2}}{3}-\frac{4}{3}-\frac{4 \cos (x)}{3} & -\frac{8 \sin (2 x)}{3}+\frac{\sin (x)}{3} & \frac{8 \cos (x)^{2}}{3}-\frac{4}{3}-
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\cos (x)^{2} \sin (x)}{20}+\frac{(15 x-28 \sin (x)) \cos (x)}{180}+\frac{\sin (x)}{45} \\
\frac{3 \cos (x)^{3}}{20}-\frac{14 \cos (x)^{2}}{45}-\frac{x \sin (x)}{12}+\frac{\cos (x)}{180}+\frac{7}{45} \\
-\frac{9 \cos (x)^{2} \sin (x)}{20}+\frac{(-15 x+112 \sin (x)) \cos (x)}{180}-\frac{4 \sin (x)}{45} \\
-\frac{27 \cos (x)^{3}}{20}+\frac{56 \cos (x)^{2}}{45}+\frac{x \sin (x)}{12}+\frac{131 \cos (x)}{180}-\frac{28}{45}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{\cos (x)^{2} \sin (x)}{20}+\frac{(15 x-28 \sin (x)) \cos (x)}{180}+\frac{\sin (x)}{45} \\
\frac{3 \cos (x)^{3}}{20}-\frac{14 \cos (x)^{2}}{45}-\frac{x \sin (x)}{12}+\frac{\cos (x)}{180}+\frac{7}{45} \\
-\frac{9 \cos (x)^{2} \sin (x)}{20}+\frac{(-15 x+112 \sin (x)) \cos (x)}{180}-\frac{4 \sin (}{45} \\
-\frac{27 \cos (x)^{3}}{20}+\frac{56 \cos (x)^{2}}{45}+\frac{x \sin (x)}{12}+\frac{131 \cos (x)}{180}-
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-5 c_{2}+\sin (x)\right) \cos (x)^{2}}{20}+\frac{\left(\left(-28-45 c_{1}\right) \sin (x)+15 x-180 c_{4}\right) \cos (x)}{180}+\frac{\left(1-45 c_{3}\right) \sin (x)}{45}+\frac{c_{2}}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 43
dsolve($\operatorname{diff}(y(x), x \$ 4)+5 * \operatorname{diff}(y(x), x \$ 2)+4 * y(x)=\sin (x) * \cos (2 * x), y(x)$, singsol=all)

$$
\begin{aligned}
y(x)= & \frac{\left(40 c_{3}+\sin (x)\right) \cos (x)^{2}}{20}+\frac{\left(24 c_{4} \sin (x)+x+12 c_{1}\right) \cos (x)}{12} \\
& +\frac{\left(360 c_{2}-7\right) \sin (x)}{360}-c_{3}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 50
DSolve[y''''[x]+5*y''[x]+4*y[x]==Sin[x]*Cos[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\sin (x)}{72}+\frac{1}{80} \sin (3 x)+\left(\frac{x}{12}+c_{3}\right) \cos (x)+c_{1} \cos (2 x)+c_{4} \sin (x)+c_{2} \sin (2 x)
$$

[^0]: -Methods for first order ODEs:
 --- Trying classification methods ---
 trying a quadrature
 trying 1st order linear
 <- 1st order linear successful`

