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1.1 problem 1
1.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 7

Internal problem ID [3146]
Internal file name [OUTPUT/2638_Sunday_June_05_2022_08_37_51_AM_88841125/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

cos (y)2 +
(
1 + e−x

)
sin (y) y′ = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −cos (y) cot (y)
1 + e−x

Where f(x) = − 1
1+e−x and g(y) = cos (y) cot (y). Integrating both sides gives

1
cos (y) cot (y) dy = − 1

1 + e−x
dx∫ 1

cos (y) cot (y) dy =
∫

− 1
1 + e−x

dx

1
cos (y) = − ln

(
1 + e−x

)
+ ln

(
e−x
)
+ c1
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Which results in

y = π − arccos
(

1
ln ((ex + 1) e−x) + x− c1

)
Summary
The solution(s) found are the following

(1)y = π − arccos
(

1
ln ((ex + 1) e−x) + x− c1

)

Figure 1: Slope field plot

Verification of solutions

y = π − arccos
(

1
ln ((ex + 1) e−x) + x− c1

)
Verified OK.
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1.1.2 Maple step by step solution

Let’s solve
cos (y)2 + (1 + e−x) sin (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ sin(y)
cos(y)2 = − 1

1+e−x

• Integrate both sides with respect to x∫ y′ sin(y)
cos(y)2 dx =

∫
− 1

1+e−xdx+ c1

• Evaluate integral
1

cos(y) = − ln (1 + e−x) + ln (e−x) + c1

• Solve for y

y = π − arccos
(

1
ln
(

ex+1
ex

)
+x−c1

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 18� �
dsolve(cos(y(x))^2+(1+exp(-x))*sin(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = π

2 + arcsin
(

1
ln (1 + ex) + c1

)
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3 Solution by Mathematica
Time used: 0.95 (sec). Leaf size: 57� �
DSolve[Cos[y[x]]^2+(1+Exp[-x])*Sin[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sec−1 (− log (ex + 1) + 2c1)
y(x) → sec−1 (− log (ex + 1) + 2c1)
y(x) → −π

2
y(x) → π

2
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1.2 problem 2
1.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 11

Internal problem ID [3147]
Internal file name [OUTPUT/2639_Sunday_June_05_2022_08_37_52_AM_99009684/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

y′ − x3ex2

y ln (y) = 0

1.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x3ex2

y ln (y)

Where f(x) = x3ex2 and g(y) = 1
y ln(y) . Integrating both sides gives

1
1

y ln(y)
dy = x3ex2

dx

∫ 1
1

y ln(y)
dy =

∫
x3ex2

dx

y2 ln (y)
2 − y2

4 = (x2 − 1) ex2

2 + c1
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Which results in

y = e
LambertW

(
2
(
x2ex

2
−ex

2
+2c1

)
e−1

)
2 + 1

2

Summary
The solution(s) found are the following

(1)y = e
LambertW

(
2
(
x2ex

2
−ex

2
+2c1

)
e−1

)
2 + 1

2

Figure 2: Slope field plot

Verification of solutions

y = e
LambertW

(
2
(
x2ex

2
−ex

2
+2c1

)
e−1

)
2 + 1

2

Verified OK.
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1.2.2 Maple step by step solution

Let’s solve

y′ − x3ex2

y ln(y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′y ln (y) = x3ex2

• Integrate both sides with respect to x∫
y′y ln (y) dx =

∫
x3ex2

dx+ c1

• Evaluate integral
y2 ln(y)

2 − y2

4 =
(
x2−1

)
ex2

2 + c1

• Solve for y

y = e
LambertW

 2
(
x2ex

2
−ex

2
+2c1

)
e


2 + 1

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 54� �
dsolve(diff(y(x),x)=(x^3*exp(x^2))/(y(x)*ln(y(x))),y(x), singsol=all)� �

y(x) =
√
2

√
ex2x2 − ex2 + 2c1

LambertW (2 (ex2x2 − ex2 + 2c1) e−1)
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3 Solution by Mathematica
Time used: 60.191 (sec). Leaf size: 106� �
DSolve[y'[x]==(x^3*Exp[x^2])/(y[x]*Log[y[x]]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2ex2 (x2 − 1) + 4c1√
W
(

2ex2 (x2−1)+4c1
e

)
y(x) →

√
2ex2 (x2 − 1) + 4c1√
W
(

2ex2 (x2−1)+4c1
e

)
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1.3 problem 3
1.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 15

Internal problem ID [3148]
Internal file name [OUTPUT/2640_Sunday_June_05_2022_08_37_53_AM_87021584/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x cos (y)2 + ex tan (y) y′ = 0

1.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −x e−x cos (y)2 cot (y)

Where f(x) = −x e−x and g(y) = cos (y)2 cot (y). Integrating both sides gives

1
cos (y)2 cot (y)

dy = −x e−x dx

∫ 1
cos (y)2 cot (y)

dy =
∫

−x e−x dx

1
2 cot (y)2

= (x+ 1) e−x + c1
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Which results in

y = arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

y = π − arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

Summary
The solution(s) found are the following

(1)y = arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

(2)y = π − arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

Figure 3: Slope field plot
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Verification of solutions

y = arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

Verified OK.

y = π − arccot
(√

2
√
(c1ex + x+ 1) ex

2c1ex + 2x+ 2

)

Verified OK.

1.3.2 Maple step by step solution

Let’s solve
x cos (y)2 + ex tan (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ tan(y)
cos(y)2 = − x

ex

• Integrate both sides with respect to x∫ y′ tan(y)
cos(y)2 dx =

∫
− x

exdx+ c1

• Evaluate integral
tan(y)2

2 = x+1
ex + c1

• Solve for y{
y = − arctan

(√
2
√

(c1ex+x+1)ex
ex

)
, y = arctan

(√
2
√

(c1ex+x+1)ex
ex

)}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 77� �
dsolve(x*cos(y(x))^2+exp(x)*tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = π − arccot
(√

2
√

(−exc1 + x+ 1) ex
−2 exc1 + 2x+ 2

)

y(x) = π

2 − arctan
(√

2
√
(−exc1 + x+ 1) ex

−2 exc1 + 2x+ 2

)

3 Solution by Mathematica
Time used: 15.741 (sec). Leaf size: 149� �
DSolve[x*Cos[y[x]]^2+Exp[x]*Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sec−1
(
−
√
2
√
e−x (x+ 4c1ex + 1)

)
y(x) → sec−1

(
−
√
2
√
e−x (x+ 4c1ex + 1)

)
y(x) → − sec−1

(√
2
√

e−x (x+ 4c1ex + 1)
)

y(x) → sec−1
(√

2
√
e−x (x+ 4c1ex + 1)

)
y(x) → −π

2
y(x) → π

2
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1.4 problem 4
1.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 19

Internal problem ID [3149]
Internal file name [OUTPUT/2641_Sunday_June_05_2022_08_37_59_AM_8997525/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x
(
y2 + 1

)
+ (2y + 1) e−xy′ = 0

1.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x ex(y2 + 1)
2y + 1

Where f(x) = −x ex and g(y) = y2+1
2y+1 . Integrating both sides gives

1
y2+1
2y+1

dy = −x ex dx

∫ 1
y2+1
2y+1

dy =
∫

−x ex dx

ln
(
y2 + 1

)
+ arctan (y) = −(x− 1) ex + c1

17



Which results in

y = tan
(
RootOf

(
−x ex + ex − ln

(
1

cos (_Z)2
)
+ c1 − _Z

))

Summary
The solution(s) found are the following

(1)y = tan
(
RootOf

(
−x ex + ex − ln

(
1

cos (_Z)2
)
+ c1 − _Z

))

Figure 4: Slope field plot

Verification of solutions

y = tan
(
RootOf

(
−x ex + ex − ln

(
1

cos (_Z)2
)
+ c1 − _Z

))
Verified OK.
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1.4.2 Maple step by step solution

Let’s solve
x(y2 + 1) + (2y + 1) e−xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(2y+1)
y2+1 = − x

e−x

• Integrate both sides with respect to x∫ y′(2y+1)
y2+1 dx =

∫
− x

e−xdx+ c1

• Evaluate integral
ln (y2 + 1) + arctan (y) = −x−1

e−x + c1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
dsolve(x*(y(x)^2+1)+(2*y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan
(
RootOf

(
x ex − ex + ln (2) + ln

(
1

1 + cos (2_Z)

)
+ _Z+ c1

))
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3 Solution by Mathematica
Time used: 0.627 (sec). Leaf size: 43� �
DSolve[x*(y[x]^2+1)+(2*y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → InverseFunction
[
log
(
#12 + 1

)
+ arctan(#1)&

]
[−ex(x− 1) + c1]

y(x) → −i
y(x) → i

20



1.5 problem 5
1.5.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 23

Internal problem ID [3150]
Internal file name [OUTPUT/2642_Sunday_June_05_2022_08_37_59_AM_14399028/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

xy3 + ex2
y′ = 0

1.5.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −x y3e−x2

Where f(x) = −x e−x2 and g(y) = y3. Integrating both sides gives

1
y3

dy = −x e−x2
dx∫ 1

y3
dy =

∫
−x e−x2

dx

− 1
2y2 = e−x2

2 + c1

21



Which results in

y =
√

− (2c1ex2 + 1) ex2

2c1ex2 + 1

y = −
√

− (2c1ex2 + 1) ex2

2c1ex2 + 1

Summary
The solution(s) found are the following

(1)y =
√

− (2c1ex2 + 1) ex2

2c1ex2 + 1

(2)y = −
√

− (2c1ex2 + 1) ex2

2c1ex2 + 1

Figure 5: Slope field plot
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Verification of solutions

y =
√
− (2c1ex2 + 1) ex2

2c1ex2 + 1

Verified OK.

y = −
√

− (2c1ex2 + 1) ex2

2c1ex2 + 1

Verified OK.

1.5.2 Maple step by step solution

Let’s solve
xy3 + ex2

y′ = 0
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′

y3
= − x

ex2

• Integrate both sides with respect to x∫
y′

y3
dx =

∫
− x

ex2
dx+ c1

• Evaluate integral
− 1

2y2 = 1
2 ex2

+ c1

• Solve for yy =

√
−
(
2c1ex2+1

)
ex2

2c1ex2+1
, y = −

√
−
(
2c1ex2+1

)
ex2

2c1ex2+1


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(x*y(x)^3+exp(x^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1√
c1 − e−x2

y(x) = − 1√
c1 − e−x2

3 Solution by Mathematica
Time used: 7.124 (sec). Leaf size: 70� �
DSolve[x*y[x]^3+Exp[x^2]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ie
x2
2√

1 + 2c1ex2

y(x) → ie
x2
2√

1 + 2c1ex2

y(x) → 0
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1.6 problem 6
1.6.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 25
1.6.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 27

Internal problem ID [3151]
Internal file name [OUTPUT/2643_Sunday_June_05_2022_08_37_59_AM_34888727/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x cos (y)2 + tan (y) y′ = 0

1.6.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= −x cos (y)2 cot (y)

Where f(x) = −x and g(y) = cos (y)2 cot (y). Integrating both sides gives

1
cos (y)2 cot (y)

dy = −x dx

∫ 1
cos (y)2 cot (y)

dy =
∫

−x dx

1
2 cot (y)2

= −x2

2 + c1
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Which results in

y = arccot
(

1√
−x2 + 2c1

)
y = π − arccot

(
1√

−x2 + 2c1

)
Summary
The solution(s) found are the following

(1)y = arccot
(

1√
−x2 + 2c1

)
(2)y = π − arccot

(
1√

−x2 + 2c1

)

Figure 6: Slope field plot
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Verification of solutions

y = arccot
(

1√
−x2 + 2c1

)
Verified OK.

y = π − arccot
(

1√
−x2 + 2c1

)
Verified OK.

1.6.2 Maple step by step solution

Let’s solve
x cos (y)2 + tan (y) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′ tan(y)
cos(y)2 = −x

• Integrate both sides with respect to x∫ y′ tan(y)
cos(y)2 dx =

∫
−xdx+ c1

• Evaluate integral
tan(y)2

2 = −x2

2 + c1

• Solve for y{
y = − arctan

(√
−x2 + 2c1

)
, y = arctan

(√
−x2 + 2c1

)}
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(x*cos(y(x))^2+tan(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = arccot
(

1√
−x2 − 2c1

)
y(x) = π

2 + arctan
(

1√
−x2 − 2c1

)
3 Solution by Mathematica
Time used: 1.202 (sec). Leaf size: 103� �
DSolve[x*Cos[y[x]]^2+Tan[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − sec−1
(
−
√

−x2 + 8c1
)

y(x) → sec−1
(
−
√

−x2 + 8c1
)

y(x) → − sec−1
(√

−x2 + 8c1
)

y(x) → sec−1
(√

−x2 + 8c1
)

y(x) → −π

2
y(x) → π

2
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1.7 problem 7
1.7.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 29
1.7.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 31

Internal problem ID [3152]
Internal file name [OUTPUT/2644_Sunday_June_05_2022_08_38_01_AM_44925495/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

xy3 + (y + 1) e−xy′ = 0

1.7.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −x y3ex
y + 1

Where f(x) = −x ex and g(y) = y3

y+1 . Integrating both sides gives

1
y3

y+1

dy = −x ex dx

∫ 1
y3

y+1

dy =
∫

−x ex dx

−1
y
− 1

2y2 = −(x− 1) ex + c1

29



Which results in

y = −e−x −
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

y = −e−x +
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

Summary
The solution(s) found are the following

(1)y = −e−x −
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

(2)y = −e−x +
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

Figure 7: Slope field plot
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Verification of solutions

y = −e−x −
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

Verified OK.

y = −e−x +
√
−2c1e−2x + e−2x + 2x e−x − 2 e−x

2 (c1e−x − x+ 1)

Verified OK.

1.7.2 Maple step by step solution

Let’s solve
xy3 + (y + 1) e−xy′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′(y+1)

y3
= − x

e−x

• Integrate both sides with respect to x∫ y′(y+1)
y3

dx =
∫
− x

e−xdx+ c1

• Evaluate integral
− 1

y
− 1

2y2 = −x−1
e−x + c1

• Solve for y{
y = − e−x−

√
−2c1(e−x)2+(e−x)2+2x e−x−2 e−x

2(c1e−x−x+1) , y = − e−x+
√

−2c1(e−x)2+(e−x)2+2x e−x−2 e−x

2(c1e−x−x+1)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 73� �
dsolve(x*y(x)^3+(y(x)+1)*exp(-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
√

(2x− 2) ex + 2c1 + 1
(2x− 2) ex + 2c1

y(x) = 1 +
√

(2x− 2) ex + 2c1 + 1
(2x− 2) ex + 2c1

3 Solution by Mathematica
Time used: 9.963 (sec). Leaf size: 88� �
DSolve[x*y[x]^3+(y[x]+1)*Exp[-x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1−
√
2ex(x− 1) + 1− 2c1

2ex(x− 1)− 2c1

y(x) → 1 +
√
2ex(x− 1) + 1− 2c1
2ex(x− 1)− 2c1

y(x) → 0
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1.8 problem 8
1.8.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 33
1.8.2 Solving as first order ode lie symmetry calculated ode . . . . . . 35

Internal problem ID [3153]
Internal file name [OUTPUT/2645_Sunday_June_05_2022_08_38_02_AM_12623809/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ + x

y
= −2

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) + 1
u (x) = −2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(u+ 1)2

xu

33



Where f(x) = − 1
x
and g(u) = (u+1)2

u
. Integrating both sides gives

1
(u+1)2

u

du = −1
x
dx

∫ 1
(u+1)2

u

du =
∫

−1
x
dx

ln (u+ 1) + 1
u+ 1 = − ln (x) + c2

The solution is

ln (u(x) + 1) + 1
u (x) + 1 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(y
x
+ 1
)
+ 1

y
x
+ 1 + ln (x)− c2 = 0

ln
(
y + x

x

)
+ x

y + x
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)ln
(
y + x

x

)
+ x

y + x
+ ln (x)− c2 = 0
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Figure 8: Slope field plot

Verification of solutions

ln
(
y + x

x

)
+ x

y + x
+ ln (x)− c2 = 0

Verified OK.

1.8.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −x+ 2y
y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(x+ 2y) (b3 − a2)

y
− (x+ 2y)2 a3

y2
+ xa2 + ya3 + a1

y

−
(
−2
y
+ x+ 2y

y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x2a3 + x2b2 − 2xya2 + 4xya3 + 2xyb3 − 2y2a2 + 3y2a3 − b2y
2 + 2y2b3 + xb1 − ya1

y2
=0

Setting the numerator to zero gives

−x2a3 − x2b2 + 2xya2 − 4xya3 − 2xyb3 + 2y2a2 − 3y2a3 + b2y
2 − 2y2b3 − xb1 + ya1 = 0

(6E)

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v1v2 + 2a2v22 − a3v
2
1 − 4a3v1v2 − 3a3v22 − b2v

2
1

+ b2v
2
2 − 2b3v1v2 − 2b3v22 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)(−a3− b2) v21 +(2a2− 4a3− 2b3) v1v2− b1v1+(2a2− 3a3+ b2− 2b3) v22 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−b1 = 0

−a3 − b2 = 0
2a2 − 4a3 − 2b3 = 0

2a2 − 3a3 + b2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b2 + b3

a3 = −b2

b1 = 0
b2 = b2

b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−x+ 2y

y

)
(x)

= x2 + 2xy + y2

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2+2xy+y2

y

dy

Which results in

S = ln (y + x) + x

y + x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x+ 2y
y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x+ 2y
(y + x)2

Sy =
y

(y + x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

(y + x) ln (y + x) + x

y + x
= c1

Which simplifies to
(y + x) ln (y + x) + x

y + x
= c1

Which gives

y = eLambertW
(
−x e−c1

)
+c1 − x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x+2y
y

dS
dR

= 0

R = x

S = (y + x) ln (y + x) + x

y + x
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Summary
The solution(s) found are the following

(1)y = eLambertW
(
−x e−c1

)
+c1 − x

Figure 9: Slope field plot

Verification of solutions

y = eLambertW
(
−x e−c1

)
+c1 − x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 21� �
dsolve(diff(y(x),x)+x/y(x)+2=0,y(x), singsol=all)� �

y(x) = −x(LambertW (−c1x) + 1)
LambertW (−c1x)

3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 31� �
DSolve[y'[x]+x/y[x]+2==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[

1
y(x)
x

+ 1
+ log

(
y(x)
x

+ 1
)

= − log(x) + c1, y(x)
]
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1.9 problem 9
1.9.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 42
1.9.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 44
1.9.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 46

Internal problem ID [3154]
Internal file name [OUTPUT/2646_Sunday_June_05_2022_08_38_03_AM_51971513/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y − x cot
(y
x

)
= 0

1.9.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = cot
(y
x

)
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = 1
b = 1

f

(
bx

y

)
= cot

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = cot (u(x))
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= cot (u)
x

Where f(x) = 1
x
and g(u) = cot (u). Integrating both sides gives

1
cot (u) du = 1

x
dx∫ 1

cot (u) du =
∫ 1

x
dx

− ln (cos (u)) = ln (x) + c1

Raising both side to exponential gives

1
cos (u) = eln(x)+c1

Which simplifies to

sec (u) = c2x

Therefore the solution is

y = ux

= x arcsec (c2ec1x)
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Summary
The solution(s) found are the following

(1)y = x arcsec (c2ec1x)

Figure 10: Slope field plot

Verification of solutions

y = x arcsec (c2ec1x)

Verified OK.

1.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x− x cot (u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= cot (u)
x
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Where f(x) = 1
x
and g(u) = cot (u). Integrating both sides gives

1
cot (u) du = 1

x
dx∫ 1

cot (u) du =
∫ 1

x
dx

− ln (cos (u)) = ln (x) + c2

Raising both side to exponential gives

1
cos (u) = eln(x)+c2

Which simplifies to

sec (u) = c3x

Therefore the solution y is

y = xu

= x arcsec (c3ec2x)

Summary
The solution(s) found are the following

(1)y = x arcsec (c3ec2x)
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Figure 11: Slope field plot

Verification of solutions

y = x arcsec (c3ec2x)

Verified OK.

1.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ =
y + x cot

(
y
x

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 8: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
y + x cot

(
y
x

)
x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

tan
(
y
x

)
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − tan (R)S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 cos (R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1 cos

(y
x

)
Which simplifies to

−1
x
= c1 cos

(y
x

)
Which gives

y =
(
π − arccos

(
1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+x cot
( y
x

)
x

dS
dR

= − tan (R)S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y =
(
π − arccos

(
1
c1x

))
x

50



Figure 12: Slope field plot

Verification of solutions

y =
(
π − arccos

(
1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(x*diff(y(x),x)-y(x)=x*cot(y(x)/x),y(x), singsol=all)� �

y(x) = x arccos
(

1
c1x

)
3 Solution by Mathematica
Time used: 25.917 (sec). Leaf size: 56� �
DSolve[x*y'[x]-y[x]==x*Cot[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x arccos
(
e−c1

x

)
y(x) → x arccos

(
e−c1

x

)
y(x) → −πx

2
y(x) → πx

2
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1.10 problem 10
1.10.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 53
1.10.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 55
1.10.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 57

Internal problem ID [3155]
Internal file name [OUTPUT/2647_Sunday_June_05_2022_08_38_04_AM_4756193/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 10.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

x cos
(y
x

)2
− y + xy′ = 0

1.10.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = − cos
(y
x

)2
+ y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u
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Hence the given ode becomes

du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)

The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= cos

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −cos (u(x))2

x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −cos (u)2

x

Where f(x) = − 1
x
and g(u) = cos (u)2. Integrating both sides gives

1
cos (u)2

du = −1
x
dx

∫ 1
cos (u)2

du =
∫

−1
x
dx

tan (u) = − ln (x) + c1

The solution is
tan (u(x)) + ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

tan
(y
x

)
+ ln (x)− c1 = 0
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Summary
The solution(s) found are the following

(1)tan
(y
x

)
+ ln (x)− c1 = 0

Figure 13: Slope field plot

Verification of solutions

tan
(y
x

)
+ ln (x)− c1 = 0

Verified OK.

1.10.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x cos (u(x))2 − u(x)x+ x(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −cos (u)2

x
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Where f(x) = − 1
x
and g(u) = cos (u)2. Integrating both sides gives

1
cos (u)2

du = −1
x
dx

∫ 1
cos (u)2

du =
∫

−1
x
dx

tan (u) = − ln (x) + c2

The solution is
tan (u(x)) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

tan
(y
x

)
+ ln (x)− c2 = 0

tan
(y
x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)tan
(y
x

)
+ ln (x)− c2 = 0

Figure 14: Slope field plot
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Verification of solutions

tan
(y
x

)
+ ln (x)− c2 = 0

Verified OK.

1.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
x cos

(
y
x

)2 − y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 10: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
x cos

(
y
x

)2 − y

x
Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

sec
(
y
x

)2
x

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sec (R)2 S(R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1etan(R) (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1etan

( y
x

)

Which simplifies to

−1
x
= c1etan

( y
x

)

Which gives

y = arctan
(
ln
(
− 1
c1x

))
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x cos
( y
x

)2−y

x
dS
dR

= sec (R)2 S(R)

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arctan
(
ln
(
− 1
c1x

))
x
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Figure 15: Slope field plot

Verification of solutions

y = arctan
(
ln
(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve((x*cos(y(x)/x)^2-y(x))+x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − arctan (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.5 (sec). Leaf size: 37� �
DSolve[(x*Cos[y[x]/x]^2-y[x])+x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arctan(− log(x) + 2c1)
y(x) → −πx

2
y(x) → πx

2
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1.11 problem 11
1.11.1 Solving as first order ode lie symmetry calculated ode . . . . . . 64
1.11.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 70

Internal problem ID [3156]
Internal file name [OUTPUT/2648_Sunday_June_05_2022_08_38_05_AM_95895671/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 11.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactByInspection", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y(1 + ln (y)− ln (x)) = 0

1.11.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(−1 + ln (x)− ln (y))
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 −

y(−1 + ln (x)− ln (y)) (b3 − a2)
x

− y2(−1 + ln (x)− ln (y))2 a3
x2

−
(
− y

x2 + y(−1 + ln (x)− ln (y))
x2

)
(xa2 + ya3 + a1)

−
(
−−1 + ln (x)− ln (y)

x
+ 1

x

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− ln (x)2 y2a3 − 2 ln (x) ln (y) y2a3 + ln (y)2 y2a3 − ln (x)x2b2 − ln (x) y2a3 + ln (y)x2b2 + ln (y) y2a3 − ln (x)xb1 + ln (x) ya1 + ln (y)xb1 − ln (y) ya1 + b2x
2 − xya2 + xyb3 − y2a3 + 2xb1 − 2ya1

x2

= 0

Setting the numerator to zero gives

(6E)− ln (x)2 y2a3 + 2 ln (x) ln (y) y2a3 − ln (y)2 y2a3 + ln (x)x2b2 + ln (x) y2a3
− ln (y)x2b2 − ln (y) y2a3 + ln (x)xb1 − ln (x) ya1 − ln (y)xb1
+ ln (y) ya1 − b2x

2 + xya2 − xyb3 + y2a3 − 2xb1 + 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x) , ln (y)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3, ln (y) = v4}

The above PDE (6E) now becomes

(7E)−v23v
2
2a3 + 2v3v4v22a3 − v24v

2
2a3 + v3v

2
2a3 − v4v

2
2a3 + v3v

2
1b2 − v4v

2
1b2 − v3v2a1

+ v4v2a1+ v1v2a2+ v22a3+ v3v1b1− v4v1b1− b2v
2
1 − v1v2b3+2v2a1− 2v1b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)v3v
2
1b2 − v4v

2
1b2 − b2v

2
1 + (−b3 + a2) v1v2 + v3v1b1 − v4v1b1 − 2v1b1 − v23v

2
2a3

+ 2v3v4v22a3 + v3v
2
2a3 − v24v

2
2a3 − v4v

2
2a3 + v22a3 − v3v2a1 + v4v2a1 + 2v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
a3 = 0
b1 = 0
b2 = 0

−a1 = 0
2a1 = 0
−a3 = 0
2a3 = 0

−2b1 = 0
−b1 = 0
−b2 = 0

−b3 + a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−y(−1 + ln (x)− ln (y))

x

)
(x)

= ln (x) y − ln (y) y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

ln (x) y − ln (y) ydy

Which results in

S = − ln (ln (x)− ln (y))

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(−1 + ln (x)− ln (y))
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x (ln (x)− ln (y))

Sy =
1

y (ln (x)− ln (y))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (ln (x)− ln (y)) = − ln (x) + c1

Which simplifies to

− ln (ln (x)− ln (y)) = − ln (x) + c1

Which gives

y = e(ec1 ln(x)−x)e−c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y(−1+ln(x)−ln(y))
x

dS
dR

= − 1
R

R = x

S = − ln (ln (x)− ln (y))

Summary
The solution(s) found are the following

(1)y = e(ec1 ln(x)−x)e−c1

69



Figure 16: Slope field plot

Verification of solutions

y = e(ec1 ln(x)−x)e−c1

Verified OK.

1.11.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

70



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(x) dy = (y(1 + ln (y)− ln (x))) dx
(−y(1 + ln (y)− ln (x))) dx+(x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y(1 + ln (y)− ln (x))
N(x, y) = x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(−y(1 + ln (y)− ln (x)))

= −2 + ln (x)− ln (y)

And
∂N

∂x
= ∂

∂x
(x)

= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
x2y

is an integrating factor.
Therefore by multiplying M = −y(1 + ln (y)− ln (x)) and N = x by this integrating
factor the ode becomes exact. The new M,N are

M = −1 + ln (y)− ln (x)
x2

N = 1
xy

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
1
xy

)
dy =

(
1 + ln (y)− ln (x)

x2

)
dx(

−1 + ln (y)− ln (x)
x2

)
dx+

(
1
xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1 + ln (y)− ln (x)
x2

N(x, y) = 1
xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−1 + ln (y)− ln (x)

x2

)
= − 1

x2y

And
∂N

∂x
= ∂

∂x

(
1
xy

)
= − 1

x2y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1 + ln (y)− ln (x)

x2 dx

(3)φ = ln (y)− ln (x)
x

+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

xy
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1
xy
. Therefore equation (4) becomes

(5)1
xy

= 1
xy

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln (y)− ln (x)
x

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
ln (y)− ln (x)

x

The solution becomes
y = ec1xx

Summary
The solution(s) found are the following

(1)y = ec1xx
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Figure 17: Slope field plot

Verification of solutions

y = ec1xx

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 11� �
dsolve(x*diff(y(x),x)=y(x)*(1+ln(y(x))-ln(x)),y(x), singsol=all)� �

y(x) = x e−c1x

3 Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 20� �
DSolve[x*y'[x]==y[x]*(1+Log[y[x]]-Log[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → xee
c1x

y(x) → x
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1.12 problem 12
1.12.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 77
1.12.2 Solving as first order ode lie symmetry calculated ode . . . . . . 79
1.12.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 84

Internal problem ID [3157]
Internal file name [OUTPUT/2649_Sunday_June_05_2022_08_38_05_AM_83109919/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

yx+
(
y2 + x2) y′ = 0

1.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x2 +
(
u(x)2 x2 + x2) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − u(u2 + 2)
x (u2 + 1)

Where f(x) = − 1
x
and g(u) = u

(
u2+2

)
u2+1 . Integrating both sides gives

1
u(u2+2)
u2+1

du = −1
x
dx
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∫ 1
u(u2+2)
u2+1

du =
∫

−1
x
dx

ln (u2 + 2)
4 + ln (u)

2 = − ln (x) + c2

Raising both side to exponential gives

e
ln
(
u2+2

)
4 + ln(u)

2 = e− ln(x)+c2

Which simplifies to (
u2 + 2

) 1
4
√
u = c3

x

The solution is (
u(x)2 + 2

) 1
4
√
u (x) = c3

x

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form(

y2

x2 + 2
) 1

4
√

y

x
= c3

x(
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x

Summary
The solution(s) found are the following

(1)
(
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x
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Figure 18: Slope field plot

Verification of solutions (
y2 + 2x2

x2

) 1
4
√

y

x
= c3

x

Verified OK.

1.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − yx

x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
yx(b3 − a2)
x2 + y2

− y2x2a3

(x2 + y2)2
−
(

2x2y

(x2 + y2)2
− y

x2 + y2

)
(xa2 + ya3 + a1)

−
(
− x

x2 + y2
+ 2y2x

(x2 + y2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x4b2 − 2y2x2a3 + x2y2b2 + 2x y3a2 − 2x y3b3 + y4a3 + y4b2 + x3b1 − x2ya1 − x y2b1 + y3a1

(x2 + y2)2
= 0

Setting the numerator to zero gives

(6E)2x4b2 − 2y2x2a3 + x2y2b2 + 2x y3a2 − 2x y3b3
+ y4a3 + y4b2 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)2a2v1v32 − 2a3v21v22 + a3v
4
2 + 2b2v41 + b2v

2
1v

2
2 + b2v

4
2

− 2b3v1v32 − a1v
2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)2b2v41 + b1v
3
1 + (−2a3 + b2) v21v22 − a1v

2
1v2

+ (2a2 − 2b3) v1v32 − b1v1v
2
2 + (a3 + b2) v42 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−b1 = 0
2b2 = 0

2a2 − 2b3 = 0
−2a3 + b2 = 0

a3 + b2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− yx

x2 + y2

)
(x)

= 2x2y + y3

x2 + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2y+y3

x2+y2

dy

Which results in

S = ln (2x2 + y2)
4 + ln (y)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − yx

x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

2x2 + y2

Sy =
x2 + y2

2x2y + y3
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2x2)
4 + ln (y)

2 = c1

Which simplifies to
ln (y2 + 2x2)

4 + ln (y)
2 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − yx
x2+y2

dS
dR

= 0

R = x

S = ln (2x2 + y2)
4 + ln (y)

2
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Summary
The solution(s) found are the following

(1)ln (y2 + 2x2)
4 + ln (y)

2 = c1

Figure 19: Slope field plot

Verification of solutions

ln (y2 + 2x2)
4 + ln (y)

2 = c1

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + y2

)
dy = (−xy) dx

(xy) dx+
(
x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy

N(x, y) = x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(xy)

= x
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And
∂N

∂x
= ∂

∂x

(
x2 + y2

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + y2
((x)− (2x))

= − x

x2 + y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

xy
((2x)− (x))

= 1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1

y
dy

The result of integrating gives

µ = eln(y)

= y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y(xy)
= x y2
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And

N = µN

= y
(
x2 + y2

)
= y
(
x2 + y2

)
So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

x y2
)
+
(
y
(
x2 + y2

)) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x y2 dx

(3)φ = y2x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= y(x2 + y2). Therefore equation (4) becomes

(5)y
(
x2 + y2

)
= x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y3
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Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y3
)
dy

f(y) = y4

4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = 1
2y

2x2 + 1
4y

4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
2y

2x2 + 1
4y

4

Summary
The solution(s) found are the following

(1)y2x2

2 + y4

4 = c1

Figure 20: Slope field plot
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Verification of solutions

y2x2

2 + y4

4 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.688 (sec). Leaf size: 221� �
dsolve(x*y(x)+(x^2+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
c1x2 −

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1

y(x) =

√
x2c1

(
c1x2 −

√
c21x

4 + 1
)

x
(
−c1x2 +

√
c21x

4 + 1
)
c1

y(x) = −

√
x2c1

(
c1x2 +

√
c21x

4 + 1
)

x
(
c1x2 +

√
c21x

4 + 1
)
c1
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3 Solution by Mathematica
Time used: 9.087 (sec). Leaf size: 218� �
DSolve[x*y[x]+(x^2+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−x2 −

√
x4 + e4c1

y(x) →
√

−x2 −
√
x4 + e4c1

y(x) → −
√
−x2 +

√
x4 + e4c1

y(x) →
√

−x2 +
√
x4 + e4c1

y(x) → 0

y(x) → −
√
−
√
x4 − x2

y(x) →
√

−
√
x4 − x2

y(x) → −
√√

x4 − x2

y(x) →
√√

x4 − x2
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1.13 problem 13
1.13.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 91
1.13.2 Solving as first order ode lie symmetry calculated ode . . . . . . 93

Internal problem ID [3158]
Internal file name [OUTPUT/2650_Sunday_June_05_2022_08_38_06_AM_30676466/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

(
1− e−

y
x

)
y′ − y

x
= −1

1.13.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
1− e−u(x)) (u′(x)x+ u(x))− u(x) = −1

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − e−uu− 1
(e−u − 1)x

Where f(x) = − 1
x
and g(u) = e−uu−1

e−u−1 . Integrating both sides gives

1
e−uu−1
e−u−1

du = −1
x
dx
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∫ 1
e−uu−1
e−u−1

du =
∫

−1
x
dx

u+ ln
(
e−uu− 1

)
= − ln (x) + c2

The solution is
u(x) + ln

(
e−u(x)u(x)− 1

)
+ ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(
e− y

xy

x
− 1
)
+ ln (x)− c2 = 0

ln
(

y e−
y
x−x
x

)
x+ ln (x)x− c2x+ y

x
= 0

Summary
The solution(s) found are the following

(1)
ln
(

y e−
y
x−x
x

)
x+ ln (x)x− c2x+ y

x
= 0

Figure 21: Slope field plot

92



Verification of solutions

ln
(

y e−
y
x−x
x

)
x+ ln (x)x− c2x+ y

x
= 0

Verified OK.

1.13.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y − x(
−1 + e− y

x

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(y − x) (b3 − a2)(

−1 + e− y
x

)
x

− (y − x)2 a3(
−1 + e− y

x

)2
x2

−

(
1

x
(
−1 + e− y

x

) + (y − x) y e− y
x(

−1 + e− y
x

)2
x3

+ y − x(
−1 + e− y

x

)
x2

)
(xa2 + ya3 + a1)

−

(
− 1
x
(
−1 + e− y

x

) − (y − x) e− y
x(

−1 + e− y
x

)2
x2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

e− 2y
x x3b2 − e− y

xx3a2 − 2 e− y
xx3b2 + e− y

xx3b3 + e− y
xx2ya2 + e− y

xx2yb2 − e− y
xx2yb3 − e− y

xx y2a2 + e− y
xx y2b3 − e− y

xy3a3 + e− y
xxyb1 − e− y

xy2a1 + x3a2 − x3a3 − x3b3 + 2x2ya3 − x2b1 + xya1(
−1 + e− y

x

)2
x3

= 0
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Setting the numerator to zero gives

(6E)e−
2y
x x3b2 − e−

y
xx3a2 − 2 e−

y
xx3b2 + e−

y
xx3b3 + e−

y
xx2ya2 + e−

y
xx2yb2

− e−
y
xx2yb3 − e−

y
xx y2a2 + e−

y
xx y2b3 − e−

y
xy3a3 + e−

y
xxyb1

− e−
y
xy2a1 + x3a2 − x3a3 − x3b3 + 2x2ya3 − x2b1 + xya1 = 0

Simplifying the above gives

(6E)e−
2y
x x3b2 − e−

y
xx3a2 − 2 e−

y
xx3b2 + e−

y
xx3b3 + e−

y
xx2ya2 + e−

y
xx2yb2

− e−
y
xx2yb3 − e−

y
xx y2a2 + e−

y
xx y2b3 − e−

y
xy3a3 + e−

y
xxyb1

− e−
y
xy2a1 + x3a2 − x3a3 − x3b3 + 2x2ya3 − x2b1 + xya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, e−

2y
x , e−

y
x

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, e−
2y
x = v3, e−

y
x = v4

}
The above PDE (6E) now becomes

(7E)−v4v
3
1a2 + v4v

2
1v2a2 − v4v1v

2
2a2 − v4v

3
2a3 + v3v

3
1b2 − 2v4v31b2

+ v4v
2
1v2b2 + v4v

3
1b3 − v4v

2
1v2b3 + v4v1v

2
2b3 − v4v

2
2a1 + v31a2

− v31a3 + 2v21v2a3 + v4v1v2b1 − v31b3 + v1v2a1 − v21b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)v3v
3
1b2 + (−a2 − 2b2 + b3) v31v4 + (a2 − a3 − b3) v31 + (a2 + b2 − b3) v21v2v4

+2v21v2a3 − v21b1 + (b3 − a2) v1v22v4 + v4v1v2b1 + v1v2a1 − v4v
3
2a3 − v4v

2
2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0
b2 = 0

−a1 = 0
−a3 = 0
2a3 = 0
−b1 = 0

b3 − a2 = 0
−a2 − 2b2 + b3 = 0

a2 − a3 − b3 = 0
a2 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −

(
− y − x(

−1 + e− y
x

)
x

)
(x)

= y e− y
x − x

−1 + e− y
x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y e−
y
x−x

−1+e−
y
x

dy

Which results in

S = ln
(
x e

y
x − y

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y − x(
−1 + e− y

x

)
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (−y + x) e y
x

x
(
x e y

x − y
)

Sy =
e y

x − 1
x e y

x − y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln
(
x e

y
x − y

)
= c1

Which simplifies to

ln
(
x e

y
x − y

)
= c1

Which gives

y = −xLambertW
(
−e− ec1

x

)
− ec1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y−x(
−1+e−

y
x

)
x

dS
dR

= 0

R = x

S = ln
(
x e

y
x − y

)

Summary
The solution(s) found are the following

(1)y = −xLambertW
(
−e− ec1

x

)
− ec1
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Figure 22: Slope field plot

Verification of solutions

y = −xLambertW
(
−e− ec1

x

)
− ec1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 26� �
dsolve((1-exp(- y(x)/x))*diff(y(x),x)+(1- y(x)/x)=0,y(x), singsol=all)� �

y(x) =
−c1 LambertW

(
−e−

1
c1x
)
x− 1

c1

3 Solution by Mathematica
Time used: 60.202 (sec). Leaf size: 29� �
DSolve[(1-Exp[-y[x]/x])*y'[x]+(1-y[x]/x)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −xW
(
−e−

ec1
x

)
− ec1
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1.14 problem 14
1.14.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 101
1.14.2 Solving as first order ode lie symmetry calculated ode . . . . . . 103

Internal problem ID [3159]
Internal file name [OUTPUT/2651_Sunday_June_05_2022_08_38_07_AM_32855839/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , [_Abel , `2nd type `, `

class B`]]

−yx+ y2 − xyy′ = −x2

1.14.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

−u(x)x2 + u(x)2 x2 − x2u(x) (u′(x)x+ u(x)) = −x2

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u− 1
ux

Where f(x) = − 1
x
and g(u) = u−1

u
. Integrating both sides gives

1
u−1
u

du = −1
x
dx

∫ 1
u−1
u

du =
∫

−1
x
dx

u+ ln (u− 1) = − ln (x) + c2
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The solution is
u(x) + ln (u(x)− 1) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
+ ln

(y
x
− 1
)
+ ln (x)− c2 = 0

y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Figure 23: Slope field plot

Verification of solutions

y

x
+ ln

(
y − x

x

)
+ ln (x)− c2 = 0

Verified OK.
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1.14.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 − xy + y2

xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)
b2 +

(x2 − xy + y2) (b3 − a2)
xy

− (x2 − xy + y2)2 a3
x2y2

−
(
2x− y

xy
− x2 − xy + y2

x2y

)
(xa2 + ya3 + a1)

−
(
−x+ 2y

xy
− x2 − xy + y2

x y2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4a3 − x4b2 + 2x3ya2 − 2x3ya3 − 2x3yb3 − x2y2a2 + 4x2y2a3 + x2y2b3 − 2x y3a3 − x3b1 + x2ya1 + x y2b1 − y3a1
y2x2

= 0

Setting the numerator to zero gives

(6E)−x4a3 + x4b2 − 2x3ya2 + 2x3ya3 + 2x3yb3 + x2y2a2 − 4x2y2a3
− x2y2b3 + 2x y3a3 + x3b1 − x2ya1 − x y2b1 + y3a1 = 0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v31v2 + a2v
2
1v

2
2 − a3v

4
1 + 2a3v31v2 − 4a3v21v22 + 2a3v1v32

+ b2v
4
1 + 2b3v31v2 − b3v

2
1v

2
2 − a1v

2
1v2 + a1v

3
2 + b1v

3
1 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a3 + b2) v41 + (−2a2 + 2a3 + 2b3) v31v2 + b1v
3
1

+ (a2 − 4a3 − b3) v21v22 − a1v
2
1v2 + 2a3v1v32 − b1v1v

2
2 + a1v

3
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
2a3 = 0
−b1 = 0

−a3 + b2 = 0
−2a2 + 2a3 + 2b3 = 0

a2 − 4a3 − b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
x2 − xy + y2

xy

)
(x)

= −x2 + xy

y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2+xy
y

dy
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Which results in

S = ln (y − x) + y

x

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 − xy + y2

xy

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x2 − xy + y2

x2 (−y + x)
Sy = − y

x (−y + x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y − x)x+ y

x
= c1
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Which simplifies to

ln (y − x)x+ y

x
= c1

Which gives

y = xLambertW
(
ec1−1

x

)
+ x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2−xy+y2

xy
dS
dR

= 0

R = x

S = ln (y − x)x+ y

x

Summary
The solution(s) found are the following

(1)y = xLambertW
(
ec1−1

x

)
+ x
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Figure 24: Slope field plot

Verification of solutions

y = xLambertW
(
ec1−1

x

)
+ x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 19� �
dsolve((x^2-x*y(x)+y(x)^2)-x*y(x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

(
1 + LambertW

(
e−c1−1

x

))
3 Solution by Mathematica
Time used: 3.69 (sec). Leaf size: 25� �
DSolve[(x^2-x*y[x]+y[x]^2)-x*y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x

(
1 +W

(
e−1+c1

x

))
y(x) → x
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1.15 problem 15
1.15.1 Solving as first order ode lie symmetry calculated ode . . . . . . 110

Internal problem ID [3160]
Internal file name [OUTPUT/2652_Sunday_June_05_2022_08_38_08_AM_83933171/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 15.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

(3 + 2x+ 4y) y′ − 2y = x+ 1

1.15.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x+ 2y + 1
3 + 2x+ 4y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x+ 2y + 1) (b3 − a2)

3 + 2x+ 4y − (x+ 2y + 1)2 a3
(3 + 2x+ 4y)2

−
(

1
3 + 2x+ 4y − 2(x+ 2y + 1)

(3 + 2x+ 4y)2
)
(xa2 + ya3 + a1)

−
(

2
3 + 2x+ 4y − 4(x+ 2y + 1)

(3 + 2x+ 4y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + x2a3 − 4x2b2 − 2x2b3 + 8xya2 + 4xya3 − 16xyb2 − 8xyb3 + 8y2a2 + 4y2a3 − 16y2b2 − 8y2b3 + 6xa2 + 2xa3 − 10xb2 − 5xb3 + 10ya2 + 5ya3 − 24yb2 − 8yb3 + a1 + 3a2 + a3 + 2b1 − 9b2 − 3b3
(3 + 2x+ 4y)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − x2a3 + 4x2b2 + 2x2b3 − 8xya2 − 4xya3 + 16xyb2 + 8xyb3
− 8y2a2 − 4y2a3 + 16y2b2 + 8y2b3 − 6xa2 − 2xa3 + 10xb2 + 5xb3
− 10ya2 − 5ya3 + 24yb2 + 8yb3 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a2v21 − 8a2v1v2 − 8a2v22 − a3v
2
1 − 4a3v1v2 − 4a3v22 + 4b2v21 + 16b2v1v2

+ 16b2v22 + 2b3v21 + 8b3v1v2 + 8b3v22 − 6a2v1 − 10a2v2 − 2a3v1 − 5a3v2
+ 10b2v1 + 24b2v2 + 5b3v1 + 8b3v2 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − a3 + 4b2 + 2b3) v21 + (−8a2 − 4a3 + 16b2 + 8b3) v1v2
+ (−6a2 − 2a3 + 10b2 + 5b3) v1 + (−8a2 − 4a3 + 16b2 + 8b3) v22
+ (−10a2 − 5a3 + 24b2 + 8b3) v2 − a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−10a2 − 5a3 + 24b2 + 8b3 = 0
−8a2 − 4a3 + 16b2 + 8b3 = 0
−6a2 − 2a3 + 10b2 + 5b3 = 0
−2a2 − a3 + 4b2 + 2b3 = 0

−a1 − 3a2 − a3 − 2b1 + 9b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 5b2 − 2b1
a2 = 2b2
a3 = 4b2
b1 = b1

b2 = b2

b3 = 2b2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

x+ 2y + 1
3 + 2x+ 4y

)
(−2)

= 4x+ 8y + 5
3 + 2x+ 4y

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x+8y+5
3+2x+4y

dy

Which results in

S = y

2 + ln (4x+ 8y + 5)
16

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x+ 2y + 1
3 + 2x+ 4y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
16x+ 32y + 20

Sy =
3 + 2x+ 4y
4x+ 8y + 5
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

2 + ln (4x+ 8y + 5)
16 = x

4 + c1

Which simplifies to

y

2 + ln (4x+ 8y + 5)
16 = x

4 + c1

Which gives

y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x+2y+1
3+2x+4y

dS
dR

= 1
4

R = x

S = y

2 + ln (4x+ 8y + 5)
16

Summary
The solution(s) found are the following

(1)y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8
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Figure 25: Slope field plot

Verification of solutions

y = LambertW (e8x+5+16c1)
8 − x

2 − 5
8

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 20� �
dsolve((3+2*x+4*y(x))*diff(y(x),x)=1+x+2*y(x),y(x), singsol=all)� �

y(x) = −x

2 + LambertW (c1e5+8x)
8 − 5

8

3 Solution by Mathematica
Time used: 4.849 (sec). Leaf size: 39� �
DSolve[(3+2*x+4*y[x])*y'[x]==1+x+2*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8
(
W
(
−e8x−1+c1

)
− 4x− 5

)
y(x) → 1

8(−4x− 5)
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1.16 problem 16
1.16.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 118
1.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 121

Internal problem ID [3161]
Internal file name [OUTPUT/2653_Sunday_June_05_2022_08_38_08_AM_66885656/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 16.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y′ − 2x+ y − 1
x− y − 2 = 0

1.16.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = −2X + 2x0 + Y (X) + y0 − 1

−X − x0 + Y (X) + y0 + 2

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 1
y0 = −1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = − 2X + Y (X)

−X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= − 2X + Y

−X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = 2X + Y and N = X − Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution u = Y

X
,

or Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = −u− 2

u− 1
du
dX =

−u(X)−2
u(X)−1 − u(X)

X

Or
d

dX
u(X)−

−u(X)−2
u(X)−1 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X)−

(
d

dX
u(X)

)
X + u(X)2 + 2 = 0

Or
X(u(X)− 1)

(
d

dX
u(X)

)
+ u(X)2 + 2 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u2 + 2
X (u− 1)
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Where f(X) = − 1
X

and g(u) = u2+2
u−1 . Integrating both sides gives

1
u2+2
u−1

du = − 1
X

dX

∫ 1
u2+2
u−1

du =
∫

− 1
X

dX

ln (u2 + 2)
2 −

√
2 arctan

(√
2u
2

)
2 = − ln (X) + c2

The solution is

ln
(
u(X)2 + 2

)
2 −

√
2 arctan

(√
2u(X)
2

)
2 + ln (X)− c2 = 0

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

ln
(

Y (X)2
X2 + 2

)
2 −

√
2 arctan

(√
2Y (X)
2X

)
2 + ln (X)− c2 = 0

Using the solution for Y (X)

ln
(

Y (X)2
X2 + 2

)
2 −

√
2 arctan

(√
2Y (X)
2X

)
2 + ln (X)− c2 = 0

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 1
X = x+ 1

Then the solution in y becomes

ln
(

(y+1)2

(x−1)2 + 2
)

2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 + ln (x− 1)− c2 = 0

120



Summary
The solution(s) found are the following

(1)
ln
(

(y+1)2

(x−1)2 + 2
)

2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 + ln (x− 1)− c2 = 0

Figure 26: Slope field plot

Verification of solutions

ln
(

(y+1)2

(x−1)2 + 2
)

2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 + ln (x− 1)− c2 = 0

Verified OK.

1.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2x+ y − 1
−x+ y + 2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(2x+ y − 1) (b3 − a2)

−x+ y + 2 − (2x+ y − 1)2 a3
(−x+ y + 2)2

−
(
− 2
−x+ y + 2 − 2x+ y − 1

(−x+ y + 2)2
)
(xa2 + ya3 + a1)

−
(
− 1
−x+ y + 2 + 2x+ y − 1

(−x+ y + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x2a2 + 4x2a3 + 2x2b2 − 2x2b3 − 4xya2 + 4xya3 + 2xyb2 + 4xyb3 − y2a2 − 2y2a3 − y2b2 + y2b3 − 8xa2 − 4xa3 + 3xb1 + xb2 + 5xb3 − 3ya1 − ya2 − 5ya3 − 4yb2 − 2yb3 − 3a1 + 2a2 + a3 − 3b1 − 4b2 − 2b3
(x− y − 2)2

= 0

Setting the numerator to zero gives

(6E)−2x2a2 − 4x2a3 − 2x2b2 + 2x2b3 + 4xya2 − 4xya3 − 2xyb2 − 4xyb3
+ y2a2 + 2y2a3 + y2b2 − y2b3 + 8xa2 + 4xa3 − 3xb1 − xb2 − 5xb3 + 3ya1
+ ya2 + 5ya3 + 4yb2 + 2yb3 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)−2a2v21 +4a2v1v2+ a2v
2
2 − 4a3v21 − 4a3v1v2+2a3v22 − 2b2v21 − 2b2v1v2+ b2v

2
2

+ 2b3v21 − 4b3v1v2 − b3v
2
2 + 3a1v2 + 8a2v1 + a2v2 + 4a3v1 + 5a3v2 − 3b1v1

− b2v1 + 4b2v2 − 5b3v1 + 2b3v2 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−2a2 − 4a3 − 2b2 + 2b3) v21 + (4a2 − 4a3 − 2b2 − 4b3) v1v2
+ (8a2 + 4a3 − 3b1 − b2 − 5b3) v1 + (a2 + 2a3 + b2 − b3) v22
+ (3a1 + a2 + 5a3 + 4b2 + 2b3) v2 + 3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a2 − 4a3 − 2b2 + 2b3 = 0
a2 + 2a3 + b2 − b3 = 0

4a2 − 4a3 − 2b2 − 4b3 = 0
3a1 + a2 + 5a3 + 4b2 + 2b3 = 0
8a2 + 4a3 − 3b1 − b2 − 5b3 = 0

3a1 − 2a2 − a3 + 3b1 + 4b2 + 2b3 = 0

Solving the above equations for the unknowns gives

a1 = a3 − b3

a2 = b3

a3 = a3

b1 = 2a3 + b3

b2 = −2a3
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 1
η = y + 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(
− 2x+ y − 1
−x+ y + 2

)
(x− 1)

= −2x2 − y2 + 4x− 2y − 3
x− y − 2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−2x2−y2+4x−2y−3
x−y−2

dy

Which results in

S = ln (2x2 + y2 − 4x+ 2y + 3)
2 +

(1− x)
√
2 arctan

(
(2+2y)

√
2

4x−4

)
2x− 2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2x+ y − 1
−x+ y + 2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x+ y − 1
2x2 + y2 − 4x+ 2y + 3

Sy =
−x+ y + 2

2x2 + y2 − 4x+ 2y + 3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2x2 + 2y − 4x+ 3)
2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 = c1

Which simplifies to

ln (y2 + 2x2 + 2y − 4x+ 3)
2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2x+y−1
−x+y+2

dS
dR

= 0

R = x

S = ln (2x2 + y2 − 4x+ 2y + 3)
2 −

√
2 arctan

(
(y+1)

√
2

2x−2

)
2

Summary
The solution(s) found are the following

(1)ln (y2 + 2x2 + 2y − 4x+ 3)
2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 = c1
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Figure 27: Slope field plot

Verification of solutions

ln (y2 + 2x2 + 2y − 4x+ 3)
2 −

√
2 arctan

(√
2 (y+1)
2x−2

)
2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.297 (sec). Leaf size: 47� �
dsolve(diff(y(x),x)=(2*x+y(x)-1)/(x-y(x)-2),y(x), singsol=all)� �
y(x) = −1− tan

(
RootOf

(√
2 ln

(
sec (_Z)2 (x− 1)2

)
+
√
2 ln (2) + 2

√
2 c1 +2_Z

))
(x

− 1)
√
2

3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 75� �
DSolve[y'[x]==(2*x+y[x]-1)/(x-y[x]-2),y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
2
√
2 arctan

(
y(x) + 2x− 1√
2(−y(x) + x− 2)

)
+ log(9) = 2 log

(
2x2 + y(x)2 + 2y(x)− 4x+ 3

(x− 1)2

)
+ 4 log(x− 1) + 3c1, y(x)

]
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1.17 problem 17
1.17.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 129
1.17.2 Solving as first order ode lie symmetry calculated ode . . . . . . 133
1.17.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 138

Internal problem ID [3162]
Internal file name [OUTPUT/2654_Sunday_June_05_2022_08_38_09_AM_50529257/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "ex-
actWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _rational , [_Abel , `2nd type `, `

class A`]]

y − (2x+ y − 4) y′ = −2

1.17.1 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 + 2

2X + 2x0 + Y (X) + y0 − 4

Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = 3
y0 = −2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)

2X + Y (X)
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In canonical form, the ODE is

Y ′ = F (X,Y )

= Y

2X + Y
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y and N = 2X + Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u

u+ 2
du
dX =

u(X)
u(X)+2 − u(X)

X

Or
d

dX
u(X)−

u(X)
u(X)+2 − u(X)

X
= 0

Or (
d

dX
u(X)

)
Xu(X) + 2

(
d

dX
u(X)

)
X + u(X)2 + u(X) = 0

Or
X(u(X) + 2)

(
d

dX
u(X)

)
+ u(X)2 + u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

u′ = F (X, u)
= f(X)g(u)

= − u(u+ 1)
X (u+ 2)
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Where f(X) = − 1
X

and g(u) = u(u+1)
u+2 . Integrating both sides gives

1
u(u+1)
u+2

du = − 1
X

dX

∫ 1
u(u+1)
u+2

du =
∫

− 1
X

dX

− ln (u+ 1) + 2 ln (u) = − ln (X) + c2

Raising both side to exponential gives

e− ln(u+1)+2 ln(u) = e− ln(X)+c2

Which simplifies to

u2

u+ 1 = c3
X

The solution is
u(X)2

u (X) + 1 = c3
X

Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X)2(
Y (X)
X

+ 1
)
X2

= c3
X

Which simplifies to

Y (X)2

Y (X) +X
= c3

Using the solution for Y (X)

Y (X)2

Y (X) +X
= c3

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0
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Or

Y = y − 2
X = x+ 3

Then the solution in y becomes

(y + 2)2

y + x− 1 = c3

Summary
The solution(s) found are the following

(1)(y + 2)2

y + x− 1 = c3

Figure 28: Slope field plot

Verification of solutions

(y + 2)2

y + x− 1 = c3

Verified OK.
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1.17.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y + 2
2x+ y − 4

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(y + 2) (b3 − a2)

2x+ y − 4 − (y + 2)2 a3
(2x+ y − 4)2

+ 2(y + 2) (xa2 + ya3 + a1)
(2x+ y − 4)2

−
(

1
2x+ y − 4 − y + 2

(2x+ y − 4)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2b2 + 4xyb2 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 − 10xb2 + 4xb3 + 2ya1 + 2ya2 − 8yb2 + 4yb3 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3
(2x+ y − 4)2

= 0

Setting the numerator to zero gives

(6E)2x2b2 + 4xyb2 − y2a2 + y2a3 + y2b2 + y2b3 − 2xb1 − 10xb2 + 4xb3
+ 2ya1 + 2ya2 − 8yb2 + 4yb3 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

133



Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2v
2
2 + a3v

2
2 + 2b2v21 + 4b2v1v2 + b2v

2
2 + b3v

2
2 + 2a1v2 + 2a2v2 − 2b1v1

− 10b2v1 − 8b2v2 + 4b3v1 + 4b3v2 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v21 + 4b2v1v2 + (−2b1 − 10b2 + 4b3) v1 + (−a2 + a3 + b2 + b3) v22
+ (2a1 + 2a2 − 8b2 + 4b3) v2 + 4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2b2 = 0
4b2 = 0

−2b1 − 10b2 + 4b3 = 0
2a1 + 2a2 − 8b2 + 4b3 = 0

−a2 + a3 + b2 + b3 = 0
4a1 + 8a2 − 4a3 + 6b1 + 16b2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = −a3 − 3b3
a2 = a3 + b3

a3 = a3

b1 = 2b3
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x− 3
η = y + 2

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 2−
(

y + 2
2x+ y − 4

)
(x− 3)

= xy + y2 + 2x+ y − 2
2x+ y − 4

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

xy+y2+2x+y−2
2x+y−4

dy

Which results in

S = 2 ln (y + 2)− ln (x− 1 + y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2
2x+ y − 4

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 1
x− 1 + y

Sy =
2x+ y − 4

(y + 2) (x− 1 + y)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

2 ln (y + 2)− ln (y + x− 1) = c1

Which simplifies to

2 ln (y + 2)− ln (y + x− 1) = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+2
2x+y−4

dS
dR

= 0

R = x

S = 2 ln (y + 2)− ln (x− 1 + y)

Summary
The solution(s) found are the following

(1)2 ln (y + 2)− ln (y + x− 1) = c1
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Figure 29: Slope field plot

Verification of solutions

2 ln (y + 2)− ln (y + x− 1) = c1

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

138



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2x− y + 4) dy = (−y − 2) dx
(y + 2) dx+(−2x− y + 4) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + 2
N(x, y) = −2x− y + 4

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + 2)

= 1

And
∂N

∂x
= ∂

∂x
(−2x− y + 4)

= −2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2x− y + 4((1)− (−2))

= − 3
2x+ y − 4

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y + 2((−2)− (1))

= − 3
y + 2

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y+2 dy

The result of integrating gives

µ = e−3 ln(y+2)

= 1
(y + 2)3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
(y + 2)3

(y + 2)

= 1
(y + 2)2
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And

N = µN

= 1
(y + 2)3

(−2x− y + 4)

= −2x− y + 4
(y + 2)3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

1
(y + 2)2

)
+
(
−2x− y + 4
(y + 2)3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
(y + 2)2

dx

(3)φ = x

(y + 2)2
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 2x

(y + 2)3
+ f ′(y)

But equation (2) says that ∂φ
∂y

= −2x−y+4
(y+2)3 . Therefore equation (4) becomes

(5)−2x− y + 4
(y + 2)3

= − 2x
(y + 2)3

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − −4 + y

(y + 2)3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 4− y

(y + 2)3
)
dy

f(y) = 1
y + 2 − 3

(y + 2)2
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

Summary
The solution(s) found are the following

(1)x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

= c1
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Figure 30: Slope field plot

Verification of solutions

x

(y + 2)2
+ 1

y + 2 − 3
(y + 2)2

= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 49� �
dsolve(y(x)+2=(2*x+y(x)-4)*diff(y(x),x),y(x), singsol=all)� �

y(x) = −4c1 + 1 +
√

1 + 4 (x− 3) c1
2c1

y(x) = −4c1 + 1−
√

1 + 4 (x− 3) c1
2c1

3 Solution by Mathematica
Time used: 0.28 (sec). Leaf size: 82� �
DSolve[y[x]+2==(2*x+y[x]-4)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
1 + 4c1(x− 3)− 1 + 4c1

2c1

y(x) →
√

1 + 4c1(x− 3) + 1− 4c1
2c1

y(x) → −2
y(x) → Indeterminate
y(x) → 1− x
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1.18 problem 18
1.18.1 Solving as first order ode lie symmetry calculated ode . . . . . . 145

Internal problem ID [3163]
Internal file name [OUTPUT/2655_Sunday_June_05_2022_08_38_10_AM_51036450/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 18.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _dAlembert]

y′ − sin (−y + x)2 = 0

1.18.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = sin (−y + x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 + sin (−y + x)2 (b3 − a2)− sin (−y + x)4 a3
− 2 sin (−y + x) cos (−y + x) (xa2 + ya3 + a1)
+ 2 sin (−y + x) cos (−y + x) (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

− sin (−y + x)4 a3 − 2 sin (−y + x) cos (−y + x)xa2
+ 2 sin (−y + x) cos (−y + x)xb2 − 2 sin (−y + x) cos (−y + x) ya3
+ 2 sin (−y + x) cos (−y + x) yb3 − sin (−y + x)2 a2 + sin (−y + x)2 b3
− 2 sin (−y + x) cos (−y + x) a1 + 2 sin (−y + x) cos (−y + x) b1 + b2 = 0

Setting the numerator to zero gives

(6E)
− sin (−y + x)4 a3 − 2 sin (−y + x) cos (−y + x)xa2
+ 2 sin (−y + x) cos (−y + x)xb2 − 2 sin (−y + x) cos (−y + x) ya3
+ 2 sin (−y + x) cos (−y + x) yb3 − sin (−y + x)2 a2 + sin (−y + x)2 b3
− 2 sin (−y + x) cos (−y + x) a1 + 2 sin (−y + x) cos (−y + x) b1 + b2 = 0

Simplifying the above gives

(6E)
b2 −

3a3
8 − a2

2 + b3
2 + a3 cos (−2y + 2x)

2 − a3 cos (−4y + 4x)
8

− xa2 sin (−2y + 2x) + xb2 sin (−2y + 2x)− ya3 sin (−2y + 2x)

+ yb3 sin (−2y + 2x) + a2 cos (−2y + 2x)
2 − b3 cos (−2y + 2x)

2
− a1 sin (−2y + 2x) + b1 sin (−2y + 2x) = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, cos (−4y + 4x) , cos (−2y + 2x) , sin (−2y + 2x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, cos (−4y + 4x) = v3, cos (−2y + 2x) = v4, sin (−2y + 2x) = v5}
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The above PDE (6E) now becomes

(7E)b2 −
3
8a3 −

1
2a2 +

1
2b3 +

1
2a3v4 −

1
8a3v3 − v1a2v5 + v1b2v5

− v2a3v5 + v2b3v5 +
1
2a2v4 −

1
2b3v4 − a1v5 + b1v5 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)b2 −
3a3
8 − a2

2 + b3
2 + (−a2 + b2) v5v1 + (−a3 + b3) v5v2

− a3v3
8 +

(
a3
2 + a2

2 − b3
2

)
v4 + (−a1 + b1) v5 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−a3
8 = 0

−a1 + b1 = 0
−a2 + b2 = 0
−a3 + b3 = 0

a3
2 + a2

2 − b3
2 = 0

b2 −
3a3
8 − a2

2 + b3
2 = 0

Solving the above equations for the unknowns gives

a1 = b1

a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
sin (−y + x)2

)
(1)

= 1− cos (x)2 sin (y)2 + 2 cos (x) sin (y) sin (x) cos (y)− sin (x)2 cos (y)2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1− cos (x)2 sin (y)2 + 2 cos (x) sin (y) sin (x) cos (y)− sin (x)2 cos (y)2
dy

Which results in

S = − tan (−y + x)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (−y + x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = − sec (−y + x)2

Sy = sec (−y + x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− tan (−y + x) = −x+ c1

Which simplifies to

− tan (−y + x) = −x+ c1

Which gives

y = x+ arctan (−x+ c1)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin (−y + x)2 dS
dR

= −1

R = x

S = − tan (−y + x)

Summary
The solution(s) found are the following

(1)y = x+ arctan (−x+ c1)
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Figure 31: Slope field plot

Verification of solutions

y = x+ arctan (−x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.046 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)=sin(x-y(x))^2,y(x), singsol=all)� �

y(x) = x+ arctan (c1 − x)

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 31� �
DSolve[y'[x]==Sin[x-y[x]]^2,y[x],x,IncludeSingularSolutions -> True]� �

Solve[2y(x)− 2(tan(x− y(x))− arctan(tan(x− y(x)))) = c1, y(x)]
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1.19 problem 19
1.19.1 Solving as first order ode lie symmetry calculated ode . . . . . . 153
1.19.2 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 159

Internal problem ID [3164]
Internal file name [OUTPUT/2656_Sunday_June_05_2022_08_38_13_AM_76858072/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class C`], _Riccati]

y′ − (4y + 1)2 − 8yx = (x+ 1)2 + 1

1.19.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x2 + 8xy + 16y2 + 2x+ 8y + 3
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x2 + 8xy + 16y2 + 2x+ 8y + 3

)
(b3 − a2)−

(
x2 + 8xy + 16y2 + 2x+ 8y

+3
)2

a3− (2x+8y+2) (xa2+ya3+a1)− (8+32y+8x) (xb2+yb3+ b1) = 0

Putting the above in normal form gives

−x4a3 − 16x3ya3 − 96x2y2a3 − 256x y3a3 − 256y4a3 − 4x3a3 − 48x2ya3
− 192x y2a3 − 256y3a3 − 3x2a2 − 10x2a3 − 8x2b2 + x2b3 − 16xya2 − 82xya3
− 32xyb2 − 16y2a2 − 168y2a3 − 16y2b3 − 2xa1 − 4xa2 − 12xa3 − 8xb1 − 8xb2
+ 2xb3 − 8ya1 − 8ya2 − 50ya3 − 32yb1 − 2a1 − 3a2 − 9a3 − 8b1 + b2 + 3b3 = 0

Setting the numerator to zero gives

(6E)
−x4a3 − 16x3ya3 − 96x2y2a3 − 256x y3a3 − 256y4a3 − 4x3a3 − 48x2ya3
−192x y2a3−256y3a3−3x2a2−10x2a3−8x2b2+x2b3−16xya2−82xya3
−32xyb2−16y2a2−168y2a3−16y2b3−2xa1−4xa2−12xa3−8xb1−8xb2
+2xb3−8ya1−8ya2−50ya3−32yb1−2a1−3a2−9a3−8b1+ b2+3b3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a3v

4
1 − 16a3v31v2 − 96a3v21v22 − 256a3v1v32 − 256a3v42 − 4a3v31

− 48a3v21v2 − 192a3v1v22 − 256a3v32 − 3a2v21 − 16a2v1v2 − 16a2v22
− 10a3v21 − 82a3v1v2 − 168a3v22 − 8b2v21 − 32b2v1v2 + b3v

2
1 − 16b3v22

− 2a1v1 − 8a1v2 − 4a2v1 − 8a2v2 − 12a3v1 − 50a3v2 − 8b1v1
− 32b1v2 − 8b2v1 + 2b3v1 − 2a1 − 3a2 − 9a3 − 8b1 + b2 + 3b3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)
−a3v

4
1 − 16a3v31v2 − 4a3v31 − 96a3v21v22 − 48a3v21v2

+ (−3a2 − 10a3 − 8b2 + b3) v21 − 256a3v1v32 − 192a3v1v22
+ (−16a2 − 82a3 − 32b2) v1v2 + (−2a1 − 4a2 − 12a3 − 8b1 − 8b2 + 2b3) v1
− 256a3v42 − 256a3v32 + (−16a2 − 168a3 − 16b3) v22
+ (−8a1 − 8a2 − 50a3 − 32b1) v2 − 2a1 − 3a2 − 9a3 − 8b1 + b2 + 3b3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−256a3 = 0
−192a3 = 0
−96a3 = 0
−48a3 = 0
−16a3 = 0
−4a3 = 0
−a3 = 0

−16a2 − 168a3 − 16b3 = 0
−16a2 − 82a3 − 32b2 = 0

−8a1 − 8a2 − 50a3 − 32b1 = 0
−3a2 − 10a3 − 8b2 + b3 = 0

−2a1 − 4a2 − 12a3 − 8b1 − 8b2 + 2b3 = 0
−2a1 − 3a2 − 9a3 − 8b1 + b2 + 3b3 = 0

Solving the above equations for the unknowns gives

a1 = −4b1
a2 = 0
a3 = 0
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −4
η = 1
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ
= 1−

(
x2 + 8xy + 16y2 + 2x+ 8y + 3

)
(−4)

= 4x2 + 32xy + 64y2 + 8x+ 32y + 13
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

4x2 + 32xy + 64y2 + 8x+ 32y + 13dy

Which results in

S =
arctan

(8y
3 + 2x

3 + 2
3

)
24

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 8xy + 16y2 + 2x+ 8y + 3
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
36
(8y

3 + 2x
3 + 2

3

)2 + 36

Sy =
1

4x2 + (8 + 32y)x+ 64y2 + 32y + 13

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

4 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

4

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan
(8y

3 + 2x
3 + 2

3

)
24 = x

4 + c1

Which simplifies to

arctan
(8y

3 + 2x
3 + 2

3

)
24 = x

4 + c1

Which gives

y = −x

4 − 1
4 + 3 tan (6x+ 24c1)

8
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 + 8xy + 16y2 + 2x+ 8y + 3 dS
dR

= 1
4

R = x

S =
arctan

(8y
3 + 2x

3 + 2
3

)
24

Summary
The solution(s) found are the following

(1)y = −x

4 − 1
4 + 3 tan (6x+ 24c1)

8
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Figure 32: Slope field plot

Verification of solutions

y = −x

4 − 1
4 + 3 tan (6x+ 24c1)

8

Verified OK.

1.19.2 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2 + 8xy + 16y2 + 2x+ 8y + 3

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 + 8xy + 16y2 + 2x+ 8y + 3

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = x2 + 2x+ 3, f1(x) = 8x+ 8 and f2(x) = 16. Let

y = −u′

f2u

= −u′

16u (1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 128x+ 128
f 2
2 f0 = 256x2 + 512x+ 768

Substituting the above terms back in equation (2) gives

16u′′(x)− (128x+ 128)u′(x) +
(
256x2 + 512x+ 768

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = e2x(x+2)(c1 cos (6x) + c2 sin (6x))

The above shows that

u′(x) = 4 e2x(x+2)
((

c1(x+ 1) + 3c2
2

)
cos (6x) + sin (6x)

(
−3c1

2 + (x+ 1) c2
))

Using the above in (1) gives the solution

y = −
(
c1(x+ 1) + 3c2

2

)
cos (6x) + sin (6x)

(
−3c1

2 + (x+ 1) c2
)

4 (c1 cos (6x) + c2 sin (6x))

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y =
(−3 + (−2− 2x) c3) cos (6x)− 2 sin (6x)

(
−3c3

2 + x+ 1
)

8c3 cos (6x) + 8 sin (6x)
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Summary
The solution(s) found are the following

(1)y =
(−3 + (−2− 2x) c3) cos (6x)− 2 sin (6x)

(
−3c3

2 + x+ 1
)

8c3 cos (6x) + 8 sin (6x)

Figure 33: Slope field plot

Verification of solutions

y =
(−3 + (−2− 2x) c3) cos (6x)− 2 sin (6x)

(
−3c3

2 + x+ 1
)

8c3 cos (6x) + 8 sin (6x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group

-> Calling odsolve with the ODE`, diff(y(x), x) = -1/4, y(x)` *** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x)=(x+1)^2+(4*y(x)+1)^2+8*x*y(x)+1,y(x), singsol=all)� �

y(x) = −x

4 − 1
4 − 3 tan (−6x+ 6c1)

8

3 Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 49� �
DSolve[y'[x]==(x+1)^2+(4*y[x]+1)^2+8*x*y[x]+1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16

(
−4x+ 1

c1e12ix − i
12

− (4 + 6i)
)

y(x) → 1
8(−2x− (2 + 3i))
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1.20 problem 20
1.20.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 163
1.20.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 166

Internal problem ID [3165]
Internal file name [OUTPUT/2657_Sunday_June_05_2022_08_38_14_AM_94601019/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 20.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational]

6y2x+
(
6x2y + 4y3

)
y′ = −3x2

1.20.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

6x2y + 4y3
)
dy =

(
−6x y2 − 3x2) dx(

6x y2 + 3x2) dx+(6x2y + 4y3
)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 6x y2 + 3x2

N(x, y) = 6x2y + 4y3

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
6x y2 + 3x2)

= 12xy

And
∂N

∂x
= ∂

∂x

(
6x2y + 4y3

)
= 12xy

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
6x y2 + 3x2 dx

(3)φ = x2(3y2 + x
)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 6x2y + f ′(y)

But equation (2) says that ∂φ
∂y

= 6x2y + 4y3. Therefore equation (4) becomes

(5)6x2y + 4y3 = 6x2y + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 4y3

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
4y3
)
dy

f(y) = y4 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2(3y2 + x
)
+ y4 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2(3y2 + x
)
+ y4
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Summary
The solution(s) found are the following

(1)x2(3y2 + x
)
+ y4 = c1

Figure 34: Slope field plot

Verification of solutions

x2(3y2 + x
)
+ y4 = c1

Verified OK.

1.20.2 Maple step by step solution

Let’s solve
6y2x+ (6x2y + 4y3) y′ = −3x2

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function
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F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
12xy = 12xy

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(6x y2 + 3x2) dx+ f1(y)

• Evaluate integral
F (x, y) = 3y2x2 + x3 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
6x2y + 4y3 = 6x2y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 4y3

• Solve for f1(y)
f1(y) = y4

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 3y2x2 + y4 + x3

• Substitute F (x, y) into the solution of the ODE
3y2x2 + y4 + x3 = c1

• Solve for y{
y = −

√
−6x2−2

√
9x4−4x3+4c1
2 , y =

√
−6x2−2

√
9x4−4x3+4c1
2 , y = −

√
−6x2+2

√
9x4−4x3+4c1
2 , y =

√
−6x2+2

√
9x4−4x3+4c1
2

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 125� �
dsolve((3*x^2+6*x*y(x)^2)+(6*x^2*y(x)+4*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
√

−6x2 − 2
√
9x4 − 4x3 − 4c1
2

y(x) =
√

−6x2 − 2
√
9x4 − 4x3 − 4c1
2

y(x) = −
√

−6x2 + 2
√
9x4 − 4x3 − 4c1
2

y(x) =
√

−6x2 + 2
√
9x4 − 4x3 − 4c1
2
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3 Solution by Mathematica
Time used: 6.017 (sec). Leaf size: 163� �
DSolve[(3*x^2+6*x*y[x]^2)+(6*x^2*y[x]+4*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

−3x2 −
√
9x4 − 4x3 + 4c1√
2

y(x) →
√

−3x2 −
√
9x4 − 4x3 + 4c1√
2

y(x) → −
√

−3x2 +
√
9x4 − 4x3 + 4c1√
2

y(x) →
√

−3x2 +
√
9x4 − 4x3 + 4c1√
2

169



1.21 problem 21
1.21.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 170
1.21.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 173

Internal problem ID [3166]
Internal file name [OUTPUT/2658_Sunday_June_05_2022_08_38_14_AM_48662186/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 21.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

−y2x− 2y −
(
x2y + 2x

)
y′ = −2x2 − 3

1.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

−x2y − 2x
)
dy =

(
x y2 − 2x2 + 2y − 3

)
dx(

−x y2 + 2x2 − 2y + 3
)
dx+

(
−x2y − 2x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x y2 + 2x2 − 2y + 3
N(x, y) = −x2y − 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−x y2 + 2x2 − 2y + 3

)
= −2xy − 2

And
∂N

∂x
= ∂

∂x

(
−x2y − 2x

)
= −2xy − 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x y2 + 2x2 − 2y + 3dx

(3)φ = 2x3

3 − y2x2

2 + (−2y + 3)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x2y − 2x+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x2y − 2x. Therefore equation (4) becomes

(5)−x2y − 2x = −x2y − 2x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2x3

3 − y2x2

2 + (−2y + 3)x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
2x3

3 − y2x2

2 + (−2y + 3)x

Summary
The solution(s) found are the following

(1)2x3

3 − y2x2

2 + (−2y + 3)x = c1
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Figure 35: Slope field plot

Verification of solutions

2x3

3 − y2x2

2 + (−2y + 3)x = c1

Verified OK.

1.21.2 Maple step by step solution

Let’s solve
−y2x− 2y − (x2y + 2x) y′ = −2x2 − 3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
−2xy − 2 = −2xy − 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(−x y2 + 2x2 − 2y + 3) dx+ f1(y)

• Evaluate integral

F (x, y) = −y2x2

2 + 2x3

3 − 2xy + 3x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−x2y − 2x = −x2y − 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = −1

2y
2x2 + 2

3x
3 − 2xy + 3x

• Substitute F (x, y) into the solution of the ODE
−1

2y
2x2 + 2

3x
3 − 2xy + 3x = c1

• Solve for y{
y = −2−

√
12x3−18c1+54x+36

3
x

, y = −2+
√

12x3−18c1+54x+36
3

x

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve((2*x^2-x*y(x)^2-2*y(x)+3)-(x^2*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −6−
√
12x3 + 18c1 + 54x+ 36

3x

y(x) = −6 +
√
12x3 + 18c1 + 54x+ 36

3x

3 Solution by Mathematica
Time used: 0.646 (sec). Leaf size: 87� �
DSolve[(2*x^2-x*y[x]^2-2*y[x]+3)-(x^2*y[x]+2*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
6x+

√
3
√

x2 (4x3 + 18x+ 12 + 3c1)
3x2

y(x) → −6x+
√
3
√

x2 (4x3 + 18x+ 12 + 3c1)
3x2
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1.22 problem 22
1.22.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 176
1.22.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 179

Internal problem ID [3167]
Internal file name [OUTPUT/2659_Sunday_June_05_2022_08_38_15_AM_76938598/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , _rational , [_Abel , `2nd type `, `class B`]]

y2x− 2y +
(
x2y − 2y − 2x

)
y′ = −x− 3

1.22.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2y − 2x− 2y
)
dy =

(
−x y2 − x+ 2y − 3

)
dx(

x y2 + x− 2y + 3
)
dx+

(
x2y − 2x− 2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x y2 + x− 2y + 3
N(x, y) = x2y − 2x− 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x y2 + x− 2y + 3

)
= 2xy − 2

And
∂N

∂x
= ∂

∂x

(
x2y − 2x− 2y

)
= 2xy − 2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x y2 + x− 2y + 3dx

(3)φ = x(x y2 + x− 4y + 6)
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x(2xy − 4)

2 + f ′(y)

= x(xy − 2) + f ′(y)

But equation (2) says that ∂φ
∂y

= x2y − 2x− 2y. Therefore equation (4) becomes

(5)x2y − 2x− 2y = x(xy − 2) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−2y) dy

f(y) = −y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(x y2 + x− 4y + 6)
2 − y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x y2 + x− 4y + 6)

2 − y2
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Summary
The solution(s) found are the following

(1)x(y2x+ x− 4y + 6)
2 − y2 = c1

Figure 36: Slope field plot

Verification of solutions

x(y2x+ x− 4y + 6)
2 − y2 = c1

Verified OK.

1.22.2 Maple step by step solution

Let’s solve
y2x− 2y + (x2y − 2y − 2x) y′ = −x− 3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
2xy − 2 = 2xy − 2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x y2 + x− 2y + 3) dx+ f1(y)

• Evaluate integral

F (x, y) = y2x2

2 + x2

2 − 2xy + 3x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2y − 2x− 2y = x2y − 2x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2y

• Solve for f1(y)
f1(y) = −y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 1

2y
2x2 + 1

2x
2 − 2xy + 3x− y2

• Substitute F (x, y) into the solution of the ODE
1
2y

2x2 + 1
2x

2 − 2xy + 3x− y2 = c1

• Solve for y{
y = 2x+

√
−x4+2c1x2−6x3+6x2−4c1+12x

x2−2 , y = −−2x+
√

−x4+2c1x2−6x3+6x2−4c1+12x
x2−2

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 89� �
dsolve((x*y(x)^2+x-2*y(x)+3)+(x^2*y(x)-2*(x+y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 2x+
√

−x4 − 6x3 + (−2c1 + 6)x2 + 12x+ 4c1
x2 − 2

y(x) = 2x−
√
−x4 − 6x3 + (−2c1 + 6)x2 + 12x+ 4c1

x2 − 2

3 Solution by Mathematica
Time used: 0.549 (sec). Leaf size: 95� �
DSolve[(x*y[x]^2+x-2*y[x]+3)+(x^2*y[x]-2*(x+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x−
√

−x4 − 6x3 + (6 + c1)x2 + 12x− 2c1
x2 − 2

y(x) → 2x+
√
−x4 − 6x3 + (6 + c1)x2 + 12x− 2c1

x2 − 2
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1.23 problem 23
1.23.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 182
1.23.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 184
1.23.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 187

Internal problem ID [3168]
Internal file name [OUTPUT/2660_Sunday_June_05_2022_08_38_15_AM_29060004/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`], [_Abel , `2nd type `, `class A`]]

3
(
x2 − 1

)
y +

(
x3 + 8y − 3x

)
y′ = 0

1.23.1 Solving as differentialType ode

Writing the ode as

y′ = − 3(x2 − 1) y
x3 + 8y − 3x (1)

Which becomes

(8y) dy =
(
−x3 + 3x

)
dy +

(
−3y

(
x2 − 1

))
dx (2)

But the RHS is complete differential because(
−x3 + 3x

)
dy +

(
−3y

(
x2 − 1

))
dx = d

(
−3y

(
1
3x

3 − x

))
Hence (2) becomes

(8y) dy = d

(
−3y

(
1
3x

3 − x

))
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Integrating both sides gives gives these solutions

y = −x3

8 + 3x
8 +

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

y = −x3

8 + 3x
8 −

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

Summary
The solution(s) found are the following

(1)y = −x3

8 + 3x
8 +

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

(2)y = −x3

8 + 3x
8 −

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

Figure 37: Slope field plot
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Verification of solutions

y = −x3

8 + 3x
8 +

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

Verified OK.

y = −x3

8 + 3x
8 −

√
x6 − 6x4 + 9x2 + 16c1

8 + c1

Verified OK.

1.23.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore (
x3 − 3x+ 8y

)
dy =

(
−3y

(
x2 − 1

))
dx(

3y
(
x2 − 1

))
dx+

(
x3 − 3x+ 8y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3y
(
x2 − 1

)
N(x, y) = x3 − 3x+ 8y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3y
(
x2 − 1

))
= 3x2 − 3

And

∂N

∂x
= ∂

∂x

(
x3 − 3x+ 8y

)
= 3x2 − 3

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3y
(
x2 − 1

)
dx

(3)φ = yx
(
x2 − 3

)
+ f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

(
x2 − 3

)
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x3 − 3x+ 8y. Therefore equation (4) becomes

(5)x3 − 3x+ 8y = x
(
x2 − 3

)
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 8y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(8y) dy

f(y) = 4y2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = yx
(
x2 − 3

)
+ 4y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = yx
(
x2 − 3

)
+ 4y2

Summary
The solution(s) found are the following

(1)yx
(
x2 − 3

)
+ 4y2 = c1
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Figure 38: Slope field plot

Verification of solutions

yx
(
x2 − 3

)
+ 4y2 = c1

Verified OK.

1.23.3 Maple step by step solution

Let’s solve
3(x2 − 1) y + (x3 + 8y − 3x) y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
3x2 − 3 = 3x2 − 3

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
3y(x2 − 1) dx+ f1(y)

• Evaluate integral
F (x, y) = 3y

(1
3x

3 − x
)
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x3 − 3x+ 8y = x3 − 3x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 8y

• Solve for f1(y)
f1(y) = 4y2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = 3y

(1
3x

3 − x
)
+ 4y2

• Substitute F (x, y) into the solution of the ODE
3y
(1
3x

3 − x
)
+ 4y2 = c1

• Solve for y{
y = −x3

8 + 3x
8 −

√
x6−6x4+9x2+16c1

8 , y = −x3

8 + 3x
8 +

√
x6−6x4+9x2+16c1

8

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 67� �
dsolve((3*y(x)*(x^2-1))+(x^3+8*y(x)-3*x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x3

8 + 3x
8 −

√
x6 − 6x4 + 9x2 − 16c1

8

y(x) = −x3

8 + 3x
8 +

√
x6 − 6x4 + 9x2 − 16c1

8

3 Solution by Mathematica
Time used: 0.17 (sec). Leaf size: 86� �
DSolve[(3*y[x]*(x^2-1))+(x^3+8*y[x]-3*x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8

(
−x3 −

√
x6 − 6x4 + 9x2 + 64c1 + 3x

)
y(x) → 1

8

(
−x3 +

√
x6 − 6x4 + 9x2 + 64c1 + 3x

)
y(x) → 0
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1.24 problem 24
1.24.1 Solving as first order ode lie symmetry calculated ode . . . . . . 190
1.24.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 198
1.24.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 202

Internal problem ID [3169]
Internal file name [OUTPUT/2661_Sunday_June_05_2022_08_38_16_AM_88832495/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[_exact , [_1st_order , `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

ln (y) = −x2 − xy′

y

1.24.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −(x2 + ln (y)) y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− (x2 + ln (y)) y(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x

− (x2 + ln (y))2 y2(x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2

−
(
−2y + (x2 + ln (y)) y

x2

)(
x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4

+ xya5 + y2a6 + xa2 + ya3 + a1
)
−
(
−1
x
− x2 + ln (y)

x

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

−2 ln (y)x2y2a3 + 2 ln (y)x3y2a5 + 4 ln (y)x2y3a6 + ln (y)2 x y2a5 − ln (y)x2ya4 + ln (y)x y2b6 − 2 ln (y)x3ya7 − ln (y)x2y2a8 + ln (y)x2y2b9 + 2 ln (y)x y3b10 + 2 ln (y)x4y2a8 + 4 ln (y)x3y3a9 + 6 ln (y)x2y4a10 + ln (y)2 x2y2a8 + 2 ln (y)2 x y3a9 − 2b2x2 − x4b2 − x3b1 − xb1 − x5b4 − 3x3b4 − 4x4b7 − x6b7 − 3x3yb8 − 2y2b9x2 + x3y2b6 − x2y3a6 − x y2b6 + 2 ln (y)2 y3a6 − ln (y)x3b4 + x5y2a5 + 2x4y3a6 − 3x4ya4 − 2x3y2a5 − 2yb5x2 + ln (y) y2a3 − ln (y)xb1 + ln (y) ya1 + x4y2a3 − 2x3ya2 − x2y2a3 − x2ya1 − xyb3 + ln (y)2 y2a3 − ln (y)x2b2 + ln (y) y3a6 − 4x5ya7 − 3x4y2a8 + x4y2b9 − 2x3y3a9 + 2x3y3b10 + x6y2a8 + 2x5y3a9 + 3x4y4a10 − x2y4a10 − x y3b10 + 3 ln (y)2 y4a10 + ln (y) y4a10 − ln (y)x4b7
x2

= 0

Setting the numerator to zero gives

(6E)

−2 ln (y)x2y2a3 − 2 ln (y)x3y2a5 − 4 ln (y)x2y3a6 − ln (y)2 x y2a5
+ ln (y)x2ya4 − ln (y)x y2b6 + 2 ln (y)x3ya7 + ln (y)x2y2a8
− ln (y)x2y2b9 − 2 ln (y)x y3b10 − 2 ln (y)x4y2a8 − 4 ln (y)x3y3a9
− 6 ln (y)x2y4a10 − ln (y)2 x2y2a8 − 2 ln (y)2 x y3a9 + 2b2x2

+ x4b2 + x3b1 + xb1 + x5b4 + 3x3b4 + 4x4b7 + x6b7 + 3x3yb8
+ 2y2b9x2 − x3y2b6 + x2y3a6 + x y2b6 − 2 ln (y)2 y3a6 + ln (y)x3b4
− x5y2a5 − 2x4y3a6 + 3x4ya4 + 2x3y2a5 + 2yb5x2 − ln (y) y2a3
+ ln (y)xb1 − ln (y) ya1 − x4y2a3 + 2x3ya2 + x2y2a3 + x2ya1
+ xyb3 − ln (y)2 y2a3 + ln (y)x2b2 − ln (y) y3a6 +4x5ya7 +3x4y2a8
− x4y2b9 + 2x3y3a9 − 2x3y3b10 − x6y2a8 − 2x5y3a9 − 3x4y4a10
+ x2y4a10 + x y3b10 − 3 ln (y)2 y4a10 − ln (y) y4a10 + ln (y)x4b7 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (y)}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (y) = v3}

The above PDE (6E) now becomes

(7E)

−2v3v31v22a5−4v3v21v32a6−v23v1v
2
2a5+v3v

2
1v2a4−v3v1v

2
2b6+2v3v31v2a7

+ v3v
2
1v

2
2a8 − v3v

2
1v

2
2b9 − 2v3v1v32b10 − 2v3v41v22a8 − 4v3v31v32a9

− 6v3v21v42a10 − v23v
2
1v

2
2a8 − 2v23v1v32a9 − 2v3v21v22a3 + 2b2v21 + v41b2

+ v31b1 + v1b1 + v51b4 + 3v31b4 + 4v41b7 + v61b7 − 2v31v32b10 − v61v
2
2a8

− 2v51v32a9 − 3v41v42a10 + v21v
4
2a10 + v1v

3
2b10 − 3v23v42a10 − v3v

4
2a10

+ v3v
4
1b7 + 3v31v2b8 + 2v22b9v21 − v31v

2
2b6 + v21v

3
2a6 + v1v

2
2b6 − 2v23v32a6

+ v3v
3
1b4 − v51v

2
2a5 − 2v41v32a6 +3v41v2a4 +2v31v22a5 +2v2b5v21 − v3v

2
2a3

+ v3v1b1 − v3v2a1 − v41v
2
2a3 + 2v31v2a2 + v21v

2
2a3 + v21v2a1 + v1v2b3

−v23v
2
2a3+v3v

2
1b2−v3v

3
2a6+4v51v2a7+3v41v22a8−v41v

2
2b9+2v31v32a9 =0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

(a1 + 2b5) v21v2 + (−a3 + 3a8 − b9) v22v41 + (−2b10 + 2a9) v32v31
+ (3b8 + 2a2) v2v31 + (2b9 + a3) v21v22 + (2a5 − b6) v22v31 − 2v3v31v22a5
− 4v3v21v32a6 − v23v1v

2
2a5 + v3v

2
1v2a4 − v3v1v

2
2b6 + 2v3v31v2a7

− 2v3v1v32b10 − 2v3v41v22a8 − 4v3v31v32a9 − 6v3v21v42a10 − v23v
2
1v

2
2a8

− 2v23v1v32a9 + (a8 − b9 − 2a3) v22v21v3 + 2b2v21 + v1b1 + v51b4 + v61b7
− v61v

2
2a8 − 2v51v32a9 − 3v41v42a10 + v21v

4
2a10 + v1v

3
2b10 − 3v23v42a10

− v3v
4
2a10 + v3v

4
1b7 + v21v

3
2a6 + v1v

2
2b6 − 2v23v32a6 + v3v

3
1b4 − v51v

2
2a5

− 2v41v32a6 + 3v41v2a4 − v3v
2
2a3 + v3v1b1 − v3v2a1 + v1v2b3 − v23v

2
2a3

+ v3v
2
1b2 − v3v

3
2a6 + 4v51v2a7 + (b2 + 4b7) v41 + (b1 + 3b4) v31 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a4 = 0
a6 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b6 = 0
b7 = 0
b10 = 0

−a1 = 0
−a3 = 0
3a4 = 0

−2a5 = 0
−a5 = 0
−4a6 = 0
−2a6 = 0
−a6 = 0
2a7 = 0
4a7 = 0

−2a8 = 0
−a8 = 0
−4a9 = 0
−2a9 = 0
−6a10 = 0
−3a10 = 0
−a10 = 0
2b2 = 0
−b6 = 0

−2b10 = 0
a1 + 2b5 = 0
2a5 − b6 = 0
b1 + 3b4 = 0
b2 + 4b7 = 0

3b8 + 2a2 = 0
2b9 + a3 = 0

−2b10 + 2a9 = 0
−a3 + 3a8 − b9 = 0
a8 − b9 − 2a3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 = −3b8
2

a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0
a9 = 0
a10 = 0
b1 = 0
b2 = 0
b3 = 0
b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = b8

b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −3x
2

η = x2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x2y −
(
−(x2 + ln (y)) y

x

)(
−3x

2

)
= −x2y

2 − 3 ln (y) y
2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x2y
2 − 3 ln(y)y

2

dy

Which results in

S = −2 ln (x2 + 3 ln (y))
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −(x2 + ln (y)) y
x
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x
3x2 + 9 ln (y)

Sy = − 2
y (x2 + 3 ln (y))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 2 ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (x2 + 3 ln (y))
3 = 2 ln (x)

3 + c1

Which simplifies to

−2 ln (x2 + 3 ln (y))
3 = 2 ln (x)

3 + c1

Which gives

y = e−x3+e−
3c1
2

3x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −
(
x2+ln(y)

)
y

x
dS
dR

= 2
3R

R = x

S = −2 ln (x2 + 3 ln (y))
3

Summary
The solution(s) found are the following

(1)y = e−x3+e−
3c1
2

3x
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Figure 39: Slope field plot

Verification of solutions

y = e−x3+e−
3c1
2

3x

Verified OK.

1.24.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x

y

)
dy =

(
−x2 − ln (y)

)
dx

(
x2 + ln (y)

)
dx+

(
x

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + ln (y)

N(x, y) = x

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + ln (y)

)
= 1

y
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And

∂N

∂x
= ∂

∂x

(
x

y

)
= 1

y

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + ln (y) dx

(3)φ = x3

3 + ln (y)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
y
. Therefore equation (4) becomes

(5)x

y
= x

y
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x3

3 + ln (y)x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x3

3 + ln (y)x

The solution becomes

y = e
−x3+3c1

3x

Summary
The solution(s) found are the following

(1)y = e
−x3+3c1

3x

Figure 40: Slope field plot
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Verification of solutions

y = e
−x3+3c1

3x

Verified OK.

1.24.3 Maple step by step solution

Let’s solve
ln (y) = −x2 − xy′

y

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1
y
= 1

y

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(x2 + ln (y)) dx+ f1(y)

• Evaluate integral
F (x, y) = x3

3 + ln (y)x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x
y
= x

y
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)
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d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)
F (x, y) = x3

3 + ln (y)x

• Substitute F (x, y) into the solution of the ODE
x3

3 + ln (y)x = c1

• Solve for y

y = e
−x3+3c1

3x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 17� �
dsolve((x^2+ln(y(x)))+(x/y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = e−
x3+3c1

3x
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3 Solution by Mathematica
Time used: 0.247 (sec). Leaf size: 21� �
DSolve[(x^2+Log[y[x]])+(x/y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−
x2
3 + c1

x
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1.25 problem 25
1.25.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 205
1.25.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 209

Internal problem ID [3170]
Internal file name [OUTPUT/2662_Sunday_June_05_2022_08_38_16_AM_88983900/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

2x
(
3x+ y − y e−x2

)
+
(
x2 + 3y2 + e−x2

)
y′ = 0

1.25.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 3y2 + e−x2

)
dy =

(
−2x

(
3x+ y − y e−x2

))
dx(

2x
(
3x+ y − y e−x2

))
dx+

(
x2 + 3y2 + e−x2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x
(
3x+ y − y e−x2

)
N(x, y) = x2 + 3y2 + e−x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
2x
(
3x+ y − y e−x2

))
= −2x

(
e−x2 − 1

)
And

∂N

∂x
= ∂

∂x

(
x2 + 3y2 + e−x2

)
= −2x

(
e−x2 − 1

)
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2x
(
3x+ y − y e−x2

)
dx

(3)φ = x2y + 2x3 + y e−x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + e−x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2 + 3y2 + e−x2 . Therefore equation (4) becomes

(5)x2 + 3y2 + e−x2 = x2 + e−x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
3y2
)
dy

f(y) = y3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y + 2x3 + y e−x2 + y3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y + 2x3 + y e−x2 + y3

Summary
The solution(s) found are the following

(1)x2y + 2x3 + y e−x2 + y3 = c1

Figure 41: Slope field plot

Verification of solutions

x2y + 2x3 + y e−x2 + y3 = c1

Verified OK.
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1.25.2 Maple step by step solution

Let’s solve

2x
(
3x+ y − y e−x2

)
+
(
x2 + 3y2 + e−x2

)
y′ = 0

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

2x
(
−e−x2 + 1

)
= 2x− 2x e−x2

◦ Simplify

−2x
(
e−x2 − 1

)
= −2x

(
e−x2 − 1

)
◦ Condition met, ODE is exact

• Exact ODE implies solution will be of this form[
F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂

∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
2x
(
3x+ y − y e−x2

)
dx+ f1(y)

• Evaluate integral
F (x, y) = x2y + 2x3 + y

ex2
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x2 + 3y2 + e−x2 = x2 + 1

ex2
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 3y2 + e−x2 − 1

ex2
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• Solve for f1(y)

f1(y) = y3ex2+e−x2ex2y−y

ex2

• Substitute f1(y) into equation for F (x, y)

F (x, y) = x2y + 2x3 + y

ex2
+ y3ex2+e−x2ex2y−y

ex2

• Substitute F (x, y) into the solution of the ODE

x2y + 2x3 + y

ex2
+ y3ex2+e−x2ex2y−y

ex2
= c1

• Solve for y
y =

(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3

6 −
6
(

x2
3 + e−x2

3

)
(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3
, y = −

(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3

12 +
3
(

x2
3 + e−x2

3

)
(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3
−

I
√
3


(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3

6 +
6
(

x2
3 + e−x2

3

)
(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3


2 , y = −

(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3

12 +
3
(

x2
3 + e−x2

3

)
(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3
+

I
√
3


(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3

6 +
6
(

x2
3 + e−x2

3

)
(
−216x3+108c1+12

√
336x6+36x4e−x2+36

(
e−x2

)2
x2+12

(
e−x2

)3
−324c1x3+81c21

) 1
3


2


Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 634� �
dsolve((2*x*(3*x+y(x)-y(x)*exp(-x^2)))+(x^2+3*y(x)^2+exp(-x^2))*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) =

−
12 1

3

(
−
(√

3 e2x2√(4 + (112x6 + 108c1x3 + 27c21) e3x
2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2(

x3 + c1
2

)) 2
3 e−x2 +

(
ex2

x2 + 1
)
12 1

3

)
6
(√

3 e2x2
√
(4 + (112x6 + 108c1x3 + 27c21) e3x

2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2 (x3 + c1
2

)) 1
3

y(x) =

−
3 1

3

(
e−x2(1 + i

√
3
) (√

3 e2x2√(4 + (112x6 + 108c1x3 + 27c21) e3x
2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2(

x3 + c1
2

)) 2
3 +

(
ex2

x2 + 1
)
2 2

3

(
i3 5

6 − 3 1
3

))
2 2

3

12
(√

3 e2x2
√

(4 + (112x6 + 108c1x3 + 27c21) e3x
2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2 (x3 + c1

2

)) 1
3

y(x)

=
3 1

3

((
i
√
3− 1

)
e−x2

(√
3 e2x2√(4 + (112x6 + 108c1x3 + 27c21) e3x

2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2(
x3 + c1

2

)) 2
3 +

(
ex2

x2 + 1
)(

i3 5
6 + 3 1

3

)
2 2

3

)
2 2

3

12
(√

3 e2x2
√

(4 + (112x6 + 108c1x3 + 27c21) e3x
2 + 12 e2x2x4 + 12 ex2x2) e−x2 − 18 e3x2 (x3 + c1

2

)) 1
3
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3 Solution by Mathematica
Time used: 37.566 (sec). Leaf size: 416� �
DSolve[(2*x*(3*x+y[x]-y[x]*Exp[-x^2]))+(x^2+3*y[x]^2+Exp[-x^2])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→
−6 3

√
2
(
x2 + e−x2

)
+ 22/3

(
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

)
2/3

6
3

√
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

y(x) →

(
1 + i

√
3
) (

x2 + e−x2
)

22/3
3

√
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

+

(
−1 + i

√
3
) 3

√
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

6 3
√
2

y(x) →

(
1− i

√
3
) (

x2 + e−x2
)

22/3
3

√
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

−

(
1 + i

√
3
) 3

√
−54x3 +

√
108 (x2 + e−x2)3 + 729 (−2x3 + c1) 2 + 27c1

6 3
√
2
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1.26 problem 26
1.26.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 213
1.26.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 216

Internal problem ID [3171]
Internal file name [OUTPUT/2663_Sunday_June_05_2022_08_38_18_AM_55902060/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 26.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact , [_Abel , `2nd type `, `class B`]]

y + 2y2 sin (x)2 + (x+ 2yx− y sin (2x)) y′ = −3

1.26.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

213



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x+ 2xy − y sin (2x)) dy =
(
−3− y − 2y2 sin (x)2

)
dx(

2y2 sin (x)2 + y + 3
)
dx+(x+ 2xy − y sin (2x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y2 sin (x)2 + y + 3
N(x, y) = x+ 2xy − y sin (2x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y2 sin (x)2 + y + 3

)
= 4 sin (x)2 y + 1

And
∂N

∂x
= ∂

∂x
(x+ 2xy − y sin (2x))

= 1 + 2y − 2y cos (2x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2y2 sin (x)2 + y + 3dx

(3)φ = −sin (2x) y2
2 + x

(
y2 + y + 3

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −y sin (2x) + x(2y + 1) + f ′(y)

= x+ 2xy − y sin (2x) + f ′(y)

But equation (2) says that ∂φ
∂y

= x+ 2xy − y sin (2x). Therefore equation (4) becomes

(5)x+ 2xy − y sin (2x) = x+ 2xy − y sin (2x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −sin (2x) y2
2 + x

(
y2 + y + 3

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −sin (2x) y2
2 + x

(
y2 + y + 3

)
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Summary
The solution(s) found are the following

(1)−sin (2x) y2
2 + x

(
y2 + y + 3

)
= c1

Figure 42: Slope field plot

Verification of solutions

−sin (2x) y2
2 + x

(
y2 + y + 3

)
= c1

Verified OK.

1.26.2 Maple step by step solution

Let’s solve
y + 2y2 sin (x)2 + (x+ 2yx− y sin (2x)) y′ = −3

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
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◦ ODE is exact if the lhs is the total derivative of a C2 function
F ′(x, y) = 0

◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
4 sin (x)2 y + 1 = 1 + 2y − 2y cos (2x)

◦ Simplify
4 sin (x)2 y + 1 = 1 + 2y − 2y cos (2x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

2y2 sin (x)2 + y + 3
)
dx+ f1(y)

• Evaluate integral

F (x, y) = xy + 3x+ 2y2
(
− sin(x) cos(x)

2 + x
2

)
+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative

x+ 2xy − y sin (2x) = x+ 4y
(
− sin(x) cos(x)

2 + x
2

)
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2xy − y sin (2x)− 4y

(
− sin(x) cos(x)

2 + x
2

)
• Solve for f1(y)

f1(y) = y2(2 sin(x) cos(x)−sin(2x))
2

• Substitute f1(y) into equation for F (x, y)

F (x, y) = xy + 3x+ 2y2
(
− sin(x) cos(x)

2 + x
2

)
+ y2(2 sin(x) cos(x)−sin(2x))

2

• Substitute F (x, y) into the solution of the ODE

xy + 3x+ 2y2
(
− sin(x) cos(x)

2 + x
2

)
+ y2(2 sin(x) cos(x)−sin(2x))

2 = c1
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• Solve for y{
y = x+

√
−2c1 sin(2x)+6x sin(2x)+4c1x−11x2

−2x+sin(2x) , y = −−x+
√

−2c1 sin(2x)+6x sin(2x)+4c1x−11x2

−2x+sin(2x)

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 83� �
dsolve((3+y(x)+2*y(x)^2*sin(x)^2)+(x+2*x*y(x)-y(x)*sin(2*x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x+
√
(2c1 + 6x) sin (2x)− 11x2 − 4c1x

sin (2x)− 2x

y(x) = x−
√

(2c1 + 6x) sin (2x)− 11x2 − 4c1x
sin (2x)− 2x

3 Solution by Mathematica
Time used: 1.378 (sec). Leaf size: 97� �
DSolve[(3+y[x]+2*y[x]^2*Sin[x]^2)+(x+2*x*y[x]-y[x]*Sin[2*x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− i
√
x(11x+ 2c1)− (6x+ c1) sin(2x)

sin(2x)− 2x

y(x) → x+ i
√
x(11x+ 2c1)− (6x+ c1) sin(2x)

sin(2x)− 2x
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1.27 problem 27
1.27.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 219
1.27.2 Solving as first order ode lie symmetry calculated ode . . . . . . 221

Internal problem ID [3172]
Internal file name [OUTPUT/2664_Sunday_June_05_2022_08_38_31_AM_86629003/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 27.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

2yx+
(
x2 + 2yx+ y2

)
y′ = 0

1.27.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

2u(x)x2 +
(
x2 + 2u(x)x2 + u(x)2 x2) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u(u2 + 2u+ 3)
x (u+ 1)2

Where f(x) = − 1
x
and g(u) = u

(
u2+2u+3

)
(u+1)2 . Integrating both sides gives

1
u(u2+2u+3)

(u+1)2
du = −1

x
dx
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∫ 1
u(u2+2u+3)

(u+1)2
du =

∫
−1
x
dx

ln (u)
3 + ln (u2 + 2u+ 3)

3 +

√
2 arctan

(
(2u+2)

√
2

4

)
3 = − ln (x) + c2

The solution is

ln (u(x))
3 +

ln
(
u(x)2 + 2u(x) + 3

)
3 +

√
2 arctan

(
(2u(x)+2)

√
2

4

)
3 + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

ln
(
y
x

)
3 +

ln
(

y2

x2 + 2y
x
+ 3
)

3 +

√
2 arctan

((
2y
x
+2
)√

2
4

)
3 + ln (x)− c2 = 0

ln
(
y
x

)
3 +

ln
(

y2

x2 + 2y
x
+ 3
)

3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)
ln
(
y
x

)
3 +

ln
(

y2

x2 + 2y
x
+ 3
)

3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (x)− c2 = 0
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Figure 43: Slope field plot

Verification of solutions

ln
(
y
x

)
3 +

ln
(

y2

x2 + 2y
x
+ 3
)

3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (x)− c2 = 0

Verified OK.

1.27.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2yx
x2 + 2xy + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

221



Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2yx(b3 − a2)
x2 + 2xy + y2

− 4y2x2a3

(x2 + 2xy + y2)2

−
(
− 2y
x2 + 2xy + y2

+ 2yx(2x+ 2y)
(x2 + 2xy + y2)2

)
(xa2 + ya3 + a1)

−
(
− 2x
x2 + 2xy + y2

+ 2yx(2x+ 2y)
(x2 + 2xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x4b2 + 4x3yb2 + 4x2y2a2 − 6y2x2a3 + 4x2y2b2 − 4x2y2b3 + 4x y3a2 + 4x y3b2 − 4x y3b3 + 2y4a3 + y4b2 + 2x3b1 − 2x2ya1 − 2x y2b1 + 2y3a1
(x2 + 2xy + y2)2

= 0

Setting the numerator to zero gives

(6E)3x4b2 + 4x3yb2 + 4x2y2a2 − 6y2x2a3 + 4x2y2b2 − 4x2y2b3 + 4x y3a2
+ 4x y3b2 − 4x y3b3 + 2y4a3 + y4b2 + 2x3b1 − 2x2ya1 − 2x y2b1 + 2y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4a2v21v22 + 4a2v1v32 − 6a3v21v22 + 2a3v42 + 3b2v41 + 4b2v31v2 + 4b2v21v22 + 4b2v1v32
+ b2v

4
2 − 4b3v21v22 − 4b3v1v32 − 2a1v21v2 + 2a1v32 + 2b1v31 − 2b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v41 + 4b2v31v2 + 2b1v31 + (4a2 − 6a3 + 4b2 − 4b3) v21v22 − 2a1v21v2
+ (4a2 + 4b2 − 4b3) v1v32 − 2b1v1v22 + (2a3 + b2) v42 + 2a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−2a1 = 0
2a1 = 0

−2b1 = 0
2b1 = 0
3b2 = 0
4b2 = 0

2a3 + b2 = 0
4a2 + 4b2 − 4b3 = 0

4a2 − 6a3 + 4b2 − 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2yx
x2 + 2xy + y2

)
(x)

= 3x2y + 2x y2 + y3

x2 + 2xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3x2y+2x y2+y3

x2+2xy+y2

dy

Which results in

S = ln (3x2 + 2xy + y2)
3 +

√
2 arctan

(
(2x+2y)

√
2

4x

)
3 + ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2yx
x2 + 2xy + y2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
3x2 + 2xy + y2

Sy =
(y + x)2

3x2y + 2x y2 + y3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + 2yx+ 3x2)
3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (y)

3 = c1

Which simplifies to

ln (y2 + 2yx+ 3x2)
3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (y)

3 = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2yx
x2+2xy+y2

dS
dR

= 0

R = x

S = ln (3x2 + 2xy + y2)
3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (y)

3

Summary
The solution(s) found are the following

(1)ln (y2 + 2yx+ 3x2)
3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (y)

3 = c1
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Figure 44: Slope field plot

Verification of solutions

ln (y2 + 2yx+ 3x2)
3 +

√
2 arctan

(
(y+x)

√
2

2x

)
3 + ln (y)

3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.328 (sec). Leaf size: 53� �
dsolve((2*x*y(x))+(x^2+2*x*y(x)+y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x) = x

(
−1

+
√
2 tan

(
RootOf

(
2
√
2 ln

(
− sec (_Z)2

(√
2−2 tan (_Z)

)
x3
)
+
√
2 ln (2)+6

√
2 c1+4_Z

)))
3 Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 62� �
DSolve[(2*x*y[x])+(x^2+2*x*y[x]+y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
3

(
√
2 arctan

(
y(x)
x

+ 1
√
2

)
+ log

(
y(x)2
x2 + 2y(x)

x
+ 3
)
+ log

(
y(x)
x

))
=

− log(x) + c1, y(x)
]
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1.28 problem 28
1.28.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 229

Internal problem ID [3173]
Internal file name [OUTPUT/2665_Sunday_June_05_2022_08_38_31_AM_44988939/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

− sin (y)2 + x sin (2y) y′ = −x2

1.28.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(sin (2y)x) dy =
(
−x2 + sin (y)2

)
dx(

x2 − sin (y)2
)
dx+(sin (2y)x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 − sin (y)2

N(x, y) = sin (2y)x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 − sin (y)2

)
= − sin (2y)

And
∂N

∂x
= ∂

∂x
(sin (2y)x)

= sin (2y)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= csc (2y)

x
((−2 cos (y) sin (y))− (sin (2y)))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 − sin (y)2

)
= x2 − sin (y)2

x2

And

N = µN

= 1
x2 (sin (2y)x)

= sin (2y)
x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 − sin (y)2

x2

)
+
(
sin (2y)

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫
x2 − sin (y)2

x2 dx

(3)φ = x+ sin (y)2

x
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 sin (y) cos (y)

x
+ f ′(y)

= sin (2y)
x

+ f ′(y)

But equation (2) says that ∂φ
∂y

= sin(2y)
x

. Therefore equation (4) becomes

(5)sin (2y)
x

= sin (2y)
x

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x+ sin (y)2

x
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ sin (y)2

x
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Summary
The solution(s) found are the following

(1)x+ sin (y)2

x
= c1

Figure 45: Slope field plot

Verification of solutions

x+ sin (y)2

x
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 27� �
dsolve((x^2-sin(y(x))^2)+(x*sin(2*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = arcsin
(√

− (c1 + x)x
)

y(x) = − arcsin
(√

− (c1 + x)x
)

3 Solution by Mathematica
Time used: 6.502 (sec). Leaf size: 39� �
DSolve[(x^2-Sin[y[x]]^2)+(x*Sin[2*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arcsin
(√

−x(x+ 2c1)
)

y(x) → arcsin
(√

−x(x+ 2c1)
)
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1.29 problem 29
1.29.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 235
1.29.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 237

Internal problem ID [3174]
Internal file name [OUTPUT/2666_Sunday_June_05_2022_08_38_33_AM_32086448/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 29.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , [_Abel , `2nd type `, `

class A`]]

y(2x− y + 2) + 2(−y + x) y′ = 0

1.29.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x(2x− u(x)x+ 2) + 2(−u(x)x+ x) (u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −(x+ 2)u(u− 2)
x (2u− 2)

Where f(x) = −x+2
x

and g(u) = u(u−2)
2u−2 . Integrating both sides gives

1
u(u−2)
2u−2

du = −x+ 2
x

dx
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∫ 1
u(u−2)
2u−2

du =
∫

−x+ 2
x

dx

ln (u(u− 2)) = −x− 2 ln (x) + c2

Raising both side to exponential gives

u(u− 2) = e−x−2 ln(x)+c2

Which simplifies to

u(u− 2) = c3e−x−2 ln(x)

Which simplifies to

u(x) (u(x)− 2) = c3e−xec2
x2

The solution is

u(x) (u(x)− 2) = c3e−xec2
x2

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y
(
−2 + y

x

)
x

= c3e−xec2
x2

−2yx+ y2

x2 = c3e−x+c2

x2

Which simplifies to

−2yx+ y2 = c3e−x+c2

Summary
The solution(s) found are the following

(1)−2yx+ y2 = c3e−x+c2
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Figure 46: Slope field plot

Verification of solutions

−2yx+ y2 = c3e−x+c2

Verified OK.

1.29.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−2y + 2x) dy = (−y(2x− y + 2)) dx
(y(2x− y + 2)) dx+(−2y + 2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(2x− y + 2)
N(x, y) = −2y + 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(2x− y + 2))

= 2x− 2y + 2

And
∂N

∂x
= ∂

∂x
(−2y + 2x)

= 2
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−2y + 2x((2x− 2y + 2)− (2))

= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex(y(2x− y + 2))
= y(2x− y + 2) ex

And

N = µN

= ex(−2y + 2x)
= 2(−y + x) ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(y(2x− y + 2) ex) + (2(−y + x) ex) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y(2x− y + 2) ex dx

(3)φ = (2x− y) y ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −exy + (2x− y) ex + f ′(y)

= 2(−y + x) ex + f ′(y)

But equation (2) says that ∂φ
∂y

= 2(−y + x) ex. Therefore equation (4) becomes

(5)2(−y + x) ex = 2(−y + x) ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2x− y) y ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (2x− y) y ex
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Summary
The solution(s) found are the following

(1)(2x− y) y ex = c1

Figure 47: Slope field plot

Verification of solutions

(2x− y) y ex = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 64� �
dsolve(y(x)*(2*x-y(x)+2)+2*(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1x−
√
exc1 (exc1x2 + 1) e−x

c1

y(x) = c1x+
√
exc1 (exc1x2 + 1) e−x

c1

3 Solution by Mathematica
Time used: 43.224 (sec). Leaf size: 125� �
DSolve[y[x]*(2*x-y[x]+2)+2*(x-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x− e−x
√
ex (exx2 − e2c1)

y(x) → x+ e−x
√
ex (exx2 − e2c1)

y(x) → x− e−x
√
e2xx2

y(x) → e−x
√
e2xx2 + x
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1.30 problem 30
1.30.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 243

Internal problem ID [3175]
Internal file name [OUTPUT/2667_Sunday_June_05_2022_08_38_34_AM_86752118/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 30.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class B`]]

4yx+ 3y2 + x(x+ 2y) y′ = x

1.30.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x(x+ 2y)) dy =
(
−4xy − 3y2 + x

)
dx(

4xy + 3y2 − x
)
dx+(x(x+ 2y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 4xy + 3y2 − x

N(x, y) = x(x+ 2y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
4xy + 3y2 − x

)
= 4x+ 6y

And
∂N

∂x
= ∂

∂x
(x(x+ 2y))

= 2x+ 2y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x+ 2y)((4x+ 6y)− (2x+ 2y))

= 2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2(4xy + 3y2 − x
)

= (4y − 1)x3 + 3y2x2

And

N = µN

= x2(x(x+ 2y))
= x3(x+ 2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

(4y − 1)x3 + 3y2x2)+ (x3(x+ 2y)
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
(4y − 1)x3 + 3y2x2 dx

(3)φ = (4y − 1)x4

4 + x3y2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4 + 2x3y + f ′(y)

= x3(x+ 2y) + f ′(y)

But equation (2) says that ∂φ
∂y

= x3(x+ 2y). Therefore equation (4) becomes

(5)x3(x+ 2y) = x3(x+ 2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (4y − 1)x4

4 + x3y2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(4y − 1)x4

4 + x3y2

Summary
The solution(s) found are the following

(1)(4y − 1)x4

4 + y2x3 = c1
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Figure 48: Slope field plot

Verification of solutions

(4y − 1)x4

4 + y2x3 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 59� �
dsolve((4*x*y(x)+3*y(x)^2-x)+x*(x+2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x3 +
√
x (x5 + x4 − 4c1)
2x2

y(x) = −x3 −
√
x (x5 + x4 − 4c1)
2x2

3 Solution by Mathematica
Time used: 0.621 (sec). Leaf size: 80� �
DSolve[(4*x*y[x]+3*y[x]^2-x)+x*(x+2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x4 +
√
x2
√
x6 + x5 + 4c1x
2x3

y(x) → −x

2 +
√
x2
√
x6 + x5 + 4c1x

2x3
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1.31 problem 31
1.31.1 Solving as first order ode lie symmetry calculated ode . . . . . . 249
1.31.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 257

Internal problem ID [3176]
Internal file name [OUTPUT/2668_Sunday_June_05_2022_08_38_34_AM_20579265/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x),G(y)]`]]

y + x
(
y2 + ln (x)

)
y′ = 0

1.31.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

x (y2 + ln (x))
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}

Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− y(−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (y2 + ln (x))

− y2(x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (y2 + ln (x))2

−
(

y

x2 (y2 + ln (x)) +
y

x2 (y2 + ln (x))2
)(

x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4

+ xya5 + y2a6 + xa2 + ya3 + a1
)
−
(
− 1
x (y2 + ln (x)) +

2y2

x (y2 + ln (x))2
)(

x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

3x4y4b7 + 2x3y5b8 + x2y6b9 + 2x3y3a7 − 2x3y3b8 + x2y4a8 − 3x2y4b9 − 4x y5b10 − 2x2y2a8 − 3x y3a9 − x3ya7 − x4y2b7 − x2ya4 − 2x y2a5 − x3y2b4 + x2y3a4 − 2x2y3b5 − 3x y4b6 + 2 ln (x)2 x3b4 + ln (x)x3b4 − ln (x) y3a6 − 2y2a3 + 2 ln (x)x2y2b2 + 4 ln (x)x3y2b4 + 2 ln (x)x2y3b5 + ln (x)2 x2yb5 + ln (x)x2ya4 − ln (x)x y2b6 + 6 ln (x)x4y2b7 + 4 ln (x)x3y3b8 + 2 ln (x)2 x3yb8 + 2 ln (x)x2y4b9 + ln (x)2 x2y2b9 + 2 ln (x)x3ya7 + ln (x)x2y2a8 − ln (x)x2y2b9 − 2 ln (x)x y3b10 + 2x3y4b4 + x2y5b5 − 4y4a10 − y6a10 + 3 ln (x)2 x4b7 − ln (x) y4a10 + ln (x)x4b7 − y4a3 − y3a1 − ya1 + x2y4b2 − x2y2b2 − 2x y3b3 − x y2b1 − xya2 + ln (x)2 x2b2 + ln (x)x2b2 − ln (x) y2a3 + ln (x)xb1 − ln (x) ya1 − y5a6 − 3y3a6
x2 (y2 + ln (x))2

= 0

Setting the numerator to zero gives

(6E)

3x4y4b7 + 2x3y5b8 + x2y6b9 + 2x3y3a7 − 2x3y3b8 + x2y4a8
− 3x2y4b9 − 4x y5b10 − 2x2y2a8 − 3x y3a9 − x3ya7 − x4y2b7
− x2ya4 − 2x y2a5 − x3y2b4 + x2y3a4 − 2x2y3b5 − 3x y4b6
+ 2 ln (x)2 x3b4 + ln (x)x3b4 − ln (x) y3a6 − 2y2a3 + 2 ln (x)x2y2b2
+ 4 ln (x)x3y2b4 + 2 ln (x)x2y3b5 + ln (x)2 x2yb5 + ln (x)x2ya4
− ln (x)x y2b6 + 6 ln (x)x4y2b7 + 4 ln (x)x3y3b8 + 2 ln (x)2 x3yb8
+ 2 ln (x)x2y4b9 + ln (x)2 x2y2b9 + 2 ln (x)x3ya7 + ln (x)x2y2a8
− ln (x)x2y2b9 − 2 ln (x)x y3b10 + 2x3y4b4 + x2y5b5 − 4y4a10
− y6a10 + 3 ln (x)2 x4b7 − ln (x) y4a10 + ln (x)x4b7 − y4a3 − y3a1
− ya1 + x2y4b2 − x2y2b2 − 2x y3b3 − x y2b1 − xya2 + ln (x)2 x2b2
+ln (x)x2b2− ln (x) y2a3+ln (x)xb1− ln (x) ya1−y5a6−3y3a6 =0
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ln (x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ln (x) = v3}

The above PDE (6E) now becomes

(7E)

−v3v2a1 + v21v
4
2b2 − v21v

2
2b2 − 2v1v32b3 − v1v

2
2b1 − v1v2a2 + v23v

2
1b2

+ v3v
2
1b2 − v3v

2
2a3 + v3v1b1 + 3v41v42b7 + 2v31v52b8 + v21v

6
2b9 + 2v31v32a7

− 2v31v32b8 + v21v
4
2a8 − 3v21v42b9 − 4v1v52b10 − 2v21v22a8 − 3v1v32a9

− v31v2a7 − v41v
2
2b7 − v21v2a4 − 2v1v22a5 − v31v

2
2b4 + v21v

3
2a4 − 2v21v32b5

+ v23v
2
1v

2
2b9 + 2v3v31v2a7 + v3v

2
1v

2
2a8 − v3v

2
1v

2
2b9 − 2v3v1v32b10

+v23v
2
1v2b5+v3v

2
1v2a4−v3v1v

2
2b6+6v3v41v22b7+4v3v31v32b8+2v23v31v2b8

+2v3v21v42b9+4v3v31v22b4+2v3v21v32b5+2v3v21v22b2−3v1v42b6+2v23v31b4
+ v3v

3
1b4 − v3v

3
2a6 + 2v31v42b4 + v21v

5
2b5 + 3v23v41b7 − v3v

4
2a10 + v3v

4
1b7

− 2v22a3 − 4v42a10 − v62a10 − v42a3 − v32a1 − v2a1 − v52a6 − 3v32a6 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)

−v3v2a1 − v1v2a2 + v23v
2
1b2 + v3v

2
1b2 − v3v

2
2a3 + v3v1b1 + 3v41v42b7

+ 2v31v52b8 + v21v
6
2b9 − 4v1v52b10 − v31v2a7 − v41v

2
2b7 − v21v2a4 − v31v

2
2b4

+ (a8 − b9 + 2b2) v22v21v3 + (2a7 − 2b8) v32v31 + (a4 − 2b5) v32v21
+ (b2 + a8 − 3b9) v42v21 + (−b2 − 2a8) v22v21 + (−2b3 − 3a9) v32v1
+ (−2a5 − b1) v22v1 + v23v

2
1v

2
2b9 + 2v3v31v2a7 − 2v3v1v32b10 + v23v

2
1v2b5

+ v3v
2
1v2a4 − v3v1v

2
2b6 + 6v3v41v22b7 + 4v3v31v32b8 + 2v23v31v2b8

+ 2v3v21v42b9 + 4v3v31v22b4 + 2v3v21v32b5 − 3v1v42b6 + 2v23v31b4 + v3v
3
1b4

− v3v
3
2a6 + 2v31v42b4 + v21v

5
2b5 + 3v23v41b7 − v3v

4
2a10 + v3v

4
1b7

+ (−4a10 − a3) v42 + (−a1 − 3a6) v32 − 2v22a3 − v62a10 − v2a1 − v52a6 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
a4 = 0
b1 = 0
b2 = 0
b4 = 0
b5 = 0
b7 = 0
b9 = 0

−a1 = 0
−a2 = 0
−2a3 = 0
−a3 = 0
−a4 = 0
−a6 = 0
−a7 = 0
2a7 = 0

−a10 = 0
−b4 = 0
2b4 = 0
4b4 = 0
2b5 = 0

−3b6 = 0
−b6 = 0
−b7 = 0
3b7 = 0
6b7 = 0
2b8 = 0
4b8 = 0
2b9 = 0

−4b10 = 0
−2b10 = 0

−a1 − 3a6 = 0
a4 − 2b5 = 0

−2a5 − b1 = 0
2a7 − 2b8 = 0

−4a10 − a3 = 0
−b2 − 2a8 = 0
−2b3 − 3a9 = 0

a8 − b9 + 2b2 = 0
b2 + a8 − 3b9 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = 0
a4 = 0
a5 = 0
a6 = 0
a7 = 0
a8 = 0

a9 = −2b3
3

a10 = 0
b1 = 0
b2 = 0
b3 = b3

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = 0
b10 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x y2
3

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

x (y2 + ln (x))

)(
−2x y2

3

)
= y3 + 3 ln (x) y

3y2 + 3 ln (x)
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y3+3 ln(x)y
3y2+3 ln(x)

dy

Which results in

S = ln
(
y
(
y2 + 3 ln (x)

))
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

x (y2 + ln (x))
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
x (y2 + 3 ln (x))

Sy =
1
y
+ 2y

y2 + 3 ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y) + ln
(
y2 + 3 ln (x)

)
= c1

Which simplifies to

ln (y) + ln
(
y2 + 3 ln (x)

)
= c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
x(y2+ln(x))

dS
dR

= 0

R = x

S = ln (y) + ln
(
y2 + 3 ln (x)

)

Summary
The solution(s) found are the following

(1)ln (y) + ln
(
y2 + 3 ln (x)

)
= c1
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Figure 49: Slope field plot

Verification of solutions

ln (y) + ln
(
y2 + 3 ln (x)

)
= c1

Verified OK.

1.31.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
y2 + ln (x)

))
dy = (−y) dx

(y) dx+
(
x
(
y2 + ln (x)

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = x
(
y2 + ln (x)

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x

(
x
(
y2 + ln (x)

))
= y2 + ln (x) + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (y2 + ln (x))
(
(1)−

(
y2 + ln (x) + 1

))
= −1

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 1

x
dx

The result of integrating gives

µ = e− ln(x)

= 1
x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x
(y)

= y

x

And

N = µN

= 1
x

(
x
(
y2 + ln (x)

))
= y2 + ln (x)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(y

x

)
+
(
y2 + ln (x)

) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y

x
dx

(3)φ = ln (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= y2 + ln (x). Therefore equation (4) becomes

(5)y2 + ln (x) = ln (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = ln (x) y + y3

3 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln (x) y + y3

3

Summary
The solution(s) found are the following

(1)y ln (x) + y3

3 = c1

Figure 50: Slope field plot

Verification of solutions

y ln (x) + y3

3 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 237� �
dsolve((y(x))+x*(y(x)^2+ln(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =

(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 2
3

− 4 ln (x)

2
(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 1
3

y(x) =

−
i

(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 2
3 √

3 + 4i ln (x)
√
3 +

(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 2
3

− 4 ln (x)

4
(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 1
3

y(x)

=
i

(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 2
3 √

3 + 4i ln (x)
√
3−

(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 2
3

+ 4 ln (x)

4
(
−12c1 + 4

√
4 ln (x)3 + 9c21

) 1
3
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3 Solution by Mathematica
Time used: 1.211 (sec). Leaf size: 272� �
DSolve[(y[x])+x*(y[x]^2+Log[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
3

√√
4 log3(x) + 9c12 + 3c1

3
√
2

−
3
√
2 log(x)

3

√√
4 log3(x) + 9c12 + 3c1

y(x) →

3
√
2
(
2 + 2i

√
3
)
log(x) + i22/3

(√
3 + i

)(√
4 log3(x) + 9c12 + 3c1

)
2/3

4 3

√√
4 log3(x) + 9c12 + 3c1

y(x) →
(
1− i

√
3
)
log(x)

22/3 3

√√
4 log3(x) + 9c12 + 3c1

−

(
1 + i

√
3
) 3

√√
4 log3(x) + 9c12 + 3c1

2 3
√
2

y(x) → 0
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1.32 problem 32
1.32.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 264

Internal problem ID [3177]
Internal file name [OUTPUT/2669_Sunday_June_05_2022_08_38_35_AM_57792872/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 32.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x),G(x)]`], [_Abel ,

`2nd type `, `class B`]]

y +
(
3x2y − x

)
y′ = −x2 − 2x

1.32.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

3x2y − x
)
dy =

(
−x2 − 2x− y

)
dx(

x2 + 2x+ y
)
dx+

(
3x2y − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + 2x+ y

N(x, y) = 3x2y − x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
x2 + 2x+ y

)
= 1

And
∂N

∂x
= ∂

∂x

(
3x2y − x

)
= 6xy − 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

3x2y − x
((1)− (6xy − 1))

= −2
x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
x2 + 2x+ y

)
= x2 + 2x+ y

x2

And

N = µN

= 1
x2

(
3x2y − x

)
= 3xy − 1

x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x2 + 2x+ y

x2

)
+
(
3xy − 1

x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + 2x+ y

x2 dx

(3)φ = x− y

x
+ 2 ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 3xy−1
x

. Therefore equation (4) becomes

(5)3xy − 1
x

= −1
x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 3y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(3y) dy

f(y) = 3y2
2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x− y

x
+ 2 ln (x) + 3y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− y

x
+ 2 ln (x) + 3y2

2
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Summary
The solution(s) found are the following

(1)x− y

x
+ 2 ln (x) + 3y2

2 = c1

Figure 51: Slope field plot

Verification of solutions

x− y

x
+ 2 ln (x) + 3y2

2 = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 67� �
dsolve((x^2+2*x+y(x))+(3*x^2*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = 1−
√

−12 ln (x)x2 − 6c1x2 − 6x3 + 1
3x

y(x) = 1 +
√

−12 ln (x)x2 − 6c1x2 − 6x3 + 1
3x

3 Solution by Mathematica
Time used: 0.543 (sec). Leaf size: 96� �
DSolve[(x^2+2*x+y[x])+(3*x^2*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
1−

√
1
x2x
√
−6x3 − 12x2 log(x) + 9c1x2 + 1

3x

y(x) →
1 +

√
1
x2x
√
−6x3 − 12x2 log(x) + 9c1x2 + 1

3x
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1.33 problem 33
1.33.1 Solving as first order ode lie symmetry calculated ode . . . . . . 270
1.33.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 275

Internal problem ID [3178]
Internal file name [OUTPUT/2670_Sunday_June_05_2022_08_38_35_AM_89941550/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 33.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

y2 +
(
yx+ y2 − 1

)
y′ = 0

1.33.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy + y2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy + y2 − 1 − y4a3

(xy + y2 − 1)2
− y3(xa2 + ya3 + a1)

(xy + y2 − 1)2

−
(
− 2y
xy + y2 − 1 + y2(x+ 2y)

(xy + y2 − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 + 2x y3b2 + y4a2 − 2y4a3 + y4b2 − y4b3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − 2y2b2 − y2b3 − 2yb1 + b2

(xy + y2 − 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 + 2x y3b2 + y4a2 − 2y4a3 + y4b2 − y4b3 + x y2b1
− y3a1 − 4xyb2 − y2a2 − 2y2b2 − y2b3 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
2 − 2a3v42 + 2b2v21v22 + 2b2v1v32 + b2v

4
2 − b3v

4
2 − a1v

3
2

+ b1v1v
2
2 − a2v

2
2 − 4b2v1v2 − 2b2v22 − b3v

2
2 − 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)2b2v21v22 + 2b2v1v32 + b1v1v
2
2 − 4b2v1v2 + (a2 − 2a3 + b2 − b3) v42

− a1v
3
2 + (−a2 − 2b2 − b3) v22 − 2b1v2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−a2 − 2b2 − b3 = 0
a2 − 2a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = −b3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y − x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy + y2 − 1

)
(−y − x)

= − y

xy + y2 − 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
xy+y2−1

dy

Which results in

S = −y2

2 − xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy + y2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −y − x+ 1
y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2

2 − yx+ ln (y) = c1

Which simplifies to

−y2

2 − yx+ ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy+y2−1
dS
dR

= 0

R = x

S = −y2

2 − xy + ln (y)
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Summary
The solution(s) found are the following

(1)−y2

2 − yx+ ln (y) = c1

Figure 52: Slope field plot

Verification of solutions

−y2

2 − yx+ ln (y) = c1

Verified OK.

1.33.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
xy + y2 − 1

)
dy =

(
−y2

)
dx(

y2
)
dx+

(
xy + y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = xy + y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And
∂N

∂x
= ∂

∂x

(
xy + y2 − 1

)
= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + y2 − 1((2y)− (y))

= y

xy + y2 − 1
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2
((y)− (2y))

= −1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

(
y2
)

= y
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And

N = µN

= 1
y

(
xy + y2 − 1

)
= xy + y2 − 1

y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(y) +
(
xy + y2 − 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= xy+y2−1
y

. Therefore equation (4) becomes

(5)xy + y2 − 1
y

= x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2 − 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y2 − 1

y

)
dy

f(y) = y2

2 − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + y2

2 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + y2

2 − ln (y)

Summary
The solution(s) found are the following

(1)y2

2 + yx− ln (y) = c1
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Figure 53: Slope field plot

Verification of solutions

y2

2 + yx− ln (y) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 24� �
dsolve((y(x)^2)+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e2_Z−2 e_Zx+2c1+2_Z

)

3 Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 30� �
DSolve[(y[x]^2)+(x*y[x]+y[x]^2-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x =

log(y(x))− y(x)2
2

y(x) + c1
y(x) , y(x)

]
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1.34 problem 34
1.34.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 282

Internal problem ID [3179]
Internal file name [OUTPUT/2671_Sunday_June_05_2022_08_38_36_AM_81695143/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

3y2 + x
(
x2 + 3y2 + 6y

)
y′ = −3x2

1.34.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

282



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
(
x2 + 3y2 + 6y

))
dy =

(
−3x2 − 3y2

)
dx(

3x2 + 3y2
)
dx+

(
x
(
x2 + 3y2 + 6y

))
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 3x2 + 3y2

N(x, y) = x
(
x2 + 3y2 + 6y

)
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
3x2 + 3y2

)
= 6y

And

∂N

∂x
= ∂

∂x

(
x
(
x2 + 3y2 + 6y

))
= 3x2 + 3y2 + 6y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x (x2 + 3y2 + 6y)
(
(6y)−

(
3x2 + 3y2 + 6y

))
= −3x2 − 3y2

x (x2 + 3y2 + 6y)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

3x2 + 3y2
((
3x2 + 3y2 + 6y

)
− (6y)

)
= 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
1 dy

The result of integrating gives

µ = ey

= ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey
(
3x2 + 3y2

)
= 3
(
x2 + y2

)
ey

And

N = µN

= ey
(
x
(
x2 + 3y2 + 6y

))
= x

(
x2 + 3y2 + 6y

)
ey
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

3
(
x2 + y2

)
ey
)
+
(
x
(
x2 + 3y2 + 6y

)
ey
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
3
(
x2 + y2

)
ey dx

(3)φ = eyx
(
x2 + 3y2

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= eyx

(
x2 + 3y2

)
+ 6 eyxy + f ′(y)

= x
(
x2 + 3y2 + 6y

)
ey + f ′(y)

But equation (2) says that ∂φ
∂y

= x(x2 + 3y2 + 6y) ey. Therefore equation (4) becomes

(5)x
(
x2 + 3y2 + 6y

)
ey = x

(
x2 + 3y2 + 6y

)
ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = eyx
(
x2 + 3y2

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = eyx
(
x2 + 3y2

)
Summary
The solution(s) found are the following

(1)eyx
(
x2 + 3y2

)
= c1

Figure 54: Slope field plot

Verification of solutions

eyx
(
x2 + 3y2

)
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve(3*(x^2+y(x)^2)+x*(x^2+3*y(x)^2+6*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

c1 +
ey(x)x3

3 + ey(x)xy(x)2 = 0

3 Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 26� �
DSolve[3*(x^2+y[x]^2)+x*(x^2+3*y[x]^2+6*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x3ey(x) + 3xey(x)y(x)2 = c1, y(x)

]
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1.35 problem 35
1.35.1 Solving as first order ode lie symmetry calculated ode . . . . . . 288
1.35.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 294

Internal problem ID [3180]
Internal file name [OUTPUT/2672_Sunday_June_05_2022_08_38_37_AM_1189778/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 35.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

2y(x+ y + 2) +
(
y2 − x2 − 4x− 1

)
y′ = 0

1.35.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − 2y(x+ y + 2)
−x2 + y2 − 4x− 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
2y(x+ y + 2) (b3 − a2)
−x2 + y2 − 4x− 1 − 4y2(x+ y + 2)2 a3

(−x2 + y2 − 4x− 1)2

−
(
− 2y
−x2 + y2 − 4x− 1 + 2y(x+ y + 2) (−2x− 4)

(−x2 + y2 − 4x− 1)2
)
(xa2 + ya3 + a1)

−
(
− 2(x+ y + 2)
−x2 + y2 − 4x− 1 − 2y

−x2 + y2 − 4x− 1

+ 4y2(x+ y + 2)
(−x2 + y2 − 4x− 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x4b2 + 4x3yb2 − 2x2y2a2 + 2x2y2a3 + 4x2y2b2 + 2x2y2b3 − 4x y3a2 + 4x y3a3 + 4x y3b3 − 2y4a2 + 2y4a3 − y4b2 + 2y4b3 + 2x3b1 + 4x3b2 − 2x2ya1 + 4x2ya2 + 4x2yb1 + 16x2yb2 − 4x y2a1 + 8x y2a3 + 2x y2b1 + 12x y2b2 + 8x y2b3 − 2y3a1 − 4y3a2 + 8y3a3 + 8y3b3 + 12x2b1 − 8xya1 + 4xya2 + 16xyb1 + 4xyb2 − 8y2a1 + 2y2a2 + 2y2a3 + 4y2b1 + 2y2b2 + 2y2b3 + 18xb1 − 4xb2 − 14ya1 + 4ya2 + 4yb1 + 4b1 − b2

(x2 − y2 + 4x+ 1)2
= 0

Setting the numerator to zero gives

(6E)

−x4b2 − 4x3yb2 + 2x2y2a2 − 2x2y2a3 − 4x2y2b2 − 2x2y2b3 + 4x y3a2
− 4x y3a3 − 4x y3b3 + 2y4a2 − 2y4a3 + y4b2 − 2y4b3 − 2x3b1 − 4x3b2
+ 2x2ya1 − 4x2ya2 − 4x2yb1 − 16x2yb2 + 4x y2a1 − 8x y2a3 − 2x y2b1
− 12x y2b2 − 8x y2b3 + 2y3a1 + 4y3a2 − 8y3a3 − 8y3b3 − 12x2b1
+ 8xya1 − 4xya2 − 16xyb1 − 4xyb2 + 8y2a1 − 2y2a2 − 2y2a3 − 4y2b1
− 2y2b2 − 2y2b3 − 18xb1 + 4xb2 + 14ya1 − 4ya2 − 4yb1 − 4b1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}
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The above PDE (6E) now becomes

(7E)

2a2v21v22 +4a2v1v32 +2a2v42 −2a3v21v22 −4a3v1v32 −2a3v42 − b2v
4
1 −4b2v31v2

− 4b2v21v22 + b2v
4
2 − 2b3v21v22 − 4b3v1v32 − 2b3v42 + 2a1v21v2 + 4a1v1v22

+2a1v32−4a2v21v2+4a2v32−8a3v1v22−8a3v32−2b1v31−4b1v21v2−2b1v1v22
− 4b2v31 − 16b2v21v2 − 12b2v1v22 − 8b3v1v22 − 8b3v32 + 8a1v1v2 + 8a1v22
−4a2v1v2−2a2v22−2a3v22−12b1v21−16b1v1v2−4b1v22−4b2v1v2−2b2v22
− 2b3v22 + 14a1v2 − 4a2v2 − 18b1v1 − 4b1v2 + 4b2v1 − 4b1 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−b2v
4
1 − 4b2v31v2 + (−2b1 − 4b2) v31 + (2a2 − 2a3 − 4b2 − 2b3) v21v22

+ (2a1 − 4a2 − 4b1 − 16b2) v21v2 − 12b1v21 + (4a2 − 4a3 − 4b3) v1v32
+ (4a1 − 8a3 − 2b1 − 12b2 − 8b3) v1v22 + (8a1 − 4a2 − 16b1 − 4b2) v1v2
+(−18b1+4b2) v1+(2a2− 2a3+ b2− 2b3) v42 +(2a1+4a2− 8a3− 8b3) v32
+(8a1−2a2−2a3−4b1−2b2−2b3) v22+(14a1−4a2−4b1) v2−4b1+b2 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

−12b1 = 0
−4b2 = 0
−b2 = 0

−18b1 + 4b2 = 0
−4b1 + b2 = 0

−2b1 − 4b2 = 0
14a1 − 4a2 − 4b1 = 0
4a2 − 4a3 − 4b3 = 0

2a1 − 4a2 − 4b1 − 16b2 = 0
2a1 + 4a2 − 8a3 − 8b3 = 0
8a1 − 4a2 − 16b1 − 4b2 = 0
2a2 − 2a3 − 4b2 − 2b3 = 0
2a2 − 2a3 + b2 − 2b3 = 0

4a1 − 8a3 − 2b1 − 12b2 − 8b3 = 0
8a1 − 2a2 − 2a3 − 4b1 − 2b2 − 2b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = −b3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− 2y(x+ y + 2)
−x2 + y2 − 4x− 1

)
(−y)

= x2y + 2x y2 + y3 + 4xy + 4y2 + y

x2 − y2 + 4x+ 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2y+2x y2+y3+4xy+4y2+y
x2−y2+4x+1

dy
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Which results in

S = − ln
(
x2 + 2xy + y2 + 4x+ 4y + 1

)
+ ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − 2y(x+ y + 2)
−x2 + y2 − 4x− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2x− 2y − 4
x2 + (2y + 4)x+ y2 + 4y + 1

Sy =
x2 − y2 + 4x+ 1

y (x2 + 2xy + y2 + 4x+ 4y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln
(
x2 + (2y + 4)x+ y2 + 4y + 1

)
+ ln (y) = c1
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Which simplifies to

− ln
(
x2 + (2y + 4)x+ y2 + 4y + 1

)
+ ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − 2y(x+y+2)
−x2+y2−4x−1

dS
dR

= 0

R = x

S = − ln
(
x2 + (2y + 4)x+ y2 + 4y + 1

)
+ ln (y)

Summary
The solution(s) found are the following

(1)− ln
(
x2 + (2y + 4)x+ y2 + 4y + 1

)
+ ln (y) = c1
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Figure 55: Slope field plot

Verification of solutions

− ln
(
x2 + (2y + 4)x+ y2 + 4y + 1

)
+ ln (y) = c1

Verified OK.

1.35.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x2 + y2 − 4x− 1

)
dy = (−2y(x+ y + 2)) dx

(2y(x+ y + 2)) dx+
(
−x2 + y2 − 4x− 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y(x+ y + 2)
N(x, y) = −x2 + y2 − 4x− 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2y(x+ y + 2))

= 2x+ 4y + 4

And
∂N

∂x
= ∂

∂x

(
−x2 + y2 − 4x− 1

)
= −2x− 4
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−x2 + y2 − 4x− 1((2x+ 4y + 4)− (−2x− 4))

= −4x− 4y − 8
x2 − y2 + 4x+ 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2y (x+ y + 2)((−2x− 4)− (2x+ 4y + 4))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(2y(x+ y + 2))

= 2x+ 2y + 4
y
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And

N = µN

= 1
y2
(
−x2 + y2 − 4x− 1

)
= −x2 + y2 − 4x− 1

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2x+ 2y + 4
y

)
+
(
−x2 + y2 − 4x− 1

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x+ 2y + 4
y

dx

(3)φ = x(x+ 2y + 4)
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2x

y
− x(x+ 2y + 4)

y2
+ f ′(y)

= −x(x+ 4)
y2

+ f ′(y)

But equation (2) says that ∂φ
∂y

= −x2+y2−4x−1
y2

. Therefore equation (4) becomes

(5)−x2 + y2 − 4x− 1
y2

= −x(x+ 4)
y2

+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2 − 1
y2

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y2 − 1
y2

)
dy

f(y) = y + 1
y
+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(x+ 2y + 4)
y

+ y + 1
y
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(x+ 2y + 4)

y
+ y + 1

y

Summary
The solution(s) found are the following

(1)x(x+ 2y + 4)
y

+ y + 1
y
= c1
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Figure 56: Slope field plot

Verification of solutions

x(x+ 2y + 4)
y

+ y + 1
y
= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 55� �
dsolve(2*y(x)*(x+y(x)+2)+(y(x)^2-x^2-4*x-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x− 2 + c1
2 −

√
12 + c21 + (−4x− 8) c1

2

y(x) = −x− 2 + c1
2 +

√
12 + c21 + (−4x− 8) c1

2

3 Solution by Mathematica
Time used: 0.462 (sec). Leaf size: 74� �
DSolve[2*y[x]*(x+y[x]+2)+(y[x]^2-x^2-4*x-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−2x−

√
4(−4 + c1)x− 4 + c12 − c1

)
y(x) → 1

2

(
−2x+

√
4(−4 + c1)x− 4 + c12 − c1

)
y(x) → 0
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1.36 problem 36
1.36.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 301
1.36.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 305
1.36.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 308

Internal problem ID [3181]
Internal file name [OUTPUT/2673_Sunday_June_05_2022_08_38_37_AM_46697388/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 36.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_rational , _Bernoulli]

y2 + 2yy′ = −2− 2x

1.36.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y2 + 2x+ 2
2y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 19: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−x

y
(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x

y

dy

Which results in

S = exy2
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y2 + 2x+ 2
2y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = exy2
2

Sy = exy

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex(−x− 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR(−R− 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −eRR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy2
2 = −x ex + c1

Which simplifies to

exy2
2 = −x ex + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y2+2x+2
2y

dS
dR

= eR(−R− 1)

R = x

S = exy2
2

Summary
The solution(s) found are the following

(1)exy2
2 = −x ex + c1
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Figure 57: Slope field plot

Verification of solutions

exy2
2 = −x ex + c1

Verified OK.

1.36.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2 + 2x+ 2
2y

This is a Bernoulli ODE.
y′ = −1

2y − x− 11
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
2

f1(x) = −x− 1
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

2 − x− 1 (4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

2 − x− 1

w′ = −w − 2− 2x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
q(x) = −2− 2x

Hence the ode is

w′(x) + w(x) = −2− 2x
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The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µw) = (µ) (−2− 2x)
d
dx(e

xw) = (ex) (−2− 2x)

d(exw) = (−2 ex(x+ 1)) dx

Integrating gives

exw =
∫

−2 ex(x+ 1) dx

exw = −2x ex + c1

Dividing both sides by the integrating factor µ = ex results in

w(x) = −2 e−xx ex + c1e−x

which simplifies to

w(x) = −2x+ c1e−x

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = −2x+ c1e−x

Solving for y gives

y(x) =
√
−2x+ c1e−x

y(x) = −
√

−2x+ c1e−x

Summary
The solution(s) found are the following

(1)y =
√
−2x+ c1e−x

(2)y = −
√

−2x+ c1e−x
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Figure 58: Slope field plot

Verification of solutions

y =
√

−2x+ c1e−x

Verified OK.

y = −
√

−2x+ c1e−x

Verified OK.

1.36.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(2y) dy =
(
−y2 − 2x− 2

)
dx(

y2 + 2x+ 2
)
dx+(2y) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2 + 2x+ 2
N(x, y) = 2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2 + 2x+ 2

)
= 2y
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And
∂N

∂x
= ∂

∂x
(2y)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

2y ((2y)− (0))

= 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
y2 + 2x+ 2

)
= ex

(
y2 + 2x+ 2

)
And

N = µN

= ex(2y)
= 2 exy

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex
(
y2 + 2x+ 2

))
+ (2 exy) dydx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ex
(
y2 + 2x+ 2

)
dx

(3)φ =
(
y2 + 2x

)
ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2 exy + f ′(y)

But equation (2) says that ∂φ
∂y

= 2 exy. Therefore equation (4) becomes

(5)2 exy = 2 exy + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
(
y2 + 2x

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(
y2 + 2x

)
ex
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Summary
The solution(s) found are the following

(1)
(
y2 + 2x

)
ex = c1

Figure 59: Slope field plot

Verification of solutions (
y2 + 2x

)
ex = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 33� �
dsolve((2+y(x)^2+2*x)+(2*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
e−xc1 − 2x

y(x) = −
√

e−xc1 − 2x

3 Solution by Mathematica
Time used: 3.531 (sec). Leaf size: 43� �
DSolve[(2+y[x]^2+2*x)+(2*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
−2x+ c1e−x

y(x) →
√

−2x+ c1e−x
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1.37 problem 37
1.37.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 314

Internal problem ID [3182]
Internal file name [OUTPUT/2674_Sunday_June_05_2022_08_38_38_AM_98414307/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 37.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational]

2y2x− y +
(
y2 + x+ y

)
y′ = 0

1.37.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

314



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

y2 + x+ y
)
dy =

(
−2x y2 + y

)
dx(

2x y2 − y
)
dx+

(
y2 + x+ y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x y2 − y

N(x, y) = y2 + x+ y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x y2 − y

)
= 4xy − 1

And
∂N

∂x
= ∂

∂x

(
y2 + x+ y

)
= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2 + x+ y
((4xy − 1)− (1))

= 4xy − 2
y2 + x+ y
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2x y2 − y
((1)− (4xy − 1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2
(
2x y2 − y

)
= 2xy − 1

y

And

N = µN

= 1
y2
(
y2 + x+ y

)
= y2 + x+ y

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

2xy − 1
y

)
+
(
y2 + x+ y

y2

)
dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2xy − 1
y

dx

(3)φ = x(xy − 1)
y

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2

y
− x(xy − 1)

y2
+ f ′(y)

= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y2+x+y
y2

. Therefore equation (4) becomes

(5)y2 + x+ y

y2
= x

y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = y + 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y + 1
y

)
dy

f(y) = y + ln (y) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x(xy − 1)
y

+ y + ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x(xy − 1)

y
+ y + ln (y)

Summary
The solution(s) found are the following

(1)x(yx− 1)
y

+ y + ln (y) = c1

Figure 60: Slope field plot

Verification of solutions

x(yx− 1)
y

+ y + ln (y) = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 28� �
dsolve((2*x*y(x)^2-y(x))+(y(x)^2+x+y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
x2e_Z+e2_Z+c1e_Z+_Z e_Z−x

)

3 Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 22� �
DSolve[(2*x*y[x]^2-y[x])+(y[x]^2+x+y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x2 − x

y(x) + y(x) + log(y(x)) = c1, y(x)
]
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1.38 problem 38
1.38.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 320

Internal problem ID [3183]
Internal file name [OUTPUT/2675_Sunday_June_05_2022_08_38_39_AM_82102619/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational , [_Abel , `2nd type `, `class A`]]

y(y + x) + (x+ 2y − 1) y′ = 0

1.38.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(x+ 2y − 1) dy = (−y(y + x)) dx
(y(y + x)) dx+(x+ 2y − 1) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y(y + x)
N(x, y) = x+ 2y − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y(y + x))

= x+ 2y

And
∂N

∂x
= ∂

∂x
(x+ 2y − 1)

= 1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x+ 2y − 1((x+ 2y)− (1))

= 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex(y(y + x))
= y(y + x) ex

And

N = µN

= ex(x+ 2y − 1)
= (x+ 2y − 1) ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0

(y(y + x) ex) + ((x+ 2y − 1) ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y(y + x) ex dx

(3)φ = (x− 1 + y) y ex + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= exy + (x− 1 + y) ex + f ′(y)

= (x+ 2y − 1) ex + f ′(y)

But equation (2) says that ∂φ
∂y

= (x+ 2y − 1) ex. Therefore equation (4) becomes

(5)(x+ 2y − 1) ex = (x+ 2y − 1) ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (x− 1 + y) y ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (x− 1 + y) y ex

Summary
The solution(s) found are the following

(1)(y + x− 1) y ex = c1
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Figure 61: Slope field plot

Verification of solutions

(y + x− 1) y ex = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 63� �
dsolve(y(x)*(x+y(x))+(x+2*y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −x

2 + 1
2 −

√
ex
(
(x− 1)2 ex − 4c1

)
e−x

2

y(x) = −x

2 + 1
2 +

√
ex
(
(x− 1)2 ex − 4c1

)
e−x

2

3 Solution by Mathematica
Time used: 11.91 (sec). Leaf size: 80� �
DSolve[y[x]*(x+y[x])+(x+2*y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

(
−x−

√
ex(x− 1)2 + 4c1√

ex
+ 1
)

y(x) → 1
2

(
−x+

√
ex(x− 1)2 + 4c1√

ex
+ 1
)
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1.39 problem 39
1.39.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 326

Internal problem ID [3184]
Internal file name [OUTPUT/2676_Sunday_June_05_2022_08_38_39_AM_35960000/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 39.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[`y=_G(x,y') `]

2x
(
x2 − sin (y) + 1

)
+
(
x2 + 1

)
cos (y) y′ = 0

1.39.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore ((

x2 + 1
)
cos (y)

)
dy =

(
−2x

(
x2 − sin (y) + 1

))
dx(

2x
(
x2 − sin (y) + 1

))
dx+

((
x2 + 1

)
cos (y)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2x
(
x2 − sin (y) + 1

)
N(x, y) =

(
x2 + 1

)
cos (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2x
(
x2 − sin (y) + 1

))
= −2x cos (y)

And
∂N

∂x
= ∂

∂x

((
x2 + 1

)
cos (y)

)
= 2x cos (y)

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= sec (y)

x2 + 1((−2x cos (y))− (2x cos (y)))

= − 4x
x2 + 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 4x

x2+1 dx

The result of integrating gives

µ = e−2 ln
(
x2+1

)
= 1

(x2 + 1)2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)2

(
2x
(
x2 − sin (y) + 1

))
= −2x(−x2 + sin (y)− 1)

(x2 + 1)2

And

N = µN

= 1
(x2 + 1)2

((
x2 + 1

)
cos (y)

)
= cos (y)

x2 + 1

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−2x(−x2 + sin (y)− 1)
(x2 + 1)2

)
+
(
cos (y)
x2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−2x(−x2 + sin (y)− 1)

(x2 + 1)2
dx

(3)φ = ln
(
x2 + 1

)
+ sin (y)

x2 + 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= cos (y)

x2 + 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= cos(y)
x2+1 . Therefore equation (4) becomes

(5)cos (y)
x2 + 1 = cos (y)

x2 + 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = ln
(
x2 + 1

)
+ sin (y)

x2 + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = ln
(
x2 + 1

)
+ sin (y)

x2 + 1

Summary
The solution(s) found are the following

(1)ln
(
x2 + 1

)
+ sin (y)

x2 + 1 = c1
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Figure 62: Slope field plot

Verification of solutions

ln
(
x2 + 1

)
+ sin (y)

x2 + 1 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(2*x*(x^2-sin(y(x))+1)+(x^2+1)*cos(y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − arcsin
((
x2 + 1

) (
c1 + ln

(
x2 + 1

)))
3 Solution by Mathematica
Time used: 7.478 (sec). Leaf size: 25� �
DSolve[2*x*(x^2-Sin[y[x]]+1)+(x^2+1)*Cos[y[x]]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arcsin
((
x2 + 1

) (
log
(
x2 + 1

)
+ 8c1

))
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1.40 problem 41
1.40.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 332
1.40.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 333
1.40.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 339

Internal problem ID [3185]
Internal file name [OUTPUT/2677_Sunday_June_05_2022_08_38_40_AM_78153908/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection",
"homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Riccati]

y + y2 − xy′ = −x2

1.40.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x+ u(x)2 x2 − x(u′(x)x+ u(x)) = −x2

Integrating both sides gives ∫ 1
u2 + 1du = x+ c2

arctan (u) = x+ c2

Solving for u gives these solutions

u1 = tan (x+ c2)

Therefore the solution y is

y = xu

= x tan (x+ c2)
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Summary
The solution(s) found are the following

(1)y = x tan (x+ c2)

Figure 63: Slope field plot

Verification of solutions

y = x tan (x+ c2)

Verified OK.

1.40.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x) dy =
(
−x2 − y2 − y

)
dx(

x2 + y2 + y
)
dx+(−x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2 + y

N(x, y) = −x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2 + y

)
= 2y + 1
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And
∂N

∂x
= ∂

∂x
(−x)

= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. By inspection 1
y2+x2 is an integrating factor.

Therefore by multiplying M = x2 + y + y2 and N = −x by this integrating factor the
ode becomes exact. The new M,N are

M = x2 + y + y2

y2 + x2

N = − x

y2 + x2

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
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or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− x

x2 + y2

)
dy =

(
−x2 + y2 + y

x2 + y2

)
dx(

x2 + y2 + y

x2 + y2

)
dx+

(
− x

x2 + y2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x2 + y2 + y

x2 + y2

N(x, y) = − x

x2 + y2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x2 + y2 + y

x2 + y2

)
= x2 − y2

(x2 + y2)2

And

∂N

∂x
= ∂

∂x

(
− x

x2 + y2

)
= x2 − y2

(x2 + y2)2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

336



Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x2 + y2 + y

x2 + y2
dx

(3)φ = x+ arctan
(
x

y

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

y2
(

x2

y2
+ 1
) + f ′(y)

= − x

x2 + y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= − x
x2+y2

. Therefore equation (4) becomes

(5)− x

x2 + y2
= − x

x2 + y2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x+ arctan
(
x

y

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ arctan
(
x

y

)

337



The solution becomes
y = x

tan (−x+ c1)

Summary
The solution(s) found are the following

(1)y = x

tan (−x+ c1)

Figure 64: Slope field plot

Verification of solutions

y = x

tan (−x+ c1)

Verified OK.
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1.40.3 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)

= x2 + y2 + y

x

This is a Riccati ODE. Comparing the ODE to solve

y′ = x+ y2

x
+ y

x

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x, f1(x) = 1
x
and f2(x) = 1

x
. Let

y = −u′

f2u

= −u′

u
x

(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = − 1

x2

f1f2 =
1
x2

f 2
2 f0 =

1
x

Substituting the above terms back in equation (2) gives

u′′(x)
x

+ u(x)
x

= 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 sin (x) + c2 cos (x)
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The above shows that
u′(x) = c1 cos (x)− c2 sin (x)

Using the above in (1) gives the solution

y = −(c1 cos (x)− c2 sin (x))x
c1 sin (x) + c2 cos (x)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Summary
The solution(s) found are the following

(1)y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Figure 65: Slope field plot
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Verification of solutions

y = (−c3 cos (x) + sin (x))x
c3 sin (x) + cos (x)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve((x^2+y(x)+y(x)^2)-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = tan (c1 + x)x

3 Solution by Mathematica
Time used: 0.207 (sec). Leaf size: 12� �
DSolve[(x^2+y[x]+y[x]^2)-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x tan(x+ c1)
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1.41 problem 42
1.41.1 Solving as first order ode lie symmetry calculated ode . . . . . . 342

Internal problem ID [3186]
Internal file name [OUTPUT/2678_Sunday_June_05_2022_08_38_41_AM_40029954/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 42.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _dAlembert]

−
√

y2 + x2 +
(
y −

√
y2 + x2

)
y′ = −x

1.41.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ =
√
x2 + y2 − x

y −
√
x2 + y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(√

x2 + y2 − x
)
(b3 − a2)

y −
√
x2 + y2

−
(√

x2 + y2 − x
)2

a3(
y −

√
x2 + y2

)2
−

( x√
x2+y2

− 1

y −
√
x2 + y2

+
(√

x2 + y2 − x
)
x(

y −
√
x2 + y2

)2√
x2 + y2

)
(xa2 + ya3 + a1)

−

 y√
x2 + y2

(
y −

√
x2 + y2

)
−

(√
x2 + y2 − x

) (
1− y√

x2+y2

)
(
y −

√
x2 + y2

)2
 (xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2
√
x2 + y2 xya2 − 2

√
x2 + y2 xyb3 + 2x2yb3 − 2x y2a2 − 2x2ya2 − x2yb2 + x y2a3 + 2x y2b3 − xya1 + xyb1 + 2x3a3 + x3b2 + x3b3 − y3a2 − y3a3 − 2y3b2 + x2b1 − y2a1 − x3a2 + y3b3 + (x2 + y2)

3
2 a2 − (x2 + y2)

3
2 a3 + (x2 + y2)

3
2 b2 − (x2 + y2)

3
2 b3 −

√
x2 + y2 x2a3 −

√
x2 + y2 x2b2 +

√
x2 + y2 y2a3 +

√
x2 + y2 y2b2 −

√
x2 + y2 xb1 +

√
x2 + y2 ya1(

−y +
√
x2 + y2

)2√
x2 + y2

= 0

Setting the numerator to zero gives

(6E)

2
√

x2 + y2 xya2 − 2
√

x2 + y2 xyb3 + 2x2yb3 − 2x y2a2 − 2x2ya2 − x2yb2
+ x y2a3 + 2x y2b3 − xya1 + xyb1 + 2x3a3 + x3b2 + x3b3 − y3a2 − y3a3

− 2y3b2 + x2b1 − y2a1 − x3a2 + y3b3 +
(
x2 + y2

) 3
2 a2 −

(
x2 + y2

) 3
2 a3

+
(
x2 + y2

) 3
2 b2 −

(
x2 + y2

) 3
2 b3 −

√
x2 + y2 x2a3 −

√
x2 + y2 x2b2

+
√

x2 + y2 y2a3 +
√

x2 + y2 y2b2 −
√
x2 + y2 xb1 +

√
x2 + y2 ya1 = 0

Simplifying the above gives

(6E)

2
√

x2 + y2 xya2 − 2
√

x2 + y2 xyb3 − x2ya2 + x2ya3 + x2yb2 − x y2a3
− x y2b2 + x y2b3 − xya1 + xyb1 − 2

(
x2 + y2

)
xa2 + x3a2 − y3b3

+ x2a1 − y2b1 +
(
x2 + y2

) 3
2 a2 −

(
x2 + y2

) 3
2 a3 +

(
x2 + y2

) 3
2 b2

−
(
x2 + y2

) 3
2 b3 −

(
x2 + y2

)
a1 +

(
x2 + y2

)
b1 + 2

(
x2 + y2

)
xa3

+
(
x2 + y2

)
xb2 +

(
x2 + y2

)
xb3 −

(
x2 + y2

)
ya2 −

(
x2 + y2

)
ya3

− 2
(
x2 + y2

)
yb2 + 2

(
x2 + y2

)
yb3 −

√
x2 + y2 x2a3 −

√
x2 + y2 x2b2

+
√

x2 + y2 y2a3 +
√

x2 + y2 y2b2 −
√
x2 + y2 xb1 +

√
x2 + y2 ya1 = 0
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Since the PDE has radicals, simplifying gives

2
√
x2 + y2 xya2 − 2

√
x2 + y2 xyb3 + x2

√
x2 + y2 a2 − x2

√
x2 + y2 b3 + 2x2yb3

− 2x y2a2 − 2x2ya2 − x2yb2 + x y2a3 + 2x y2b3 − xya1 + xyb1 +
√
x2 + y2 y2a2

−
√
x2 + y2 y2b3+2x3a3+x3b2+x3b3−y3a2−y3a3−2y3b2+x2b1−y2a1−x3a2

+ y3b3 − 2
√

x2 + y2 x2a3 + 2
√

x2 + y2 y2b2 −
√

x2 + y2 xb1 +
√
x2 + y2 ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
x2 + y2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√
x2 + y2 = v3

}
The above PDE (6E) now becomes

(7E)
−v31a2 − 2v21v2a2 + v21v3a2 − 2v1v22a2 + 2v3v1v2a2 − v32a2 + v3v

2
2a2

+ 2v31a3 − 2v3v21a3 + v1v
2
2a3 − v32a3 + v31b2 − v21v2b2 − 2v32b2

+ 2v3v22b2 + v31b3 + 2v21v2b3 − v21v3b3 + 2v1v22b3 − 2v3v1v2b3 + v32b3
− v3v

2
2b3 − v1v2a1 − v22a1 + v3v2a1 + v21b1 + v1v2b1 − v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)(−a2 + 2a3 + b2 + b3) v31 + (−2a2 − b2 + 2b3) v21v2 + (a2 − 2a3 − b3) v21v3
+ v21b1 + (−2a2 + a3 + 2b3) v1v22 + (2a2 − 2b3) v1v2v3 + (−a1 + b1) v1v2
−v3v1b1+(−a2−a3−2b2+b3) v32+(a2+2b2−b3) v22v3−v22a1+v3v2a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−b1 = 0

−a1 + b1 = 0
2a2 − 2b3 = 0

−2a2 + a3 + 2b3 = 0
−2a2 − b2 + 2b3 = 0

a2 − 2a3 − b3 = 0
a2 + 2b2 − b3 = 0

−a2 − a3 − 2b2 + b3 = 0
−a2 + 2a3 + b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(√

x2 + y2 − x

y −
√
x2 + y2

)
(x)

= x
√
x2 + y2 + y

√
x2 + y2 − x2 − y2

−y +
√
x2 + y2

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x
√

x2+y2+y
√

x2+y2−x2−y2

−y+
√

x2+y2

dy

Which results in

S = −
ln
(
y +

√
x2 + y2

)
2 −

x ln
(

2x2+2
√
x2
√

x2+y2

y

)
2
√
x2

+ ln (y)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
√
x2 + y2 − x

y −
√
x2 + y2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = (−y − x)
√
x2 + y2 − 2x2 − xy − y2

2
√
x2 + y2 x

(
y +

√
x2 + y2

)
Sy =

(2x− y)
√
x2 + y2 + 2x2 − xy + y2

2
√
x2 + y2 y

(√
x2 + y2 + x

)
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

3
(
x
√
x2 + y2 + x2 + y2

)
2x

√
x2 + y2

(√
x2 + y2 + x

) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 3

2R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −3 ln (R)
2 + c1 (4)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

=
√

x2+y2−x

y−
√

x2+y2
dS
dR

= − 3
2R

R = x

S = −
ln
(
y +

√
x2 + y2

)
2 − ln (2)

2 − ln (x)
2 −

ln
(√

x2 + y2 + x
)

2 + ln (y)

Summary
The solution(s) found are the following

(1)−
ln
(
y +

√
y2 + x2

)
2 − ln (2)

2 − ln (x)
2 −

ln
(
x+

√
y2 + x2

)
2 + ln (y) = −3 ln (x)

2 + c1
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Figure 66: Slope field plot

Verification of solutions

−
ln
(
y +

√
y2 + x2

)
2 − ln (2)

2 − ln (x)
2 −

ln
(
x+

√
y2 + x2

)
2 + ln (y) = −3 ln (x)

2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 47� �
dsolve((x-sqrt(x^2+y(x)^2))+(y(x)-sqrt(x^2+y(x)^2))*diff(y(x),x)=0,y(x), singsol=all)� �

(x+ y(x))
√

x2 + y (x)2 + (−c1x
2 + 1) y(x)2 + xy(x) + x2

y (x)2 x2
= 0

3 Solution by Mathematica
Time used: 0.834 (sec). Leaf size: 34� �
DSolve[(x-Sqrt[x^2+y[x]^2])+(y[x]-Sqrt[x^2+y[x]^2])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ec1(2x+ ec1)
2 (x+ ec1)

y(x) → 0
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1.42 problem 43
1.42.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 350

Internal problem ID [3187]
Internal file name [OUTPUT/2679_Sunday_June_05_2022_08_38_41_AM_85031265/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

y
√

y2 + 1 +
(
x
√

y2 + 1− y
)
y′ = 0

1.42.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

350



But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x
√
y2 + 1− y

)
dy =

(
−y
√
y2 + 1

)
dx(

y
√

y2 + 1
)
dx+

(
x
√
y2 + 1− y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y
√

y2 + 1
N(x, y) = x

√
y2 + 1− y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y
√
y2 + 1

)
= 2y2 + 1√

y2 + 1

And

∂N

∂x
= ∂

∂x

(
x
√

y2 + 1− y
)

=
√
y2 + 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x
√
y2 + 1− y

((√
y2 + 1 + y2√

y2 + 1

)
−
(√

y2 + 1
))

= y2(
x
√
y2 + 1− y

)√
y2 + 1

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
√
y2 + 1

((√
y2 + 1

)
−
(√

y2 + 1 + y2√
y2 + 1

))
= − y

y2 + 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− y

y2+1 dy

The result of integrating gives

µ = e−
ln
(
y2+1

)
2

= 1√
y2 + 1

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1√
y2 + 1

(
y
√
y2 + 1

)
= y
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And

N = µN

= 1√
y2 + 1

(
x
√
y2 + 1− y

)
= x

√
y2 + 1− y√
y2 + 1

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(y) +
(
x
√
y2 + 1− y√
y2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x
√

y2+1−y√
y2+1

. Therefore equation (4) becomes

(5)x
√
y2 + 1− y√
y2 + 1

= x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = − y√
y2 + 1

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
− y√

y2 + 1

)
dy

f(y) = −
√
y2 + 1 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy −
√

y2 + 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy −
√
y2 + 1

Summary
The solution(s) found are the following

(1)yx−
√
y2 + 1 = c1
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Figure 67: Slope field plot

Verification of solutions

yx−
√
y2 + 1 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 26� �
dsolve((y(x)*sqrt(1+y(x)^2))+(x*sqrt(1+y(x)^2)-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

xy(x)−
√
y (x)2 + 1− c1

y (x) = 0

3 Solution by Mathematica
Time used: 0.479 (sec). Leaf size: 82� �
DSolve[(y[x]*Sqrt[1+y[x]^2])+(x*Sqrt[1+y[x]^2]-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x−
√
x2 − 1 + c12

x2 − 1

y(x) →
√
x2 − 1 + c12 + c1x

x2 − 1
y(x) → 0
y(x) → −i
y(x) → i
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1.43 problem 44
1.43.1 Solving as first order ode lie symmetry calculated ode . . . . . . 357
1.43.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 362

Internal problem ID [3188]
Internal file name [OUTPUT/2680_Sunday_June_05_2022_08_38_42_AM_5433064/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y2 −
(
yx+ x3) y′ = 0

1.43.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y2

x (x2 + y)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
y2(b3 − a2)
x (x2 + y) − y4a3

x2 (x2 + y)2
−
(
− y2

x2 (x2 + y)−
2y2

(x2 + y)2
)
(xa2+ya3+a1)

−
(

2y
x (x2 + y) −

y2

x (x2 + y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

x6b2 + 2x3y2a2 − x3y2b3 + 3x2y3a3 − 2x3yb1 + 3x2y2a1 − x y2b1 + y3a1

x2 (x2 + y)2
= 0

Setting the numerator to zero gives

(6E)x6b2 + 2x3y2a2 − x3y2b3 + 3x2y3a3 − 2x3yb1 + 3x2y2a1 − x y2b1 + y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
6
1 + 2a2v31v22 + 3a3v21v32 − b3v

3
1v

2
2 + 3a1v21v22 − 2b1v31v2 + a1v

3
2 − b1v1v

2
2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
6
1 + (2a2 − b3) v31v22 − 2b1v31v2 + 3a3v21v32 + 3a1v21v22 − b1v1v

2
2 + a1v

3
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

3a1 = 0
3a3 = 0

−2b1 = 0
−b1 = 0

2a2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 2y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 2y −
(

y2

x (x2 + y)

)
(x)

= 2x2y + y2

x2 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2x2y+y2

x2+y

dy

Which results in

S = ln (y(2x2 + y))
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2

x (x2 + y)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2x
2x2 + y

Sy =
x2 + y

2x2y + y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)
2 + ln (2x2 + y)

2 = ln (x) + c1

Which simplifies to

ln (y)
2 + ln (2x2 + y)

2 = ln (x) + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2

x(x2+y)
dS
dR

= 1
R

R = x

S = ln (y)
2 + ln (2x2 + y)

2
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Summary
The solution(s) found are the following

(1)ln (y)
2 + ln (2x2 + y)

2 = ln (x) + c1

Figure 68: Slope field plot

Verification of solutions

ln (y)
2 + ln (2x2 + y)

2 = ln (x) + c1

Verified OK.

1.43.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−x3 − xy

)
dy =

(
−y2

)
dx(

y2
)
dx+

(
−x3 − xy

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = −x3 − xy

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And
∂N

∂x
= ∂

∂x

(
−x3 − xy

)
= −3x2 − y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

x (x2 + y)
(
(2y)−

(
−3x2 − y

))
= −3

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3

x
dx

The result of integrating gives

µ = e−3 ln(x)

= 1
x3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x3

(
y2
)

= y2

x3

And

N = µN

= 1
x3

(
−x3 − xy

)
= −x2 − y

x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

y2

x3

)
+
(
−x2 − y

x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2

x3 dx

(3)φ = − y2

2x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − y

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= −x2−y
x2 . Therefore equation (4) becomes

(5)−x2 − y

x2 = − y

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(−1) dy

f(y) = −y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − y2

2x2 − y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − y2

2x2 − y

Summary
The solution(s) found are the following

(1)− y2

2x2 − y = c1

Figure 69: Slope field plot

Verification of solutions

− y2

2x2 − y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 35� �
dsolve((y(x)^2)-(x*y(x)+x^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
(
−x−

√
x2 + c1

)
x

y(x) =
(
−x+

√
x2 + c1

)
x

3 Solution by Mathematica
Time used: 0.551 (sec). Leaf size: 67� �
DSolve[(y[x]^2)-(x*y[x]+x^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x2

(
1 +

√
1
x3

√
x (x2 + c1)

)

y(x) → x2

(
−1 +

√
1
x3

√
x (x2 + c1)

)
y(x) → 0
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1.44 problem 45
1.44.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 368
1.44.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 370
1.44.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 372

Internal problem ID [3189]
Internal file name [OUTPUT/2681_Sunday_June_05_2022_08_38_43_AM_6111692/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class D`]]

y − 2x3 tan
(y
x

)
− xy′ = 0

1.44.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = −2 tan
(y
x

)
x2 + y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −2x2

b = 1

f

(
bx

y

)
= tan

(y
x

)
Substituting the above in (2) results in the u(x) ode as

u′(x) = −2x tan (u(x))

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= −2x tan (u)

Where f(x) = −2x and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = −2x dx∫ 1
tan (u) du =

∫
−2x dx

ln (sin (u)) = −x2 + c1

Raising both side to exponential gives

sin (u) = e−x2+c1

Which simplifies to

sin (u) = c2e−x2

Therefore the solution is

y = ux

= x arcsin
(
c2e−x2+c1

)
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Summary
The solution(s) found are the following

(1)y = x arcsin
(
c2e−x2+c1

)

Figure 70: Slope field plot

Verification of solutions

y = x arcsin
(
c2e−x2+c1

)
Verified OK.

1.44.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u(x)x− 2x3 tan (u(x))− x(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)
= −2 tan (u)x
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Where f(x) = −2x and g(u) = tan (u). Integrating both sides gives

1
tan (u) du = −2x dx∫ 1
tan (u) du =

∫
−2x dx

ln (sin (u)) = −x2 + c2

Raising both side to exponential gives

sin (u) = e−x2+c2

Which simplifies to

sin (u) = c3e−x2

Therefore the solution y is

y = xu

= x arcsin
(
c3e−x2+c2

)
Summary
The solution(s) found are the following

(1)y = x arcsin
(
c3e−x2+c2

)
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Figure 71: Slope field plot

Verification of solutions

y = x arcsin
(
c3e−x2+c2

)
Verified OK.

1.44.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −
−y + 2x3 tan

(
y
x

)
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Therefore
dy

dx
= η

ξ

= xy

x2

= y

x
This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
−y + 2x3 tan

(
y
x

)
x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

cot
(
y
x

)
2x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= cot (R)S(R)3

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives these solutions

S(R) = 1√
c1 − ln (sin (R))

(4)

S(R) = − 1√
c1 − ln (sin (R))

Each will now be processed. To complete the solution, we just need to transform (4)
back to x, y coordinates. This results in

−1
x
= 1√

c1 − ln
(
sin
(
y
x

))
Which simplifies to

−1
x
= 1√

c1 − ln
(
sin
(
y
x

))
Which gives

y = arcsin
(
e−x2+c1

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−y+2x3 tan
( y
x

)
x

dS
dR

= cot(R)S(R)3
2

R = y

x

S = −1
x

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= − 1√

c1 − ln
(
sin
(
y
x

))
Which simplifies to

−1
x
= − 1√

c1 − ln
(
sin
(
y
x

))
Which gives

y = arcsin
(
e−x2+c1

)
x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−y+2x3 tan
( y
x

)
x

dS
dR

= cot(R)S(R)3
2

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = arcsin
(
e−x2+c1

)
x

(2)y = arcsin
(
e−x2+c1

)
x
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Figure 72: Slope field plot

Verification of solutions

y = arcsin
(
e−x2+c1

)
x

Verified OK.

y = arcsin
(
e−x2+c1

)
x

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 15� �
dsolve(y(x)-2*x^3*tan(y(x)/x)-x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = arcsin
(
c1e−x2

)
x

3 Solution by Mathematica
Time used: 59.679 (sec). Leaf size: 23� �
DSolve[y[x]-2*x^3*Tan[y[x]/x]-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x arcsin
(
e−x2+c1

)
y(x) → 0
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1.45 problem 46
1.45.1 Solving as first order ode lie symmetry calculated ode . . . . . . 380
1.45.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 386

Internal problem ID [3190]
Internal file name [OUTPUT/2682_Sunday_June_05_2022_08_38_44_AM_51242300/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

2y2x2 + y +
(
yx3 − x

)
y′ = 0

1.45.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −y(2x2y + 1)
x (x2y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(2x2y + 1) (b3 − a2)

x (x2y − 1) − y2(2x2y + 1)2 a3
x2 (x2y − 1)2

−
(
− 4y2
x2y − 1 + y(2x2y + 1)

x2 (x2y − 1) +
2y2(2x2y + 1)
(x2y − 1)2

)
(xa2 + ya3 + a1)

−
(
− 2x2y + 1
x (x2y − 1) −

2yx
x2y − 1 + y(2x2y + 1)x

(x2y − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

3x6y2b2 − 6x4y4a3 + 2x5y2b1 − 2x4y3a1 − 6x4yb2 − 6x3y2a2 − 3x3y2b3 − 9x2y3a3 − 4x3yb1 − 5x2y2a1 − xb1 + ya1

(x2y − 1)2 x2

= 0

Setting the numerator to zero gives

(6E)3x6y2b2 − 6x4y4a3 + 2x5y2b1 − 2x4y3a1 − 6x4yb2 − 6x3y2a2
− 3x3y2b3 − 9x2y3a3 − 4x3yb1 − 5x2y2a1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−6a3v41v42 + 3b2v61v22 − 2a1v41v32 + 2b1v51v22 − 6a2v31v22 − 9a3v21v32
− 6b2v41v2 − 3b3v31v22 − 5a1v21v22 − 4b1v31v2 + a1v2 − b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)3b2v61v22 + 2b1v51v22 − 6a3v41v42 − 2a1v41v32 − 6b2v41v2 + (−6a2 − 3b3) v31v22
− 4b1v31v2 − 9a3v21v32 − 5a1v21v22 − b1v1 + a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−5a1 = 0
−2a1 = 0
−9a3 = 0
−6a3 = 0
−4b1 = 0
−b1 = 0
2b1 = 0

−6b2 = 0
3b2 = 0

−6a2 − 3b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
−y(2x2y + 1)

x (x2y − 1)

)
(x)

= 3y
x2y − 1

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

3y
x2y−1

dy

Which results in

S = x2y

3 − ln (y)
3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(2x2y + 1)
x (x2y − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2xy
3

Sy =
x2y − 1

3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= − 1

3x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

3R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y

3 − ln (y)
3 = − ln (x)

3 + c1

Which simplifies to

x2y

3 − ln (y)
3 = − ln (x)

3 + c1

Which gives

y = −LambertW (−e−3c1x3)
x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
2x2y+1

)
x(x2y−1)

dS
dR

= − 1
3R

R = x

S = x2y

3 − ln (y)
3

Summary
The solution(s) found are the following

(1)y = −LambertW (−e−3c1x3)
x2
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Figure 73: Slope field plot

Verification of solutions

y = −LambertW (−e−3c1x3)
x2

Verified OK.

1.45.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x3y − x

)
dy =

(
−2y2x2 − y

)
dx(

2y2x2 + y
)
dx+

(
x3y − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2y2x2 + y

N(x, y) = x3y − x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
2y2x2 + y

)
= 4x2y + 1

And
∂N

∂x
= ∂

∂x

(
x3y − x

)
= 3x2y − 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x3y − x

((
4x2y + 1

)
−
(
3x2y − 1

))
= x2y + 2

x3y − x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2y2x2 + y

((
3x2y − 1

)
−
(
4x2y + 1

))
= −x2y − 2

2y2x2 + y

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (3x2y − 1)− (4x2y + 1)
x (2y2x2 + y)− y (x3y − x)

= − 1
xy

Replacing all powers of terms xy by t gives

R = −1
t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 1
t

)
dt
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The result of integrating gives

µ = e− ln(t)

= 1
t

Now t is replaced back with xy giving

µ = 1
xy

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
xy

(
2y2x2 + y

)
= 2x2y + 1

x

And

N = µN

= 1
xy

(
x3y − x

)
= x2y − 1

y

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

2x2y + 1
x

)
+
(
x2y − 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 2x2y + 1
x

dx

(3)φ = x2y + ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2y−1
y

. Therefore equation (4) becomes

(5)x2y − 1
y

= x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −1
y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−1
y

)
dy

f(y) = − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x2y + ln (x)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x2y + ln (x)− ln (y)
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The solution becomes

y = −LambertW (−x3e−c1)
x2

Summary
The solution(s) found are the following

(1)y = −LambertW (−x3e−c1)
x2

Figure 74: Slope field plot

Verification of solutions

y = −LambertW (−x3e−c1)
x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 19� �
dsolve((2*x^2*y(x)^2+y(x))+(x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −LambertW (−x3e−3c1)
x2

3 Solution by Mathematica
Time used: 2.365 (sec). Leaf size: 33� �
DSolve[(2*x^2*y[x]^2+y[x])+(x^3*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
W
(
e
−1+ 9c1

22/3 x3
)

x2

y(x) → 0
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1.46 problem 47
1.46.1 Solving as first order ode lie symmetry calculated ode . . . . . . 393
1.46.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 398

Internal problem ID [3191]
Internal file name [OUTPUT/2683_Sunday_June_05_2022_08_38_44_AM_51986505/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 47.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y2 + (yx+ tan (yx)) y′ = 0

1.46.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy + tan (xy)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y2(b3 − a2)

xy + tan (xy) −
y4a3

(xy + tan (xy))2

−
y2
(
y + y

(
1 + tan (xy)2

))
(xa2 + ya3 + a1)

(xy + tan (xy))2

−

(
− 2y
xy + tan (xy) +

y2
(
x+ x

(
1 + tan (xy)2

))
(xy + tan (xy))2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−tan (xy)2 x2y2b2 + tan (xy)2 x y3a2 + tan (xy)2 x y3b3 + tan (xy)2 y4a3 + tan (xy)2 x y2b1 + tan (xy)2 y3a1 − x2y2b2 + x y3a2 + x y3b3 + 3y4a3 − 4 tan (xy)xyb2 − tan (xy) y2a2 − tan (xy) y2b3 + 2y3a1 − tan (xy)2 b2 − 2 tan (xy) yb1
(xy + tan (xy))2

= 0

Setting the numerator to zero gives

(6E)
− tan (xy)2 x2y2b2 − tan (xy)2 x y3a2 − tan (xy)2 x y3b3
− tan (xy)2 y4a3 − tan (xy)2 x y2b1 − tan (xy)2 y3a1 + x2y2b2
− x y3a2 − x y3b3 − 3y4a3 + 4 tan (xy)xyb2 + tan (xy) y2a2
+ tan (xy) y2b3 − 2y3a1 + tan (xy)2 b2 + 2 tan (xy) yb1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, tan (xy)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, tan (xy) = v3}

The above PDE (6E) now becomes

(7E)−v23v1v
3
2a2−v23v

4
2a3−v23v

2
1v

2
2b2−v23v1v

3
2b3−v23v

3
2a1−v23v1v

2
2b1−v1v

3
2a2−3v42a3

+ v21v
2
2b2 − v1v

3
2b3 − 2v32a1 + v3v

2
2a2 + 4v3v1v2b2 + v3v

2
2b3 + 2v3v2b1 + v23b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v23v
2
1v

2
2b2+v21v

2
2b2+(−a2−b3) v1v32v23+(−a2−b3) v1v32−v23v1v

2
2b1+4v3v1v2b2

− v23v
4
2a3 − 3v42a3 − v23v

3
2a1 − 2v32a1 + (a2 + b3) v22v3 + 2v3v2b1 + v23b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−2a1 = 0
−a1 = 0
−3a3 = 0
−a3 = 0
−b1 = 0
2b1 = 0
−b2 = 0
4b2 = 0

−a2 − b3 = 0
a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy + tan (xy)

)
(−x)

= tan (xy) y
xy + tan (xy)

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

tan(xy)y
xy+tan(xy)

dy

Which results in

S = ln (sin (xy)) + ln (xy)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy + tan (xy)

396



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = cot (xy) y + 1
x

Sy = cot (xy)x+ 1
y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy+tan(xy)
dS
dR

= 1
R

R = x

S = ln (sin (xy)) + ln (x) + ln (y)
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Summary
The solution(s) found are the following

(1)ln (sin (yx)) + ln (x) + ln (y) = ln (x) + c1

Figure 75: Slope field plot

Verification of solutions

ln (sin (yx)) + ln (x) + ln (y) = ln (x) + c1

Verified OK.

1.46.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(xy + tan (xy)) dy =
(
−y2

)
dx(

y2
)
dx+(xy + tan (xy)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = xy + tan (xy)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And

∂N

∂x
= ∂

∂x
(xy + tan (xy))

= y
(
1 + sec (xy)2

)
Since ∂M

∂y
6= ∂N

∂x
, then the ODE is not exact. Since the ODE is not exact, we will try to

find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + tan (xy)
(
(2y)−

(
y + y

(
1 + tan (xy)2

)))
= − y tan (xy)2

xy + tan (xy)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2
((
y + y

(
1 + tan (xy)2

))
− (2y)

)
= tan (xy)2

y

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(
y + y

(
1 + tan (xy)2

))
− (2y)

x (y2)− y (xy + tan (xy))
= − tan (xy)

Replacing all powers of terms xy by t gives

R = − tan (t)
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Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫
(− tan(t)) dt

The result of integrating gives

µ = eln(cos(t))

= cos (t)

Now t is replaced back with xy giving

µ = cos (xy)

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= cos (xy)
(
y2
)

= y2 cos (xy)

And

N = µN

= cos (xy) (xy + tan (xy))
= y cos (xy)x+ sin (xy)

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

y2 cos (xy)
)
+ (y cos (xy)x+ sin (xy)) dydx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2 cos (xy) dx

(3)φ = y sin (xy) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y cos (xy)x+ sin (xy) + f ′(y)

But equation (2) says that ∂φ
∂y

= y cos (xy)x+sin (xy). Therefore equation (4) becomes

(5)y cos (xy)x+ sin (xy) = y cos (xy)x+ sin (xy) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y sin (xy) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y sin (xy)

Summary
The solution(s) found are the following

(1)y sin (yx) = c1
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Figure 76: Slope field plot

Verification of solutions

y sin (yx) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 18� �
dsolve((y(x)^2)+(x*y(x)+tan(x*y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = RootOf (_Zc1 sin (_Z)− x)
x

3 Solution by Mathematica
Time used: 0.271 (sec). Leaf size: 14� �
DSolve[(y[x]^2)+(x*y[x]+Tan[x*y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve[y(x) sin(xy(x)) = c1, y(x)]
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1.47 problem 48
Internal problem ID [3192]
Internal file name [OUTPUT/2684_Sunday_June_05_2022_08_38_45_AM_41111291/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 48.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

2y4x− y +
(
4y3x3 − x

)
y′ = 0

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = -3*y(x)/x+(-16*x+6)*y(x)^2+(-48*x^3+24*x^2)*y(x)^3
trying to solve the Abel ODE ...
Looking for potential symmetries
Looking for potential symmetries
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
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7 Solution by Maple� �
dsolve((2*x*y(x)^4-y(x))+(4*x^3*y(x)^3-x)*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(2*x*y[x]^4-y[x])+(4*x^3*y[x]^3-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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1.48 problem 49
Internal problem ID [3193]
Internal file name [OUTPUT/2685_Sunday_June_05_2022_08_38_47_AM_81204172/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 49.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_rational]

Unable to solve or complete the solution.

y3 + y +
(
x3 + y2 − x

)
y′ = −x2

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`� �
7 Solution by Maple� �
dsolve((x^2+y(x)^3+y(x))+( x^3+y(x)^2-x )*diff(y(x),x)=0,y(x), singsol=all)� �

No solution found
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7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(x^2+y[x]^3+y[x])+( x^3+y[x]^2-x )*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
Not solved
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1.49 problem 50
1.49.1 Solving as first order ode lie symmetry calculated ode . . . . . . 411

Internal problem ID [3194]
Internal file name [OUTPUT/2686_Sunday_June_05_2022_08_38_47_AM_79769673/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[_rational , [_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

y
(
y2 + 1

)
+ x
(
y2 − x+ 1

)
y′ = 0

1.49.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(y2 + 1)
x (y2 − x+ 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

(1E)ξ = x3a7 + x2ya8 + x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x3b7 + x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)3x2b7 + 2xyb8 + y2b9 + 2xb4 + yb5 + b2

− y(y2 + 1) (−3x2a7 + x2b8 − 2xya8 + 2xyb9 − y2a9 + 3y2b10 − 2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)
x (y2 − x+ 1)

− y2(y2 + 1)2 (x2a8 + 2xya9 + 3y2a10 + xa5 + 2ya6 + a3)
x2 (y2 − x+ 1)2

−
(

y(y2 + 1)
x2 (y2 − x+ 1) −

y(y2 + 1)
x (y2 − x+ 1)2

)(
x3a7 + x2ya8

+ x y2a9 + y3a10 + x2a4 + xya5 + y2a6 + xa2 + ya3 + a1
)

−
(
− y2 + 1
x (y2 − x+ 1) −

2y2
x (y2 − x+ 1) +

2y2(y2 + 1)
x (y2 − x+ 1)2

)(
x3b7

+ x2yb8 + x y2b9 + y3b10 + x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1
)
= 0

Putting the above in normal form gives

x2y5a9 + 4x3y3a7 − 4x y5a9 − 4x y5b10 − x4ya7 + x2y3a9 + 2x2y3b10 + 2x3ya7 − 2x y3a9 − 2x y3b10 + 2x y6a10 + 2x y4a10 + 3x3y4b4 + x2y5a4 + x2y5b5 + 2b2x2 − 2y2a3 + 2x2y4b2 − 5x3y2b2 + x2y3a2 − 2x2y3b3 + 2x y4a3 + x y4b1 − 3x2y2b1 + 4x2y2b2 + 2x y3a1 + x2ya2 + 2x y2a3 + 2x y2b1 + 2xya1 + 3x6b7 − 7x5b7 − 4y8a10 − 8y6a10 − 4y4a10 + 2x3yb8 + yb5x
2 + 4x4b7 + 4x4y4b7 − 9x5y2b7 + 8x4y2b7 + 2x3y5b8 − 6x4y3b8 + 2x5yb8 + 4x3y3b8 − 4x4yb8 − 3x3y4b9 + x4y2b9 − x3y2b9 + 2x3y5a7 − 2x y7a9 − 2x y7b10 − x4y3a7 − 2y6a3 − y5a1 + x4b2 − 4y4a3 − 3x3b2 − 2y3a1 − x2b1 + xb1 − x y2b6 − 6y5a6 − 5x4b4 − 3y3a6 − 3y7a6 + 2x5b4 − 4x3y3b5 + x2y4a5 − x2y4b6 + 2x y5a6 + x2y2b6 + 2x y3a6 + x2ya4 − x y2a5 + x4yb5 + 6x3y2b4 + 2x2y3a4 + 2x2y3b5 − x y6a5 − x y6b6 − 7x4y2b4 + 3x3b4 − 2x y4a5 − 2x y4b6 − 2x3yb5 + x2y2a5 − ya1

x2 (−y2 + x− 1)2
= 0

Setting the numerator to zero gives

(6E)

x2y5a9+4x3y3a7−4x y5a9−4x y5b10−x4ya7+x2y3a9+2x2y3b10
+ 2x3ya7 − 2x y3a9 − 2x y3b10 + 2x y6a10 + 2x y4a10 + 3x3y4b4
+ x2y5a4 + x2y5b5 + 2b2x2 − 2y2a3 + 2x2y4b2 − 5x3y2b2 + x2y3a2
− 2x2y3b3 + 2x y4a3 + x y4b1 − 3x2y2b1 + 4x2y2b2 + 2x y3a1
+ x2ya2 + 2x y2a3 + 2x y2b1 + 2xya1 + 3x6b7 − 7x5b7 − 4y8a10
− 8y6a10 − 4y4a10 + 2x3yb8 + yb5x

2 + 4x4b7 + 4x4y4b7 − 9x5y2b7
+ 8x4y2b7 + 2x3y5b8 − 6x4y3b8 + 2x5yb8 + 4x3y3b8 − 4x4yb8
− 3x3y4b9 + x4y2b9 − x3y2b9 + 2x3y5a7 − 2x y7a9 − 2x y7b10
− x4y3a7 − 2y6a3 − y5a1 + x4b2 − 4y4a3 − 3x3b2 − 2y3a1 − x2b1
+xb1−x y2b6− 6y5a6− 5x4b4− 3y3a6− 3y7a6+2x5b4− 4x3y3b5
+ x2y4a5 − x2y4b6 + 2x y5a6 + x2y2b6 + 2x y3a6 + x2ya4 − x y2a5
+x4yb5+6x3y2b4+2x2y3a4+2x2y3b5−x y6a5−x y6b6−7x4y2b4
+ 3x3b4 − 2x y4a5 − 2x y4b6 − 2x3yb5 + x2y2a5 − ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

2b2v21 − 2v22a3+3v61b7− 7v51b7− 4v82a10− 8v62a10− 4v42a10+4v41b7
−2v62a3−v52a1+v41b2−4v42a3−3v31b2−2v32a1−v21b1+v1b1−6v52a6
−5v41b4−3v32a6−3v72a6+2v51b4+3v31b4−v2a1+v21v

5
2a9+4v31v32a7

− 4v1v52a9 − 4v1v52b10 − v41v2a7 + v21v
3
2a9 + 2v21v32b10 + 2v31v2a7

− 2v1v32a9 − 2v1v32b10 + 2v1v62a10 + 2v1v42a10 + 3v31v42b4 + v21v
5
2a4

+v21v
5
2b5+2v21v42b2−5v31v22b2+v21v

3
2a2−2v21v32b3+2v1v42a3+v1v

4
2b1

− 3v21v22b1 + 4v21v22b2 + 2v1v32a1 − 2v1v72a9 − 2v1v72b10 − v41v
3
2a7

−v1v
2
2b6−4v31v32b5+v21v

4
2a5−v21v

4
2b6+2v1v52a6+v21v

2
2b6+2v1v32a6

+v21v2a4−v1v
2
2a5+v41v2b5+6v31v22b4+2v21v32a4+2v21v32b5−v1v

6
2a5

− v1v
6
2b6 − 7v41v22b4 − 2v1v42a5 − 2v1v42b6 − 2v31v2b5 + v21v

2
2a5

+ v21v2a2 + 2v1v22a3 + 2v1v22b1 + 2v1v2a1 + 2v31v2b8 + v2b5v
2
1

+ 4v41v42b7 − 9v51v22b7 + 8v41v22b7 + 2v31v52b8 − 6v41v32b8 + 2v51v2b8
+ 4v31v32b8 − 4v41v2b8 − 3v31v42b9 + v41v

2
2b9 − v31v

2
2b9 + 2v31v52a7 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

−2v22a3 + 3v61b7 − 4v82a10 + v1b1 − 3v72a6 − v2a1 + (a9 + 2b10 + a2 − 2b3 + 2a4 + 2b5) v32v21
+ (2a7 − 2b5 + 2b8) v2v31 + (−2a9 − 2b10 + 2a1 + 2a6) v32v1 + (2a10 − a5 − b6) v62v1
+ (2a10 + 2a3 + b1 − 2a5 − 2b6) v42v1 + (3b4 − 3b9) v42v31 + (a5 + 2b2 − b6) v42v21
+ (−5b2 + 6b4 − b9) v22v31 + (a5 − 3b1 + 4b2 + b6) v22v21 + (−2a9 − 2b10) v72v1
+(−a7−6b8) v32v41 +(a9+a4+ b5) v52v21 +(4a7−4b5+4b8) v32v31 +(−4a9−4b10+2a6) v52v1
+ (−a7 + b5 − 4b8) v2v41 + (2a3 − a5 + 2b1 − b6) v22v1 + (a2 + a4 + b5) v2v21
+ (−7b4 + 8b7 + b9) v22v41 + (2b8 + 2a7) v52v31 + (−3b2 + 3b4) v31 + (−2a1 − 3a6) v32
+ (−b1 + 2b2) v21 + (−7b7 + 2b4) v51 + (−8a10 − 2a3) v62 + (−4a10 − 4a3) v42
+ (4b7 + b2 − 5b4) v41 + (−a1 − 6a6) v52 + 2v1v2a1 + 4v41v42b7 − 9v51v22b7 + 2v51v2b8 = 0

(8E)
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Setting each coefficients in (8E) to zero gives the following equations to solve
b1 = 0

−a1 = 0
2a1 = 0

−2a3 = 0
−3a6 = 0
−4a10 = 0
−9b7 = 0
3b7 = 0
4b7 = 0
2b8 = 0

−2a1 − 3a6 = 0
−a1 − 6a6 = 0
−a7 − 6b8 = 0

−2a9 − 2b10 = 0
−8a10 − 2a3 = 0
−4a10 − 4a3 = 0

−b1 + 2b2 = 0
−3b2 + 3b4 = 0
3b4 − 3b9 = 0

−7b7 + 2b4 = 0
2b8 + 2a7 = 0

a2 + a4 + b5 = 0
a5 + 2b2 − b6 = 0

−a7 + b5 − 4b8 = 0
2a7 − 2b5 + 2b8 = 0
4a7 − 4b5 + 4b8 = 0

−4a9 − 4b10 + 2a6 = 0
a9 + a4 + b5 = 0

2a10 − a5 − b6 = 0
−5b2 + 6b4 − b9 = 0
−7b4 + 8b7 + b9 = 0
4b7 + b2 − 5b4 = 0

2a3 − a5 + 2b1 − b6 = 0
a5 − 3b1 + 4b2 + b6 = 0

−2a9 − 2b10 + 2a1 + 2a6 = 0
2a10 + 2a3 + b1 − 2a5 − 2b6 = 0

a9 + 2b10 + a2 − 2b3 + 2a4 + 2b5 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b10

a3 = 0
a4 = b10

a5 = 0
a6 = 0
a7 = 0
a8 = a8

a9 = −b10

a10 = 0
b1 = 0
b2 = 0
b3 = b10

b4 = 0
b5 = 0
b6 = 0
b7 = 0
b8 = 0
b9 = 0
b10 = b10

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x2y

η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(
− y(y2 + 1)
x (y2 − x+ 1)

)(
x2y
)

= −y4x− x y2

−y2 + x− 1
ξ = 0

415



The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y4x−x y2

−y2+x−1

dy

Which results in

S = arctan (y) + 1
y
− 1

xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(y2 + 1)
x (y2 − x+ 1)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
x2y

Sy =
y2 − x+ 1
y2 (y2 + 1)x
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

arctan (y)xy + x− 1
xy

= c1

Which simplifies to
arctan (y)xy + x− 1

xy
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
(
y2+1

)
x(y2−x+1)

dS
dR

= 0

R = x

S = arctan (y)xy + x− 1
xy
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Summary
The solution(s) found are the following

(1)arctan (y)xy + x− 1
xy

= c1

Figure 77: Slope field plot

Verification of solutions

arctan (y)xy + x− 1
xy

= c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
equivalence obtained to this Abel ODE: diff(y(x),x) = 2/x/(x-1)*y(x)+(2+x)/(x-1)^2/x*y(x)^2+2/(x-1)^3*y(x)^3
trying to solve the Abel ODE ...
<- Abel successful
equivalence to an Abel ODE successful, Abel ODE has been solved`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 138� �
dsolve((y(x)*(y(x)^2+1))+( x*(y(x)^2-x+1))*diff(y(x),x)=0,y(x), singsol=all)� �

−

arctanh


√

x2y(x)2

(x−1)
(
y(x)2−x+1

) (x−1)√
x−1

x−1−y(x)2
x

− c1

√ x2y(x)2

(x−1)
(
y(x)2−x+1

) −
√

2x−2
x−1−y(x)2

√
2

2√
x2y(x)2

(x−1)
(
y(x)2−x+1

) = 0

3 Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 34� �
DSolve[(y[x]*(y[x]^2+1))+( x*(y[x]^2-x+1))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
1
2

(
− arctan(y(x))− 1

y(x)

)
+ 1

2xy(x) = c1, y(x)
]
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1.50 problem 51
1.50.1 Solving as first order ode lie symmetry calculated ode . . . . . . 420

Internal problem ID [3195]
Internal file name [OUTPUT/2687_Sunday_June_05_2022_08_38_48_AM_23160464/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], [_Abel , `2nd type `, `

class A`]]

y2 + (−y + ex) y′ = 0

1.50.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

−y + ex
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
−y + ex − y4a3

(−y + ex)2
− y2ex(xa2 + ya3 + a1)

(−y + ex)2

−
(
− 2y
−y + ex − y2

(−y + ex)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−exx y2a2 − exy3a3 − y4a3 + 2 exxyb2 − exy2a1 + exy2a2 + exy2b3 − x y2b2 − y3a2 + e2xb2 + 2 exyb1 − 2 exyb2 − y2b1 + y2b2

(−y + ex)2
= 0

Setting the numerator to zero gives

(6E)−exx y2a2 − exy3a3 − y4a3 + 2 exxyb2 − exy2a1 + exy2a2 + exy2b3
− x y2b2 − y3a2 + e2xb2 + 2 exyb1 − 2 exyb2 − y2b1 + y2b2 = 0

Simplifying the above gives

(6E)−exx y2a2 − exy3a3 − y4a3 + 2 exxyb2 − exy2a1 + exy2a2 + exy2b3
− x y2b2 − y3a2 + e2xb2 + 2 exyb1 − 2 exyb2 − y2b1 + y2b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ex, e2x}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ex = v3, e2x = v4}

The above PDE (6E) now becomes

(7E)−v3v1v
2
2a2 − v42a3 − v3v

3
2a3 − v3v

2
2a1 − v32a2 + v3v

2
2a2 − v1v

2
2b2

+ 2v3v1v2b2 + v3v
2
2b3 − v22b1 + 2v3v2b1 + v22b2 − 2v3v2b2 + v4b2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)−v3v1v
2
2a2 − v1v

2
2b2 + 2v3v1v2b2 − v42a3 − v3v

3
2a3 − v32a2

+ (−a1 + a2 + b3) v22v3 + (−b1 + b2) v22 + (2b1 − 2b2) v2v3 + v4b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−a2 = 0
−a3 = 0
−b2 = 0
2b2 = 0

−b1 + b2 = 0
2b1 − 2b2 = 0

−a1 + a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = b3

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

−y + ex

)
(1)

= y ex
−y + ex

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y ex
−y+ex

dy

Which results in

S = ln (y)− e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

−y + ex
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = e−xy

Sy =
−e−xy + 1

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y)− e−xy = c1

Which simplifies to

ln (y)− e−xy = c1

Which gives

y = e−LambertW
(
−e−x+c1

)
+c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

−y+ex
dS
dR

= 0

R = x

S = ln (y)− e−xy

Summary
The solution(s) found are the following

(1)y = e−LambertW
(
−e−x+c1

)
+c1

425



Figure 78: Slope field plot

Verification of solutions

y = e−LambertW
(
−e−x+c1

)
+c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful`� �
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3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 16� �
dsolve((y(x)^2)+( exp(x)-y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −ex LambertW
(
−e−xc1

)
3 Solution by Mathematica
Time used: 6.706 (sec). Leaf size: 306� �
DSolve[(y[x]^2)+( Exp[x]-y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

1922/3

(

ex− 3e2x
ex−y(x)

3√
e3x

+ 2
)(

ex(y(x)+2ex)
3√
e3x(ex−y(x))

+ 1
)((

ex− 3e2x
ex−y(x)

3√
e3x

− 1
)
log
(
22/3

(
ex− 3e2x

ex−y(x)
3√
e3x

+ 2
))

+
(

ex(y(x)+2ex)
3√
e3x(ex−y(x))

+ 1
)
log
(
22/3

(
ex(y(x)+2ex)

3√
e3x(ex−y(x))

+ 1
))

− 3
)

(y(x)+2ex)3

(ex−y(x))3 − 3ex(y(x)+2ex)
3√
e3x(ex−y(x))

− 2
+e−2x(e3x)2/3 x

= c1, y(x)


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1.51 problem 52
1.51.1 Solving as first order ode lie symmetry calculated ode . . . . . . 428

Internal problem ID [3196]
Internal file name [OUTPUT/2688_Sunday_June_05_2022_08_38_48_AM_12918249/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 52.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y2x2 − 2y +
(
yx3 − x

)
y′ = 0

1.51.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y(x2y − 2)
x (x2y − 1)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(x2y − 2) (b3 − a2)

x (x2y − 1) − y2(x2y − 2)2 a3
x2 (x2y − 1)2

−
(
− 2y2
x2y − 1 + y(x2y − 2)

x2 (x2y − 1) +
2y2(x2y − 2)
(x2y − 1)2

)
(xa2 + ya3 + a1)

−
(
− x2y − 2
x (x2y − 1) −

yx

x2y − 1 + y(x2y − 2)x
(x2y − 1)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x6y2b2 − 2x4y4a3 + x5y2b1 − x4y3a1 − 4x4yb2 + 2x3y2a2 + x3y2b3 + 9x2y3a3 − 2x3yb1 + 5x2y2a1 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1
(x2y − 1)2 x2

= 0

Setting the numerator to zero gives

(6E)2x6y2b2 − 2x4y4a3 + x5y2b1 − x4y3a1 − 4x4yb2 + 2x3y2a2 + x3y2b3
+ 9x2y3a3 − 2x3yb1 + 5x2y2a1 + 3b2x2 − 6y2a3 + 2xb1 − 2ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v41v42 + 2b2v61v22 − a1v
4
1v

3
2 + b1v

5
1v

2
2 + 2a2v31v22 + 9a3v21v32 − 4b2v41v2

+ b3v
3
1v

2
2 + 5a1v21v22 − 2b1v31v2 − 6a3v22 + 3b2v21 − 2a1v2 + 2b1v1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)2b2v61v22 + b1v
5
1v

2
2 − 2a3v41v42 − a1v

4
1v

3
2 − 4b2v41v2 + (2a2 + b3) v31v22

− 2b1v31v2 + 9a3v21v32 + 5a1v21v22 + 3b2v21 + 2b1v1 − 6a3v22 − 2a1v2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
−2a1 = 0
−a1 = 0
5a1 = 0

−6a3 = 0
−2a3 = 0
9a3 = 0

−2b1 = 0
2b1 = 0

−4b2 = 0
2b2 = 0
3b2 = 0

2a2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −2y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −2y −
(
− y(x2y − 2)
x (x2y − 1)

)
(x)

= − y2x2

x2y − 1
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2x2

x2y−1

dy

Which results in

S = − 1
x2y

− ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y(x2y − 2)
x (x2y − 1)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 2
x3y

Sy =
−x2y + 1

y2x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (y)x2y − 1
x2y

= ln (x) + c1

Which simplifies to

− ln (y)x2y − 1
x2y

= ln (x) + c1

Which gives

y = − 1
x2 LambertW

(
− ec1

x

)
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
x2y−2

)
x(x2y−1)

dS
dR

= 1
R

R = x

S = − ln (y)x2y − 1
x2y

Summary
The solution(s) found are the following

(1)y = − 1
x2 LambertW

(
− ec1

x

)
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Figure 79: Slope field plot

Verification of solutions

y = − 1
x2 LambertW

(
− ec1

x

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 18� �
dsolve((x^2*y(x)^2-2*y(x))+( x^3*y(x)-x)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = − 1
LambertW

(
− c1

x

)
x2

3 Solution by Mathematica
Time used: 6.74 (sec). Leaf size: 35� �
DSolve[(x^2*y[x]^2-2*y[x])+( x^3*y[x]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − 1

x2W

(
e
−1+ 9c1

22/3

x

)
y(x) → 0
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1.52 problem 53
1.52.1 Solving as first order ode lie symmetry calculated ode . . . . . . 436

Internal problem ID [3197]
Internal file name [OUTPUT/2689_Sunday_June_05_2022_08_38_48_AM_50370268/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 53.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

2yx3 + y3 −
(
x4 + 2y2x

)
y′ = 0

1.52.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y(2x3 + y2)
x (x3 + 2y2)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
y(2x3 + y2) (b3 − a2)

x (x3 + 2y2) − y2(2x3 + y2)2 a3
x2 (x3 + 2y2)2

−
(

6yx
x3 + 2y2 − y(2x3 + y2)

x2 (x3 + 2y2) −
3y(2x3 + y2)x
(x3 + 2y2)2

)
(xa2 + ya3 + a1)

−
(

2x3 + y2

x (x3 + 2y2) +
2y2

x (x3 + 2y2) −
4y2(2x3 + y2)
x (x3 + 2y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x8b2 + 2x6y2a3 + 2x7b1 − 2x6ya1 − 5x5y2b2 + 9x4y3a2 − 6x4y3b3 + 8x3y4a3 − x4y2b1 + 4x3y3a1 − 2x2y4b2 − y6a3 + 2x y4b1 − 2y5a1
(x3 + 2y2)2 x2

= 0

Setting the numerator to zero gives

(6E)−x8b2 − 2x6y2a3 − 2x7b1 + 2x6ya1 + 5x5y2b2 − 9x4y3a2 + 6x4y3b3
− 8x3y4a3 + x4y2b1 − 4x3y3a1 + 2x2y4b2 + y6a3 − 2x y4b1 + 2y5a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−2a3v61v22 − b2v
8
1 + 2a1v61v2 − 9a2v41v32 − 8a3v31v42 − 2b1v71 + 5b2v51v22

+ 6b3v41v32 − 4a1v31v32 + a3v
6
2 + b1v

4
1v

2
2 + 2b2v21v42 + 2a1v52 − 2b1v1v42 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−b2v
8
1 − 2b1v71 − 2a3v61v22 + 2a1v61v2 + 5b2v51v22 + (−9a2 + 6b3) v41v32

+ b1v
4
1v

2
2 − 8a3v31v42 − 4a1v31v32 + 2b2v21v42 − 2b1v1v42 + a3v

6
2 + 2a1v52 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a3 = 0
b1 = 0

−4a1 = 0
2a1 = 0

−8a3 = 0
−2a3 = 0
−2b1 = 0
−b2 = 0
2b2 = 0
5b2 = 0

−9a2 + 6b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0

b3 =
3a2
2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
2
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y
2 −

(
y(2x3 + y2)
x (x3 + 2y2)

)
(x)

= −x3y + 4y3
2x3 + 4y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3y+4y3
2x3+4y2

dy

Which results in

S = 3 ln (−x3 + 4y2)
2 − 2 ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y(2x3 + y2)
x (x3 + 2y2)

439



Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 9x2

2x3 − 8y2

Sy = − 12y
x3 − 4y2 − 2

y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (−x3 + 4y2)
2 − 2 ln (y) = ln (x)

2 + c1

Which simplifies to

3 ln (−x3 + 4y2)
2 − 2 ln (y) = ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
(
2x3+y2

)
x(x3+2y2)

dS
dR

= 1
2R

R = x

S = 3 ln (−x3 + 4y2)
2 − 2 ln (y)

Summary
The solution(s) found are the following

(1)3 ln (−x3 + 4y2)
2 − 2 ln (y) = ln (x)

2 + c1
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Figure 80: Slope field plot

Verification of solutions

3 ln (−x3 + 4y2)
2 − 2 ln (y) = ln (x)

2 + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 1.281 (sec). Leaf size: 149� �
dsolve((2*x^3*y(x)+y(x)^3)-( x^4+2*x*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

=
−x

3
2 RootOf

(
−16 + x7c1_Z12 − 4c1x

11
2 _Z10 + 6c1x4_Z8 +

(
128x 9

2 − 4x 5
2 c1
)
_Z6 + (−192x3 + c1x)_Z4 + 96x 3

2_Z2
)2

+ 1

2RootOf
(
−16 + x7c1_Z12 − 4c1x

11
2 _Z10 + 6c1x4_Z8 +

(
128x 9

2 − 4x 5
2 c1
)
_Z6 + (−192x3 + c1x)_Z4 + 96x 3

2_Z2
)2
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3 Solution by Mathematica
Time used: 60.151 (sec). Leaf size: 2023� �
DSolve[(2*x^3*y[x]+y[x]^3)-( x^4+2*x*y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x) →

−

√√√√√48x3 + e4c1x2

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√
−e4c1x12 (−108x2 + e2c1)

+ 3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1) + e2c1

−x− 96x4

3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√
−e4c1x12 (−108x2 + e2c1)


8
√
3

y(x)

→

√√√√√48x3 + e4c1x2

3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√
−e4c1x12 (−108x2 + e2c1)

+ 3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1) + e2c1

−x− 96x4

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)


8
√
3

y(x) →

−

√√√√√√ i
(√

3+i
)
e4c1x2+96x3

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)−2e2c1x

48i
(√

3+i
)
x3+

3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√

−e4c1x12 (−108x2 + e2c1)
+

(
−1−i

√
3
)(

−3456e2c1x7+144e4c1x5−e6c1x3+192
√
3
√

−e4c1x12
(
−108x2+e2c1

))2/3
3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√
−e4c1x12 (−108x2 + e2c1)

8
√
6

y(x)

→

√√√√√√ i
(√

3+i
)
e4c1x2+96x3

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)−2e2c1x

48i
(√

3+i
)
x3+

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)
+

(
−1−i

√
3
)(

−3456e2c1x7+144e4c1x5−e6c1x3+192
√
3
√

−e4c1x12
(
−108x2+e2c1

))2/3
3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)

8
√
6

y(x) →

−

√√√√√√−i
(√

3−i
)
e4c1x2+96x3

3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√

−e4c1x12 (−108x2 + e2c1)+i
(√

3+i
)(

−3456e2c1x7+144e4c1x5−e6c1x3+192
√
3
√

−e4c1x12
(
−108x2+e2c1

))2/3+e2c1

96
(
1+i

√
3
)
x4−2x

3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√

−e4c1x12 (−108x2 + e2c1)


3
√
−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192

√
3
√
−e4c1x12 (−108x2 + e2c1)

8
√
6

y(x)

→

√√√√√√−i
(√

3−i
)
e4c1x2+96x3

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)+i
(√

3+i
)(

−3456e2c1x7+144e4c1x5−e6c1x3+192
√
3
√

−e4c1x12
(
−108x2+e2c1

))2/3+e2c1

96
(
1+i

√
3
)
x4−2x

3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√
−e4c1x12 (−108x2 + e2c1)


3
√

−3456e2c1x7 + 144e4c1x5 − e6c1x3 + 192
√
3
√

−e4c1x12 (−108x2 + e2c1)

8
√
6
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1.53 problem 54
1.53.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 445
1.53.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 447

Internal problem ID [3198]
Internal file name [OUTPUT/2690_Sunday_June_05_2022_08_38_51_AM_15825738/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 54.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

cos (x) y − y′ sin (x) = −1

1.53.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − cot (x)
q(x) = csc (x)

Hence the ode is

y′ − y cot (x) = csc (x)

The integrating factor µ is

µ = e
∫
− cot(x)dx

= 1
sin (x)
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Which simplifies to
µ = csc (x)

The ode becomes

d
dx(µy) = (µ) (csc (x))

d
dx(csc (x) y) = (csc (x)) (csc (x))

d(csc (x) y) = csc (x)2 dx

Integrating gives

csc (x) y =
∫

csc (x)2 dx

csc (x) y = − cot (x) + c1

Dividing both sides by the integrating factor µ = csc (x) results in

y = − cot (x) sin (x) + c1 sin (x)

which simplifies to

y = c1 sin (x)− cos (x)

Summary
The solution(s) found are the following

(1)y = c1 sin (x)− cos (x)
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Figure 81: Slope field plot

Verification of solutions

y = c1 sin (x)− cos (x)

Verified OK.

1.53.2 Maple step by step solution

Let’s solve
cos (x) y − y′ sin (x) = −1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = cos(x)y

sin(x) + 1
sin(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − cos(x)y

sin(x) = 1
sin(x)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − cos(x)y

sin(x)

)
= µ(x)

sin(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − cos(x)y

sin(x)

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x) cos(x)

sin(x)

• Solve to find the integrating factor
µ(x) = 1

sin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
sin(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
sin(x)dx+ c1

• Solve for y

y =
∫ µ(x)

sin(x)dx+c1

µ(x)

• Substitute µ(x) = 1
sin(x)

y = sin (x)
(∫ 1

sin(x)2dx+ c1
)

• Evaluate the integrals on the rhs
y = sin (x) (− cot (x) + c1)

• Simplify
y = c1 sin (x)− cos (x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
dsolve((1+y(x)*cos(x))-( sin(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1 sin (x)− cos (x)

3 Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 15� �
DSolve[(1+y[x]*Cos[x])-( Sin[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − cos(x) + c1 sin(x)
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1.54 problem 55
1.54.1 Solving as quadrature ode . . . . . . . . . . . . . . . . . . . . . 450
1.54.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 451

Internal problem ID [3199]
Internal file name [OUTPUT/2691_Sunday_June_05_2022_08_38_51_AM_59993157/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 55.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

(
sin (y)2 + x cot (y)

)
y′ = 0

1.54.1 Solving as quadrature ode

Integrating both sides gives

y =
∫

0 dx

= c1

Summary
The solution(s) found are the following

(1)y = c1
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Figure 82: Slope field plot

Verification of solutions
y = c1

Verified OK.

1.54.2 Maple step by step solution

Let’s solve(
sin (y)2 + x cot (y)

)
y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
sin (y)2 + x cot (y)

)
y′dx =

∫
0dx+ c1

• Cannot compute integral∫ (
sin (y)2 + x cot (y)

)
y′dx = c1
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 1635� �
dsolve((sin(y(x))^2+x*cot(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

= arctan
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y(x) = c1

3 Solution by Mathematica
Time used: 0.249 (sec). Leaf size: 1647� �
DSolve[(Sin[y[x]]^2+x*Cot[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
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1.55 problem 56
1.55.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 454
1.55.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 456

Internal problem ID [3200]
Internal file name [OUTPUT/2692_Sunday_June_05_2022_08_38_53_AM_37364604/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 56.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

−(y − 2yx) y′ = −1

1.55.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − 1
y (2x− 1)

Where f(x) = − 1
2x−1 and g(y) = 1

y
. Integrating both sides gives

1
1
y

dy = − 1
2x− 1 dx

∫ 1
1
y

dy =
∫

− 1
2x− 1 dx

y2

2 = − ln (2x− 1)
2 + c1
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Which results in
y =

√
− ln (2x− 1) + 2c1

y = −
√
− ln (2x− 1) + 2c1

Summary
The solution(s) found are the following

(1)y =
√

− ln (2x− 1) + 2c1
(2)y = −

√
− ln (2x− 1) + 2c1

Figure 83: Slope field plot

Verification of solutions

y =
√

− ln (2x− 1) + 2c1

Verified OK.

y = −
√
− ln (2x− 1) + 2c1

Verified OK.
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1.55.2 Maple step by step solution

Let’s solve
−(y − 2yx) y′ = −1

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
yy′ = − 1

2x−1

• Integrate both sides with respect to x∫
yy′dx =

∫
− 1

2x−1dx+ c1

• Evaluate integral
y2

2 = − ln(2x−1)
2 + c1

• Solve for y{
y =

√
− ln (2x− 1) + 2c1, y = −

√
− ln (2x− 1) + 2c1

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 33� �
dsolve(1-(y(x)-2*x*y(x))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√

− ln (2x− 1) + c1

y(x) = −
√
− ln (2x− 1) + c1
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3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 45� �
DSolve[1-(y[x]-2*x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√

− log(1− 2x) + 2c1
y(x) →

√
− log(1− 2x) + 2c1
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1.56 problem 57
1.56.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 458

Internal problem ID [3201]
Internal file name [OUTPUT/2693_Sunday_June_05_2022_08_38_54_AM_62708748/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 57.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

−(1 + 2x tan (y)) y′ = −1

1.56.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−1− 2x tan (y)) dy = (−1) dx
(1) dx+(−1− 2x tan (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1
N(x, y) = −1− 2x tan (y)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(1)

= 0

And

∂N

∂x
= ∂

∂x
(−1− 2x tan (y))

= −2 tan (y)
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−1− 2x tan (y)((0)− (−2 tan (y)))

= − 2 tan (y)
1 + 2x tan (y)

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1((−2 tan (y))− (0))
= −2 tan (y)

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
−2 tan(y) dy

The result of integrating gives

µ = e2 ln(cos(y))

= cos (y)2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= cos (y)2 (1)
= cos (y)2

And

N = µN

= cos (y)2 (−1− 2x tan (y))
= (−1− 2x tan (y)) cos (y)2
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

cos (y)2
)
+
(
(−1− 2x tan (y)) cos (y)2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
cos (y)2 dx

(3)φ = x cos (y)2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −2 sin (y) cos (y)x+ f ′(y)

But equation (2) says that ∂φ
∂y

= (−1− 2x tan (y)) cos (y)2. Therefore equation (4)
becomes

(5)(−1− 2x tan (y)) cos (y)2 = −x sin (2y) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −2 cos (y)2 x tan (y)− cos (y)2 + x sin (2y)

= − cos (y)2
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Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
− cos (y)2

)
dy

f(y) = −cos (y) sin (y)
2 − y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x cos (y)2 − cos (y) sin (y)
2 − y

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x cos (y)2 − cos (y) sin (y)
2 − y

2

Summary
The solution(s) found are the following

(1)x cos (y)2 − cos (y) sin (y)
2 − y

2 = c1

462



Figure 84: Slope field plot

Verification of solutions

x cos (y)2 − cos (y) sin (y)
2 − y

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �

463



3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 39� �
dsolve(1-(1+2*x*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

2x cos (2y(x))− 2y(x)− sin (2y(x)) + c1 + 2x
2 cos (2y (x)) + 2 = 0

3 Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 36� �
DSolve[1-(1+2*x*Tan[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x =

(
y(x)
2 + 1

4 sin(2y(x))
)
sec2(y(x)) + c1 sec2(y(x)), y(x)

]
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1.57 problem 58
1.57.1 Solving as first order ode lie symmetry calculated ode . . . . . . 465
1.57.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 470

Internal problem ID [3202]
Internal file name [OUTPUT/2694_Sunday_June_05_2022_08_38_54_AM_98552836/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 58.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational]

(
y3 + x

y

)
y′ = 1

1.57.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y

y4 + x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
y(b3 − a2)
y4 + x

− y2a3

(y4 + x)2
+ y(xa2 + ya3 + a1)

(y4 + x)2

−
(

1
y4 + x

− 4y4

(y4 + x)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

y8b2 + 5x y4b2 − y5a2 + 4y5b3 + 3y4b1 − xb1 + ya1

(y4 + x)2
= 0

Setting the numerator to zero gives

(6E)y8b2 + 5x y4b2 − y5a2 + 4y5b3 + 3y4b1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
8
2 − a2v

5
2 + 5b2v1v42 + 4b3v52 + 3b1v42 + a1v2 − b1v1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)5b2v1v42 − b1v1 + b2v
8
2 + (−a2 + 4b3) v52 + 3b1v42 + a1v2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−b1 = 0
3b1 = 0
5b2 = 0

−a2 + 4b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 4b3
a3 = a3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(

y

y4 + x

)
(y)

= − y2

y4 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y2

y4+x

dy

Which results in

S = −y3

3 + x

y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y

y4 + x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy =
−y4 − x

y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y3

3 + x

y
= c1

Which simplifies to

−y3

3 + x

y
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y
y4+x

dS
dR

= 0

R = x

S = −y3

3 + x

y

Summary
The solution(s) found are the following

(1)−y3

3 + x

y
= c1
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Figure 85: Slope field plot

Verification of solutions

−y3

3 + x

y
= c1

Verified OK.

1.57.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y3 + x

y

)
dy = dx

− dx+
(
y3 + x

y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1

N(x, y) = y3 + x

y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−1)

= 0
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And
∂N

∂x
= ∂

∂x

(
y3 + x

y

)
= 1

y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= y

y4 + x

(
(0)−

(
1
y

))
= − 1

y4 + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= −1

((
1
y

)
− (0)

)
= −1

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y
(−1)

= −1
y
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And

N = µN

= 1
y

(
y3 + x

y

)
= y4 + x

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−1
y

)
+
(
y4 + x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
y
dx

(3)φ = −x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y4+x
y2

. Therefore equation (4) becomes

(5)y4 + x

y2
= x

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
y2
)
dy

f(y) = y3

3 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x

y
+ y3

3 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x

y
+ y3

3

Summary
The solution(s) found are the following

(1)y3

3 − x

y
= c1
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Figure 86: Slope field plot

Verification of solutions

y3

3 − x

y
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 16� �
dsolve((y(x)^3+x/y(x))*diff(y(x),x)=1,y(x), singsol=all)� �

−c1y(x) + x− y(x)4

3 = 0
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3 Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 997� �
DSolve[(y[x]^3+x/y[x])*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2

√√√√√ 3
√

9c12 −
√

256x3 + 81c14
3
√
2

− 4 3
√
2x

3
√
9c12 −

√
256x3 + 81c14

− 1
2

√√√√√√√√√
4 3
√
2x

3
√

9c12 −
√

256x3 + 81c14
−

3
√
9c12 −

√
256x3 + 81c14
3
√
2

− 6c1√√√√√ 3
√

9c12 −
√

256x3 + 81c14
3
√
2

− 4
3
√
2x

3
√
9c12 −

√
256x3 + 81c14

y(x) → 1
2

√√√√√ 3
√

9c12 −
√

256x3 + 81c14
3
√
2

− 4 3
√
2x

3
√
9c12 −

√
256x3 + 81c14

+1
2

√√√√√√√√√
4 3
√
2x

3
√

9c12 −
√

256x3 + 81c14
−

3
√
9c12 −

√
256x3 + 81c14
3
√
2

− 6c1√√√√√ 3
√
9c12 −

√
256x3 + 81c14
3
√
2

− 4
3
√
2x

3
√
9c12 −

√
256x3 + 81c14

y(x) → −1
2

√√√√√ 3
√

9c12 −
√

256x3 + 81c14
3
√
2

− 4 3
√
2x

3
√

9c12 −
√
256x3 + 81c14

− 1
2

√√√√√√√√√
4 3
√
2x

3
√

9c12 −
√

256x3 + 81c14
−

3
√
9c12 −

√
256x3 + 81c14
3
√
2

+ 6c1√√√√√ 3
√
9c12 −

√
256x3 + 81c14
3
√
2

− 4
3
√
2x

3
√
9c12 −

√
256x3 + 81c14

y(x)

→ 1
2

√√√√√√√√√
4 3
√
2x

3
√

9c12 −
√

256x3 + 81c14
−

3
√

9c12 −
√
256x3 + 81c14
3
√
2

+ 6c1√√√√√ 3
√
9c12 −

√
256x3 + 81c14
3
√
2

− 4
3
√
2x

3
√

9c12 −
√

256x3 + 81c14

− 1
2

√√√√√ 3
√

9c12 −
√

256x3 + 81c14
3
√
2

− 4 3
√
2x

3
√
9c12 −

√
256x3 + 81c14
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1.58 problem 59
1.58.1 Solving as first order ode lie symmetry calculated ode . . . . . . 478
1.58.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 483

Internal problem ID [3203]
Internal file name [OUTPUT/2695_Sunday_June_05_2022_08_38_55_AM_97845022/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 59.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_exponential_symmetries ]]

(
x− y2

)
y′ = −1

1.58.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 1
y2 − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
b3 − a2
y2 − x

− a3

(y2 − x)2
− xa2 + ya3 + a1

(y2 − x)2
+ 2y(xb2 + yb3 + b1)

(y2 − x)2
= 0

Putting the above in normal form gives

y4b2 − 2x y2b2 + x2b2 + 2xyb2 − y2a2 + 3y2b3 − xb3 − ya3 + 2yb1 − a1 − a3

(−y2 + x)2
= 0

Setting the numerator to zero gives

(6E)y4b2 − 2x y2b2 + x2b2 + 2xyb2 − y2a2 + 3y2b3 − xb3 − ya3 + 2yb1 − a1 − a3 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)b2v
4
2 − 2b2v1v22 − a2v

2
2 + b2v

2
1 +2b2v1v2 +3b3v22 − a3v2 +2b1v2 − b3v1 − a1 − a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)b2v
2
1−2b2v1v22+2b2v1v2−b3v1+b2v

4
2+(−a2+3b3) v22+(−a3+2b1) v2−a1−a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
−2b2 = 0
2b2 = 0
−b3 = 0

−a1 − a3 = 0
−a2 + 3b3 = 0
−a3 + 2b1 = 0

Solving the above equations for the unknowns gives

a1 = −2b1
a2 = 0
a3 = 2b1
b1 = b1

b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2y − 2
η = 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 1−
(

1
y2 − x

)
(2y − 2)

= −y2 + x+ 2y − 2
−y2 + x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−y2+x+2y−2
−y2+x

dy

Which results in

S = y + ln
(
y2 − x− 2y + 2

)
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 1
y2 − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
−y2 + x+ 2y − 2

Sy =
−y2 + x

−y2 + x+ 2y − 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y + ln
(
y2 − x− 2y + 2

)
= c1

Which simplifies to

y + ln
(
y2 − x− 2y + 2

)
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 1
y2−x

dS
dR

= 0

R = x

S = y + ln
(
y2 − x− 2y + 2

)

Summary
The solution(s) found are the following

(1)y + ln
(
y2 − x− 2y + 2

)
= c1
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Figure 87: Slope field plot

Verification of solutions

y + ln
(
y2 − x− 2y + 2

)
= c1

Verified OK.

1.58.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−y2 + x

)
dy = (−1) dx

(1) dx+
(
−y2 + x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 1
N(x, y) = −y2 + x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(1)

= 0

And
∂N

∂x
= ∂

∂x

(
−y2 + x

)
= 1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

−y2 + x
((0)− (1))

= − 1
−y2 + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1((1)− (0))
= 1

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
1 dy

The result of integrating gives

µ = ey

= ey

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= ey(1)
= ey

And

N = µN

= ey
(
−y2 + x

)
=
(
−y2 + x

)
ey
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(ey) +
((
−y2 + x

)
ey
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
ey dx

(3)φ = x ey + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x ey + f ′(y)

But equation (2) says that ∂φ
∂y

= (−y2 + x) ey. Therefore equation (4) becomes

(5)
(
−y2 + x

)
ey = x ey + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −eyy2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−eyy2

)
dy

f(y) = −
(
y2 − 2y + 2

)
ey + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x ey −
(
y2 − 2y + 2

)
ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x ey −
(
y2 − 2y + 2

)
ey

Summary
The solution(s) found are the following

(1)x ey −
(
y2 − 2y + 2

)
ey = c1

Figure 88: Slope field plot

Verification of solutions

x ey −
(
y2 − 2y + 2

)
ey = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(1+(x-y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

x− y(x)2 + 2y(x)− 2− e−y(x)c1 = 0

3 Solution by Mathematica
Time used: 0.116 (sec). Leaf size: 24� �
DSolve[1+(x-y[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = y(x)2 − 2y(x) + c1e

−y(x) + 2, y(x)
]
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1.59 problem 60
1.59.1 Solving as first order ode lie symmetry calculated ode . . . . . . 489
1.59.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 494

Internal problem ID [3204]
Internal file name [OUTPUT/2696_Sunday_June_05_2022_08_38_56_AM_86314611/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 60.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational]

y2 +
(
yx+ y2 − 1

)
y′ = 0

1.59.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y2

xy + y2 − 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y2(b3 − a2)
xy + y2 − 1 − y4a3

(xy + y2 − 1)2
− y3(xa2 + ya3 + a1)

(xy + y2 − 1)2

−
(
− 2y
xy + y2 − 1 + y2(x+ 2y)

(xy + y2 − 1)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

2x2y2b2 + 2x y3b2 + y4a2 − 2y4a3 + y4b2 − y4b3 + x y2b1 − y3a1 − 4xyb2 − y2a2 − 2y2b2 − y2b3 − 2yb1 + b2

(xy + y2 − 1)2
= 0

Setting the numerator to zero gives

(6E)2x2y2b2 + 2x y3b2 + y4a2 − 2y4a3 + y4b2 − y4b3 + x y2b1
− y3a1 − 4xyb2 − y2a2 − 2y2b2 − y2b3 − 2yb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)a2v
4
2 − 2a3v42 + 2b2v21v22 + 2b2v1v32 + b2v

4
2 − b3v

4
2 − a1v

3
2

+ b1v1v
2
2 − a2v

2
2 − 4b2v1v2 − 2b2v22 − b3v

2
2 − 2b1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

490



Equation (7E) now becomes

(8E)2b2v21v22 + 2b2v1v32 + b1v1v
2
2 − 4b2v1v2 + (a2 − 2a3 + b2 − b3) v42

− a1v
3
2 + (−a2 − 2b2 − b3) v22 − 2b1v2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b1 = 0
b2 = 0

−a1 = 0
−2b1 = 0
−4b2 = 0
2b2 = 0

−a2 − 2b2 − b3 = 0
a2 − 2a3 + b2 − b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = −b3

b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −y − x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y2

xy + y2 − 1

)
(−y − x)

= − y

xy + y2 − 1
ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

− y
xy+y2−1

dy

Which results in

S = −y2

2 − xy + ln (y)

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y2

xy + y2 − 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −y

Sy = −y − x+ 1
y
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−y2

2 − yx+ ln (y) = c1

Which simplifies to

−y2

2 − yx+ ln (y) = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y2

xy+y2−1
dS
dR

= 0

R = x

S = −y2

2 − xy + ln (y)
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Summary
The solution(s) found are the following

(1)−y2

2 − yx+ ln (y) = c1

Figure 89: Slope field plot

Verification of solutions

−y2

2 − yx+ ln (y) = c1

Verified OK.

1.59.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
xy + y2 − 1

)
dy =

(
−y2

)
dx(

y2
)
dx+

(
xy + y2 − 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y2

N(x, y) = xy + y2 − 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y2
)

= 2y
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And
∂N

∂x
= ∂

∂x

(
xy + y2 − 1

)
= y

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

xy + y2 − 1((2y)− (y))

= y

xy + y2 − 1
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2
((y)− (2y))

= −1
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 1

y
dy

The result of integrating gives

µ = e− ln(y)

= 1
y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y

(
y2
)

= y
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And

N = µN

= 1
y

(
xy + y2 − 1

)
= xy + y2 − 1

y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0

(y) +
(
xy + y2 − 1

y

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y dx

(3)φ = xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= xy+y2−1
y

. Therefore equation (4) becomes

(5)xy + y2 − 1
y

= x+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = y2 − 1
y

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ (
y2 − 1

y

)
dy

f(y) = y2

2 − ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = xy + y2

2 − ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = xy + y2

2 − ln (y)

Summary
The solution(s) found are the following

(1)y2

2 + yx− ln (y) = c1
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Figure 90: Slope field plot

Verification of solutions

y2

2 + yx− ln (y) = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
dsolve(y(x)^2+(x*y(x)+y(x)^2-1)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = eRootOf
(
−e2_Z−2 e_Zx+2c1+2_Z

)

3 Solution by Mathematica
Time used: 0.135 (sec). Leaf size: 30� �
DSolve[y[x]^2+(x*y[x]+y[x]^2-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x =

log(y(x))− y(x)2
2

y(x) + c1
y(x) , y(x)

]
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1.60 problem 61
1.60.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 501

Internal problem ID [3205]
Internal file name [OUTPUT/2697_Sunday_June_05_2022_08_38_56_AM_58537924/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 61.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[[_1st_order , `_with_symmetry_[F(x)*G(y) ,0]`]]

y − (ey + 2yx− 2x) y′ = 0

1.60.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−ey − 2xy + 2x) dy = (−y) dx
(y) dx+(−ey − 2xy + 2x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = −ey − 2xy + 2x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y)

= 1

And
∂N

∂x
= ∂

∂x
(−ey − 2xy + 2x)

= −2y + 2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= − 1

ey + (2y − 2)x((1)− (−2y + 2))

= 1− 2y
ey + (2y − 2)x
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Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((−2y + 2)− (1))

= 1− 2y
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫ 1−2y

y
dy

The result of integrating gives

µ = e−2y+ln(y)

= y e−2y

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= y e−2y(y)
= y2e−2y

And

N = µN

= y e−2y(−ey − 2xy + 2x)
= −(ey + 2xy − 2x) y e−2y

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

y2e−2y)+ (−(ey + 2xy − 2x) y e−2y) dy
dx = 0
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The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y2e−2y dx

(3)φ = y2e−2yx+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 2y e−2yx− 2y2e−2yx+ f ′(y)

= −2x e−2yy(y − 1) + f ′(y)

But equation (2) says that ∂φ
∂y

= −(ey + 2xy − 2x) y e−2y. Therefore equation (4) be-
comes

(5)−(ey + 2xy − 2x) y e−2y = −2x e−2yy(y − 1) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −eye−2yy

= −e−yy

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫ (
−e−yy

)
dy

f(y) = (y + 1) e−y + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = y2e−2yx+ (y + 1) e−y + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y2e−2yx+ (y + 1) e−y

Summary
The solution(s) found are the following

(1)y2e−2yx+ (y + 1) e−y = c1

Figure 91: Slope field plot

Verification of solutions

y2e−2yx+ (y + 1) e−y = c1

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.079 (sec). Leaf size: 62� �
dsolve(y(x)=(exp(y(x))+2*x*y(x)-2*x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = RootOf
(
x_Z2 − c1 + _Z

+ eRootOf
(
−x e2_Z_Z2+_Z e_Z+c1−e_Z)) e−RootOf

(
−x e2_Z_Z2+_Z e_Z+c1−e_Z)

3 Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 34� �
DSolve[y[x]==(Exp[y[x]]+2*x*y[x]-2*x)*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = ey(x)(−y(x)− 1)

y(x)2 + c1e
2y(x)

y(x)2 , y(x)
]
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1.61 problem 62
1.61.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 507
1.61.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 509

Internal problem ID [3206]
Internal file name [OUTPUT/2698_Sunday_June_05_2022_08_38_57_AM_38294634/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 62.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

(2x+ 3) y′ − y =
√
2x+ 3

1.61.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
2x+ 3

q(x) = 1√
2x+ 3

Hence the ode is

y′ − y

2x+ 3 = 1√
2x+ 3

The integrating factor µ is

µ = e
∫
− 1

2x+3dx

= 1√
2x+ 3
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The ode becomes

d
dx(µy) = (µ)

(
1√

2x+ 3

)
d
dx

(
y√

2x+ 3

)
=
(

1√
2x+ 3

)(
1√

2x+ 3

)
d
(

y√
2x+ 3

)
= 1

2x+ 3 dx

Integrating gives

y√
2x+ 3

=
∫ 1

2x+ 3 dx

y√
2x+ 3

= ln (2x+ 3)
2 + c1

Dividing both sides by the integrating factor µ = 1√
2x+3 results in

y =
√
2x+ 3 ln (2x+ 3)

2 + c1
√
2x+ 3

which simplifies to

y =
(
ln (2x+ 3)

2 + c1

)√
2x+ 3

Summary
The solution(s) found are the following

(1)y =
(
ln (2x+ 3)

2 + c1

)√
2x+ 3
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Figure 92: Slope field plot

Verification of solutions

y =
(
ln (2x+ 3)

2 + c1

)√
2x+ 3

Verified OK.

1.61.2 Maple step by step solution

Let’s solve
(2x+ 3) y′ − y =

√
2x+ 3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

2x+3 +
1√

2x+3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

2x+3 = 1√
2x+3

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − y

2x+3

)
= µ(x)√

2x+3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

2x+3

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = − µ(x)

2x+3

• Solve to find the integrating factor
µ(x) = 1√

2x+3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)√
2x+3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)√
2x+3dx+ c1

• Solve for y

y =
∫ µ(x)√

2x+3dx+c1

µ(x)

• Substitute µ(x) = 1√
2x+3

y =
√
2x+ 3

(∫ 1
2x+3dx+ c1

)
• Evaluate the integrals on the rhs

y =
(

ln(2x+3)
2 + c1

)√
2x+ 3

• Simplify

y = (ln(2x+3)+2c1)
√
2x+3

2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve((2*x+3)*diff(y(x),x)=y(x)+sqrt(2*x+3),y(x), singsol=all)� �

y(x) = (ln (3 + 2x) + 2c1)
√
3 + 2x

2

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 29� �
DSolve[(2*x+3)*y'[x]==y[x]+Sqrt[2*x+3],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2
√
2x+ 3(log(2x+ 3) + 2c1)
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1.62 problem 63
1.62.1 Solving as first order ode lie symmetry calculated ode . . . . . . 512
1.62.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 517

Internal problem ID [3207]
Internal file name [OUTPUT/2699_Sunday_June_05_2022_08_38_57_AM_41906111/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 63.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y +
(
y2ey − x

)
y′ = 0

1.62.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = − y

eyy2 − x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
y(b3 − a2)
eyy2 − x

− y2a3

(eyy2 − x)2
+ y(xa2 + ya3 + a1)

(eyy2 − x)2

−
(
− 1
eyy2 − x

+ y(eyy2 + 2y ey)
(eyy2 − x)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

e2yy4b2 − eyx y3b2 − eyy4b3 − 3 eyx y2b2 + eyy3a2 − eyy3b1 − 2 eyy3b3 − eyy2b1 − xb1 + ya1

(eyy2 − x)2
= 0

Setting the numerator to zero gives

(6E)e2yy4b2 − eyx y3b2 − eyy4b3 − 3 eyx y2b2 + eyy3a2
− eyy3b1 − 2 eyy3b3 − eyy2b1 − xb1 + ya1 = 0

Simplifying the above gives

(6E)e2yy4b2 − eyx y3b2 − eyy4b3 − 3 eyx y2b2 + eyy3a2
− eyy3b1 − 2 eyy3b3 − eyy2b1 − xb1 + ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, ey, e2y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, ey = v3, e2y = v4}

The above PDE (6E) now becomes

(7E)−v3v1v
3
2b2 + v4v

4
2b2 − v3v

4
2b3 + v3v

3
2a2 − v3v

3
2b1

− 3v3v1v22b2 − 2v3v32b3 − v3v
2
2b1 + v2a1 − v1b1 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

−v3v1v
3
2b2− 3v3v1v22b2− v1b1− v3v

4
2b3+ v4v

4
2b2+(a2− b1− 2b3) v32v3− v3v

2
2b1+ v2a1 = 0

(8E)

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b2 = 0

−b1 = 0
−3b2 = 0
−b2 = 0
−b3 = 0

a2 − b1 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = 0
a3 = a3

b1 = 0
b2 = 0
b3 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = y

η = 0

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 0−
(
− y

eyy2 − x

)
(y)

= y2

eyy2 − x

ξ = 0
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y2

eyy2−x

dy

Which results in

S = x

y
+ ey

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

eyy2 − x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
y

Sy =
eyy2 − x

y2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

eyy + x

y
= c1

Which simplifies to
eyy + x

y
= c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y
eyy2−x

dS
dR

= 0

R = x

S = y ey + x

y
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Summary
The solution(s) found are the following

(1)eyy + x

y
= c1

Figure 93: Slope field plot

Verification of solutions

eyy + x

y
= c1

Verified OK.

1.62.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
eyy2 − x

)
dy = (−y) dx

(y) dx+
(
eyy2 − x

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

N(x, y) = eyy2 − x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(y)

= 1
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And
∂N

∂x
= ∂

∂x

(
eyy2 − x

)
= −1

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

eyy2 − x
((1)− (−1))

= − 2
−eyy2 + x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y
((−1)− (1))

= −2
y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 2

y
dy

The result of integrating gives

µ = e−2 ln(y)

= 1
y2

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y2

(y)

= 1
y
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And

N = µN

= 1
y2
(
eyy2 − x

)
= eyy2 − x

y2

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

1
y

)
+
(
eyy2 − x

y2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫ 1
y
dx

(3)φ = x

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= eyy2−x
y2

. Therefore equation (4) becomes

(5)eyy2 − x

y2
= − x

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = ey

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫
(ey) dy

f(y) = ey + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x

y
+ ey + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x

y
+ ey

Summary
The solution(s) found are the following

(1)x

y
+ ey = c1
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Figure 94: Slope field plot

Verification of solutions
x

y
+ ey = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve(y(x)+(y(x)^2*exp(y(x))-x)*diff(y(x),x)=0,y(x), singsol=all)� �

ey(x)y(x)− c1y(x) + x = 0

3 Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 19� �
DSolve[y[x]+(y[x]^2*Exp[y[x]]-x)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x = −ey(x)y(x) + c1y(x), y(x)

]
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1.63 problem 64
1.63.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 524
1.63.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 526

Internal problem ID [3208]
Internal file name [OUTPUT/2700_Sunday_June_05_2022_08_38_58_AM_75200012/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 64.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

y′ − 3y tan (x) = 1

1.63.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −3 tan (x)
q(x) = 1

Hence the ode is

y′ − 3y tan (x) = 1

The integrating factor µ is

µ = e
∫
−3 tan(x)dx

= cos (x)3
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The ode becomes

d
dx(µy) = µ

d
dx
(
cos (x)3 y

)
= cos (x)3

d
(
cos (x)3 y

)
= cos (x)3 dx

Integrating gives

cos (x)3 y =
∫

cos (x)3 dx

cos (x)3 y =
(
2 + cos (x)2

)
sin (x)

3 + c1

Dividing both sides by the integrating factor µ = cos (x)3 results in

y =
sec (x)3

(
2 + cos (x)2

)
sin (x)

3 + c1 sec (x)3

which simplifies to

y = tan (x)
3 + 2 tan (x) sec (x)2

3 + c1 sec (x)3

Summary
The solution(s) found are the following

(1)y = tan (x)
3 + 2 tan (x) sec (x)2

3 + c1 sec (x)3
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Figure 95: Slope field plot

Verification of solutions

y = tan (x)
3 + 2 tan (x) sec (x)2

3 + c1 sec (x)3

Verified OK.

1.63.2 Maple step by step solution

Let’s solve
y′ − 3y tan (x) = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 1 + 3y tan (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 3y tan (x) = 1

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y′ − 3y tan (x)) = µ(x)
• Assume the lhs of the ODE is the total derivative d

dx
(µ(x) y)

µ(x) (y′ − 3y tan (x)) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −3µ(x) tan (x)

• Solve to find the integrating factor
µ(x) = cos (x)3

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) dx+ c1

• Solve for y

y =
∫
µ(x)dx+c1

µ(x)

• Substitute µ(x) = cos (x)3

y =
∫
cos(x)3dx+c1

cos(x)3

• Evaluate the integrals on the rhs

y =
(
2+cos(x)2

)
sin(x)

3 +c1

cos(x)3

• Simplify

y = tan(x)
3 + 2 tan(x) sec(x)2

3 + c1 sec (x)3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)=1+3*y(x)*tan(x),y(x), singsol=all)� �

y(x) = tan (x)
3 + sec (x)3 c1 +

2 sec (x)2 tan (x)
3

3 Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 26� �
DSolve[y'[x]==1+3*y[x]*Tan[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
12 sec3(x)(9 sin(x) + sin(3x) + 12c1)
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1.64 problem 65
1.64.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 529
1.64.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 531

Internal problem ID [3209]
Internal file name [OUTPUT/2701_Sunday_June_05_2022_08_38_59_AM_98974110/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 65.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

(cos (x) + 1) y′ − sin (x) (sin (x) + sin (x) cos (x)− y) = 0

1.64.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = sin (x)
cos (x) + 1

q(x) = sin (x)2

Hence the ode is

y′ + sin (x) y
cos (x) + 1 = sin (x)2

The integrating factor µ is

µ = e
∫ sin(x)

cos(x)+1dx

= 1
cos (x) + 1
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The ode becomes

d
dx(µy) = (µ)

(
sin (x)2

)
d
dx

(
y

cos (x) + 1

)
=
(

1
cos (x) + 1

)(
sin (x)2

)
d
(

y

cos (x) + 1

)
=
(

sin (x)2

cos (x) + 1

)
dx

Integrating gives

y

cos (x) + 1 =
∫ sin (x)2

cos (x) + 1 dx

y

cos (x) + 1 = −
2 tan

(
x
2

)
1 + tan

(
x
2

)2 + x+ c1

Dividing both sides by the integrating factor µ = 1
cos(x)+1 results in

y = (cos (x) + 1)
(
−

2 tan
(
x
2

)
1 + tan

(
x
2

)2 + x

)
+ c1(cos (x) + 1)

which simplifies to

y = (cos (x) + 1) (c1 + x− sin (x))

Summary
The solution(s) found are the following

(1)y = (cos (x) + 1) (c1 + x− sin (x))
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Figure 96: Slope field plot

Verification of solutions

y = (cos (x) + 1) (c1 + x− sin (x))

Verified OK.

1.64.2 Maple step by step solution

Let’s solve
(cos (x) + 1) y′ − sin (x) (sin (x) + sin (x) cos (x)− y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − sin(x)y

cos(x)+1 + sin (x)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + sin(x)y

cos(x)+1 = sin (x)2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ + sin(x)y

cos(x)+1

)
= µ(x) sin (x)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + sin(x)y

cos(x)+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) sin(x)

cos(x)+1

• Solve to find the integrating factor
µ(x) = 1

cos(x)+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x)2 dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)2dx+c1

µ(x)

• Substitute µ(x) = 1
cos(x)+1

y = (cos (x) + 1)
(∫ sin(x)2

cos(x)+1dx+ c1
)

• Evaluate the integrals on the rhs

y = (cos (x) + 1)
(
− 2 tan

(
x
2
)

1+tan
(
x
2
)2 + x+ c1

)
• Simplify

y = (cos (x) + 1) (c1 + x− sin (x))

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((1+cos(x))*diff(y(x),x)=sin(x)*( sin(x)+sin(x)*cos(x)-y(x) ),y(x), singsol=all)� �

y(x) = (− sin (x) + x+ c1) (cos (x) + 1)

3 Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 24� �
DSolve[(1+Cos[x])*y'[x]==Sin[x]*( Sin[x]+Sin[x]*Cos[x]-y[x] ),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cos2
(x
2

)
(2x− 2 sin(x) + c1)
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1.65 problem 66
1.65.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 534
1.65.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 536

Internal problem ID [3210]
Internal file name [OUTPUT/2702_Sunday_June_05_2022_08_38_59_AM_39178359/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 66.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

y′ −
(
sin (x)2 − y

)
cos (x) = 0

1.65.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = cos (x)
q(x) = sin (x)2 cos (x)

Hence the ode is

y′ + cos (x) y = sin (x)2 cos (x)

The integrating factor µ is

µ = e
∫
cos(x)dx

= esin(x)
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The ode becomes
d
dx(µy) = (µ)

(
sin (x)2 cos (x)

)
d
dx
(
esin(x)y

)
=
(
esin(x)

) (
sin (x)2 cos (x)

)
d
(
esin(x)y

)
=
(
sin (x)2 cos (x) esin(x)

)
dx

Integrating gives

esin(x)y =
∫

sin (x)2 cos (x) esin(x) dx

esin(x)y = sin (x)2 esin(x) − 2 sin (x) esin(x) + 2 esin(x) + c1

Dividing both sides by the integrating factor µ = esin(x) results in

y = e− sin(x)(sin (x)2 esin(x) − 2 sin (x) esin(x) + 2 esin(x)
)
+ c1e− sin(x)

which simplifies to

y = sin (x)2 − 2 sin (x) + 2 + c1e− sin(x)

Summary
The solution(s) found are the following

(1)y = sin (x)2 − 2 sin (x) + 2 + c1e− sin(x)

Figure 97: Slope field plot
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Verification of solutions

y = sin (x)2 − 2 sin (x) + 2 + c1e− sin(x)

Verified OK.

1.65.2 Maple step by step solution

Let’s solve
y′ −

(
sin (x)2 − y

)
cos (x) = 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − cos (x) y + sin (x)2 cos (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + cos (x) y = sin (x)2 cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + cos (x) y) = µ(x) sin (x)2 cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + cos (x) y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x) cos (x)

• Solve to find the integrating factor
µ(x) = esin(x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) sin (x)2 cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) sin (x)2 cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) sin(x)2 cos(x)dx+c1

µ(x)

• Substitute µ(x) = esin(x)

y =
∫
sin(x)2 cos(x)esin(x)dx+c1

esin(x)
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• Evaluate the integrals on the rhs

y = sin(x)2esin(x)−2 sin(x)esin(x)+2 esin(x)+c1
esin(x)

• Simplify
y = −2 sin (x)− cos (x)2 + 3 + c1e− sin(x)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x)=( sin(x)^2-y(x))*cos(x),y(x), singsol=all)� �

y(x) = 3 + e− sin(x)c1 − cos (x)2 − 2 sin (x)

3 Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 30� �
DSolve[y'[x]==( Sin[x]^2-y[x])*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 sin(x)− 1
2 cos(2x) + c1e

− sin(x) + 5
2
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1.66 problem 68
1.66.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 538
1.66.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 540

Internal problem ID [3211]
Internal file name [OUTPUT/2703_Sunday_June_05_2022_08_39_00_AM_74786523/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 68.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

(x+ 1) y′ − y = x(x+ 1)2

1.66.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x+ 1

q(x) = x(x+ 1)

Hence the ode is

y′ − y

x+ 1 = x(x+ 1)

The integrating factor µ is

µ = e
∫
− 1

x+1dx

= 1
x+ 1
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The ode becomes

d
dx(µy) = (µ) (x(x+ 1))

d
dx

(
y

x+ 1

)
=
(

1
x+ 1

)
(x(x+ 1))

d
(

y

x+ 1

)
= x dx

Integrating gives

y

x+ 1 =
∫

x dx

y

x+ 1 = x2

2 + c1

Dividing both sides by the integrating factor µ = 1
x+1 results in

y = x2(x+ 1)
2 + c1(x+ 1)

which simplifies to

y = (x+ 1) (x2 + 2c1)
2

Summary
The solution(s) found are the following

(1)y = (x+ 1) (x2 + 2c1)
2
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Figure 98: Slope field plot

Verification of solutions

y = (x+ 1) (x2 + 2c1)
2

Verified OK.

1.66.2 Maple step by step solution

Let’s solve
(x+ 1) y′ − y = x(x+ 1)2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x+1 + x(x+ 1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x+1 = x(x+ 1)

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x)
(
y′ − y

x+1

)
= µ(x)x(x+ 1)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x+1

• Solve to find the integrating factor
µ(x) = 1

x+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x(x+ 1) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x(x+ 1) dx+ c1

• Solve for y

y =
∫
µ(x)x(x+1)dx+c1

µ(x)

• Substitute µ(x) = 1
x+1

y = (x+ 1)
(∫

xdx+ c1
)

• Evaluate the integrals on the rhs

y = (x+ 1)
(

x2

2 + c1
)

• Simplify

y = (x+1)
(
x2+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve((1+x)*diff(y(x),x)-y(x)=x*(1+x)^2,y(x), singsol=all)� �

y(x) = (x2 + 2c1) (x+ 1)
2

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 20� �
DSolve[(1+x)*y'[x]-y[x]==x*(1+x)^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x+ 1)

(
x2 + 2c1

)
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1.67 problem 69
1.67.1 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 543
1.67.2 Solving as first order ode lie symmetry calculated ode . . . . . . 545
1.67.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 551
1.67.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 555

Internal problem ID [3212]
Internal file name [OUTPUT/2704_Sunday_June_05_2022_08_39_00_AM_6394563/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 69.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "first_or-
der_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_exact , _rational , [_1st_order , `_with_symmetry_[F(x)*G(y)

,0]`]]

y +
(
x− y(y + 1)2

)
y′ = −1

1.67.1 Solving as differentialType ode

Writing the ode as

y′ = −1− y

x− y (y + 1)2
(1)

Which becomes (
−y3 − 2y2 − y

)
dy = (−x) dy + (−y − 1) dx (2)

But the RHS is complete differential because

(−x) dy + (−y − 1) dx = d(−(y + 1)x)

Hence (2) becomes (
−y3 − 2y2 − y

)
dy = d(−(y + 1)x)
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Integrating both sides gives gives the solution as

−y4

4 − 2y3
3 − y2

2 = −(y + 1)x+ c1

Summary
The solution(s) found are the following

(1)−y4

4 − 2y3
3 − y2

2 = −(y + 1)x+ c1

Figure 99: Slope field plot

Verification of solutions

−y4

4 − 2y3
3 − y2

2 = −(y + 1)x+ c1

Verified OK.

544



1.67.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = y + 1
y3 + 2y2 − x+ y

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

(1E)ξ = x2a4 + xya5 + y2a6 + xa2 + ya3 + a1

(2E)η = x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

2xb4 + yb5 + b2 +
(y + 1) (−2xa4 + xb5 − ya5 + 2yb6 − a2 + b3)

y3 + 2y2 − x+ y

− (y + 1)2 (xa5 + 2ya6 + a3)
(y3 + 2y2 − x+ y)2

− (y + 1) (x2a4 + xya5 + y2a6 + xa2 + ya3 + a1)
(y3 + 2y2 − x+ y)2

−
(

1
y3 + 2y2 − x+ y

− (y + 1) (3y2 + 4y + 1)
(y3 + 2y2 − x+ y)2

)(
x2b4 + xyb5 + y2b6 + xb2 + yb3 + b1

)
= 0

Putting the above in normal form gives

2x y6b4 + y7b5 + 8x y5b4 + y6b2 + 4y6b5 − 2x2y3b4 − 2x y4a4 + 12x y4b4 + x y4b5 − y5a5 + 4y5b2 + 6y5b5 + 4y5b6 − 3x2y2b4 − 6x y3a4 + 8x y3b4 + 4x y3b5 − y4a2 − 3y4a5 + 6y4b2 + 3y4b3 + 4y4b5 + 11y4b6 + 3x3b4 + x2ya4 + x2yb5 − 6x y2a4 − x y2a5 + x y2b2 + 2x y2b4 + 5x y2b5 − x y2b6 − 3y3a2 − 3y3a5 − 3y3a6 + 2y3b1 + 4y3b2 + 8y3b3 + y3b5 + 10y3b6 + x2a4 + 2x2b2 + x2b4 − x2b5 − 2xya4 − 2xya5 + 2xyb2 + 2xyb5 − 2xyb6 − 3y2a2 − 2y2a3 − y2a5 − 5y2a6 + 5y2b1 + y2b2 + 7y2b3 + 3y2b6 − xa5 + xb1 + xb2 − xb3 − ya1 − ya2 − 3ya3 − 2ya6 + 4yb1 + 2yb3 − a1 − a3 + b1

(−y3 − 2y2 + x− y)2
= 0

545



Setting the numerator to zero gives

(6E)

2x y6b4+ y7b5+8x y5b4+ y6b2+4y6b5− 2x2y3b4− 2x y4a4+12x y4b4
+ x y4b5 − y5a5 + 4y5b2 +6y5b5 + 4y5b6 − 3x2y2b4 − 6x y3a4 +8x y3b4
+ 4x y3b5 − y4a2 − 3y4a5 + 6y4b2 + 3y4b3 + 4y4b5 + 11y4b6 + 3x3b4
+x2ya4+x2yb5−6x y2a4−x y2a5+x y2b2+2x y2b4+5x y2b5−x y2b6
−3y3a2−3y3a5−3y3a6+2y3b1+4y3b2+8y3b3+y3b5+10y3b6+x2a4
+2x2b2+x2b4−x2b5−2xya4−2xya5+2xyb2+2xyb5−2xyb6−3y2a2
− 2y2a3 − y2a5 − 5y2a6 + 5y2b1 + y2b2 + 7y2b3 + 3y2b6 − xa5 + xb1
+xb2−xb3− ya1− ya2− 3ya3− 2ya6+4yb1+2yb3−a1−a3+ b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)

2b4v1v62 + b5v
7
2 + b2v

6
2 + 8b4v1v52 + 4b5v62 − 2a4v1v42 − a5v

5
2 + 4b2v52

− 2b4v21v32 + 12b4v1v42 + b5v1v
4
2 + 6b5v52 + 4b6v52 − a2v

4
2 − 6a4v1v32

− 3a5v42 + 6b2v42 + 3b3v42 − 3b4v21v22 + 8b4v1v32 + 4b5v1v32 + 4b5v42
+ 11b6v42 − 3a2v32 + a4v

2
1v2 − 6a4v1v22 − a5v1v

2
2 − 3a5v32 − 3a6v32

+2b1v32 + b2v1v
2
2 +4b2v32 +8b3v32 +3b4v31 +2b4v1v22 + b5v

2
1v2+5b5v1v22

+ b5v
3
2 − b6v1v

2
2 +10b6v32 − 3a2v22 − 2a3v22 + a4v

2
1 − 2a4v1v2− 2a5v1v2

− a5v
2
2 − 5a6v22 + 5b1v22 + 2b2v21 + 2b2v1v2 + b2v

2
2 + 7b3v22 + b4v

2
1

− b5v
2
1 + 2b5v1v2 − 2b6v1v2 + 3b6v22 − a1v2 − a2v2 − 3a3v2 − a5v1

− 2a6v2 + b1v1 + 4b1v2 + b2v1 − b3v1 + 2b3v2 − a1 − a3 + b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)

3b4v31 − 2b4v21v32 − 3b4v21v22 + (a4 + b5) v21v2 + (a4 + 2b2 + b4 − b5) v21
+ 2b4v1v62 + 8b4v1v52 + (−2a4 + 12b4 + b5) v1v42
+ (−6a4 + 8b4 + 4b5) v1v32 + (−6a4 − a5 + b2 + 2b4 + 5b5 − b6) v1v22
+ (−2a4 − 2a5 + 2b2 + 2b5 − 2b6) v1v2 + (−a5 + b1 + b2 − b3) v1
+ b5v

7
2 + (b2 + 4b5) v62 + (−a5 + 4b2 + 6b5 + 4b6) v52

+ (−a2 − 3a5 + 6b2 + 3b3 + 4b5 + 11b6) v42
+ (−3a2 − 3a5 − 3a6 + 2b1 + 4b2 + 8b3 + b5 + 10b6) v32
+ (−3a2 − 2a3 − a5 − 5a6 + 5b1 + b2 + 7b3 + 3b6) v22
+ (−a1 − a2 − 3a3 − 2a6 + 4b1 + 2b3) v2 − a1 − a3 + b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b5 = 0
−3b4 = 0
−2b4 = 0
2b4 = 0
3b4 = 0
8b4 = 0

a4 + b5 = 0
b2 + 4b5 = 0

−a1 − a3 + b1 = 0
−6a4 + 8b4 + 4b5 = 0
−2a4 + 12b4 + b5 = 0
a4 + 2b2 + b4 − b5 = 0
−a5 + b1 + b2 − b3 = 0

−a5 + 4b2 + 6b5 + 4b6 = 0
−2a4 − 2a5 + 2b2 + 2b5 − 2b6 = 0

−a1 − a2 − 3a3 − 2a6 + 4b1 + 2b3 = 0
−a2 − 3a5 + 6b2 + 3b3 + 4b5 + 11b6 = 0

−6a4 − a5 + b2 + 2b4 + 5b5 − b6 = 0
−3a2 − 2a3 − a5 − 5a6 + 5b1 + b2 + 7b3 + 3b6 = 0

−3a2 − 3a5 − 3a6 + 2b1 + 4b2 + 8b3 + b5 + 10b6 = 0
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Solving the above equations for the unknowns gives

a1 =
b3
3

a2 = 3b3

a3 =
2b3
3

a4 = 0
a5 = 0

a6 =
b3
3

b1 = b3

b2 = 0
b3 = b3

b4 = 0
b5 = 0
b6 = 0

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
3y

2 + 3x+ 2
3y +

1
3

η = y + 1

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y + 1−
(

y + 1
y3 + 2y2 − x+ y

)(
1
3y

2 + 3x+ 2
3y +

1
3

)
= −3y4 − 8y3 + 12xy − 6y2 + 12x+ 1

−3y3 − 6y2 + 3x− 3y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)
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The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−3y4−8y3+12xy−6y2+12x+1
−3y3−6y2+3x−3y

dy

Which results in

S = ln (3y4 + 8y3 − 12xy + 6y2 − 12x− 1)
4

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 1
y3 + 2y2 − x+ y

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 3
−3y3 − 5y2 + 12x− y + 1

Sy =
−3y3 − 6y2 + 3x− 3y

(y + 1) (−3y3 − 5y2 + 12x− y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (−1− y)
4 + ln (−3y3 − 5y2 + 12x− y + 1)

4 = c1

Which simplifies to

ln (−1− y)
4 + ln (−3y3 − 5y2 + 12x− y + 1)

4 = c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+1
y3+2y2−x+y

dS
dR

= 0

R = x

S = ln (−y − 1)
4 + ln (−3y3 − 5y2 + 12x− y + 1)

4

Summary
The solution(s) found are the following

(1)ln (−1− y)
4 + ln (−3y3 − 5y2 + 12x− y + 1)

4 = c1
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Figure 100: Slope field plot

Verification of solutions

ln (−1− y)
4 + ln (−3y3 − 5y2 + 12x− y + 1)

4 = c1

Verified OK.

1.67.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

551



Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x− y(y + 1)2

)
dy = (−y − 1) dx

(y + 1) dx+
(
x− y(y + 1)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + 1
N(x, y) = x− y(y + 1)2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(y + 1)

= 1

And
∂N

∂x
= ∂

∂x

(
x− y(y + 1)2

)
= 1
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Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y + 1dx

(3)φ = (y + 1)x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x+ f ′(y)

But equation (2) says that ∂φ
∂y

= x− y(y + 1)2. Therefore equation (4) becomes

(5)x− y(y + 1)2 = x+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = −y(y + 1)2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
−y(y + 1)2

)
dy

f(y) = −1
4y

4 − 2
3y

3 − 1
2y

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = (y + 1)x− y4

4 − 2y3
3 − y2

2 + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = (y + 1)x− y4

4 − 2y3
3 − y2

2

Summary
The solution(s) found are the following

(1)−y4

4 − 2y3
3 − y2

2 + (y + 1)x = c1

Figure 101: Slope field plot

Verification of solutions

−y4

4 − 2y3
3 − y2

2 + (y + 1)x = c1

Verified OK.
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1.67.4 Maple step by step solution

Let’s solve
y +

(
x− y(y + 1)2

)
y′ = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y + 1) dx+ f1(y)

• Evaluate integral
F (x, y) = (y + 1)x+ f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
x− y(y + 1)2 = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y(y + 1)2

• Solve for f1(y)
f1(y) = −1

4y
4 − 2

3y
3 − 1

2y
2

• Substitute f1(y) into equation for F (x, y)
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F (x, y) = (y + 1)x− y4

4 − 2y3
3 − y2

2

• Substitute F (x, y) into the solution of the ODE

(y + 1)x− y4

4 − 2y3
3 − y2

2 = c1

• Solve for y
y = RootOf

(
3_Z4 + 8_Z3 + 6_Z2 − 12_Zx+ 12c1 − 12x

)
Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve((1+y(x))+(x-y(x)*(1+y(x))^2)* diff(y(x),x)=0,y(x), singsol=all)� �

x+ −3y(x)4 − 8y(x)3 − 6y(x)2 − 12c1
12y (x) + 12 = 0
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3 Solution by Mathematica
Time used: 33.714 (sec). Leaf size: 1594� �
DSolve[(1+y[x])+(x-y[x]*(1+y[x])^2)* y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �
y(x)

→ 1
6


−

√√√√√ −24x+ 6 + 72c1
3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 6 3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

−3

√√√√√√√√
−

3
(
32x+ 64

27

)
4

√√√√√ −24x+6+72c1

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1

+ 6 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

− 2
3

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 +

2(4x− 1− 12c1)

3 3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1

+ 8
9

− 4


y(x)

→ 1
6


−

√√√√√ −24x+ 6 + 72c1
3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 6 3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

+3

√√√√√√√√
−

3
(
32x+ 64

27

)
4

√√√√√ −24x+6+72c1

3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 6 3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

− 2
3

3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 +
2(4x− 1− 12c1)

3 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 8

9

− 4


y(x)

→ 1
6


√√√√√ −24x+ 6 + 72c1

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1

+ 6 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

−3

√√√√√√√√
3
(
32x+ 64

27

)
4

√√√√√ −24x+6+72c1

3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 6 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

− 2
3

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 +

2(4x− 1− 12c1)

3 3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1

+ 8
9

− 4


y(x)

→ 1
6


√√√√√ −24x+ 6 + 72c1

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1

+ 6 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

+3

√√√√√√√√
3
(
32x+ 64

27

)
4

√√√√√ −24x+6+72c1

3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 6 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 + 4

− 2
3

3

√
27x2 − 1

432
√
186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1 +

2(4x− 1− 12c1)

3 3

√
27x2 − 1

432
√

186624 (27x2 + 1 + 12c1) 2 − 4(−144x+ 36 + 432c1)3 + 1 + 12c1
+ 8

9

− 4


y(x) → −1
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1.68 problem 71.1
1.68.1 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 558

Internal problem ID [3213]
Internal file name [OUTPUT/2705_Sunday_June_05_2022_08_39_01_AM_70722247/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 71.1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Riccati]

y′ + y2 = x2 + 1

1.68.1 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= x2 − y2 + 1

This is a Riccati ODE. Comparing the ODE to solve

y′ = x2 − y2 + 1

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2

Shows that f0(x) = x2 + 1, f1(x) = 0 and f2(x) = −1. Let

y = −u′

f2u

= −u′

−u
(1)
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Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 0

f1f2 = 0
f 2
2 f0 = x2 + 1

Substituting the above terms back in equation (2) gives

−u′′(x) +
(
x2 + 1

)
u(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = ex2
2 (c1 + erf (x) c2)

The above shows that

u′(x) =

(
x
√
π (c1 + erf (x) c2) ex

2 + 2c2
)
e−x2

2

√
π

Using the above in (1) gives the solution

y =

(
x
√
π (c1 + erf (x) c2) ex

2 + 2c2
)(

e−x2
2

)2
√
π (c1 + erf (x) c2)

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = 2 e−x2 + x
√
π (c3 + erf (x))√

π (c3 + erf (x))

Summary
The solution(s) found are the following

(1)y = 2 e−x2 + x
√
π (c3 + erf (x))√

π (c3 + erf (x))
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Figure 102: Slope field plot

Verification of solutions

y = 2 e−x2 + x
√
π (c3 + erf (x))√

π (c3 + erf (x))

Verified OK.

560



Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:

<- Riccati particular polynomial solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 37� �
dsolve(diff(y(x),x)+y(x)^2=1+x^2,y(x), singsol=all)� �

y(x) =
√
π erf (x)x− 2c1x+ 2 e−x2

√
π erf (x)− 2c1

3 Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 36� �
DSolve[y'[x]+y[x]^2==1+x^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ 2e−x2

√
πerf(x) + 2c1

y(x) → x
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1.69 problem 72
1.69.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 562

Internal problem ID [3214]
Internal file name [OUTPUT/2706_Sunday_June_05_2022_08_39_01_AM_942369/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 72.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

3xy′ − 3xy4 ln (x)− y = 0

1.69.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y(3x y3 ln (x) + 1)
3x

This is a Bernoulli ODE.
y′ = 1

3xy + ln (x) y4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

562



This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
3x

f1(x) = ln (x)
n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= 1
3x y3 + ln (x) (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = w(x)

3x + ln (x)

w′ = −w

x
− 3 ln (x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x

q(x) = −3 ln (x)

Hence the ode is

w′(x) + w(x)
x

= −3 ln (x)
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The integrating factor µ is

µ = e
∫ 1

x
dx

= x

The ode becomes
d
dx(µw) = (µ) (−3 ln (x))
d
dx(xw) = (x) (−3 ln (x))

d(xw) = (−3 ln (x)x) dx

Integrating gives

xw =
∫

−3 ln (x)x dx

xw = −3 ln (x)x2

2 + 3x2

4 + c1

Dividing both sides by the integrating factor µ = x results in

w(x) =
−3 ln(x)x2

2 + 3x2

4
x

+ c1
x

which simplifies to

w(x) = −6 ln (x)x2 + 3x2 + 4c1
4x

Replacing w in the above by 1
y3

using equation (5) gives the final solution.

1
y3

= −6 ln (x)x2 + 3x2 + 4c1
4x

Solving for y gives

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

y(x) = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1
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Summary
The solution(s) found are the following

(1)y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

(2)y = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

(3)y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Figure 103: Slope field plot
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Verification of solutions

y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

Verified OK.

y = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Verified OK.

y =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (−1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 162� �
dsolve(3*x*diff(y(x),x)-3*x*y(x)^4*ln(x)-y(x)=0,y(x), singsol=all)� �

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3

6 ln (x)x2 − 3x2 − 4c1

y(x) = −
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (1 + i

√
3
)

12 ln (x)x2 − 6x2 − 8c1

y(x) =
2 2

3

(
−x(6 ln (x)x2 − 3x2 − 4c1)2

) 1
3 (
i
√
3− 1

)
12 ln (x)x2 − 6x2 − 8c1
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3 Solution by Mathematica
Time used: 0.25 (sec). Leaf size: 120� �
DSolve[3*x*y'[x]-3*x*y[x]^4*Log[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (−2)2/3 3
√
x

3
√

3x2 − 6x2 log(x) + 4c1

y(x) → 22/3 3
√
x

3
√

3x2 − 6x2 log(x) + 4c1

y(x) → −
3
√
−122/3 3

√
x

3
√

3x2 − 6x2 log(x) + 4c1
y(x) → 0
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1.70 problem 73
1.70.1 Solving as first order ode lie symmetry calculated ode . . . . . . 568
1.70.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 574

Internal problem ID [3215]
Internal file name [OUTPUT/2707_Sunday_June_05_2022_08_39_02_AM_17707126/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 73.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

y′ − 4x3y2

yx4 + 2 = 0

1.70.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 4x3y2

x4y + 2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2+
4x3y2(b3 − a2)

x4y + 2 − 16x6y4a3

(x4y + 2)2
−
(
12x2y2

x4y + 2 −
16x6y3

(x4y + 2)2
)
(xa2+ ya3+a1)

−
(

8x3y

x4y + 2 − 4x7y2

(x4y + 2)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−3x8y2b2 + 12x6y4a3 + 4x7y2b1 − 4x6y3a1 + 12x4yb2 + 32x3y2a2 + 8x3y2b3 + 24x2y3a3 + 16x3yb1 + 24x2y2a1 − 4b2
(x4y + 2)2

= 0

Setting the numerator to zero gives

(6E)−3x8y2b2 − 12x6y4a3 − 4x7y2b1 + 4x6y3a1 − 12x4yb2 − 32x3y2a2
− 8x3y2b3 − 24x2y3a3 − 16x3yb1 − 24x2y2a1 + 4b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−12a3v61v42 − 3b2v81v22 + 4a1v61v32 − 4b1v71v22 − 32a2v31v22 − 24a3v21v32
− 12b2v41v2 − 8b3v31v22 − 24a1v21v22 − 16b1v31v2 + 4b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−3b2v81v22 − 4b1v71v22 − 12a3v61v42 + 4a1v61v32 − 12b2v41v2
+ (−32a2 − 8b3) v31v22 − 16b1v31v2 − 24a3v21v32 − 24a1v21v22 + 4b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

−24a1 = 0
4a1 = 0

−24a3 = 0
−12a3 = 0
−16b1 = 0
−4b1 = 0
−12b2 = 0
−3b2 = 0
4b2 = 0

−32a2 − 8b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = −4a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = −4y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= −4y −
(

4x3y2

x4y + 2

)
(x)

= −8x4y2 − 8y
x4y + 2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−8x4y2−8y
x4y+2

dy

Which results in

S = ln (x4y + 1)
8 − ln (y)

4
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 4x3y2

x4y + 2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x3y

2x4y + 2

Sy =
−x4y − 2

8y (x4y + 1)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (yx4 + 1)
8 − ln (y)

4 = c1

Which simplifies to

ln (yx4 + 1)
8 − ln (y)

4 = c1

572



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 4x3y2

x4y+2
dS
dR

= 0

R = x

S = ln (x4y + 1)
8 − ln (y)

4

Summary
The solution(s) found are the following

(1)ln (yx4 + 1)
8 − ln (y)

4 = c1
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Figure 104: Slope field plot

Verification of solutions

ln (yx4 + 1)
8 − ln (y)

4 = c1

Verified OK.

1.70.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x4y + 2

)
dy =

(
4x3y2

)
dx(

−4x3y2
)
dx+

(
x4y + 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −4x3y2

N(x, y) = x4y + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−4x3y2

)
= −8x3y

And
∂N

∂x
= ∂

∂x

(
x4y + 2

)
= 4x3y
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x4y + 2
((
−8x3y

)
−
(
4x3y

))
= − 12x3y

x4y + 2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= − 1

4x3y2
((
4x3y

)
−
(
−8x3y

))
= −3

y

Since B does not depend on x, it can be used to obtain an integrating factor. Let the
integrating factor be µ. Then

µ = e
∫
B dy

= e
∫
− 3

y
dy

The result of integrating gives

µ = e−3 ln(y)

= 1
y3

M and N are now multiplied by this integrating factor, giving new M and new N

which are called M and N so not to confuse them with the original M and N .

M = µM

= 1
y3
(
−4x3y2

)
= −4x3

y
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And

N = µN

= 1
y3
(
x4y + 2

)
= x4y + 2

y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M +N
dy
dx = 0(

−4x3

y

)
+
(
x4y + 2

y3

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−4x3

y
dx

(3)φ = −x4

y
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x4

y2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= x4y+2
y3

. Therefore equation (4) becomes

(5)x4y + 2
y3

= x4

y2
+ f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 2
y3

Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 2
y3

)
dy

f(y) = − 1
y2

+ c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x4

y
− 1

y2
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x4

y
− 1

y2

Summary
The solution(s) found are the following

(1)−x4

y
− 1

y2
= c1
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Figure 105: Slope field plot

Verification of solutions

−x4

y
− 1

y2
= c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.594 (sec). Leaf size: 45� �
dsolve(diff(y(x),x)=(4*x^3*y(x)^2)/(x^4*y(x)+2),y(x), singsol=all)� �

y(x) = x4 −
√
x8 + 4c1
2c1

y(x) = x4 +
√
x8 + 4c1
2c1

3 Solution by Mathematica
Time used: 0.409 (sec). Leaf size: 56� �
DSolve[y'[x]==(4*x^3*y[x]^2)/(x^4*y[x]+2),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2
−x4 +

√
x8 + 4c1

y(x) → − 2
x4 +

√
x8 + 4c1

y(x) → 0
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1.71 problem 74
1.71.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 581

Internal problem ID [3216]
Internal file name [OUTPUT/2708_Sunday_June_05_2022_08_39_03_AM_61626433/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 74.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_rational , _Bernoulli]

y
(
6y2 − x− 1

)
+ 2xy′ = 0

1.71.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(6y2 − x− 1)
2x

This is a Bernoulli ODE.
y′ = −−x− 1

2x y − 3
x
y3 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −−x− 1
2x

f1(x) = −3
x

n = 3

Dividing both sides of ODE (1) by yn = y3 gives

y′
1
y3

= −−x− 1
2x y2 − 3

x
(4)

Let

w = y1−n

= 1
y2

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 2
y3

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
2 = −(−x− 1)w(x)

2x − 3
x

w′ = (−x− 1)w
x

+ 6
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −−x− 1
x

q(x) = 6
x

Hence the ode is

w′(x)− (−x− 1)w(x)
x

= 6
x
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The integrating factor µ is

µ = e
∫
−−x−1

x
dx

= ex+ln(x)

Which simplifies to
µ = x ex

The ode becomes

d
dx(µw) = (µ)

(
6
x

)
d
dx(x e

xw) = (x ex)
(
6
x

)
d(x exw) = (6 ex) dx

Integrating gives

x exw =
∫

6 ex dx

x exw = 6 ex + c1

Dividing both sides by the integrating factor µ = x ex results in

w(x) = 6 e−xex
x

+ c1e−x

x

which simplifies to

w(x) = c1e−x + 6
x

Replacing w in the above by 1
y2

using equation (5) gives the final solution.

1
y2

= c1e−x + 6
x

Solving for y gives

y(x) =
√

(c1e−x + 6)x
c1e−x + 6

y(x) = −
√
(c1e−x + 6)x
c1e−x + 6
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Summary
The solution(s) found are the following

(1)y =
√

(c1e−x + 6)x
c1e−x + 6

(2)y = −
√

(c1e−x + 6)x
c1e−x + 6

Figure 106: Slope field plot

Verification of solutions

y =
√
(c1e−x + 6)x
c1e−x + 6

Verified OK.

y = −
√

(c1e−x + 6)x
c1e−x + 6

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 54� �
dsolve(y(x)*(6*y(x)^2-x-1)+2*x*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
√
(e−xc1 + 6)x
e−xc1 + 6

y(x) = −
√

(e−xc1 + 6)x
e−xc1 + 6

3 Solution by Mathematica
Time used: 0.709 (sec). Leaf size: 65� �
DSolve[y[x]*(6*y[x]^2-x-1)+2*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − ex/2
√
x√

6ex + c1

y(x) → ex/2
√
x√

6ex + c1
y(x) → 0
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1.72 problem 75
1.72.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 586

Internal problem ID [3217]
Internal file name [OUTPUT/2709_Sunday_June_05_2022_08_39_04_AM_11853043/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 75.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _rational , _Bernoulli]

(x+ 1)
(
y′ + y2

)
− y = 0

1.72.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(xy + y − 1)
x+ 1

This is a Bernoulli ODE.
y′ = 1

x+ 1y − y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1

x+ 1
f1(x) = −1

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= 1
(x+ 1) y − 1 (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = w(x)
x+ 1 − 1

w′ = − w

x+ 1 + 1 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 1
x+ 1

q(x) = 1

Hence the ode is

w′(x) + w(x)
x+ 1 = 1
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The integrating factor µ is

µ = e
∫ 1

x+1dx

= x+ 1

The ode becomes

d
dx(µw) = µ

d
dx((x+ 1)w) = x+ 1

d((x+ 1)w) = x+ 1dx

Integrating gives

(x+ 1)w =
∫

x+ 1dx

(x+ 1)w = x+ 1
2x

2 + c1

Dividing both sides by the integrating factor µ = x+ 1 results in

w(x) =
x+ 1

2x
2

x+ 1 + c1
x+ 1

which simplifies to

w(x) = x2 + 2c1 + 2x
2 + 2x

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= x2 + 2c1 + 2x

2 + 2x

Or

y = 2 + 2x
x2 + 2c1 + 2x

Summary
The solution(s) found are the following

(1)y = 2 + 2x
x2 + 2c1 + 2x
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Figure 107: Slope field plot

Verification of solutions

y = 2 + 2x
x2 + 2c1 + 2x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve((1+x)*(diff(y(x),x)+y(x)^2)-y(x)=0,y(x), singsol=all)� �

y(x) = 2x+ 2
x2 + 2c1 + 2x

3 Solution by Mathematica
Time used: 0.201 (sec). Leaf size: 28� �
DSolve[(1+x)*(y'[x]+y[x]^2)-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2(x+ 1)
x2 + 2x+ 2c1

y(x) → 0
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1.73 problem 76
1.73.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 591

Internal problem ID [3218]
Internal file name [OUTPUT/2710_Sunday_June_05_2022_08_39_05_AM_50437549/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 76.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

xyy′ + y2 = sin (x)

1.73.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y2 + sin (x)
xy

This is a Bernoulli ODE.
y′ = −1

x
y + sin (x)

x

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
sin (x)

x
n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = −y2

x
+ sin (x)

x
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = −w(x)

x
+ sin (x)

x

w′ = −2w
x

+ 2 sin (x)
x

(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 2
x

q(x) = 2 sin (x)
x

Hence the ode is

w′(x) + 2w(x)
x

= 2 sin (x)
x
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The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes
d
dx(µw) = (µ)

(
2 sin (x)

x

)
d
dx
(
x2w

)
=
(
x2)(2 sin (x)

x

)
d
(
x2w

)
= (2x sin (x)) dx

Integrating gives

x2w =
∫

2x sin (x) dx

x2w = 2 sin (x)− 2 cos (x)x+ c1

Dividing both sides by the integrating factor µ = x2 results in

w(x) = 2 sin (x)− 2 cos (x)x
x2 + c1

x2

which simplifies to

w(x) = 2 sin (x)− 2 cos (x)x+ c1
x2

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = 2 sin (x)− 2 cos (x)x+ c1
x2

Solving for y gives

y(x) =
√

2 sin (x)− 2 cos (x)x+ c1
x

y(x) = −
√

2 sin (x)− 2 cos (x)x+ c1
x

Summary
The solution(s) found are the following

(1)y =
√

2 sin (x)− 2 cos (x)x+ c1
x

(2)y = −
√

2 sin (x)− 2 cos (x)x+ c1
x
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Figure 108: Slope field plot

Verification of solutions

y =
√

2 sin (x)− 2 cos (x)x+ c1
x

Verified OK.

y = −
√

2 sin (x)− 2 cos (x)x+ c1
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �

594



3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 42� �
dsolve(x*y(x)*diff(y(x),x)+y(x)^2-sin(x)=0,y(x), singsol=all)� �

y(x) =
√

2 sin (x)− 2x cos (x) + c1
x

y(x) = −
√
2 sin (x)− 2x cos (x) + c1

x

3 Solution by Mathematica
Time used: 0.367 (sec). Leaf size: 50� �
DSolve[x*y[x]*y'[x]+y[x]^2-Sin[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2 sin(x)− 2x cos(x) + c1

x

y(x) →
√

2 sin(x)− 2x cos(x) + c1
x
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1.74 problem 77
1.74.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 596

Internal problem ID [3219]
Internal file name [OUTPUT/2711_Sunday_June_05_2022_08_39_06_AM_73609574/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 77.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[[ _homogeneous , `class D`], _rational , _Bernoulli]

−y4 + xy3y′ = −2x3

1.74.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= y4 − 2x3

x y3

This is a Bernoulli ODE.
y′ = 1

x
y − 2x2 1

y3
(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
1
x

f1(x) = −2x2

n = −3

Dividing both sides of ODE (1) by yn = 1
y3

gives

y′y3 = y4

x
− 2x2 (4)

Let

w = y1−n

= y4 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 4y3y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
4 = w(x)

x
− 2x2

w′ = 4w
x

− 8x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −4
x

q(x) = −8x2

Hence the ode is

w′(x)− 4w(x)
x

= −8x2
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The integrating factor µ is

µ = e
∫
− 4

x
dx

= 1
x4

The ode becomes
d
dx(µw) = (µ)

(
−8x2)

d
dx

( w
x4

)
=
(

1
x4

)(
−8x2)

d
( w
x4

)
=
(
− 8
x2

)
dx

Integrating gives
w

x4 =
∫

− 8
x2 dx

w

x4 = 8
x
+ c1

Dividing both sides by the integrating factor µ = 1
x4 results in

w(x) = c1x
4 + 8x3

Replacing w in the above by y4 using equation (5) gives the final solution.

y4 = c1x
4 + 8x3

Solving for y gives

y(x) =
(
x3(c1x+ 8)

) 1
4

y(x) = i
(
x3(c1x+ 8)

) 1
4

y(x) = −
(
x3(c1x+ 8)

) 1
4

y(x) = −i
(
x3(c1x+ 8)

) 1
4

Summary
The solution(s) found are the following

(1)y =
(
x3(c1x+ 8)

) 1
4

(2)y = i
(
x3(c1x+ 8)

) 1
4

(3)y = −
(
x3(c1x+ 8)

) 1
4

(4)y = −i
(
x3(c1x+ 8)

) 1
4
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Figure 109: Slope field plot

Verification of solutions

y =
(
x3(c1x+ 8)

) 1
4

Verified OK.

y = i
(
x3(c1x+ 8)

) 1
4

Verified OK.

y = −
(
x3(c1x+ 8)

) 1
4

Verified OK.

y = −i
(
x3(c1x+ 8)

) 1
4

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 65� �
dsolve((2*x^3-y(x)^4)+(x*y(x)^3)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
(
x3(c1x+ 8)

) 1
4

y(x) = −
(
x3(c1x+ 8)

) 1
4

y(x) = −i
(
x3(c1x+ 8)

) 1
4

y(x) = i
(
x3(c1x+ 8)

) 1
4

3 Solution by Mathematica
Time used: 0.243 (sec). Leaf size: 88� �
DSolve[(2*x^3-y[x]^4)+(x*y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x3/4 4
√
8 + c1x

y(x) → −ix3/4 4
√
8 + c1x

y(x) → ix3/4 4
√
8 + c1x

y(x) → x3/4 4
√
8 + c1x
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1.75 problem 78
1.75.1 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 601

Internal problem ID [3220]
Internal file name [OUTPUT/2712_Sunday_June_05_2022_08_39_06_AM_24935528/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 78.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_Bernoulli]

y′ − y tan (x) + y2 cos (x) = 0

1.75.1 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= tan (x) y − cos (x) y2

This is a Bernoulli ODE.
y′ = tan (x) y − cos (x) y2 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.
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This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = tan (x)
f1(x) = − cos (x)

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= tan (x)
y

− cos (x) (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = tan (x)w(x)− cos (x)
w′ = − tan (x)w + cos (x) (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = tan (x)
q(x) = cos (x)

Hence the ode is

w′(x) + tan (x)w(x) = cos (x)

The integrating factor µ is

µ = e
∫
tan(x)dx

= 1
cos (x)
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Which simplifies to
µ = sec (x)

The ode becomes

d
dx(µw) = (µ) (cos (x))

d
dx(sec (x)w) = (sec (x)) (cos (x))

d(sec (x)w) = dx

Integrating gives

sec (x)w =
∫

dx

sec (x)w = x+ c1

Dividing both sides by the integrating factor µ = sec (x) results in

w(x) = cos (x)x+ c1 cos (x)

which simplifies to

w(x) = cos (x) (x+ c1)

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= cos (x) (x+ c1)

Or

y = 1
cos (x) (x+ c1)

Summary
The solution(s) found are the following

(1)y = 1
cos (x) (x+ c1)
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Figure 110: Slope field plot

Verification of solutions

y = 1
cos (x) (x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(diff(y(x),x)-y(x)*tan(x)+y(x)^2*cos(x)=0,y(x), singsol=all)� �

y(x) = sec (x)
c1 + x

3 Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 19� �
DSolve[y'[x]-y[x]*Tan[x]+y[x]^2*Cos[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → sec(x)
x+ c1

y(x) → 0
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1.76 problem 79
1.76.1 Solving as first order ode lie symmetry calculated ode . . . . . . 606

Internal problem ID [3221]
Internal file name [OUTPUT/2713_Sunday_June_05_2022_08_39_07_AM_44701922/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 79.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , [_Abel , `2nd type `, `

class B`]]

6y2 − x
(
2x3 + y

)
y′ = 0

1.76.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = 6y2
x (2x3 + y)

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
6y2(b3 − a2)
x (2x3 + y) − 36y4a3

x2 (2x3 + y)2

−
(
− 6y2
x2 (2x3 + y) −

36y2x
(2x3 + y)2

)
(xa2 + ya3 + a1)

−
(

12y
x (2x3 + y) −

6y2

x (2x3 + y)2
)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

4x8b2 − 20x5yb2 + 36x4y2a2 − 12x4y2b3 + 48x3y3a3 − 24x4yb1 + 48x3y2a1 − 5x2y2b2 − 30y4a3 − 6x y2b1 + 6y3a1
x2 (2x3 + y)2

= 0

Setting the numerator to zero gives

(6E)4x8b2 − 20x5yb2 + 36x4y2a2 − 12x4y2b3 + 48x3y3a3 − 24x4yb1
+ 48x3y2a1 − 5x2y2b2 − 30y4a3 − 6x y2b1 + 6y3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)4b2v81 + 36a2v41v22 + 48a3v31v32 − 20b2v51v2 − 12b3v41v22 + 48a1v31v22
− 24b1v41v2 − 30a3v42 − 5b2v21v22 + 6a1v32 − 6b1v1v22 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)4b2v81 − 20b2v51v2 + (36a2 − 12b3) v41v22 − 24b1v41v2 + 48a3v31v32
+ 48a1v31v22 − 5b2v21v22 − 6b1v1v22 − 30a3v42 + 6a1v32 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

6a1 = 0
48a1 = 0

−30a3 = 0
48a3 = 0

−24b1 = 0
−6b1 = 0
−20b2 = 0
−5b2 = 0
4b2 = 0

36a2 − 12b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= 3y −
(

6y2
x (2x3 + y)

)
(x)

= 6x3y − 3y2
2x3 + y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

6x3y−3y2
2x3+y

dy

Which results in

S = −2 ln (−2x3 + y)
3 + ln (y)

3
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = 6y2
x (2x3 + y)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − 4x2

2x3 − y

Sy =
2

6x3 − 3y + 1
3y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −2

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 2

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −2 ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1

Which simplifies to

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= 6y2
x(2x3+y)

dS
dR

= − 2
R

R = x

S = −2 ln (−2x3 + y)
3 + ln (y)

3

Summary
The solution(s) found are the following

(1)−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1
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Figure 111: Slope field plot

Verification of solutions

−2 ln (−2x3 + y)
3 + ln (y)

3 = −2 ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.578 (sec). Leaf size: 193� �
dsolve(6*y(x)^2-(x*(2*x^3+y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

y(x) = −
x3
(
−x3 +

√
x3 (x3 + 8c1)− 4c1

)
2c1

y(x) =
x3
(
x3 +

√
x3 (x3 + 8c1) + 4c1

)
2c1

3 Solution by Mathematica
Time used: 1.396 (sec). Leaf size: 123� �
DSolve[6*y[x]^2-(x*(2*x^3+y[x]))*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x3

−1 + 2
1− 4x3/2√

16x3+c1


y(x) → 2x3

−1 + 2
1 + 4x3/2√

16x3+c1


y(x) → 0
y(x) → 2x3

y(x) →
2
(
(x3)3/2 − x9/2

)
x3/2 +

√
x3
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1.77 problem 80
1.77.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 614

Internal problem ID [3222]
Internal file name [OUTPUT/2714_Sunday_June_05_2022_08_39_08_AM_40232232/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 80.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

xy′
3 − yy′

2 = −1

1.77.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

x p3 − y p2 = −1

Solving for y from the above results in

y = x p3 + 1
p2

(1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = px+ 1
p2

= px+ 1
p2
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Writing the ode as

y = px+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = px+ g (1)

Then we see that

g = 1
p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 1
c21

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1
p2
, then the

above equation becomes

x+ g′(p) = x− 2
p3

= 0
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Solving the above for p results in

p1 =
2 1

3 (x2)
1
3

x

p2 = −2 1
3 (x2)

1
3

2x + i
√
3 2 1

3 (x2)
1
3

2x

p3 = −2 1
3 (x2)

1
3

2x − i
√
3 2 1

3 (x2)
1
3

2x

Substituting the above back in (1) results in

y1 =
3x22 1

3

2 (x2)
2
3

y2 = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

y3 =
3x22 1

3

(x2)
2
3
(
−1 + i

√
3
)

Summary
The solution(s) found are the following

(1)y = c1x+ 1
c21

(2)y = 3x22 1
3

2 (x2)
2
3

(3)y = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

(4)y = 3x22 1
3

(x2)
2
3
(
−1 + i

√
3
)
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Verification of solutions

y = c1x+ 1
c21

Verified OK.

y = 3x22 1
3

2 (x2)
2
3

Verified OK.

y = − 3x22 1
3

(x2)
2
3
(
1 + i

√
3
)

Verified OK.

y = 3x22 1
3

(x2)
2
3
(
−1 + i

√
3
)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
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3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 66� �
dsolve(x*(diff(y(x),x))^3-y(x)*(diff(y(x),x))^2+1=0,y(x), singsol=all)� �

y(x) = 3 2 1
3 (x2)

1
3

2

y(x) = −
3 2 1

3 (x2)
1
3
(
1 + i

√
3
)

4

y(x) =
3 2 1

3 (x2)
1
3
(
i
√
3− 1

)
4

y(x) = c1x+ 1
c21

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 69� �
DSolve[x*(y'[x])^3-y[x]*(y'[x])^2+1==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ 1
c12

y(x) → 3
(
−1
2

)2/3

x2/3

y(x) → 3x2/3

22/3

y(x) → −3 3
√
−1x2/3

22/3
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1.78 problem 81
1.78.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 619

Internal problem ID [3223]
Internal file name [OUTPUT/2715_Sunday_June_05_2022_08_39_10_AM_81734703/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 81.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

y − xy′ − y′
3 = 0

1.78.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

−p3 − xp+ y = 0

Solving for y from the above results in

y = p3 + xp (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = p3 + xp

= p3 + xp
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = p3

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c31 + c1x

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = p3, then the
above equation becomes

x+ g′(p) = 3p2 + x

= 0
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Solving the above for p results in

p1 =
√
−3x
3

p2 = −
√
−3x
3

Substituting the above back in (1) results in

y1 = −2
√
3 (−x)

3
2

9

y2 =
2
√
3 (−x)

3
2

9

Summary
The solution(s) found are the following

(1)y = c31 + c1x

(2)y = −2
√
3 (−x)

3
2

9

(3)y = 2
√
3 (−x)

3
2

9
Verification of solutions

y = c31 + c1x

Verified OK.

y = −2
√
3 (−x)

3
2

9

Verified OK.

y = 2
√
3 (−x)

3
2

9

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.094 (sec). Leaf size: 37� �
dsolve(y(x)=x*diff(y(x),x)+(diff(y(x),x))^3,y(x), singsol=all)� �

y(x) = 2
√
3 (−x)

3
2

9

y(x) = −2
√
3 (−x)

3
2

9
y(x) = c1

(
c21 + x

)
3 Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 54� �
DSolve[y[x]==x*y'[x]+(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
(
x+ c1

2)
y(x) → −2ix3/2

3
√
3

y(x) → 2ix3/2

3
√
3
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1.79 problem 82
1.79.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 624

Internal problem ID [3224]
Internal file name [OUTPUT/2716_Sunday_June_05_2022_08_39_11_AM_40883080/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 82.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

x
(
−1 + y′

2
)
− 2y′ = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = 1 +
√
x2 + 1
x

(1)

y′ = −−1 +
√
x2 + 1

x
(2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ 1 +

√
x2 + 1
x

dx

=
∫ 1 +

√
x2 + 1
x

dx+ c1

Summary
The solution(s) found are the following

(1)y =
∫ 1 +

√
x2 + 1
x

dx+ c1
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Verification of solutions

y =
∫ 1 +

√
x2 + 1
x

dx+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−−1 +
√
x2 + 1

x
dx

=
∫

−−1 +
√
x2 + 1

x
dx+ c2

Summary
The solution(s) found are the following

(1)y =
∫

−−1 +
√
x2 + 1

x
dx+ c2

Verification of solutions

y =
∫

−−1 +
√
x2 + 1

x
dx+ c2

Verified OK.

1.79.1 Maple step by step solution

Let’s solve
x
(
−1 + y′2

)
− 2y′ = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫ (
x
(
−1 + y′2

)
− 2y′

)
dx =

∫
0dx+ c1

• Cannot compute integral∫ (
x
(
−1 + y′2

)
− 2y′

)
dx = c1
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.062 (sec). Leaf size: 49� �
dsolve(x*( (diff(y(x),x))^2-1)=2*diff(y(x),x) ,y(x), singsol=all)� �

y(x) =
√
x2 + 1− arctanh

(
1√

x2 + 1

)
+ ln (x) + c1

y(x) = −
√
x2 + 1 + arctanh

(
1√

x2 + 1

)
+ ln (x) + c1

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 59� �
DSolve[x*( (y'[x])^2-1)==2*y'[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
x2 + 1 + log

(√
x2 + 1− 1

)
+ c1

y(x) → −
√
x2 + 1 + log

(√
x2 + 1 + 1

)
+ c1
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1.80 problem 83
1.80.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 626

Internal problem ID [3225]
Internal file name [OUTPUT/2717_Sunday_June_05_2022_08_39_11_AM_45878433/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 83.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _rational , _dAlembert]

xy′(y′ + 2)− y = 0

1.80.1 Solving as dAlembert ode

Let p = y′ the ode becomes

xp(p+ 2)− y = 0

Solving for y from the above results in

y = xp(p+ 2) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = p(p+ 2)
g = 0

Hence (2) becomes

p− p(p+ 2) = x(2p+ 2) p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p(p+ 2) = 0

Solving for p from the above gives

p = −1
p = 0

Substituting these in (1A) gives

y = −x

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = p(x)− p(x) (p(x) + 2)
x (2p (x) + 2) (3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

p′(x) + p(x)p(x) = q(x)

Where here

p(x) = 1
2x

q(x) = 0

Hence the ode is

p′(x) + p(x)
2x = 0
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The integrating factor µ is

µ = e
∫ 1

2xdx

=
√
x

The ode becomes
d
dxµp = 0

d
dx
(√

x p
)
= 0

Integrating gives
√
x p = c1

Dividing both sides by the integrating factor µ =
√
x results in

p(x) = c1√
x

Substituing the above solution for p in (2A) gives

y =
√
x c1

(
c1√
x
+ 2
)

Summary
The solution(s) found are the following

(1)y = −x
(2)y = 0

(3)y =
√
x c1

(
c1√
x
+ 2
)

Verification of solutions

y = −x

Verified OK.
y = 0

Verified OK.

y =
√
x c1

(
c1√
x
+ 2
)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 40� �
dsolve(x*diff(y(x),x)*(diff(y(x),x)+2)=y(x),y(x), singsol=all)� �

y(x) = −x

y(x) =
√
c1x
(√

c1x+ 2x
)

x
y(x) = −2√c1x+ c1

3 Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 63� �
DSolve[x*y'[x]*(y'[x]+2)==y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ec1 − 2e
c1
2
√
x

y(x) → 2e−
c1
2
√
x+ e−c1

y(x) → 0
y(x) → −x
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1.81 problem 84
1.81.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 633

Internal problem ID [3226]
Internal file name [OUTPUT/2718_Sunday_June_05_2022_08_39_12_AM_61153006/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 84.
ODE order: 1.
ODE degree: 4.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

−y′
√

1 + y′2 = −x

Solving the given ode for y′ results in 4 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
√

2
√
4x2 + 1− 2

2 (1)

y′ = −
√
2
√
4x2 + 1− 2

2 (2)

y′ =
√

−2− 2
√
4x2 + 1

2 (3)

y′ = −
√
−2− 2

√
4x2 + 1

2 (4)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y =
∫ √

2
√
4x2 + 1− 2

2 dx

=
∫ √

2
√
4x2 + 1− 2

2 dx+ c1
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Summary
The solution(s) found are the following

(1)y =
∫ √

2
√
4x2 + 1− 2

2 dx+ c1

Verification of solutions

y =
∫ √

2
√
4x2 + 1− 2

2 dx+ c1

Verified OK.
Solving equation (2)

Integrating both sides gives

y =
∫

−
√

2
√
4x2 + 1− 2

2 dx

=
∫

−
√

2
√
4x2 + 1− 2

2 dx+ c2

Summary
The solution(s) found are the following

(1)y =
∫

−
√

2
√
4x2 + 1− 2

2 dx+ c2

Verification of solutions

y =
∫

−
√

2
√
4x2 + 1− 2

2 dx+ c2

Verified OK.
Solving equation (3)

Integrating both sides gives

y =
∫ √

−2− 2
√
4x2 + 1

2 dx

= −
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c3
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Summary
The solution(s) found are the following

(1)y = −
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c3

Verification of solutions

y = −
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c3

Verified OK.
Solving equation (4)

Integrating both sides gives

y =
∫

−
√

−2− 2
√
4x2 + 1

2 dx

=
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c4

Summary
The solution(s) found are the following

(1)y =
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c4

Verification of solutions

y =
i
√
2
(
−

256
√
2
√
π x3 cosh

(
3 arcsinh(2x)

2

)
3 −

8
√
2
√
π
(
− 64

3 x4− 8
3x

2+ 2
3
)
sinh

(
3 arcsinh(2x)

2

)
√
4x2+1

)
32
√
π

+ c4

Verified OK.
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1.81.1 Maple step by step solution

Let’s solve

−y′
√
1 + y′2 = −x

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
−y′
√

1 + y′2dx =
∫
−xdx+ c1

• Cannot compute integral∫
−y′
√

1 + y′2dx = −x2

2 + c1

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing y(x) successful`� �
3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 147� �
dsolve(x=diff(y(x),x)*sqrt( (diff(y(x),x))^2+1),y(x), singsol=all)� �

y(x) = −
i(−32x4 − 4x2 + 1) sinh

(
3 arcsinh(2x)

2

)
3
√
4x2 + 1

−
16ix3 cosh

(
3 arcsinh(2x)

2

)
3 + c1

y(x) =
i(−32x4 − 4x2 + 1) sinh

(
3 arcsinh(2x)

2

)
3
√
4x2 + 1

+
16ix3 cosh

(
3 arcsinh(2x)

2

)
3 + c1

y(x) = −

(∫ √
2
√
4x2 + 1− 2dx

)
2 + c1

y(x) =

(∫ √
2
√
4x2 + 1− 2dx

)
2 + c1
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3 Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 207� �
DSolve[x==y'[x]*Sqrt[ (y'[x])^2+1],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2x
(√

4x2 + 1− 2
)

3
√√

4x2 + 1− 1
+ c1

y(x) →
√
2x
(√

4x2 + 1− 2
)

3
√√

4x2 + 1− 1
+ c1

y(x) → −
√
2x
(
4x2 + 3

√
4x2 + 1 + 3

)
3
(
−
√
4x2 + 1− 1

)3/2 + c1

y(x) →
√
2x
(
4x2 + 3

√
4x2 + 1 + 3

)
3
(
−
√
4x2 + 1− 1

)3/2 + c1
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1.82 problem 85
1.82.1 Solving as clairaut ode . . . . . . . . . . . . . . . . . . . . . . . 635

Internal problem ID [3227]
Internal file name [OUTPUT/2719_Sunday_June_05_2022_08_39_14_AM_16286413/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 85.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _Clairaut]

2y′2(−xy′ + y) = 1

1.82.1 Solving as clairaut ode

This is Clairaut ODE. It has the form

y = xy′ + g(y′)

Where g is function of y′(x). Let p = y′ the ode becomes

2p2(−xp+ y) = 1

Solving for y from the above results in

y = 2p3x+ 1
2p2 (1A)

The above ode is a Clairaut ode which is now solved. We start by replacing y′ by p

which gives

y = xp+ 1
2p2

= xp+ 1
2p2
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Writing the ode as

y = xp+ g(p)

We now write g ≡ g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of x. Hence the above becomes

y = xp+ g (1)

Then we see that

g = 1
2p2

Taking derivative of (1) w.r.t. x gives

p = d

dx
(xp+ g)

p =
(
p+ x

dp

dx

)
+
(
g′
dp

dx

)
p = p+ (x+ g′) dp

dx

0 = (x+ g′) dp
dx

Where g′ is derivative of g(p) w.r.t. p. The general solution is given by

dp

dx
= 0

p = c1

Substituting this in (1) gives the general solution as

y = c1x+ 1
2c21

The singular solution is found from solving for p from

x+ g′(p) = 0

And substituting the result back in (1). Since we found above that g = 1
2p2 , then the

above equation becomes

x+ g′(p) = x− 1
p3

= 0
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Solving the above for p results in

p1 =
1
x

1
3

p2 = − 1
2x 1

3
+ i

√
3

2x 1
3

p3 = − 1
2x 1

3
− i

√
3

2x 1
3

Substituting the above back in (1) results in

y1 =
3x 2

3

2

y2 = − 3x 2
3

1 + i
√
3

y3 =
3x 2

3

−1 + i
√
3

Summary
The solution(s) found are the following

(1)y = c1x+ 1
2c21

(2)y = 3x 2
3

2

(3)y = − 3x 2
3

1 + i
√
3

(4)y = 3x 2
3

−1 + i
√
3
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Verification of solutions

y = c1x+ 1
2c21

Verified OK.

y = 3x 2
3

2

Verified OK.

y = − 3x 2
3

1 + i
√
3

Verified OK.

y = 3x 2
3

−1 + i
√
3

Verified OK.

Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �

638



3 Solution by Maple
Time used: 0.125 (sec). Leaf size: 53� �
dsolve(2*(diff(y(x),x))^2*(y(x)-x*diff(y(x),x))=1,y(x), singsol=all)� �

y(x) = 3x 2
3

2

y(x) = −
3x 2

3
(
1 + i

√
3
)

4

y(x) =
3x 2

3
(
i
√
3− 1

)
4

y(x) = c1x+ 1
2c21

3 Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 67� �
DSolve[2*(y'[x])^2*(y[x]-x*y'[x])==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x+ 1
2c12

y(x) → 3x2/3

2
y(x) → −3

2
3
√
−1x2/3

y(x) → 3
2(−1)2/3x2/3
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1.83 problem 86
Internal problem ID [3228]
Internal file name [OUTPUT/2720_Sunday_June_05_2022_08_39_16_AM_49114467/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 86.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y − 2xy′ − y2y′
3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

6y − 4x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

(1)

y′ = −
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

12y + 2x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3
+

i
√
3
((

108y2+12
√
3
√

27y4+32x3
) 1

3

6y + 4x

y
(
108y2+12

√
3
√

27y4+32x3
) 1

3

)
2

(2)

y′ = −
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

12y + 2x

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3
−

i
√
3
((

108y2+12
√
3
√

27y4+32x3
) 1

3

6y + 4x

y
(
108y2+12

√
3
√

27y4+32x3
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)
(b3 − a2)

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)2
a3

36y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−


384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
− 24

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
32
((

108y2 + 12
√
3
√
27y4 + 32x3

) 2
3 − 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2 + ya3 + a1)

−

 216y + 648
√
3 y3√

27y4+32x3

9y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

((
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
18y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

−
216
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3 y5b3 −

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 xb2 +

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 ya2 − 2

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 yb3 − 6b2y2

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3 + 216

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3 y4b1 + 12960

√
3x2y4b2 + 20736

√
3x y5b3 − 8

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3 xa3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 y3b3 − 13824

√
3x4ya2 + 9216

√
3x3y2a3 + 12960

√
3x y4b1 + 96

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x2a3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 y2b1 + 4320

√
27y4 + 32x3 x2y2b2 + 6912

√
27y4 + 32x3 x y3b3 − 4608

√
3x3ya1 + 4320

√
27y4 + 32x3 x y2b1 − 15552

√
3x y5a2 + 18432

√
3x4yb3 − 5184

√
27y4 + 32x3 x y3a2 + 216

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x y4b2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x3ya2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x2y2a3 + 72

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x y2b2 + 192

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3
√
3x2ya1 + 3888

√
3 y6a3 + 9216

√
3x5b2 − 7776

√
3 y5a1 + 9216

√
3x4b1 −

√
27y4 + 32x3

(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3 b1 − 648

√
27y4 + 32x3 y4a3 − 2592

√
27y4 + 32x3 y3a1 + 72(27y4 + 32x3)

3
2 a3

6y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

= 0
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Setting the numerator to zero gives

(6E)

−216
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 √3 y5b3

+
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
xb2

−
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
ya2

+ 2
√

27y4 + 32x3
(
108y2 + 12

√
3
√

27y4 + 32x3
) 5

3
yb3

+ 6b2y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3 √27y4 + 32x3

− 216
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3 y4b1
− 12960

√
3x2y4b2 − 20736

√
3x y5b3

+ 8
√

27y4 + 32x3
(
108y2 + 12

√
3
√

27y4 + 32x3
) 4

3
xa3

− 72
√

27y4 + 32x3
(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
y3b3

+ 13824
√
3x4ya2 − 9216

√
3x3y2a3

− 12960
√
3x y4b1 − 96

√
27y4 + 32x3

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
x2a3

−72
√

27y4 + 32x3
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
y2b1

− 4320
√

27y4 + 32x3 x2y2b2

− 6912
√

27y4 + 32x3 x y3b3 + 4608
√
3x3ya1

− 4320
√

27y4 + 32x3 x y2b1 + 15552
√
3x y5a2

− 18432
√
3x4yb3 + 5184

√
27y4 + 32x3 x y3a2

− 216
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x y4b2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x3ya2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x2y2a3

− 72
√

27y4 + 32x3
(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3
x y2b2

− 192
(
108y2 + 12

√
3
√

27y4 + 32x3
) 2

3 √3x2ya1

− 3888
√
3 y6a3 − 9216

√
3x5b2

+ 7776
√
3 y5a1 − 9216

√
3x4b1

+
√

27y4 + 32x3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 5
3
b1

+ 648
√
27y4 + 32x3 y4a3 + 2592

√
27y4 + 32x3 y3a1

− 72
(
27y4 + 32x3) 3

2 a3 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}
The above PDE (6E) now becomes

(7E)

648v4
√
3 v42b1 − 77760

√
3 v21v42b2 − 124416

√
3 v1v52b3 +864v5v4v32b3

+ 82944
√
3 v41v2a2 − 55296

√
3 v31v22a3 − 77760

√
3 v1v42b1

− 576v5v4v21a3 + 216v5v4v22b1 − 25920v5v21v22b2 − 41472v5v1v32b3
+ 27648

√
3 v31v2a1 − 25920v5v1v22b1 + 93312

√
3 v1v52a2

− 110592
√
3 v41v2b3 − 648v4v5v32a2 + 3888v3v5v42b2

+ 2304
√
3 v31v4b1 − 1944

√
3 v4v52a2 + 11664

√
3 v3v62b2

+ 2304
√
3 v41v4b2 + 18432

√
3 v41v3a3 + 31104v5v1v32a2

+ 2592v4
√
3 v52b3 + 5184v1v3v5v22a3 + 4608

√
3 v31v4v2b3

+ 13824
√
3 v31v3v22b2 + 15552

√
3 v1v3v42a3 + 648v4

√
3 v1v42b2

− 3456v4
√
3 v31v2a2 − 1152v4

√
3 v21v22a3 + 216v5v4v1v22b2

−1152v4
√
3 v21v2a1−13824v31v5a3−23328

√
3 v62a3−55296

√
3 v51b2

+ 46656
√
3 v52a1 − 55296

√
3 v41b1 − 7776v5v42a3 + 15552v5v32a1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

648v4
√
3 v42b1 − 77760

√
3 v21v42b2 − 55296

√
3 v31v22a3

− 77760
√
3 v1v42b1 − 576v5v4v21a3 + 216v5v4v22b1 − 25920v5v21v22b2

+ 27648
√
3 v31v2a1 − 25920v5v1v22b1 + 3888v3v5v42b2

+ 2304
√
3 v31v4b1 + 11664

√
3 v3v62b2 + 2304

√
3 v41v4b2

+ 18432
√
3 v41v3a3 +

(
82944

√
3 a2 − 110592

√
3 b3
)
v41v2

+
(
93312

√
3 a2 − 124416

√
3 b3
)
v1v

5
2

+
(
−1944

√
3 a2 + 2592

√
3 b3
)
v52v4 + 5184v1v3v5v22a3

+ 13824
√
3 v31v3v22b2 + 15552

√
3 v1v3v42a3 + 648v4

√
3 v1v42b2

− 1152v4
√
3 v21v22a3 + 216v5v4v1v22b2 − 1152v4

√
3 v21v2a1

+ (−648a2 + 864b3) v32v4v5 +
(
−3456

√
3 a2 + 4608

√
3 b3
)
v31v2v4

+ (31104a2 − 41472b3) v1v32v5 − 13824v31v5a3
− 23328

√
3 v62a3 − 55296

√
3 v51b2 + 46656

√
3 v52a1

− 55296
√
3 v41b1 − 7776v5v42a3 + 15552v5v32a1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
15552a1 = 0

−13824a3 = 0
−7776a3 = 0
−576a3 = 0
5184a3 = 0

−25920b1 = 0
216b1 = 0

−25920b2 = 0
216b2 = 0
3888b2 = 0

−1152
√
3 a1 = 0

27648
√
3 a1 = 0

46656
√
3 a1 = 0

−55296
√
3 a3 = 0

−23328
√
3 a3 = 0

−1152
√
3 a3 = 0

15552
√
3 a3 = 0

18432
√
3 a3 = 0

−77760
√
3 b1 = 0

−55296
√
3 b1 = 0

648
√
3 b1 = 0

2304
√
3 b1 = 0

−77760
√
3 b2 = 0

−55296
√
3 b2 = 0

648
√
3 b2 = 0

2304
√
3 b2 = 0

11664
√
3 b2 = 0

13824
√
3 b2 = 0

−648a2 + 864b3 = 0
31104a2 − 41472b3 = 0

−3456
√
3 a2 + 4608

√
3 b3 = 0

−1944
√
3 a2 + 2592

√
3 b3 = 0

82944
√
3 a2 − 110592

√
3 b3 = 0

93312
√
3 a2 − 124416

√
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y
4x
3

= 3y
4x

This is easily solved to give

y = c1x
3
4

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x
3
4
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And S is found from

dS = dx

ξ

= dx
4x
3

Integrating gives

S =
∫

dx

T

= 3 ln (x)
4

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

6y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

Evaluating all the partial derivatives gives

Rx = − 3y
4x 7

4

Ry =
1
x

3
4

Sx = 3
4x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

9x 3
4y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 x− 9y2

(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 − 48x2

(2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

9R12 1
3
(√

3
√
27R4 + 32 + 9R2) 1

3

2 12 2
3
(√

3
√
27R4 + 32 + 9R2

) 2
3 − 9 12 1

3
(√

3
√
27R4 + 32 + 9R2

) 1
3 R2 − 48

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 9R

(
12
√
81R4 + 96 + 108R2) 1

3

4 18 1
3

((√
81R4 + 96 + 9R2

)2) 1
3 − 9R2

(
12
√
81R4 + 96 + 108R2

) 1
3 − 48

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a+ c1

Which simplifies to

3 ln (x)
4 =

∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a+ c1

Summary
The solution(s) found are the following

(1)3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a

+ c1
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Verification of solutions

3 ln (x)
4

=
∫ y

x
3
4 9_a

(
12
√
81_a4 + 96 + 108_a2

) 1
3

4 18 1
3

((√
81_a4 + 96 + 9_a2

)2) 1
3 − 9_a2

(
12
√
81_a4 + 96 + 108_a2

) 1
3 − 48

d_a

+ c1

Verified OK.
Solving equation (2)

Writing the ode as

y′ =
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)
(b3 − a2)

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)2
a3

144y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−


1152ix2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24i

√
3− 384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
16
(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2

+ ya3 + a1)−


2i
√
3
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3
−

2
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

12y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x−

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
36y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}

652



The above PDE (6E) now becomes

(7E)

27648v31v5a3 + 15552v5v42a3 − 31104v5v32a1
+ 46656

√
3 v62a3 + 110592

√
3 v51b2 − 93312

√
3 v52a1

+ 110592
√
3 v41b1 + 139968iv62a3 + 331776iv51b2

− 279936iv52a1 + 331776iv41b1 − 1296i
√
3 v5v4v32a2

+ 1728iv5v4
√
3 v32b3 + 432iv5v4

√
3 v22b1

+ 51840iv5
√
3 v21v22b2 − 62208iv5

√
3 v1v32a2

+ 82944iv5
√
3 v1v32b3 + 51840iv5

√
3 v1v22b1

− 1152iv5v4
√
3 v21a3 + 432iv5v4

√
3 v1v22b2

− 6912iv4v21v22a3 − 6912iv4v21v2a1 − 31104iv5
√
3 v32a1

+ 3888iv4v1v42b2 − 20736iv4v31v2a2 + 27648iv31v4v2b3
+ 15552iv5

√
3 v42a3 + 27648i

√
3 v31v5a3

− 1296v4
√
3 v1v42b2 + 6912v4

√
3 v31v2a2

+2304v4
√
3 v21v22a3 − 432v5v4v1v22b2 +2304v4

√
3 v21v2a1

− 9216
√
3 v31v4v2b3 + 55296

√
3 v31v3v22b2

+ 62208
√
3 v1v3v42a3 + 20736v1v5v3v22a3

+ 663552iv41v2b3 + 331776iv31v22a3 + 466560iv1v42b1
− 11664iv4v52a2 + 15552iv4v52b3 + 13824iv41v4b2
+ 3888iv4v42b1 + 13824iv31v4b1 + 155520

√
3 v21v42b2

+ 248832
√
3 v1v52b3 − 1728v5v4v32b3 − 165888

√
3 v41v2a2

+ 110592
√
3 v31v22a3 + 155520

√
3 v1v42b1

− 432v5v4v22b1 + 51840v5v21v22b2 + 82944v5v1v32b3
− 55296

√
3 v31v2a1 + 51840v5v1v22b1 − 62208v5v1v32a2

− 186624
√
3 v1v52a2 + 221184

√
3 v41v2b3

+ 73728
√
3 v41v3a3 − 4608

√
3 v31v4b1 + 3888

√
3 v4v52a2

+ 46656
√
3 v3v62b2 − 4608

√
3 v41v4b2 − 165888iv31v2a1

+ 466560iv21v42b2 − 559872iv1v52a2 + 746496iv1v52b3
− 497664iv41v2a2 + 15552v5v3v42b2 + 1152v5v4v21a3
− 5184v4

√
3 v52b3 − 1296v4

√
3 v42b1 + 1296v5v4v32a2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−497664ia2 + 663552ib3 − 165888

√
3 a2

+ 221184
√
3 b3
)
v41v2 +

(
13824ib2 − 4608

√
3 b2
)
v41v4

+
(
331776ia3 + 110592

√
3 a3
)
v31v

2
2

+
(
−165888ia1 − 55296

√
3 a1
)
v31v2

+
(
13824ib1 − 4608

√
3 b1
)
v31v4

+
(
27648i

√
3 a3 + 27648a3

)
v31v5

+
(
466560ib2 + 155520

√
3 b2
)
v21v

4
2

+
(
−559872ia2 + 746496ib3 − 186624

√
3 a2

+ 248832
√
3 b3
)
v1v

5
2 +

(
466560ib1 + 155520

√
3 b1
)
v1v

4
2

+
(
−11664ia2+15552ib3+3888

√
3 a2−5184

√
3 b3
)
v52v4

+
(
3888ib1 − 1296

√
3 b1
)
v42v4

+
(
15552i

√
3 a3 + 15552a3

)
v42v5

+
(
−31104i

√
3 a1 − 31104a1

)
v32v5

+
(
432i

√
3 b2 − 432b2

)
v1v

2
2v4v5

+
(
331776ib2 + 110592

√
3 b2
)
v51

+
(
331776ib1 + 110592

√
3 b1
)
v41

+
(
139968ia3 + 46656

√
3 a3
)
v62

+
(
−279936ia1 − 93312

√
3 a1
)
v52

+
(
−1296i

√
3 a2+1728i

√
3 b3+1296a2−1728b3

)
v32v4v5

+
(
432i

√
3 b1 − 432b1

)
v22v4v5 + 55296

√
3 v31v3v22b2

+ 62208
√
3 v1v3v42a3 + 20736v1v5v3v22a3

+ 73728
√
3 v41v3a3 + 46656

√
3 v3v62b2 + 15552v5v3v42b2

+
(
−20736ia2 + 27648ib3 + 6912

√
3 a2

− 9216
√
3 b3
)
v31v2v4 +

(
−6912ia3 + 2304

√
3 a3
)
v21v

2
2v4

+
(
51840i

√
3 b2 + 51840b2

)
v21v

2
2v5

+
(
−6912ia1 + 2304

√
3 a1
)
v21v2v4

+
(
−1152i

√
3 a3 + 1152a3

)
v21v4v5

+
(
3888ib2 − 1296

√
3 b2
)
v1v

4
2v4 +

(
−62208i

√
3 a2

+ 82944i
√
3 b3 − 62208a2 + 82944b3

)
v1v

3
2v5

+
(
51840i

√
3 b1 + 51840b1

)
v1v

2
2v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
20736a3 = 0
15552b2 = 0

62208
√
3 a3 = 0

73728
√
3 a3 = 0

46656
√
3 b2 = 0

55296
√
3 b2 = 0

−279936ia1 − 93312
√
3 a1 = 0

−165888ia1 − 55296
√
3 a1 = 0

−6912ia1 + 2304
√
3 a1 = 0

−6912ia3 + 2304
√
3 a3 = 0

3888ib1 − 1296
√
3 b1 = 0

3888ib2 − 1296
√
3 b2 = 0

13824ib1 − 4608
√
3 b1 = 0

13824ib2 − 4608
√
3 b2 = 0

139968ia3 + 46656
√
3 a3 = 0

331776ia3 + 110592
√
3 a3 = 0

331776ib1 + 110592
√
3 b1 = 0

331776ib2 + 110592
√
3 b2 = 0

466560ib1 + 155520
√
3 b1 = 0

466560ib2 + 155520
√
3 b2 = 0

−31104i
√
3 a1 − 31104a1 = 0

−1152i
√
3 a3 + 1152a3 = 0

432i
√
3 b1 − 432b1 = 0

432i
√
3 b2 − 432b2 = 0

15552i
√
3 a3 + 15552a3 = 0

27648i
√
3 a3 + 27648a3 = 0

51840i
√
3 b1 + 51840b1 = 0

51840i
√
3 b2 + 51840b2 = 0

−559872ia2 + 746496ib3 − 186624
√
3 a2 + 248832

√
3 b3 = 0

−497664ia2 + 663552ib3 − 165888
√
3 a2 + 221184

√
3 b3 = 0

−20736ia2 + 27648ib3 + 6912
√
3 a2 − 9216

√
3 b3 = 0

−11664ia2 + 15552ib3 + 3888
√
3 a2 − 5184

√
3 b3 = 0

−62208i
√
3 a2 + 82944i

√
3 b3 − 62208a2 + 82944b3 = 0

−1296i
√
3 a2 + 1728i

√
3 b3 + 1296a2 − 1728b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)
(b3 − a2)

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

−

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)2
a3

144y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3

−

−

1152ix2(
108y2+12

√
3
√

27y4+32x3
) 1

3√27y4+32x3
+ 24i

√
3 + 384

√
3x2(

108y2+12
√
3
√

27y4+32x3
) 1

3√27y4+32x3
− 24

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+
16
(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)√
3x2

y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3
√
27y4 + 32x3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(
216y+ 648

√
3 y3√

27y4+32x3

)

3
(
108y2+12

√
3
√

27y4+32x3
) 1

3
+

144y+ 432
√
3 y3√

27y4+32x3(
108y2+12

√
3
√

27y4+32x3
) 1

3

12y
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

12y2
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3

+

(
i
√
3
(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 + 24i

√
3x+

(
108y2 + 12

√
3
√
27y4 + 32x3

) 2
3 − 24x

)(
216y + 648

√
3 y3√

27y4+32x3

)
36y

(
108y2 + 12

√
3
√
27y4 + 32x3

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
108y2+12

√
3
√

27y4 + 32x3
) 1

3
,
(
108y2+12

√
3
√
27y4 + 32x3

) 2
3
,
√

27y4 + 32x3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
108y2 + 12

√
3
√
27y4 + 32x3

) 1
3 = v3,

(
108y2

+ 12
√
3
√

27y4 + 32x3
) 2

3 = v4,
√
27y4 + 32x3 = v5

}
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The above PDE (6E) now becomes

(7E)

62208iv5
√
3 v1v32a2 − 82944iv5

√
3 v1v32b3

− 51840iv5
√
3 v1v22b1 + 1296i

√
3 v5v4v32a2

− 1728iv5v4
√
3 v32b3 − 432iv5v4

√
3 v22b1

+ 1152iv5v4
√
3 v21a3 − 51840iv5

√
3 v21v22b2

− 27648i
√
3 v31v5a3 − 3888iv4v1v42b2 + 20736iv4v31v2a2

− 27648iv31v4v2b3 + 6912iv4v21v22a3 + 6912iv4v21v2a1
+ 20736v1v5v3v22a3 − 9216

√
3 v31v4v2b3

+ 55296
√
3 v31v3v22b2 + 62208

√
3 v1v3v42a3

− 1296v4
√
3 v1v42b2 + 6912v4

√
3 v31v2a2

+2304v4
√
3 v21v22a3 − 432v5v4v1v22b2 +2304v4

√
3 v21v2a1

+ 31104iv5
√
3 v32a1 − 15552iv5

√
3 v42a3

− 4608
√
3 v31v4b1 + 3888

√
3 v4v52a2 + 46656

√
3 v3v62b2

+ 1296v5v4v32a2 + 15552v5v3v42b2 − 186624
√
3 v1v52a2

+ 221184
√
3 v41v2b3 − 62208v5v1v32a2 + 1152v5v4v21a3

− 5184v4
√
3 v52b3 − 1296v4

√
3 v42b1 + 155520

√
3 v21v42b2

+ 248832
√
3 v1v52b3 − 1728v5v4v32b3 − 165888

√
3 v41v2a2

+ 110592
√
3 v31v22a3 + 155520

√
3 v1v42b1

− 432v5v4v22b1 + 51840v5v21v22b2 + 82944v5v1v32b3
− 55296

√
3 v31v2a1 + 51840v5v1v22b1 + 11664iv4v52a2

− 15552iv4v52b3 − 13824iv41v4b2 − 3888iv4v42b1
− 13824iv31v4b1 − 466560iv21v42b2 + 73728

√
3 v41v3a3

− 4608
√
3 v41v4b2 − 432iv5v4

√
3 v1v22b2

+ 559872iv1v52a2 − 746496iv1v52b3 + 497664iv41v2a2
− 663552iv41v2b3 − 331776iv31v22a3 − 466560iv1v42b1
+ 165888iv31v2a1 − 139968iv62a3 − 331776iv51b2
+ 279936iv52a1 − 331776iv41b1 + 27648v31v5a3
+ 110592

√
3 v51b2 − 93312

√
3 v52a1 + 110592

√
3 v41b1

+ 15552v5v42a3 − 31104v5v32a1 + 46656
√
3 v62a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−331776ib2 + 110592

√
3 b2
)
v51

+
(
−331776ib1 + 110592

√
3 b1
)
v41

+
(
−139968ia3 + 46656

√
3 a3
)
v62

+
(
279936ia1 − 93312

√
3 a1
)
v52

+
(
−15552i

√
3 a3 + 15552a3

)
v42v5

+
(
31104i

√
3 a1 − 31104a1

)
v32v5 +

(
497664ia2

− 663552ib3 − 165888
√
3 a2 + 221184

√
3 b3
)
v41v2

+
(
−13824ib2 − 4608

√
3 b2
)
v41v4

+
(
−331776ia3 + 110592

√
3 a3
)
v31v

2
2

+
(
165888ia1 − 55296

√
3 a1
)
v31v2

+
(
−13824ib1 − 4608

√
3 b1
)
v31v4

+
(
−27648i

√
3 a3 + 27648a3

)
v31v5

+
(
−466560ib2 + 155520

√
3 b2
)
v21v

4
2 +

(
559872ia2

− 746496ib3 − 186624
√
3 a2 + 248832

√
3 b3
)
v1v

5
2

+
(
−466560ib1 + 155520

√
3 b1
)
v1v

4
2

+
(
11664ia2 − 15552ib3 + 3888

√
3 a2 − 5184

√
3 b3
)
v52v4

+
(
−3888ib1 − 1296

√
3 b1
)
v42v4 + 20736v1v5v3v22a3

+ 55296
√
3 v31v3v22b2 + 62208

√
3 v1v3v42a3

+ 46656
√
3 v3v62b2 + 15552v5v3v42b2 + 73728

√
3 v41v3a3

+
(
20736ia2−27648ib3+6912

√
3 a2−9216

√
3 b3
)
v31v2v4

+
(
6912ia3 + 2304

√
3 a3
)
v21v

2
2v4

+
(
−51840i

√
3 b2 + 51840b2

)
v21v

2
2v5

+
(
6912ia1 + 2304

√
3 a1
)
v21v2v4

+
(
1152i

√
3 a3 + 1152a3

)
v21v4v5

+
(
−3888ib2 − 1296

√
3 b2
)
v1v

4
2v4 +

(
62208i

√
3 a2

− 82944i
√
3 b3 − 62208a2 + 82944b3

)
v1v

3
2v5

+
(
−51840i

√
3 b1 + 51840b1

)
v1v

2
2v5

+
(
1296i

√
3 a2 − 1728i

√
3 b3 + 1296a2 − 1728b3

)
v32v4v5

+
(
−432i

√
3 b1 − 432b1

)
v22v4v5

+
(
−432i

√
3 b2 − 432b2

)
v1v

2
2v4v5 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
20736a3 = 0
15552b2 = 0

62208
√
3 a3 = 0

73728
√
3 a3 = 0

46656
√
3 b2 = 0

55296
√
3 b2 = 0

−466560ib1 + 155520
√
3 b1 = 0

−466560ib2 + 155520
√
3 b2 = 0

−331776ia3 + 110592
√
3 a3 = 0

−331776ib1 + 110592
√
3 b1 = 0

−331776ib2 + 110592
√
3 b2 = 0

−139968ia3 + 46656
√
3 a3 = 0

−13824ib1 − 4608
√
3 b1 = 0

−13824ib2 − 4608
√
3 b2 = 0

−3888ib1 − 1296
√
3 b1 = 0

−3888ib2 − 1296
√
3 b2 = 0

6912ia1 + 2304
√
3 a1 = 0

6912ia3 + 2304
√
3 a3 = 0

165888ia1 − 55296
√
3 a1 = 0

279936ia1 − 93312
√
3 a1 = 0

−51840i
√
3 b1 + 51840b1 = 0

−51840i
√
3 b2 + 51840b2 = 0

−27648i
√
3 a3 + 27648a3 = 0

−15552i
√
3 a3 + 15552a3 = 0

−432i
√
3 b1 − 432b1 = 0

−432i
√
3 b2 − 432b2 = 0

1152i
√
3 a3 + 1152a3 = 0

31104i
√
3 a1 − 31104a1 = 0

11664ia2 − 15552ib3 + 3888
√
3 a2 − 5184

√
3 b3 = 0

20736ia2 − 27648ib3 + 6912
√
3 a2 − 9216

√
3 b3 = 0

497664ia2 − 663552ib3 − 165888
√
3 a2 + 221184

√
3 b3 = 0

559872ia2 − 746496ib3 − 186624
√
3 a2 + 248832

√
3 b3 = 0

1296i
√
3 a2 − 1728i

√
3 b3 + 1296a2 − 1728b3 = 0

62208i
√
3 a2 − 82944i

√
3 b3 − 62208a2 + 82944b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0

a2 =
4b3
3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 4x
3

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (-2*y(x)^2*x^3-y(x))/(2*x^4*y(x)+x), y(x)` *** Sublevel 3 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.172 (sec). Leaf size: 97� �
dsolve(y(x)=2*x*diff(y(x),x)+y(x)^2*(diff(y(x),x))^3,y(x), singsol=all)� �

y(x) = −2(−x3)
1
4 6 1

4

3

y(x) = 2(−x3)
1
4 6 1

4

3

y(x) = −2i(−x3)
1
4 6 1

4

3

y(x) = 2i(−x3)
1
4 6 1

4

3
y(x) = 0

y(x) =
√
c1 (c21 + 2x)

y(x) = −
√

c1 (c21 + 2x)

3 Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 119� �
DSolve[y[x]==2*x*y'[x]+y[x]^2*(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
2c1x+ c13

y(x) →
√

2c1x+ c13

y(x) → (−1− i)
(
2
3

)3/4

x3/4

y(x) → (1− i)
(
2
3

)3/4

x3/4

y(x) → (−1 + i)
(
2
3

)3/4

x3/4

y(x) → (1 + i)
(
2
3

)3/4

x3/4
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1.84 problem 87
Internal problem ID [3229]
Internal file name [OUTPUT/2721_Sunday_June_05_2022_08_39_18_AM_77622382/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 87.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y′
3 + y2 − xyy′ = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3

6 + 2yx(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3

(1)

y′ = −
(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3

12 − yx(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3
+

i
√
3
((

−108y2+12
√

−12y3x3+81y4
) 1

3

6 − 2yx(
−108y2+12

√
−12y3x3+81y4

) 1
3

)
2

(2)

y′ = −
(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3

12 − yx(
−108y2 + 12

√
−12y3x3 + 81y4

) 1
3
−

i
√
3
((

−108y2+12
√

−12y3x3+81y4
) 1

3

6 − 2yx(
−108y2+12

√
−12y3x3+81y4

) 1
3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

b2 +

((
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)
(b3 − a2)

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−

((
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)2
a3

36
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3

−


− 144y3x2(

−108y2+12
√

−12x3y3+81y4
) 1

3√−12x3y3+81y4
+ 12y

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

+
12
((

−108y2 + 12
√
−12x3y3 + 81y4

) 2
3 + 12xy

)
y3x2(

−108y2 + 12
√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4

 (xa2 + ya3 + a1)

−


−144y+

2
(
−216x3y2+1944y3

)
3
√

−12x3y3+81y4(
−108y2+12

√
−12x3y3+81y4

) 1
3
+ 12x

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−

((
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)(
−216y + −216x3y2+1944y3√

−12x3y3+81y4

)
18
(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3

 (xb2

+ yb3 + b1) = 0
(5E)

Putting the above in normal form gives

−
4
(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4 xya3 + 24

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
√
−12x3y3 + 81y4 x2y2a3 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
√
−12x3y3 + 81y4 xyb2 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x4y2b2 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x3y3a2 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x3y3b3 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x2y4a3 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x3y2b1 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x2y3a1 + 648

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 x y3b2 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
√
−12x3y3 + 81y4 y2b3 − 432

√
−12x3y3 + 81y4 x2y2b2 − 2592

√
−12x3y3 + 81y4 x y3a2 + 864

√
−12x3y3 + 81y4 x y3b3 − 72

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
√
−12x3y3 + 81y4 yb1 − 432

√
−12x3y3 + 81y4 x y2b1 + 24(−12x3y3 + 81y4)

3
2 a3 − 23328y6a3 + 11664y5a1 + 23328x y5a2 − 2592x4y4a2 + 4320x3y5a3 − 864x3y4a1 − 864x5y3b2 + 864x4y4b3 − 864x4y3b1 + 3888x2y4b2 − 7776x y5b3 + 3888x y4b1 +

(
−108y2 + 12

√
−12x3y3 + 81y4

) 5
3
√
−12x3y3 + 81y4 a2 −

(
−108y2 + 12

√
−12x3y3 + 81y4

) 5
3
√
−12x3y3 + 81y4 b3 + 648

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 y4b3 − 6b2

(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4 + 648

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 y3b1 + 648

√
−12x3y3 + 81y4 y4a3 − 1296

√
−12x3y3 + 81y4 y3a1

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4

= 0

668



Setting the numerator to zero gives

(6E)

−4
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 4

3 √−12x3y3 + 81y4 xya3

− 24
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 2

3 √−12x3y3 + 81y4 x2y2a3

+ 72
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 2

3 √−12x3y3 + 81y4 xyb2

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x4y2b2

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x3y3a2

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x3y3b3

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x2y4a3

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x3y2b1

+ 72
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x2y3a1

− 648
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
x y3b2

+ 72
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 2

3 √−12x3y3 + 81y4 y2b3
+ 432

√
−12x3y3 + 81y4 x2y2b2

+ 2592
√

−12x3y3 + 81y4 x y3a2
− 864

√
−12x3y3 + 81y4 x y3b3 + 72

(
−108y2

+ 12
√

−12x3y3 + 81y4
) 2

3 √−12x3y3 + 81y4 yb1
+ 432

√
−12x3y3 + 81y4 x y2b1

− 24
(
−12x3y3 + 81y4

) 3
2 a3 + 23328y6a3 − 11664y5a1

− 23328x y5a2 + 2592x4y4a2 − 4320x3y5a3
+ 864x3y4a1 + 864x5y3b2 − 864x4y4b3 + 864x4y3b1

− 3888x2y4b2 + 7776x y5b3 − 3888x y4b1 −
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 5

3 √−12x3y3 + 81y4 a2

+
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 5

3 √−12x3y3 + 81y4 b3

− 648
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
y4b3

+ 6b2
(
−108y2

+ 12
√

−12x3y3 + 81y4
) 4

3 √−12x3y3 + 81y4

− 648
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3
y3b1

− 648
√

−12x3y3 + 81y4 y4a3
+ 1296

√
−12x3y3 + 81y4 y3a1 = 0
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.{
x, y,

√
−y3 (4x3 − 27y),

(
−108y2

+ 12
√
3
√
−y3 (4x3 − 27y)

) 1
3
,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y3 (4x3 − 27y) = v3,
(
−108y2

+ 12
√
3
√

−y3 (4x3 − 27y)
) 1

3 = v4,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3 = v5

}

The above PDE (6E) now becomes

(7E)

−72v2
(
−24v3

√
3 v31v22a3 − 6v5v3

√
3 v1b2 − 9v5v3

√
3 v2a2

+ 3v5v3
√
3 v2b3 − 36v3

√
3 v21v2b2 − 216v3

√
3 v1v22a2 + 72v3

√
3 v1v22b3

+ 54v4v3
√
3 v2b2 − 36v3

√
3 v1v2b1 − 108v3

√
3 v22a1 − 48v4v41v32a3

− 6v5v41v2b2 − 18v5v31v22a2 + 6v5v31v22b3 − 6v5v21v32a3 − 6v5v31v2b1
−6v5v21v22a1+72v4v31v22b2+324v4v1v42a3+54v5v1v22b2+216v3

√
3 v32a3

− 6v5v3
√
3 b1 − 1944v52a3 + 972v42a1 + 324v32v21b2 + 1944v42v1a2

+ 324v32v1b1 − 72v51v22b2 − 216v41v32a2 + 72v41v32b3 + 360v31v42a3
− 72v41v22b1 − 72v31v32a1 − 648v1v42b3 + 81v5v32a2 − 27v5v32b3
+ 54v5v22b1 − 486v4v32b2 + 2v5v3

√
3 v21v2a3 − 36v4v3

√
3 v1v22a3

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−5184b2v4v31v32 + (1296a2 − 432b3) v5v31v32
+ 432b1v5v31v22 + 432a3v5v21v42 + 432a1v5v21v32
+ 3456a3v4v41v42 + (15552a2 − 5184b3) v41v42 + 432b2v5v41v22
+
(
648

√
3 a2 − 216

√
3 b3
)
v3v5v

2
2 + 2592

√
3 b2v3v21v22

+ 2592
√
3 b1v3v1v22 − 3888

√
3 b2v3v4v22 + 432v5v3

√
3 b1v2

− 23328a3v4v1v52 + (−139968a2 + 46656b3) v1v52
+
(
15552

√
3 a2 − 5184

√
3 b3
)
v3v1v

3
2 − 3888b2v5v1v32

− 15552
√
3 a3v3v42 + 7776

√
3 a1v3v32 + 1728

√
3 a3v3v31v32

+ 139968a3v62 − 69984a1v52 − 144
√
3 a3v3v5v21v22

+ 2592
√
3 a3v3v4v1v32 + 432

√
3 b2v3v5v1v2 − 23328b1v1v42

+34992b2v4v42 +(−5832a2+1944b3) v5v42 −3888b1v5v32 +5184v32b2v51
+ 5184b1v41v32 − 25920a3v31v52 + 5184a1v31v42 − 23328b2v21v42 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−69984a1 = 0

432a1 = 0
5184a1 = 0

−25920a3 = 0
−23328a3 = 0

432a3 = 0
3456a3 = 0

139968a3 = 0
−23328b1 = 0
−3888b1 = 0

432b1 = 0
5184b1 = 0

−23328b2 = 0
−5184b2 = 0
−3888b2 = 0

432b2 = 0
5184b2 = 0
34992b2 = 0

7776
√
3 a1 = 0

−15552
√
3 a3 = 0

−144
√
3 a3 = 0

1728
√
3 a3 = 0

2592
√
3 a3 = 0

432
√
3 b1 = 0

2592
√
3 b1 = 0

−3888
√
3 b2 = 0

432
√
3 b2 = 0

2592
√
3 b2 = 0

−139968a2 + 46656b3 = 0
−5832a2 + 1944b3 = 0

1296a2 − 432b3 = 0
15552a2 − 5184b3 = 0

648
√
3 a2 − 216

√
3 b3 = 0

15552
√
3 a2 − 5184

√
3 b3 = 0672



Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= 3y
x

= 3y
x

This is easily solved to give

y = c1x
3

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x3
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And S is found from

dS = dx

ξ

= dx

x

Integrating gives

S =
∫

dx

T

= ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

6
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

Evaluating all the partial derivatives gives

Rx = −3y
x4

Ry =
1
x3

Sx = 1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

6x3(−108y2 + 12
√
3
√
−4x3y3 + 27y4

) 1
3(

−108y2 + 12
√
3
√
−4x3y3 + 27y4

) 2
3 x+ 12x2y − 18y

(
−108y2 + 12

√
3
√
−4x3y3 + 27y4

) 1
3

(2A)
We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

612 1
3

(√
3
√
27R− 4− 9

√
R
) 1

3

√
R

(
12 2

3

(√
3
√
27R− 4− 9

√
R
) 2

3 − 18 12 1
3
√
R
(√

3
√
27R− 4− 9

√
R
) 1

3 + 12
)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 6

(
12
√
81R− 12− 108

√
R
) 1

3(
2 18 1

3

((√
81R− 12− 9

√
R
)2) 1

3

− 18
√
R
(
12
√
81R− 12− 108

√
R
) 1

3 + 12
)
√
R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x) =
∫ y

x3 6
(
12
√
81_a− 12− 108√_a

) 1
3(

2 18 1
3

((√
81_a− 12− 9√_a

)2) 1
3 − 18√_a

(
12
√
81_a− 12− 108√_a

) 1
3 + 12

)
√_a

d_a+ c1

Which simplifies to

ln (x) =
∫ y

x3 6
(
12
√
81_a− 12− 108√_a

) 1
3(

2 18 1
3

((√
81_a− 12− 9√_a

)2) 1
3 − 18√_a

(
12
√
81_a− 12− 108√_a

) 1
3 + 12

)
√_a

d_a+ c1

Summary
The solution(s) found are the following

(1)ln (x)

=
∫ y

x3 6
(
12
√
81_a− 12− 108√_a

) 1
3(

2 18 1
3

((√
81_a− 12− 9√_a

)2) 1
3 − 18√_a

(
12
√
81_a− 12− 108√_a

) 1
3 + 12

)
√_a

d_a

+ c1

Verification of solutions

ln (x)

=
∫ y

x3 6
(
12
√
81_a− 12− 108√_a

) 1
3(

2 18 1
3

((√
81_a− 12− 9√_a

)2) 1
3 − 18√_a

(
12
√
81_a− 12− 108√_a

) 1
3 + 12

)
√_a

d_a

+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ =
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx−

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12xy

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx−

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12xy

)
(b3 − a2)

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx−

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12xy

)2
a3

144
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3

−


− 144i

√
3 y3x2(

−108y2+12
√

−12x3y3+81y4
) 1

3√−12x3y3+81y4
− 12i

√
3 y + 144y3x2(

−108y2+12
√

−12x3y3+81y4
) 1

3√−12x3y3+81y4
− 12y

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

+
6
(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx−

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12xy

)
y3x2(

−108y2 + 12
√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4

 (xa2

+ ya3 + a1)

−


2i
√
3
(
−216y+−216x3y2+1944y3√

−12x3y3+81y4

)

3
(
−108y2+12

√
−12x3y3+81y4

) 1
3
− 12i

√
3x−

2
(
−216y+−216x3y2+1944y3√

−12x3y3+81y4

)

3
(
−108y2+12

√
−12x3y3+81y4

) 1
3
− 12x

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx−

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12xy

)(
−216y + −216x3y2+1944y3√

−12x3y3+81y4

)
36
(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display
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Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y3 (4x3 − 27y),

(
−108y2

+ 12
√
3
√
−y3 (4x3 − 27y)

) 1
3
,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y3 (4x3 − 27y) = v3,
(
−108y2

+ 12
√
3
√

−y3 (4x3 − 27y)
) 1

3 = v4,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3 = v5

}
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The above PDE (6E) now becomes

(7E)

144v2
(
−144v4v31v22b2 − 648v4v1v42a3 + 216

√
3 v3v32a3

+54v5v1v22b2−6
√
3 v5v3b1−108

√
3 v3v22a1−1944i

√
3 v52a3

+ 972i
√
3 v42a1 + 648iv3v32a3 + 18iv5v3b1 − 324iv3v22a1

+ 6i
√
3 v5v21v22a1 − 54i

√
3 v5v1v22b2 − 6iv5v3v21v2a3

+ 324v32v21b2 + 1944v42v1a2 + 324v32v1b1 − 216v41v32a2
+72v41v32b3+360v31v42a3−72v41v22b1−72v31v32a1−648v1v42b3
+ 81v5v32a2 − 27v5v32b3 + 54v5v22b1 + 972v4v32b2 − 72v51v22b2
− 6v5v41v2b2 − 18v5v31v22a2 + 6v5v31v22b3 − 6v5v21v32a3
− 6v5v31v2b1 − 6v5v21v22a1 + 96v4v41v32a3 − 1944v52a3
+ 972v42a1 − 6

√
3 v5v3v1b2 − 9

√
3 v5v3v2a2 + 3

√
3 v5v3v2b3

− 36
√
3 v3v21v2b2 − 216

√
3 v3v1v22a2 + 72

√
3 v3v1v22b3

− 108
√
3 v4v3v2b2 − 36

√
3 v3v1v2b1 − 24

√
3 v3v31v22a3

− 72i
√
3 v51v22b2 − 216i

√
3 v41v32a2 + 72i

√
3 v41v32b3

+ 360i
√
3 v31v42a3 − 72i

√
3 v41v22b1 − 72i

√
3 v31v32a1

− 81i
√
3 v5v32a2 + 27i

√
3 v5v32b3 + 324i

√
3 v32v21b2

+ 1944i
√
3 v42v1a2 − 648i

√
3 v1v42b3 − 72iv3v31v22a3

− 54i
√
3 v5v22b1 + 324i

√
3 v32v1b1 + 18iv5v3v1b2

+ 27iv5v3v2a2 − 9iv5v3v2b3 − 108iv3v21v2b2 − 648iv3v1v22a2
+ 216iv3v1v22b3 − 108iv3v1v2b1 + 2

√
3 v5v3v21v2a3

+ 72
√
3 v4v3v1v22a3 + 6i

√
3 v5v41v2b2 + 18i

√
3 v5v31v22a2

− 6i
√
3 v5v31v22b3 + 6i

√
3 v5v21v32a3 + 6i

√
3 v5v31v2b1

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

139968b2v4v42+
(
279936i

√
3 a2−93312i

√
3 b3+279936a2

− 93312b3
)
v1v

5
2 +

(
46656i

√
3 b1 + 46656b1

)
v1v

4
2

+
(
46656i

√
3 b2 + 46656b2

)
v21v

4
2

+
(
93312ia3 + 31104

√
3 a3
)
v3v

4
2

+
(
−11664i

√
3 a2+3888i

√
3 b3+11664a2−3888b3

)
v5v

4
2

+
(
−46656ia1 − 15552

√
3 a1
)
v3v

3
2

+
(
−7776i

√
3 b1 + 7776b1

)
v5v

3
2

+
(
−10368i

√
3 b2 − 10368b2

)
v51v

3
2

+
(
−31104i

√
3 a2 + 10368i

√
3 b3 − 31104a2

+ 10368b3
)
v41v

4
2 +

(
−10368i

√
3 b1 − 10368b1

)
v41v

3
2

+
(
51840i

√
3 a3 + 51840a3

)
v31v

5
2

+
(
−10368i

√
3 a1 − 10368a1

)
v31v

4
2

+
(
−7776i

√
3 b2 + 7776b2

)
v5v1v

3
2

+
(
−15552ib1 − 5184

√
3 b1
)
v3v1v

2
2 + 13824a3v4v41v42

− 20736b2v4v31v32 +
(
−279936i

√
3 a3 − 279936a3

)
v62

+
(
139968i

√
3 a1 + 139968a1

)
v52

+ 10368
√
3 a3v3v4v1v32 − 15552

√
3 b2v3v4v22

− 93312a3v4v1v52 +
(
−864ia3 + 288

√
3 a3
)
v3v5v

2
1v

2
2

+
(
2592ib2 − 864

√
3 b2
)
v3v5v1v2

+
(
864i

√
3 b2 − 864b2

)
v5v

4
1v

2
2

+
(
−10368ia3 − 3456

√
3 a3
)
v3v

3
1v

3
2

+
(
2592i

√
3 a2 − 864i

√
3 b3 − 2592a2 + 864b3

)
v5v

3
1v

3
2

+
(
864i

√
3 b1 − 864b1

)
v5v

3
1v

2
2

+
(
864i

√
3 a3 − 864a3

)
v5v

2
1v

4
2

+
(
864i

√
3 a1 − 864a1

)
v5v

2
1v

3
2

+
(
−15552ib2 − 5184

√
3 b2
)
v3v

2
1v

2
2

+
(
3888ia2 − 1296ib3 − 1296

√
3 a2 + 432

√
3 b3
)
v3v5v

2
2

+
(
2592ib1 − 864

√
3 b1
)
v3v5v2 +

(
−93312ia2

+ 31104ib3 − 31104
√
3 a2 + 10368

√
3 b3
)
v3v1v

3
2 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−93312a3 = 0
13824a3 = 0

−20736b2 = 0
139968b2 = 0

10368
√
3 a3 = 0

−15552
√
3 b2 = 0

−46656ia1 − 15552
√
3 a1 = 0

−15552ib1 − 5184
√
3 b1 = 0

−15552ib2 − 5184
√
3 b2 = 0

−10368ia3 − 3456
√
3 a3 = 0

−864ia3 + 288
√
3 a3 = 0

2592ib1 − 864
√
3 b1 = 0

2592ib2 − 864
√
3 b2 = 0

93312ia3 + 31104
√
3 a3 = 0

−279936i
√
3 a3 − 279936a3 = 0

−10368i
√
3 a1 − 10368a1 = 0

−10368i
√
3 b1 − 10368b1 = 0

−10368i
√
3 b2 − 10368b2 = 0

−7776i
√
3 b1 + 7776b1 = 0

−7776i
√
3 b2 + 7776b2 = 0

864i
√
3 a1 − 864a1 = 0

864i
√
3 a3 − 864a3 = 0

864i
√
3 b1 − 864b1 = 0

864i
√
3 b2 − 864b2 = 0

46656i
√
3 b1 + 46656b1 = 0

46656i
√
3 b2 + 46656b2 = 0

51840i
√
3 a3 + 51840a3 = 0

139968i
√
3 a1 + 139968a1 = 0

−93312ia2 + 31104ib3 − 31104
√
3 a2 + 10368

√
3 b3 = 0

3888ia2 − 1296ib3 − 1296
√
3 a2 + 432

√
3 b3 = 0

−31104i
√
3 a2 + 10368i

√
3 b3 − 31104a2 + 10368b3 = 0

−11664i
√
3 a2 + 3888i

√
3 b3 + 11664a2 − 3888b3 = 0

2592i
√
3 a2 − 864i

√
3 b3 − 2592a2 + 864b3 = 0

279936i
√
3 a2 − 93312i

√
3 b3 + 279936a2 − 93312b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx+

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx+

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)
(b3 − a2)

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx+

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)2
a3

144
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3

−

−

− 144i
√
3 y3x2(

−108y2+12
√

−12x3y3+81y4
) 1

3√−12x3y3+81y4
− 12i

√
3 y − 144y3x2(

−108y2+12
√

−12x3y3+81y4
) 1

3√−12x3y3+81y4
+ 12y

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

−
6
(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx+

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)
y3x2(

−108y2 + 12
√
−12x3y3 + 81y4

) 4
3
√
−12x3y3 + 81y4

 (xa2

+ ya3 + a1)

−

−

2i
√
3
(
−216y+−216x3y2+1944y3√

−12x3y3+81y4

)

3
(
−108y2+12

√
−12x3y3+81y4

) 1
3
− 12i

√
3x+

−144y+
2
(
−216x3y2+1944y3

)
3
√

−12x3y3+81y4(
−108y2+12

√
−12x3y3+81y4

) 1
3
+ 12x

12
(
−108y2 + 12

√
−12x3y3 + 81y4

) 1
3

+

(
i
√
3
(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 − 12i

√
3 yx+

(
−108y2 + 12

√
−12x3y3 + 81y4

) 2
3 + 12xy

)(
−216y + −216x3y2+1944y3√

−12x3y3+81y4

)
36
(
−108y2 + 12

√
−12x3y3 + 81y4

) 4
3

 (xb2

+ yb3 + b1) = 0
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Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
−y3 (4x3 − 27y),

(
−108y2

+ 12
√
3
√
−y3 (4x3 − 27y)

) 1
3
,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3
}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{

x = v1, y = v2,
√

−y3 (4x3 − 27y) = v3,
(
−108y2

+ 12
√
3
√

−y3 (4x3 − 27y)
) 1

3 = v4,
(
−108y2 + 12

√
3
√

−y3 (4x3 − 27y)
) 2

3 = v5

}
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The above PDE (6E) now becomes

(7E)

−144v2
(
−1944v42v1a2 + 72v41v22b1 + 648v1v42b3

− 360v31v42a3 − 324v32v1b1 − 324v32v21b2 + 72v31v32a1
− 972v4v32b2 + 27v5v32b3 − 54v5v22b1 − 81v5v32a2
− 1944iv52

√
3 a3 + 972iv42

√
3 a1 + 648iv3v32a3 + 18iv5v3b1

− 324iv3v22a1 + 6v5v41v2b2 + 18v5v31v22a2 − 6v5v31v22b3
+ 6v5v21v32a3 + 6v5v31v2b1 + 6v5v21v22a1 + 144v4v31v22b2
+ 648v4v1v42a3 − 54v5v1v22b2 − 216

√
3 v3v32a3 + 6v5

√
3 v3b1

+ 108
√
3 v3v22a1 + 24

√
3 v3v31v22a3 + 6v5

√
3 v3v1b2

+ 9v5
√
3 v3v2a2 − 3v5

√
3 v3v2b3 + 36

√
3 v3v21v2b2

+ 216
√
3 v3v1v22a2 − 72

√
3 v3v1v22b3 + 108v4

√
3 v3v2b2

+ 36
√
3 v3v1v2b1 + 324iv32

√
3 v21b2 + 1944iv42

√
3 v1a2

− 648i
√
3 v1v42b3 − 72iv3v31v22a3 − 54iv5

√
3 v22b1

+ 324iv32
√
3 v1b1 + 18iv5v3v1b2 + 27iv5v3v2a2

− 9iv5v3v2b3 − 96v4v41v32a3 − 108iv3v21v2b2 − 648iv3v1v22a2
+ 216iv3v1v22b3 − 108iv3v1v2b1 − 72i

√
3 v51v22b2

− 216i
√
3 v41v32a2 + 72i

√
3 v41v32b3 + 360i

√
3 v31v42a3

− 72i
√
3 v41v22b1 − 72i

√
3 v31v32a1 − 81iv5

√
3 v32a2

+ 27iv5
√
3 v32b3 − 6iv5

√
3 v31v22b3 + 6iv5

√
3 v21v32a3

+ 6iv5
√
3 v31v2b1 + 6iv5

√
3 v21v22a1 − 54iv5

√
3 v1v22b2

− 6iv5v3v21v2a3 + 6iv5
√
3 v41v2b2 + 18iv5

√
3 v31v22a2

− 2v5
√
3 v3v21v2a3 − 72v4

√
3 v3v1v22a3 + 216v41v32a2

+ 72v51v22b2 − 72v41v32b3 + 1944v52a3 − 972v42a1
)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−93312ia3 + 31104

√
3 a3
)
v3v

4
2

+
(
7776i

√
3 b1 + 7776b1

)
v5v

3
2

+
(
−51840i

√
3 a3 + 51840a3

)
v31v

5
2

+ 13824a3v4v41v42 +
(
−2592ib2 − 864

√
3 b2
)
v3v5v1v2

+
(
864ia3 + 288

√
3 a3
)
v3v5v

2
1v

2
2

+
(
−3888ia2 + 1296ib3 − 1296

√
3 a2 + 432

√
3 b3
)
v3v5v

2
2

+
(
−2592ib1 − 864

√
3 b1
)
v3v5v2 +

(
93312ia2

− 31104ib3 − 31104
√
3 a2 + 10368

√
3 b3
)
v3v1v

3
2

+
(
7776i

√
3 b2 + 7776b2

)
v5v1v

3
2

+
(
15552ib1 − 5184

√
3 b1
)
v3v1v

2
2

+
(
10368ia3 − 3456

√
3 a3
)
v3v

3
1v

3
2

+
(
−2592i

√
3 a2 + 864i

√
3 b3 − 2592a2 + 864b3

)
v5v

3
1v

3
2

+
(
−864i

√
3 b1 − 864b1

)
v5v

3
1v

2
2

+
(
−864i

√
3 b2 − 864b2

)
v5v

4
1v

2
2

+
(
−864i

√
3 a3 − 864a3

)
v5v

2
1v

4
2

+
(
−864i

√
3 a1 − 864a1

)
v5v

2
1v

3
2

+
(
15552ib2 − 5184

√
3 b2
)
v3v

2
1v

2
2 − 93312a3v4v1v52

− 20736b2v4v31v32 − 15552
√
3 b2v3v4v22

+ 10368
√
3 a3v3v4v1v32 +

(
10368i

√
3 b1 − 10368b1

)
v41v

3
2

+
(
10368i

√
3 b2 − 10368b2

)
v51v

3
2

+
(
46656ia1 − 15552

√
3 a1
)
v3v

3
2

+
(
10368i

√
3 a1 − 10368a1

)
v31v

4
2

+
(
11664i

√
3 a2 − 3888i

√
3 b3 + 11664a2 − 3888b3

)
v5v

4
2

+
(
279936i

√
3 a3 − 279936a3

)
v62

+
(
−139968i

√
3 a1 + 139968a1

)
v52

+
(
−46656i

√
3 b1 + 46656b1

)
v1v

4
2 +

(
−279936i

√
3 a2

+ 93312i
√
3 b3 + 279936a2 − 93312b3

)
v1v

5
2

+
(
31104i

√
3 a2−10368i

√
3 b3−31104a2+10368b3

)
v41v

4
2

+
(
−46656i

√
3 b2 + 46656b2

)
v21v

4
2 + 139968b2v4v42 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−93312a3 = 0
13824a3 = 0

−20736b2 = 0
139968b2 = 0

10368
√
3 a3 = 0

−15552
√
3 b2 = 0

−93312ia3 + 31104
√
3 a3 = 0

−2592ib1 − 864
√
3 b1 = 0

−2592ib2 − 864
√
3 b2 = 0

864ia3 + 288
√
3 a3 = 0

10368ia3 − 3456
√
3 a3 = 0

15552ib1 − 5184
√
3 b1 = 0

15552ib2 − 5184
√
3 b2 = 0

46656ia1 − 15552
√
3 a1 = 0

−139968i
√
3 a1 + 139968a1 = 0

−51840i
√
3 a3 + 51840a3 = 0

−46656i
√
3 b1 + 46656b1 = 0

−46656i
√
3 b2 + 46656b2 = 0

−864i
√
3 a1 − 864a1 = 0

−864i
√
3 a3 − 864a3 = 0

−864i
√
3 b1 − 864b1 = 0

−864i
√
3 b2 − 864b2 = 0

7776i
√
3 b1 + 7776b1 = 0

7776i
√
3 b2 + 7776b2 = 0

10368i
√
3 a1 − 10368a1 = 0

10368i
√
3 b1 − 10368b1 = 0

10368i
√
3 b2 − 10368b2 = 0

279936i
√
3 a3 − 279936a3 = 0

−3888ia2 + 1296ib3 − 1296
√
3 a2 + 432

√
3 b3 = 0

93312ia2 − 31104ib3 − 31104
√
3 a2 + 10368

√
3 b3 = 0

−279936i
√
3 a2 + 93312i

√
3 b3 + 279936a2 − 93312b3 = 0

−2592i
√
3 a2 + 864i

√
3 b3 − 2592a2 + 864b3 = 0

11664i
√
3 a2 − 3888i

√
3 b3 + 11664a2 − 3888b3 = 0

31104i
√
3 a2 − 10368i

√
3 b3 − 31104a2 + 10368b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = a2

a3 = 0
b1 = 0
b2 = 0
b3 = 3a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = 3y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
trying dAlembert
-> Calling odsolve with the ODE`, diff(y(x), x) = (2*y(x)*x^3-y(x)^3)/x^4, y(x)` *** Sublevel 2 ***

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.141 (sec). Leaf size: 135� �
dsolve((diff(y(x),x))^3+y(x)^2=x*y(x)*diff(y(x),x),y(x), singsol=all)� �

y(x) = 0

y(x) = 2x3√x2 + 3c1 − 2x4 − 6x
√
x2 + 3c1 c1 + 3c1x2 − 9c21

−27x+ 27
√
x2 + 3c1

y(x) = 2x3√x2 + 3c1 + 2x4 − 6x
√
x2 + 3c1 c1 − 3c1x2 + 9c21

27x+ 27
√
x2 + 3c1

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[(y'[x])^3+y[x]^2==x*y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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1.85 problem 88
Internal problem ID [3230]
Internal file name [OUTPUT/2722_Sunday_June_05_2022_08_39_20_AM_61568442/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 88.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

2xy′ − y − y′ ln (yy′) = 0

Solving the given ode for y′ results in 1 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = − y

LambertW (−y2e−2x) (1)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = − y

LambertW (−y2e−2x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
y(b3 − a2)

LambertW (−y2e−2x) −
y2a3

LambertW (−y2e−2x)2

+ 2y(xa2 + ya3 + a1)
LambertW (−y2e−2x) (1 + LambertW (−y2e−2x))

−
(
− 1
LambertW (−y2e−2x)

+ 2
LambertW (−y2e−2x) (1 + LambertW (−y2e−2x))

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

b2 LambertW (−y2e−2x)3 + LambertW (−y2e−2x)2 xb2 + LambertW (−y2e−2x)2 ya2 + 2LambertW (−y2e−2x)xya2 + y2a3 LambertW (−y2e−2x) + LambertW (−y2e−2x)2 b1 + b2 LambertW (−y2e−2x)2 − LambertW (−y2e−2x)xb2 + 2LambertW (−y2e−2x) ya1 + LambertW (−y2e−2x) ya2 − 2 LambertW (−y2e−2x) yb3 − y2a3 − LambertW (−y2e−2x) b1
LambertW (−y2e−2x)2 (1 + LambertW (−y2e−2x))

= 0

Setting the numerator to zero gives

(6E)

b2 LambertW
(
−y2e−2x)3 + LambertW

(
−y2e−2x)2 xb2

+ LambertW
(
−y2e−2x)2 ya2 + 2LambertW

(
−y2e−2x)xya2

+ y2a3 LambertW
(
−y2e−2x)+ LambertW

(
−y2e−2x)2 b1

+ b2 LambertW
(
−y2e−2x)2 − LambertW

(
−y2e−2x)xb2

+ 2LambertW
(
−y2e−2x) ya1 + LambertW

(
−y2e−2x) ya2

− 2 LambertW
(
−y2e−2x) yb3 − y2a3 − LambertW

(
−y2e−2x) b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y, e−2x,LambertW
(
−y2e−2x)}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2, e−2x = v3,LambertW
(
−y2e−2x) = v4}
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The above PDE (6E) now becomes

(7E)2v4v1v2a2 + v24v2a2 + v22a3v4 + v24v1b2 + b2v
3
4 + 2v4v2a1

+ v4v2a2 − v22a3 + v24b1 − v4v1b2 + b2v
2
4 − 2v4v2b3 − v4b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4}

Equation (7E) now becomes

(8E)2v4v1v2a2 + v24v1b2 − v4v1b2 + v22a3v4 − v22a3 + v24v2a2
+ (2a1 + a2 − 2b3) v2v4 + b2v

3
4 + (b1 + b2) v24 − v4b1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a2 = 0
a3 = 0
b2 = 0

2a2 = 0
−a3 = 0
−b1 = 0
−b2 = 0

b1 + b2 = 0
2a1 + a2 − 2b3 = 0

Solving the above equations for the unknowns gives

a1 = b3

a2 = 0
a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 1
η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
− y

LambertW (−y2e−2x)

)
(1)

= y + y LambertW (−y2e−2x)
LambertW (−y2e−2x)

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y+y LambertW(−y2e−2x)
LambertW(−y2e−2x)

dy

Which results in

S = LambertW (−y2e−2x)
2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y

LambertW (−y2e−2x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − LambertW (−y2e−2x)
1 + LambertW (−y2e−2x)

Sy =
LambertW (−y2e−2x)

y (1 + LambertW (−y2e−2x))

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

LambertW (−y2e−2x)
2 = −x+ c1

Which simplifies to

LambertW (−y2e−2x)
2 = −x+ c1

Summary
The solution(s) found are the following

(1)LambertW (−y2e−2x)
2 = −x+ c1
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Verification of solutions

LambertW (−y2e−2x)
2 = −x+ c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 3`[1, y]� �
3 Solution by Maple
Time used: 0.235 (sec). Leaf size: 68� �
dsolve(2*x*diff(y(x),x)-y(x)=diff(y(x),x)*ln(y(x)*diff(y(x),x)),y(x), singsol=all)� �

y(x) = ex− 1
2

y(x) = −ex− 1
2

y(x) =
√
2
√

e−2x+2c1 (−c1 + x) ex

y(x) = −
√
2
√

e−2x+2c1 (−c1 + x) ex
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3 Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 59� �
DSolve[2*x*y'[x]-y[x]==y'[x]*Log[y[x]*y'[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ec1
√
−2x+ iπ + 2c1

y(x) → ec1
√
−2x+ iπ + 2c1

y(x) → 0
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1.86 problem 89
Internal problem ID [3231]
Internal file name [OUTPUT/2723_Sunday_June_05_2022_08_39_21_AM_24446730/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 89.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries ]]

y − xy′ + x2y′
3 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

6x + 2((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3
(1)

y′ = −
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

12x − 1((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3
+

i
√
3
(((

12
√
3
√

27y2−4x−108y
)
x
) 1

3

6x − 2((
12

√
3
√

27y2−4x−108y
)
x
) 1

3

)
2

(2)

y′ = −
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

12x − 1((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3
−

i
√
3
(((

12
√
3
√

27y2−4x−108y
)
x
) 1

3

6x − 2((
12

√
3
√

27y2−4x−108y
)
x
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x

6x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +

(((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)
(b3 − a2)

6x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)2
a3

36x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3

−


− 16

√
3 x√

27y2−4x
+8

√
3
√

27y2−4x−72y

((
12

√
3
√

27y2−4x−108y
)
x
) 1

3
+ 12

6x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x

6x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)(

− 24
√
3x√

27y2−4x
+ 12

√
3
√
27y2 − 4x− 108y

)
18x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xa2

+ ya3 + a1)−

 324
√
3 y√

27y2−4x
− 108

9
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3

−

(((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)(

324
√
3 y√

27y2−4x
− 108

)
18
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xb2+ yb3+ b1)

= 0

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display
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Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3
,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3
,
√
27y2 − 4x

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3 = v3,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3 = v4,
√

27y2 − 4x= v5

}

The above PDE (6E) now becomes

(7E)

72v1
(
18 12 2

3v4
√
3 v32a3 + 3v512

2
3v4v

2
1b2 − 6v512

2
3v4v

2
2a3

+ 212 2
3v4

√
3 v21a2 − 4 12 2

3v4
√
3 v21b3 + 18 12 2

3v4
√
3 v22a1

− 2v512
2
3v4v1a3 + 3v512

2
3v4v1b1 − 6v512

2
3v4v2a1

− 2 12 2
3v4

√
3 v1a1 − 24 12 1

3v3
√
3 v31b2 + 16 12 1

3v3
√
3 v21a3

− 9 12 2
3v4

√
3 v1v22a2 − 9 12 2

3v4
√
3 v21v2b2 + 18 12 2

3v4
√
3 v1v22b3

+ 3v512
2
3v4v1v2a2 − 6v512

2
3v4v1v2b3 − 2 12 2

3v4
√
3 v1v2a3

− 9 12 2
3v4

√
3 v1v2b1 + 162 12 1

3v3
√
3 v21v22b2 − 54v512

1
3v3v

2
1v2b2

− 108 12 1
3v3

√
3 v1v22a3 + 36v512

1
3v3v1v2a3 − 216

√
3 v21v22a2

+ 432
√
3 v21v22b3 + 1080

√
3 v1v32a3 + 72v5v21v2a2 − 144v5v21v2b3

− 360v5v1v22a3 − 168
√
3 v21v2a3 + 108

√
3 v21v2b1 + 108

√
3 v1v22a1

− 36v5v1v2a1 + 108
√
3 v31v2b2 − 48

√
3 v31b3 + 24v5v21a3

− 36v5v21b1 − 24
√
3 v21a1 − 36v5v31b2 + 24

√
3 v31a2

)
= 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

−7776 12 1
3
√
3 a3v22v3v21 + 2592 12 1

3a3v2v3v5v
2
1

+ 1296 12 2
3
√
3 a3v32v4v1 − 432 12 2

3a3v
2
2v4v5v1

+ 1296 12 2
3
√
3 a1v22v4v1 − 432 12 2

3a1v2v4v5v1

+ 11664 12 1
3
√
3 b2v22v3v31 − 3888 12 1

3 b2v2v3v5v
3
1

− 648 12 2
3
√
3 b2v2v4v31 + 7776

√
3 b2v2v41

+ (5184a2 − 10368b3) v2v5v31 + 77760
√
3 a3v32v21

− 1728 12 1
3
√
3 b2v3v41 + 1152 12 1

3
√
3 a3v3v31 + 216 12 2

3 b2v4v5v
3
1

+
(
216 12 2

3a2 − 432 12 2
3 b3
)
v2v4v5v

2
1 − 144 12 2

3
√
3 a1v4v21

+
(
−648 12 2

3
√
3 a2 + 1296 12 2

3
√
3 b3
)
v22v4v

2
1 − 25920a3v22v5v21

+ 7776
√
3 a1v22v21 +

(
−144 12 2

3
√
3 a3 − 648 12 2

3
√
3 b1
)
v2v4v

2
1

− 2592a1v2v5v21 +
(
−144 12 2

3a3 + 216 12 2
3 b1
)
v4v5v

2
1

+
(
−12096

√
3 a3 + 7776

√
3 b1
)
v2v

3
1

+
(
144 12 2

3
√
3 a2 − 288 12 2

3
√
3 b3
)
v4v

3
1 + (1728a3 − 2592b1) v5v31

− 1728
√
3 a1v31 − 2592b2v5v41 +

(
1728

√
3 a2 − 3456

√
3 b3
)
v41

+
(
−15552

√
3 a2 + 31104

√
3 b3
)
v22v

3
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
−2592a1 = 0
−25920a3 = 0
−2592b2 = 0

−1728
√
3 a1 = 0

7776
√
3 a1 = 0

77760
√
3 a3 = 0

7776
√
3 b2 = 0

2592 12 1
3a3 = 0

−3888 12 1
3 b2 = 0

−432 12 2
3a1 = 0

−432 12 2
3a3 = 0

216 12 2
3 b2 = 0

−7776 12 1
3
√
3 a3 = 0

1152 12 1
3
√
3 a3 = 0

−1728 12 1
3
√
3 b2 = 0

11664 12 1
3
√
3 b2 = 0

−144 12 2
3
√
3 a1 = 0

1296 12 2
3
√
3 a1 = 0

1296 12 2
3
√
3 a3 = 0

−648 12 2
3
√
3 b2 = 0

5184a2 − 10368b3 = 0
1728a3 − 2592b1 = 0

−15552
√
3 a2 + 31104

√
3 b3 = 0

1728
√
3 a2 − 3456

√
3 b3 = 0

−12096
√
3 a3 + 7776

√
3 b1 = 0

216 12 2
3a2 − 432 12 2

3 b3 = 0
−144 12 2

3a3 + 216 12 2
3 b1 = 0

−648 12 2
3
√
3 a2 + 1296 12 2

3
√
3 b3 = 0

144 12 2
3
√
3 a2 − 288 12 2

3
√
3 b3 = 0

−144 12 2
3
√
3 a3 − 648 12 2

3
√
3 b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

2x
= y

2x

This is easily solved to give

y = c1
√
x

Where now the coordinate R is taken as the constant of integration. Hence

R = y√
x
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And S is found from

dS = dx

ξ

= dx

2x
Integrating gives

S =
∫

dx

T

= ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x

6x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

Evaluating all the partial derivatives gives

Rx = − y

2x 3
2

Ry =
1√
x

Sx = 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

3
√
x
((√

3
√
27y2 − 4x− 9y

)
x
) 1

3

12 2
3x+ 12 1

3
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3 − 3
((√

3
√
27y2 − 4x− 9y

)
x
) 1

3y
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
=

3
(√

3
√
27R2 − 4− 9R

) 1
3

12 1
3
(√

3
√
27R2 − 4− 9R

) 2
3 + 12 2

3 − 3
(√

3
√
27R2 − 4− 9R

) 1
3 R

705



The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫ 3

(√
81R2 − 12− 9R

) 1
3

12 1
3

((√
81R2 − 12− 9R

)2) 1
3 + 12 2

3 − 3
(√

81R2 − 12− 9R
) 1

3 R

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (x)
2 =

∫ y√
x 3

(√
81_a2 − 12− 9_a

) 1
3

12 1
3

((√
81_a2 − 12− 9_a

)2) 1
3 + 12 2

3 − 3
(√

81_a2 − 12− 9_a
) 1

3 _a
d_a+ c1

Which simplifies to

ln (x)
2 =

∫ y√
x 3

(√
81_a2 − 12− 9_a

) 1
3

12 1
3

((√
81_a2 − 12− 9_a

)2) 1
3 + 12 2

3 − 3
(√

81_a2 − 12− 9_a
) 1

3 _a
d_a+ c1

Summary
The solution(s) found are the following

ln (x)
2

=
∫ y√

x 3
(√

81_a2 − 12− 9_a
) 1

3

12 1
3

((√
81_a2 − 12− 9_a

)2) 1
3 + 12 2

3 − 3
(√

81_a2 − 12− 9_a
) 1

3 _a
d_a+c1

(1)
Verification of solutions

ln (x)
2

=
∫ y√

x 3
(√

81_a2 − 12− 9_a
) 1

3

12 1
3

((√
81_a2 − 12− 9_a

)2) 1
3 + 12 2

3 − 3
(√

81_a2 − 12− 9_a
) 1

3 _a
d_a+c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ =
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

+

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x
)
(b3 − a2)

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x
)2
a3

144x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3

−


2i
√
3
(
− 24

√
3 x√

27y2−4x
+12

√
3
√

27y2−4x−108y
)

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3
− 12i

√
3−

2
(
− 24

√
3 x√

27y2−4x
+12

√
3
√

27y2−4x−108y
)

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3
− 12

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x

12x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x
)(

− 24
√
3x√

27y2−4x
+ 12

√
3
√
27y2 − 4x− 108y

)
36x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xa2

+ ya3 + a1)−


2i
√
3
(

324
√
3 y√

27y2−4x
−108

)
x

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3
−

2
(

324
√
3 y√

27y2−4x
−108

)
x

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x−

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12x
)(

324
√
3 y√

27y2−4x
− 108

)
36
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3
,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3
,
√
27y2 − 4x

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3 = v3,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3 = v4,
√

27y2 − 4x= v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
−864i12 2

3
√
3 a3 + 864 12 2

3a3
)
v22v4v5v1

+
(
−864i12 2

3
√
3 a1 + 864 12 2

3a1
)
v2v4v5v1

+
(
432i12 2

3
√
3 a2 − 864i12 2

3
√
3 b3

− 432 12 2
3a2 + 864 12 2

3 b3
)
v2v4v5v

2
1

+ 4608 12 1
3
√
3 a3v3v31 − 6912 12 1

3
√
3 b2v3v41

+
(
−466560ia3 − 155520

√
3 a3
)
v32v

2
1

+
(
−46656ia1 − 15552

√
3 a1
)
v22v

2
1

+ 46656 12 1
3
√
3 b2v22v3v31 − 15552 12 1

3 b2v2v3v5v
3
1

− 31104 12 1
3
√
3 a3v22v3v21 + 10368 12 1

3a3v2v3v5v
2
1

+
(
−10368ia2+20736ib3−3456

√
3 a2+6912

√
3 b3
)
v41

+
(
10368ia1 + 3456

√
3 a1
)
v31

+
(
−3888i12 2

3 b2 + 1296 12 2
3
√
3 b2
)
v2v4v

3
1

+
(
−10368i

√
3 a2 + 20736i

√
3 b3

− 10368a2 + 20736b3
)
v2v5v

3
1

+
(
432i12 2

3
√
3 b2 − 432 12 2

3 b2
)
v4v5v

3
1 +
(
−3888i12 2

3a2

+7776i12 2
3 b3+1296 12 2

3
√
3 a2−2592 12 2

3
√
3 b3
)
v22v4v

2
1

+
(
51840i

√
3 a3 + 51840a3

)
v22v5v

2
1 +

(
−864i12 2

3a3

− 3888i12 2
3 b1 +288 12 2

3
√
3 a3 +1296 12 2

3
√
3 b1
)
v2v4v

2
1

+
(
5184i

√
3 a1 + 5184a1

)
v2v5v

2
1 +

(
−288i12 2

3
√
3 a3

+ 432i12 2
3
√
3 b1 + 288 12 2

3a3 − 432 12 2
3 b1
)
v4v5v

2
1

+
(
7776i12 2

3a3 − 2592 12 2
3
√
3 a3
)
v32v4v1

+
(
7776i12 2

3a1 − 2592 12 2
3
√
3 a1
)
v22v4v1

+
(
−864i12 2

3a1 + 288 12 2
3
√
3 a1
)
v4v

2
1

+
(
−46656ib2 − 15552

√
3 b2
)
v2v

4
1

+
(
5184i

√
3 b2 + 5184b2

)
v5v

4
1 +

(
93312ia2

− 186624ib3 + 31104
√
3 a2 − 62208

√
3 b3
)
v22v

3
1

+
(
72576ia3 − 46656ib1 + 24192

√
3 a3

− 15552
√
3 b1
)
v2v

3
1 +

(
864i12 2

3a2 − 1728i12 2
3 b3

− 288 12 2
3
√
3 a2+576 12 2

3
√
3 b3
)
v4v

3
1 +
(
−3456i

√
3 a3

+ 5184i
√
3 b1 − 3456a3 + 5184b1

)
v5v

3
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
10368 12 1

3a3 = 0
−15552 12 1

3 b2 = 0
−31104 12 1

3
√
3 a3 = 0

4608 12 1
3
√
3 a3 = 0

−6912 12 1
3
√
3 b2 = 0

46656 12 1
3
√
3 b2 = 0

−466560ia3 − 155520
√
3 a3 = 0

−46656ia1 − 15552
√
3 a1 = 0

−46656ib2 − 15552
√
3 b2 = 0

10368ia1 + 3456
√
3 a1 = 0

−3888i12 2
3 b2 + 1296 12 2

3
√
3 b2 = 0

−864i12 2
3a1 + 288 12 2

3
√
3 a1 = 0

5184i
√
3 a1 + 5184a1 = 0

5184i
√
3 b2 + 5184b2 = 0

7776i12 2
3a1 − 2592 12 2

3
√
3 a1 = 0

7776i12 2
3a3 − 2592 12 2

3
√
3 a3 = 0

51840i
√
3 a3 + 51840a3 = 0

−864i12 2
3
√
3 a1 + 864 12 2

3a1 = 0
−864i12 2

3
√
3 a3 + 864 12 2

3a3 = 0
432i12 2

3
√
3 b2 − 432 12 2

3 b2 = 0
−10368ia2 + 20736ib3 − 3456

√
3 a2 + 6912

√
3 b3 = 0

72576ia3 − 46656ib1 + 24192
√
3 a3 − 15552

√
3 b1 = 0

93312ia2 − 186624ib3 + 31104
√
3 a2 − 62208

√
3 b3 = 0

−10368i
√
3 a2 + 20736i

√
3 b3 − 10368a2 + 20736b3 = 0

−3888i12 2
3a2 + 7776i12 2

3 b3 + 1296 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3 = 0

−3456i
√
3 a3 + 5184i

√
3 b1 − 3456a3 + 5184b1 = 0

−864i12 2
3a3 − 3888i12 2

3 b1 + 288 12 2
3
√
3 a3 + 1296 12 2

3
√
3 b1 = 0

864i12 2
3a2 − 1728i12 2

3 b3 − 288 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3 = 0

−288i12 2
3
√
3 a3 + 432i12 2

3
√
3 b1 + 288 12 2

3a3 − 432 12 2
3 b1 = 0

432i12 2
3
√
3 a2 − 864i12 2

3
√
3 b3 − 432 12 2

3a2 + 864 12 2
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}
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Substituting equations (1E,2E) and ω into (A) gives

(5E)b2

−

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)
(b3 − a2)

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

−

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)2
a3

144x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3

−

−

2i
√
3
(
− 24

√
3 x√

27y2−4x
+12

√
3
√

27y2−4x−108y
)

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3
− 12i

√
3 +

− 16
√
3 x√

27y2−4x
+8

√
3
√

27y2−4x−72y

((
12

√
3
√

27y2−4x−108y
)
x
) 1

3
+ 12

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

+
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x

12x2
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

+

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)(

− 24
√
3x√

27y2−4x
+ 12

√
3
√
27y2 − 4x− 108y

)
36x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xa2

+ ya3 + a1)−

−

2i
√
3
(

324
√
3 y√

27y2−4x
−108

)
x

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3
+

2
(

324
√
3 y√

27y2−4x
−108

)
x

3
((

12
√
3
√

27y2−4x−108y
)
x
) 1

3

12x
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 1

3

+

(
i
√
3
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 − 12i
√
3x+

((
12
√
3
√
27y2 − 4x− 108y

)
x
) 2

3 + 12x
)(

324
√
3 y√

27y2−4x
− 108

)
36
((
12
√
3
√
27y2 − 4x− 108y

)
x
) 4

3

 (xb2

+ yb3 + b1) = 0

Putting the above in normal form gives

Expression too large to display
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Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3
,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3
,
√
27y2 − 4x

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them{
x= v1, y= v2,

((√
3
√

27y2 − 4x− 9y
)
x
) 1

3 = v3,
((√

3
√
27y2 − 4x− 9y

)
x
) 2

3 = v4,
√

27y2 − 4x= v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}
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Equation (7E) now becomes

(8E)

(
10368ia2 − 20736ib3 − 3456

√
3 a2 + 6912

√
3 b3
)
v41

+
(
−10368ia1 + 3456

√
3 a1
)
v31 − 6912 12 1

3
√
3 b2v3v41

+ 4608 12 1
3
√
3 a3v3v31 +

(
−432i12 2

3
√
3 a2

+ 864i12 2
3
√
3 b3 − 432 12 2

3a2 + 864 12 2
3 b3
)
v2v4v5v

2
1

+
(
864i12 2

3
√
3 a3 + 864 12 2

3a3
)
v22v4v5v1

+
(
864i12 2

3
√
3 a1 + 864 12 2

3a1
)
v2v4v5v1

+
(
3888i12 2

3 b2 + 1296 12 2
3
√
3 b2
)
v2v4v

3
1

+
(
10368i

√
3 a2 − 20736i

√
3 b3

− 10368a2 + 20736b3
)
v2v5v

3
1

+
(
−432i12 2

3
√
3 b2 − 432 12 2

3 b2
)
v4v5v

3
1

+
(
3888i12 2

3a2 − 7776i12 2
3 b3

+ 1296 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3
)
v22v4v

2
1

+
(
−51840i

√
3 a3 + 51840a3

)
v22v5v

2
1 +

(
864i12 2

3a3

+ 3888i12 2
3 b1 + 288 12 2

3
√
3 a3 + 1296 12 2

3
√
3 b1
)
v2v4v

2
1

+
(
−5184i

√
3 a1 + 5184a1

)
v2v5v

2
1 +

(
288i12 2

3
√
3 a3

− 432i12 2
3
√
3 b1 + 288 12 2

3a3 − 432 12 2
3 b1
)
v4v5v

2
1

+
(
−7776i12 2

3a3 − 2592 12 2
3
√
3 a3
)
v32v4v1

+
(
−7776i12 2

3a1 − 2592 12 2
3
√
3 a1
)
v22v4v1

+ 10368 12 1
3a3v2v3v5v

2
1 + 46656 12 1

3
√
3 b2v22v3v31

− 15552 12 1
3 b2v2v3v5v

3
1 − 31104 12 1

3
√
3 a3v22v3v21

+
(
46656ib2 − 15552

√
3 b2
)
v2v

4
1

+
(
−5184i

√
3 b2 + 5184b2

)
v5v

4
1 +

(
−93312ia2

+ 186624ib3 + 31104
√
3 a2 − 62208

√
3 b3
)
v22v

3
1

+
(
−72576ia3 + 46656ib1 + 24192

√
3 a3

− 15552
√
3 b1
)
v2v

3
1 +

(
−864i12 2

3a2 + 1728i12 2
3 b3

− 288 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3
)
v4v

3
1

+
(
3456i

√
3 a3 − 5184i

√
3 b1 − 3456a3 + 5184b1

)
v5v

3
1

+
(
466560ia3 − 155520

√
3 a3
)
v32v

2
1

+
(
46656ia1 − 15552

√
3 a1
)
v22v

2
1

+
(
864i12 2

3a1 + 288 12 2
3
√
3 a1
)
v4v

2
1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve
10368 12 1

3a3 = 0
−15552 12 1

3 b2 = 0
−31104 12 1

3
√
3 a3 = 0

4608 12 1
3
√
3 a3 = 0

−6912 12 1
3
√
3 b2 = 0

46656 12 1
3
√
3 b2 = 0

−10368ia1 + 3456
√
3 a1 = 0

46656ia1 − 15552
√
3 a1 = 0

46656ib2 − 15552
√
3 b2 = 0

466560ia3 − 155520
√
3 a3 = 0

−51840i
√
3 a3 + 51840a3 = 0

−7776i12 2
3a1 − 2592 12 2

3
√
3 a1 = 0

−7776i12 2
3a3 − 2592 12 2

3
√
3 a3 = 0

−5184i
√
3 a1 + 5184a1 = 0

−5184i
√
3 b2 + 5184b2 = 0

864i12 2
3a1 + 288 12 2

3
√
3 a1 = 0

3888i12 2
3 b2 + 1296 12 2

3
√
3 b2 = 0

−432i12 2
3
√
3 b2 − 432 12 2

3 b2 = 0
864i12 2

3
√
3 a1 + 864 12 2

3a1 = 0
864i12 2

3
√
3 a3 + 864 12 2

3a3 = 0
−93312ia2 + 186624ib3 + 31104

√
3 a2 − 62208

√
3 b3 = 0

−72576ia3 + 46656ib1 + 24192
√
3 a3 − 15552

√
3 b1 = 0

10368ia2 − 20736ib3 − 3456
√
3 a2 + 6912

√
3 b3 = 0

−864i12 2
3a2 + 1728i12 2

3 b3 − 288 12 2
3
√
3 a2 + 576 12 2

3
√
3 b3 = 0

864i12 2
3a3 + 3888i12 2

3 b1 + 288 12 2
3
√
3 a3 + 1296 12 2

3
√
3 b1 = 0

3456i
√
3 a3 − 5184i

√
3 b1 − 3456a3 + 5184b1 = 0

3888i12 2
3a2 − 7776i12 2

3 b3 + 1296 12 2
3
√
3 a2 − 2592 12 2

3
√
3 b3 = 0

10368i
√
3 a2 − 20736i

√
3 b3 − 10368a2 + 20736b3 = 0

−432i12 2
3
√
3 a2 + 864i12 2

3
√
3 b3 − 432 12 2

3a2 + 864 12 2
3 b3 = 0

288i12 2
3
√
3 a3 − 432i12 2

3
√
3 b1 + 288 12 2

3a3 − 432 12 2
3 b1 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = 2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2x
η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 2 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation

-> Solving 1st order ODE of high degree, Lie methods, 1st trial
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 2
-> Solving 1st order ODE of high degree, 2nd attempt. Trying parametric methods
-> Calling odsolve with the ODE`, diff(y(x), x) = (3*y(x)*x-(-4*y(x)*x+1)^(1/2)-1)/(x^2*(1+(-4*y(x)*x+1)^(1/2))), y(x)` *** Sublev

Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-> Calling odsolve with the ODE`, diff(y(x), x) = (-3*y(x)*x-(-4*y(x)*x+1)^(1/2)+1)/(x^2*(-1+(-4*y(x)*x+1)^(1/2))), y(x)` *** Subl
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

<- 1st order, parametric methods successful`� �
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3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 123� �
dsolve(y(x)=x*diff(y(x),x)-x^2* (diff(y(x),x))^3,y(x), singsol=all)� �

y(x) = −x2RootOf
(
4_Z4c1x

2 + 8_Z2c1x− _Z+ 4c1
)3

+ xRootOf
(
4_Z4c1x

2 + 8_Z2c1x− _Z+ 4c1
)

y(x) = −x2RootOf
(
4_Z4c1x

2 − 16_Z2c1x− _Z+ 16c1
)3

+ xRootOf
(
4_Z4c1x

2 − 16_Z2c1x− _Z+ 16c1
)

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x]==x*y'[x]-x^2*(y'[x])^3,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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1.87 problem 90
Internal problem ID [3232]
Internal file name [OUTPUT/2724_Sunday_June_05_2022_08_39_25_AM_11199866/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 90.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

y(y − 2xy′)3 − y′
2 = 0

Solving the given ode for y′ results in 3 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ =
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

24yx3 − 24y2x2 − 1

24yx3
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3
+ 12y2x2 − 1

24yx3

(1)

y′ = −
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

48yx3 + 24y2x2 − 1

48yx3
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3
+ 12y2x2 − 1

24yx3 +
i
√
3
((

−216y4x4+24
√
3
√

27y2x2−1 y3x3+36y2x2−1
) 1

3

24yx3 + 24y2x2−1

24yx3
(
−216y4x4+24

√
3
√

27y2x2−1 y3x3+36y2x2−1
) 1

3

)
2

(2)

y′ = −
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

48yx3 + 24y2x2 − 1

48yx3
(
−216y4x4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3
+ 12y2x2 − 1

24yx3 −

i
√
3
((

−216y4x4+24
√
3
√

27y2x2−1 y3x3+36y2x2−1
) 1

3

24yx3 + 24y2x2−1

24yx3
(
−216y4x4+24

√
3
√

27y2x2−1 y3x3+36y2x2−1
) 1

3

)
2

(3)

Now each one of the above ODE is solved.

Solving equation (1)
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Writing the ode as

y′ =
12y2x2(−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 − 24y2x2 +

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 −

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + 1

24y x3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−216x4y4 + 24

√
3
√

27y2x2 − 1 y3x3 + 36y2x2 − 1
) 1

3
,
(
−216x4y4

+ 24
√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3
,
√
27y2x2 − 1

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2

− 1
) 1

3 = v3,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3

+ 36y2x2 − 1
) 2

3 = v4,
√

27y2x2 − 1 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−62208a1 = 0
−57024a1 = 0
−8640a1 = 0
−2880a1 = 0
−72a1 = 0
72a1 = 0

2016a1 = 0
3744a1 = 0
25920a1 = 0
290304a1 = 0
−31104a3 = 0
−3456a3 = 0
−1584a3 = 0
−108a3 = 0
−3a3 = 0
3a3 = 0
72a3 = 0
144a3 = 0
504a3 = 0
5184a3 = 0
72576a3 = 0
−5184b1 = 0
−576b1 = 0
−24b1 = 0
24b1 = 0
288b1 = 0
864b1 = 0
1728b1 = 0
41472b1 = 0
62208b1 = 0

−62208b2 = 0
−5184b2 = 0
−1152b2 = 0
−24b2 = 0
24b2 = 0
288b2 = 0
864b2 = 0
1728b2 = 0
15552b2 = 0
41472b2 = 0

−870912
√
3 a1 = 0

−53568
√
3 a1 = 0

−2304
√
3 a1 = 0

−1152
√
3 a1 = 0

1728
√
3 a1 = 0

25920
√
3 a1 = 0

95040
√
3 a1 = 0

186624
√
3 a1 = 0

−217728
√
3 a3 = 0

−22464
√
3 a3 = 0

−3456
√
3 a3 = 0

−1944
√
3 a3 = 0

−96
√
3 a3 = 0

−48
√
3 a3 = 0

72
√
3 a3 = 0

720
√
3 a3 = 0

3744
√
3 a3 = 0

10368
√
3 a3 = 0

93312
√
3 a3 = 0

−186624
√
3 b1 = 0

−124416
√
3 b1 = 0

−8640
√
3 b1 = 0

−5184
√
3 b1 = 0

−1152
√
3 b1 = 0

576
√
3 b1 = 0

36288
√
3 b1 = 0

−124416
√
3 b2 = 0

−22464
√
3 b2 = 0

−5184
√
3 b2 = 0

−1152
√
3 b2 = 0

576
√
3 b2 = 0

36288
√
3 b2 = 0

186624
√
3 b2 = 0

−31104a2 − 31104b3 = 0
−3456a2 − 3456b3 = 0
−1728a2 − 1728b3 = 0

−48a2 − 48b3 = 0
48a2 + 48b3 = 0

1152a2 + 1152b3 = 0
2304a2 + 2304b3 = 0

10368a2 + 10368b3 = 0
165888a2 + 165888b3 = 0

−497664
√
3 a2 − 497664

√
3 b3 = 0

−31104
√
3 a2 − 31104

√
3 b3 = 0

−1728
√
3 a2 − 1728

√
3 b3 = 0

−576
√
3 a2 − 576

√
3 b3 = 0

1152
√
3 a2 + 1152

√
3 b3 = 0

10368
√
3 a2 + 10368

√
3 b3 = 0

65664
√
3 a2 + 65664

√
3 b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−x

= −y

x

This is easily solved to give

y = c1
x

Where now the coordinate R is taken as the constant of integration. Hence

R = xy
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And S is found from

dS = dx

ξ

= dx

−x

Integrating gives

S =
∫

dx

T

= − ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) =
12y2x2(−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 − 24y2x2 +

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 −

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + 1

24y x3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

Evaluating all the partial derivatives gives

Rx = y

Ry = x

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −

24yx
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

36y2x2
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 − 24y2x2 +

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 −

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + 1

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −

24R
(
−216R4 + 24

√
3
√
27R2 − 1R3 + 36R2 − 1

) 1
3

36R2
(
−216R4 + 24

√
3
√
27R2 − 1R3 + 36R2 − 1

) 1
3 − 24R2 +

(
−216R4 + 24

√
3
√
27R2 − 1R3 + 36R2 − 1

) 2
3 −

(
−216R4 + 24

√
3
√
27R2 − 1R3 + 36R2 − 1

) 1
3 + 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

−
24R

(
−216R4 + 24R3

√
81R2 − 3 + 36R2 − 1

) 1
3

36R2
(
−216R4 + 24R3

√
81R2 − 3 + 36R2 − 1

) 1
3 − 24R2 +

(
−216R4 + 24R3

√
81R2 − 3 + 36R2 − 1

) 2
3 −

(
−216R4 + 24R3

√
81R2 − 3 + 36R2 − 1

) 1
3 + 1

dR + c1

(4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) =
∫ yx

−
24_a

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3

36_a2
(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 − 24_a2 +

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 2
3 −

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 + 1

d_a+ c1

Which simplifies to

− ln (x) =
∫ yx

−
24_a

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3

36_a2
(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 − 24_a2 +

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 2
3 −

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 + 1

d_a+ c1

Summary
The solution(s) found are the following

(1)− ln (x) =
∫ yx

−
24_a

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3

36_a2
(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 − 24_a2 +

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 2
3 −

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 + 1

d_a

+ c1

Verification of solutions

− ln (x) =
∫ yx

−
24_a

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3

36_a2
(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 − 24_a2 +

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 2
3 −

(
−216_a4 + 24_a3

√
81_a2 − 3 + 36_a2 − 1

) 1
3 + 1

d_a

+ c1

Verified OK.
Solving equation (2)
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Writing the ode as

y′ =
24i

√
3 y2x2 + 24y2x2(−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + i

√
3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 + 24y2x2 −

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 − i

√
3− 2

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 − 1

48y x3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display
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Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−216x4y4 + 24

√
3
√

27y2x2 − 1 y3x3 + 36y2x2 − 1
) 1

3
,
(
−216x4y4

+ 24
√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3
,
√
27y2x2 − 1

}

The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2

− 1
) 1

3 = v3,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3

+ 36y2x2 − 1
) 2

3 = v4,
√

27y2x2 − 1 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display
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Setting each coefficients in (8E) to zero gives the following equations to solve
−248832a1 = 0
−11520a1 = 0

288a1 = 0
103680a1 = 0

−124416a3 = 0
−432a3 = 0

12a3 = 0
2016a3 = 0
20736a3 = 0

−20736b1 = 0
−2304b1 = 0

96b1 = 0
248832b1 = 0

−248832b2 = 0
−4608b2 = 0

96b2 = 0
62208b2 = 0

−214272
√
3 a1 = 0

6912
√
3 a1 = 0

746496
√
3 a1 = 0

−13824
√
3 a3 = 0

−7776
√
3 a3 = 0

288
√
3 a3 = 0

373248
√
3 a3 = 0

−746496
√
3 b1 = 0

−34560
√
3 b1 = 0

2304
√
3 b1 = 0

−89856
√
3 b2 = 0

2304
√
3 b2 = 0

746496
√
3 b2 = 0

−6912a2 − 6912b3 = 0
192a2 + 192b3 = 0

41472a2 + 41472b3 = 0
−190080

√
3 a1 − 570240ia1 = 0

−51840
√
3 a1 + 155520ia1 = 0

2304
√
3 a1 − 6912ia1 = 0

4608
√
3 a1 + 13824ia1 = 0

1741824
√
3 a1 + 5225472ia1 = 0

−124416
√
3 a2 − 124416

√
3 b3 = 0

4608
√
3 a2 + 4608

√
3 b3 = 0

−20736
√
3 a3 + 62208ia3 = 0

−7488
√
3 a3 − 22464ia3 = 0

−1440
√
3 a3 + 4320ia3 = 0

96
√
3 a3 − 288ia3 = 0

192
√
3 a3 + 576ia3 = 0

44928
√
3 a3 + 134784ia3 = 0

435456
√
3 a3 + 1306368ia3 = 0

−72576
√
3 b1 − 217728ib1 = 0

2304
√
3 b1 + 6912ib1 = 0

10368
√
3 b1 − 31104ib1 = 0

248832
√
3 b1 + 746496ib1 = 0

−72576
√
3 b2 − 217728ib2 = 0

2304
√
3 b2 + 6912ib2 = 0

10368
√
3 b2 − 31104ib2 = 0

248832
√
3 b2 + 746496ib2 = 0

−580608i
√
3 a1 − 580608a1 = 0

−145152i
√
3 a3 − 145152a3 = 0

−82944i
√
3 b1 − 82944b1 = 0

−82944i
√
3 b2 − 82944b2 = 0

−17280i
√
3 a1 + 17280a1 = 0

−7488i
√
3 a1 − 7488a1 = 0

−6912i
√
3 a3 + 6912a3 = 0

−1728i
√
3 b1 − 1728b1 = 0

−1728i
√
3 b2 − 1728b2 = 0

−288i
√
3 a3 − 288a3 = 0

−144i
√
3 a1 + 144a1 = 0

−48i
√
3 b1 + 48b1 = 0

−48i
√
3 b2 + 48b2 = 0

−6i
√
3 a3 + 6a3 = 0

6i
√
3 a3 + 6a3 = 0

48i
√
3 b1 + 48b1 = 0

48i
√
3 b2 + 48b2 = 0

144i
√
3 a1 + 144a1 = 0

144i
√
3 a3 − 144a3 = 0

288i
√
3 a3 − 288a3 = 0

576i
√
3 b1 − 576b1 = 0

576i
√
3 b2 − 576b2 = 0

3168i
√
3 a3 + 3168a3 = 0

3456i
√
3 b1 − 3456b1 = 0

3456i
√
3 b2 − 3456b2 = 0

4032i
√
3 a1 − 4032a1 = 0

6912i
√
3 a3 + 6912a3 = 0

10368i
√
3 b1 + 10368b1 = 0

10368i
√
3 b2 + 10368b2 = 0

114048i
√
3 a1 + 114048a1 = 0

−131328
√
3 a2 − 131328

√
3 b3 − 393984ia2 − 393984ib3 = 0

−20736
√
3 a2 − 20736

√
3 b3 + 62208ia2 + 62208ib3 = 0

1152
√
3 a2 + 1152

√
3 b3 − 3456ia2 − 3456ib3 = 0

3456
√
3 a2 + 3456

√
3 b3 + 10368ia2 + 10368ib3 = 0

995328
√
3 a2 + 995328

√
3 b3 + 2985984ia2 + 2985984ib3 = 0

−331776i
√
3 a2 − 331776i

√
3 b3 − 331776a2 − 331776b3 = 0

−6912i
√
3 a2 − 6912i

√
3 b3 + 6912a2 + 6912b3 = 0

−4608i
√
3 a2 − 4608i

√
3 b3 − 4608a2 − 4608b3 = 0

−96i
√
3 a2 − 96i

√
3 b3 + 96a2 + 96b3 = 0

96i
√
3 a2 + 96i

√
3 b3 + 96a2 + 96b3 = 0

2304i
√
3 a2 + 2304i

√
3 b3 − 2304a2 − 2304b3 = 0

62208i
√
3 a2 + 62208i

√
3 b3 + 62208a2 + 62208b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.

Solving equation (3)

Writing the ode as

y′ = −
24i

√
3 y2x2 − 24y2x2(−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + i

√
3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 − 24y2x2 +

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3 − i

√
3 + 2

(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3 + 1

48y x3
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 1
3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)Expression too large to display

Putting the above in normal form gives

Expression too large to display

Setting the numerator to zero gives

(6E)Expression too large to display

Simplifying the above gives

(6E)Expression too large to display

Since the PDE has radicals, simplifying gives

Expression too large to display

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

(
−216x4y4 + 24

√
3
√

27y2x2 − 1 y3x3 + 36y2x2 − 1
) 1

3
,
(
−216x4y4

+ 24
√
3
√
27y2x2 − 1 y3x3 + 36y2x2 − 1

) 2
3
,
√
27y2x2 − 1

}
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The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3 + 36y2x2

− 1
) 1

3 = v3,
(
−216x4y4 + 24

√
3
√
27y2x2 − 1 y3x3

+ 36y2x2 − 1
) 2

3 = v4,
√

27y2x2 − 1 = v5

}

The above PDE (6E) now becomes

(7E)Expression too large to display

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)Expression too large to display

733



Setting each coefficients in (8E) to zero gives the following equations to solve
−248832a1 = 0
−11520a1 = 0

288a1 = 0
103680a1 = 0

−124416a3 = 0
−432a3 = 0

12a3 = 0
2016a3 = 0
20736a3 = 0

−20736b1 = 0
−2304b1 = 0

96b1 = 0
248832b1 = 0

−248832b2 = 0
−4608b2 = 0

96b2 = 0
62208b2 = 0

−214272
√
3 a1 = 0

6912
√
3 a1 = 0

746496
√
3 a1 = 0

−13824
√
3 a3 = 0

−7776
√
3 a3 = 0

288
√
3 a3 = 0

373248
√
3 a3 = 0

−746496
√
3 b1 = 0

−34560
√
3 b1 = 0

2304
√
3 b1 = 0

−89856
√
3 b2 = 0

2304
√
3 b2 = 0

746496
√
3 b2 = 0

−6912a2 − 6912b3 = 0
192a2 + 192b3 = 0

41472a2 + 41472b3 = 0
−190080

√
3 a1 + 570240ia1 = 0

−51840
√
3 a1 − 155520ia1 = 0

2304
√
3 a1 + 6912ia1 = 0

4608
√
3 a1 − 13824ia1 = 0

1741824
√
3 a1 − 5225472ia1 = 0

−124416
√
3 a2 − 124416

√
3 b3 = 0

4608
√
3 a2 + 4608

√
3 b3 = 0

−20736
√
3 a3 − 62208ia3 = 0

−7488
√
3 a3 + 22464ia3 = 0

−1440
√
3 a3 − 4320ia3 = 0

96
√
3 a3 + 288ia3 = 0

192
√
3 a3 − 576ia3 = 0

44928
√
3 a3 − 134784ia3 = 0

435456
√
3 a3 − 1306368ia3 = 0

−72576
√
3 b1 + 217728ib1 = 0

2304
√
3 b1 − 6912ib1 = 0

10368
√
3 b1 + 31104ib1 = 0

248832
√
3 b1 − 746496ib1 = 0

−72576
√
3 b2 + 217728ib2 = 0

2304
√
3 b2 − 6912ib2 = 0

10368
√
3 b2 + 31104ib2 = 0

248832
√
3 b2 − 746496ib2 = 0

−114048i
√
3 a1 + 114048a1 = 0

−10368i
√
3 b1 + 10368b1 = 0

−10368i
√
3 b2 + 10368b2 = 0

−6912i
√
3 a3 + 6912a3 = 0

−4032i
√
3 a1 − 4032a1 = 0

−3456i
√
3 b1 − 3456b1 = 0

−3456i
√
3 b2 − 3456b2 = 0

−3168i
√
3 a3 + 3168a3 = 0

−576i
√
3 b1 − 576b1 = 0

−576i
√
3 b2 − 576b2 = 0

−288i
√
3 a3 − 288a3 = 0

−144i
√
3 a1 + 144a1 = 0

−144i
√
3 a3 − 144a3 = 0

−48i
√
3 b1 + 48b1 = 0

−48i
√
3 b2 + 48b2 = 0

−6i
√
3 a3 + 6a3 = 0

6i
√
3 a3 + 6a3 = 0

48i
√
3 b1 + 48b1 = 0

48i
√
3 b2 + 48b2 = 0

144i
√
3 a1 + 144a1 = 0

288i
√
3 a3 − 288a3 = 0

1728i
√
3 b1 − 1728b1 = 0

1728i
√
3 b2 − 1728b2 = 0

6912i
√
3 a3 + 6912a3 = 0

7488i
√
3 a1 − 7488a1 = 0

17280i
√
3 a1 + 17280a1 = 0

82944i
√
3 b1 − 82944b1 = 0

82944i
√
3 b2 − 82944b2 = 0

145152i
√
3 a3 − 145152a3 = 0

580608i
√
3 a1 − 580608a1 = 0

−131328
√
3 a2 − 131328

√
3 b3 + 393984ia2 + 393984ib3 = 0

−20736
√
3 a2 − 20736

√
3 b3 − 62208ia2 − 62208ib3 = 0

1152
√
3 a2 + 1152

√
3 b3 + 3456ia2 + 3456ib3 = 0

3456
√
3 a2 + 3456

√
3 b3 − 10368ia2 − 10368ib3 = 0

995328
√
3 a2 + 995328

√
3 b3 − 2985984ia2 − 2985984ib3 = 0

−62208i
√
3 a2 − 62208i

√
3 b3 + 62208a2 + 62208b3 = 0

−2304i
√
3 a2 − 2304i

√
3 b3 − 2304a2 − 2304b3 = 0

−96i
√
3 a2 − 96i

√
3 b3 + 96a2 + 96b3 = 0

96i
√
3 a2 + 96i

√
3 b3 + 96a2 + 96b3 = 0

4608i
√
3 a2 + 4608i

√
3 b3 − 4608a2 − 4608b3 = 0

6912i
√
3 a2 + 6912i

√
3 b3 + 6912a2 + 6912b3 = 0

331776i
√
3 a2 + 331776i

√
3 b3 − 331776a2 − 331776b3 = 0
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Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Unable to determine R. Terminating

Unable to determine ODE type.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 3 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 577� �
dsolve(y(x)* (y(x)-2*x*diff(y(x),x))^3= (diff(y(x),x))^2 ,y(x), singsol=all)� �
y(x) = −

√
3

9x

y(x) =
√
3

9x
y(x) = 0
y(x)

=
RootOf

(
− ln (x) + c1 + 24

(∫ _Z
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a

36
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a2+

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 2
3−24_a2−

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3+1

d_a
))

x
y(x)

=
RootOf

(
− ln (x) + c1 − 48

(∫ _Z
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a

i
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 2
3√3+24i

√
3_a2−72

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a2−i

√
3+
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 2
3−24_a2+2

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3+1

d_a
))

x
y(x)

=
RootOf

(
− ln (x) + c1 + 48

(∫ _Z
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a

i
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 2
3√3+24i

√
3_a2+72

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3_a2−i

√
3−
(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 2
3+24_a2−2

(
−216_a4+24_a3

√
81_a2−3+36_a2−1

) 1
3−1

d_a
))

x

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[y[x]*(y[x]-2*x*y'[x])^3== (y'[x])^2,y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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1.88 problem 91
1.88.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 738

Internal problem ID [3233]
Internal file name [OUTPUT/2725_Sunday_June_05_2022_08_39_28_AM_12257417/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 91.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _dAlembert]

xy′ + y − 4
√

y′ = 0

1.88.1 Solving as dAlembert ode

Let p = y′ the ode becomes

xp+ y − 4√p = 0

Solving for y from the above results in

y = −xp+ 4√p (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = −p

g = 4√p

Hence (2) becomes

2p =
(
−x+ 2

√
p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

2p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = 0

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = 2p(x)
−x+ 2√

p(x)

(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

−x(p) + 2√
p

2p (4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 1
2p

q(p) = 1
p

3
2
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Hence the ode is

d

dp
x(p) + x(p)

2p = 1
p

3
2

The integrating factor µ is

µ = e
∫ 1

2pdp

= √
p

The ode becomes

d
dp(µx) = (µ)

(
1
p

3
2

)
d
dp(x

√
p) = (√p)

(
1
p

3
2

)
d(x√p) = 1

p
dp

Integrating gives

x
√
p =

∫ 1
p
dp

x
√
p = ln (p) + c1

Dividing both sides by the integrating factor µ = √
p results in

x(p) = ln (p)
√
p

+ c1√
p

which simplifies to

x(p) = ln (p) + c1√
p

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p =
8+4

√
4−yx
x

− y

x

p =
−4

(
−2+

√
4−yx

)
x

− y

x
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Substituting the above in the solution for x found above gives

x =
ln
(

−yx+4
√
4−yx+8

x2

)
+ c1√

−yx+4
√
4−yx+8

x2

x =
ln
(

−yx−4
√
4−yx+8

x2

)
+ c1√

−yx−4
√
4−yx+8

x2

Summary
The solution(s) found are the following

(1)y = 0

(2)x =
ln
(

−yx+4
√
4−yx+8

x2

)
+ c1√

−yx+4
√
4−yx+8

x2

(3)x =
ln
(

−yx−4
√
4−yx+8

x2

)
+ c1√

−yx−4
√
4−yx+8

x2

Verification of solutions

y = 0

Verified OK.

x =
ln
(

−yx+4
√
4−yx+8

x2

)
+ c1√

−yx+4
√
4−yx+8

x2

Verified OK.

x =
ln
(

−yx−4
√
4−yx+8

x2

)
+ c1√

−yx−4
√
4−yx+8

x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.063 (sec). Leaf size: 67� �
dsolve(y(x)+x*diff(y(x),x) = 4*sqrt(diff(y(x),x)),y(x), singsol=all)� �

y(x) =
8
√

LambertW
(
− c1x

2
)2

x2 x− 4 LambertW
(
− c1x

2

)2
x

y(x) =
−4 LambertW

(
c1x
2

)2 + 8
√

LambertW
( c1x

2
)2

x2 x

x

3 Solution by Mathematica
Time used: 1.157 (sec). Leaf size: 94� �
DSolve[y[x]+x*y'[x]==4*Sqrt[y'[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve

2e− 1
2
√

4−xy(x)
(
−2
√
4− xy(x)− 4

)
y(x) = c1, y(x)


Solve

2e 1
2
√

4−xy(x)
(
2
√

4− xy(x)− 4
)

y(x) = c1, y(x)


y(x) → 0
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1.89 problem 92
1.89.1 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 743

Internal problem ID [3234]
Internal file name [OUTPUT/2726_Sunday_June_05_2022_08_39_43_AM_74450280/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 92.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type
[[_1st_order , _with_linear_symmetries], _dAlembert]

2xy′ − y − ln (y′) = 0

1.89.1 Solving as dAlembert ode

Let p = y′ the ode becomes

2xp− y − ln (p) = 0

Solving for y from the above results in

y = 2xp− ln (p) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)
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Comparing the form y = xf + g to (1A) shows that

f = 2p
g = − ln (p)

Hence (2) becomes

−p =
(
2x− 1

p

)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

−p = 0

Solving for p from the above gives

p = 0

Substituting these in (1A) gives

y = ∞

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) = − p(x)
2x− 1

p(x)
(3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) = −

2x(p)− 1
p

p
(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
p

q(p) = 1
p2
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Hence the ode is

d

dp
x(p) + 2x(p)

p
= 1

p2

The integrating factor µ is

µ = e
∫ 2

p
dp

= p2

The ode becomes

d
dp(µx) = (µ)

(
1
p2

)
d
dp
(
p2x
)
=
(
p2
)( 1

p2

)
d
(
p2x
)
= dp

Integrating gives

p2x =
∫

dp

p2x = p+ c1

Dividing both sides by the integrating factor µ = p2 results in

x(p) = 1
p
+ c1

p2

which simplifies to

x(p) = p+ c1
p2

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = e−LambertW
(
−2x e−y

)
−y

Substituting the above in the solution for x found above gives

x = −2(−2c1x+ LambertW (−2x e−y))x
LambertW (−2x e−y)2
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Summary
The solution(s) found are the following

(1)y = ∞

(2)x = −2(−2c1x+ LambertW (−2x e−y))x
LambertW (−2x e−y)2

Verification of solutions
y = ∞

Warning, solution could not be verified

x = −2(−2c1x+ LambertW (−2x e−y))x
LambertW (−2x e−y)2

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 69� �
dsolve(2*x*diff(y(x),x) -y(x) = ln(diff(y(x),x)),y(x), singsol=all)� �

y(x) = 1 +
√
4c1x+ 1 + ln (2)− ln

(
1 +

√
4c1x+ 1
x

)
y(x) = 1−

√
4c1x+ 1 + ln (2)− ln

(
1−

√
4c1x+ 1
x

)
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3 Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 34� �
DSolve[2*x*y'[x] -y[x] == Log[y'[x]],y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
W
(
−2xe−y(x))− log

(
W
(
−2xe−y(x))+ 2

)
+ y(x) = c1, y(x)

]
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1.90 problem 111
1.90.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 748
1.90.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 752
1.90.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 756

Internal problem ID [3235]
Internal file name [OUTPUT/2727_Sunday_June_05_2022_08_39_46_AM_78403092/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 111.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegra-
tionFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

xy2(xy′ + y) = 1

1.90.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x y3 − 1
y2x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 34: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y2x3 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y2x3

dy

Which results in

S = x3y3

3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x y3 − 1
y2x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y3x2

Sy = x3y2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y3x3

3 = x2

2 + c1

Which simplifies to

y3x3

3 = x2

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x y3−1
y2x2

dS
dR

= R

R = x

S = x3y3

3

Summary
The solution(s) found are the following

(1)y3x3

3 = x2

2 + c1
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Figure 112: Slope field plot

Verification of solutions

y3x3

3 = x2

2 + c1

Verified OK.

1.90.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −x y3 − 1
y2x2

This is a Bernoulli ODE.
y′ = −1

x
y + 1

x2
1
y2

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −1
x

f1(x) =
1
x2

n = −2

Dividing both sides of ODE (1) by yn = 1
y2

gives

y′y2 = −y3

x
+ 1

x2 (4)

Let

w = y1−n

= y3 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 3y2y′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
3 = −w(x)

x
+ 1

x2

w′ = −3w
x

+ 3
x2 (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = 3
x

q(x) = 3
x2
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Hence the ode is

w′(x) + 3w(x)
x

= 3
x2

The integrating factor µ is

µ = e
∫ 3

x
dx

= x3

The ode becomes

d
dx(µw) = (µ)

(
3
x2

)
d
dx
(
x3w

)
=
(
x3)( 3

x2

)
d
(
x3w

)
= (3x) dx

Integrating gives

x3w =
∫

3x dx

x3w = 3x2

2 + c1

Dividing both sides by the integrating factor µ = x3 results in

w(x) = 3
2x + c1

x3

Replacing w in the above by y3 using equation (5) gives the final solution.

y3 = 3
2x + c1

x3

Solving for y gives

y(x) = (12x2 + 8c1)
1
3

2x

y(x) =
(12x2 + 8c1)

1
3
(
−1 + i

√
3
)

4x

y(x) = −
(12x2 + 8c1)

1
3
(
1 + i

√
3
)

4x
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Summary
The solution(s) found are the following

(1)y = (12x2 + 8c1)
1
3

2x

(2)y =
(12x2 + 8c1)

1
3
(
−1 + i

√
3
)

4x

(3)y = −
(12x2 + 8c1)

1
3
(
1 + i

√
3
)

4x

Figure 113: Slope field plot
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Verification of solutions

y = (12x2 + 8c1)
1
3

2x

Verified OK.

y =
(12x2 + 8c1)

1
3
(
−1 + i

√
3
)

4x

Verified OK.

y = −
(12x2 + 8c1)

1
3
(
1 + i

√
3
)

4x

Verified OK.

1.90.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
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∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y2x2) dy =

(
−x y3 + 1

)
dx(

x y3 − 1
)
dx+

(
y2x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = x y3 − 1
N(x, y) = y2x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x y3 − 1

)
= 3x y2

And

∂N

∂x
= ∂

∂x

(
y2x2)

= 2x y2

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

y2x2

((
3x y2

)
−
(
2x y2

))
= 1

x
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 1

x
dx

The result of integrating gives

µ = eln(x)

= x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x
(
x y3 − 1

)
= x

(
x y3 − 1

)
And

N = µN

= x
(
y2x2)

= x3y2

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x
(
x y3 − 1

))
+
(
x3y2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x
(
x y3 − 1

)
dx

(3)φ = 1
3x

3y3 − 1
2x

2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x3y2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x3y2. Therefore equation (4) becomes

(5)x3y2 = x3y2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 1
3x

3y3 − 1
2x

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
1
3x

3y3 − 1
2x

2

Summary
The solution(s) found are the following

(1)y3x3

3 − x2

2 = c1
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Figure 114: Slope field plot

Verification of solutions

y3x3

3 − x2

2 = c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 74� �
dsolve(x*y(x)^2*(x*diff(y(x),x)+y(x) )=1,y(x), singsol=all)� �

y(x) = (12x2 + 8c1)
1
3

2x

y(x) = −
(12x2 + 8c1)

1
3
(
1 + i

√
3
)

4x

y(x) =
(12x2 + 8c1)

1
3
(
i
√
3− 1

)
4x

3 Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 80� �
DSolve[x*y[x]^2*(x*y'[x]+y[x])==1,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
3

√
−1
2

3
√

3x2 + 2c1
x

y(x) →
3

√
3x2

2 + c1

x

y(x) →
(−1)2/3 3

√
3x2

2 + c1

x
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1.91 problem 112
Internal problem ID [3236]
Internal file name [OUTPUT/2728_Sunday_June_05_2022_08_39_47_AM_99213743/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 112.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "first_order_ode_lie_symme-
try_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`]]

5y + y′
2 − x(x+ y′) = 0

Solving the given ode for y′ results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

y′ = x

2 +
√
5x2 − 20y

2 (1)

y′ = x

2 −
√
5x2 − 20y

2 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Writing the ode as

y′ = x

2 +
√
5x2 − 20y

2
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)
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The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x

2 +
√
5x2 − 20y

2

)
(b3 − a2)−

(
x

2 +
√
5x2 − 20y

2

)2

a3

−
(
1
2 + 5x

2
√
5x2 − 20y

)
(xa2 + ya3 + a1) +

5xb2 + 5yb3 + 5b1√
5x2 − 20y

= 0

Putting the above in normal form gives

−(5x2 − 20y)
3
2 a3 +

√
5x2 − 20y x2a3 + 10x3a3 + 4

√
5x2 − 20y xa2 − 2

√
5x2 − 20y xb3 + 2

√
5x2 − 20y ya3 + 20x2a2 − 10x2b3 − 30xya3 + 2

√
5x2 − 20y a1 − 4b2

√
5x2 − 20y + 10xa1 − 20xb2 − 40ya2 + 20yb3 − 20b1

4
√
5x2 − 20y

= 0

Setting the numerator to zero gives

(6E)
−
(
5x2 − 20y

) 3
2 a3 −

√
5x2 − 20y x2a3 − 10x3a3

− 4
√

5x2 − 20y xa2 + 2
√

5x2 − 20y xb3 − 2
√
5x2 − 20y ya3

− 20x2a2 + 10x2b3 + 30xya3 − 2
√

5x2 − 20y a1
+ 4b2

√
5x2 − 20y − 10xa1 + 20xb2 + 40ya2 − 20yb3 + 20b1 = 0

Simplifying the above gives

(6E)
−
(
5x2 − 20y

) 3
2 a3 − 2

(
5x2 − 20y

)
xa3 −

√
5x2 − 20y x2a3

− 2
(
5x2 − 20y

)
a2 + 2

(
5x2 − 20y

)
b3 − 4

√
5x2 − 20y xa2

+ 2
√

5x2 − 20y xb3 − 2
√
5x2 − 20y ya3 − 10x2a2 − 10xya3

− 2
√
5x2 − 20y a1 + 4b2

√
5x2 − 20y − 10xa1 + 20xb2 + 20yb3 + 20b1 = 0
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Since the PDE has radicals, simplifying gives

−10x3a3 − 6
√

5x2 − 20y x2a3 − 20x2a2 + 10x2b3 − 4
√
5x2 − 20y xa2

+ 2
√

5x2 − 20y xb3 + 30xya3 + 18
√
5x2 − 20y ya3 − 10xa1 + 20xb2

− 2
√

5x2 − 20y a1 + 4b2
√
5x2 − 20y + 40ya2 − 20yb3 + 20b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
5x2 − 20y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

5x2 − 20y = v3
}

The above PDE (6E) now becomes

(7E)−10v31a3 − 6v3v21a3 − 20v21a2 − 4v3v1a2 + 30v1v2a3 + 18v3v2a3 + 10v21b3
+ 2v3v1b3 − 10v1a1 − 2v3a1 + 40v2a2 + 20v1b2 + 4b2v3 − 20v2b3 + 20b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−10v31a3 − 6v3v21a3 + (−20a2 + 10b3) v21 + 30v1v2a3 + (−4a2 + 2b3) v1v3
+(−10a1+20b2) v1+18v3v2a3+(40a2−20b3) v2+(−2a1+4b2) v3+20b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−10a3 = 0
−6a3 = 0
18a3 = 0
30a3 = 0
20b1 = 0

−10a1 + 20b2 = 0
−2a1 + 4b2 = 0

−20a2 + 10b3 = 0
−4a2 + 2b3 = 0
40a2 − 20b3 = 0

Solving the above equations for the unknowns gives

a1 = 2b2
a2 = a2

a3 = 0
b1 = 0
b2 = b2

b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
x

2 +
√
5x2 − 20y

2

)
(2)

= −
√
5x2 − 20y

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−
√
5x2 − 20y

dy

Which results in

S = x2 − 4y
2
√
5x2 − 20y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x

2 +
√
5x2 − 20y

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x

2
√
5x2 − 20y

Sy = − 1√
5x2 − 20y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2 − 4y
2
√
5x2 − 20y

= −x

2 + c1

Which simplifies to

x2 − 4y
2
√
5x2 − 20y

= −x

2 + c1

Which gives

y = −5c21 + 5c1x− x2

Summary
The solution(s) found are the following

(1)y = −5c21 + 5c1x− x2

Verification of solutions

y = −5c21 + 5c1x− x2

Verified OK.
Solving equation (2)

Writing the ode as

y′ = x

2 −
√
5x2 − 20y

2
y′ = ω(x, y)
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The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
x

2 −
√
5x2 − 20y

2

)
(b3 − a2)−

(
x

2 −
√
5x2 − 20y

2

)2

a3

−
(
1
2 − 5x

2
√
5x2 − 20y

)
(xa2 + ya3 + a1)−

5(xb2 + yb3 + b1)√
5x2 − 20y

= 0

Putting the above in normal form gives

−(5x2 − 20y)
3
2 a3 +

√
5x2 − 20y x2a3 − 10x3a3 + 4

√
5x2 − 20y xa2 − 2

√
5x2 − 20y xb3 + 2

√
5x2 − 20y ya3 − 20x2a2 + 10x2b3 + 30xya3 + 2

√
5x2 − 20y a1 − 4b2

√
5x2 − 20y − 10xa1 + 20xb2 + 40ya2 − 20yb3 + 20b1

4
√
5x2 − 20y

= 0

Setting the numerator to zero gives

(6E)
−
(
5x2 − 20y

) 3
2 a3 −

√
5x2 − 20y x2a3 + 10x3a3

− 4
√

5x2 − 20y xa2 + 2
√

5x2 − 20y xb3 − 2
√
5x2 − 20y ya3

+ 20x2a2 − 10x2b3 − 30xya3 − 2
√
5x2 − 20y a1

+ 4b2
√

5x2 − 20y + 10xa1 − 20xb2 − 40ya2 + 20yb3 − 20b1 = 0

Simplifying the above gives

(6E)
−
(
5x2 − 20y

) 3
2 a3 + 2

(
5x2 − 20y

)
xa3 −

√
5x2 − 20y x2a3

+ 2
(
5x2 − 20y

)
a2 − 2

(
5x2 − 20y

)
b3 − 4

√
5x2 − 20y xa2

+ 2
√

5x2 − 20y xb3 − 2
√

5x2 − 20y ya3 + 10x2a2 + 10xya3
− 2
√

5x2 − 20y a1 + 4b2
√

5x2 − 20y + 10xa1 − 20xb2 − 20yb3 − 20b1 = 0
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Since the PDE has radicals, simplifying gives

10x3a3 − 6
√

5x2 − 20y x2a3 + 20x2a2 − 10x2b3 − 4
√

5x2 − 20y xa2
+ 2
√
5x2 − 20y xb3 − 30xya3 + 18

√
5x2 − 20y ya3 + 10xa1 − 20xb2

− 2
√

5x2 − 20y a1 + 4b2
√

5x2 − 20y − 40ya2 + 20yb3 − 20b1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y,

√
5x2 − 20y

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2,
√

5x2 − 20y = v3
}

The above PDE (6E) now becomes

(7E)10v31a3 − 6v3v21a3 + 20v21a2 − 4v3v1a2 − 30v1v2a3 + 18v3v2a3 − 10v21b3
+ 2v3v1b3 + 10v1a1 − 2v3a1 − 40v2a2 − 20v1b2 + 4b2v3 + 20v2b3 − 20b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)10v31a3 − 6v3v21a3 + (20a2 − 10b3) v21 − 30v1v2a3 + (−4a2 + 2b3) v1v3
+(10a1−20b2) v1+18v3v2a3+(−40a2+20b3) v2+(−2a1+4b2) v3−20b1 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

−30a3 = 0
−6a3 = 0
10a3 = 0
18a3 = 0

−20b1 = 0
−2a1 + 4b2 = 0
10a1 − 20b2 = 0

−40a2 + 20b3 = 0
−4a2 + 2b3 = 0
20a2 − 10b3 = 0

Solving the above equations for the unknowns gives

a1 = 2b2
a2 = a2

a3 = 0
b1 = 0
b2 = b2

b3 = 2a2

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = 2
η = x

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= x−
(
x

2 −
√
5x2 − 20y

2

)
(2)

=
√

5x2 − 20y
ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

5x2 − 20y
dy

Which results in

S = − x2 − 4y
2
√
5x2 − 20y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x

2 −
√
5x2 − 20y

2
Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − x

2
√
5x2 − 20y

Sy =
1√

5x2 − 20y

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

2 (2A)
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We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

2

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− x2 − 4y
2
√
5x2 − 20y

= −x

2 + c1

Which simplifies to

− x2 − 4y
2
√
5x2 − 20y

= −x

2 + c1

Which gives

y = −5c21 + 5c1x− x2

Summary
The solution(s) found are the following

(1)y = −5c21 + 5c1x− x2

Verification of solutions

y = −5c21 + 5c1x− x2

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:

*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
trying simple symmetries for implicit equations
Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful

-------------------
* Tackling next ODE.

*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 91� �
dsolve(5*y(x)+(diff(y(x),x))^2=x*(x+diff(y(x),x)),y(x), singsol=all)� �

y(x) = x2

4
y(x) = x

√
5
√
−c1 − x2 + c1

y(x) = −x
√
5
√
−c1 − x2 + c1

y(x) = −x
√
5
√
−c1 − x2 + c1

y(x) = x
√
5
√
−c1 − x2 + c1

7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[5*y[x]+(y'[x])^2==x*(x+y'[x]),y[x],x,IncludeSingularSolutions -> True]� �
Timed out
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1.92 problem 113
1.92.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 775
1.92.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 777
1.92.3 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 779
1.92.4 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 780
1.92.5 Solving as first order ode lie symmetry lookup ode . . . . . . . 783
1.92.6 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 787
1.92.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 791

Internal problem ID [3237]
Internal file name [OUTPUT/2729_Sunday_June_05_2022_08_39_48_AM_99015751/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 113.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "ho-
mogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − y + 2
x+ 1 = 0

1.92.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= y + 2
x+ 1
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Where f(x) = 1
x+1 and g(y) = y + 2. Integrating both sides gives

1
y + 2 dy = 1

x+ 1 dx∫ 1
y + 2 dy =

∫ 1
x+ 1 dx

ln (y + 2) = ln (x+ 1) + c1

Raising both side to exponential gives

y + 2 = eln(x+1)+c1

Which simplifies to

y + 2 = c2(x+ 1)

Summary
The solution(s) found are the following

(1)y = c2eln(x+1)+c1 − 2

Figure 115: Slope field plot
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Verification of solutions

y = c2eln(x+1)+c1 − 2

Verified OK.

1.92.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x+ 1

q(x) = 2
x+ 1

Hence the ode is

y′ − y

x+ 1 = 2
x+ 1

The integrating factor µ is

µ = e
∫
− 1

x+1dx

= 1
x+ 1

The ode becomes

d
dx(µy) = (µ)

(
2

x+ 1

)
d
dx

(
y

x+ 1

)
=
(

1
x+ 1

)(
2

x+ 1

)
d
(

y

x+ 1

)
=
(

2
(x+ 1)2

)
dx

Integrating gives

y

x+ 1 =
∫ 2

(x+ 1)2
dx

y

x+ 1 = − 2
x+ 1 + c1
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Dividing both sides by the integrating factor µ = 1
x+1 results in

y = −2 + c1(x+ 1)

which simplifies to

y = c1x+ c1 − 2

Summary
The solution(s) found are the following

(1)y = c1x+ c1 − 2

Figure 116: Slope field plot

Verification of solutions

y = c1x+ c1 − 2

Verified OK.
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1.92.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x)− u(x)x+ 2
x+ 1 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u+ 2
x (x+ 1)

Where f(x) = 1
x(x+1) and g(u) = −u+ 2. Integrating both sides gives

1
−u+ 2 du = 1

x (x+ 1) dx∫ 1
−u+ 2 du =

∫ 1
x (x+ 1) dx

− ln (u− 2) = − ln (x+ 1) + ln (x) + c2

Raising both side to exponential gives

1
u− 2 = e− ln(x+1)+ln(x)+c2

Which simplifies to

1
u− 2 = c3e− ln(x+1)+ln(x)

Which simplifies to

u(x) =
(2c3ec2x

x+1 + 1
)
(x+ 1) e−c2

c3x

Therefore the solution y is

y = ux

=
(2c3ec2x

x+1 + 1
)
(x+ 1) e−c2

c3
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Summary
The solution(s) found are the following

(1)y =
(2c3ec2x

x+1 + 1
)
(x+ 1) e−c2

c3

Figure 117: Slope field plot

Verification of solutions

y =
(2c3ec2x

x+1 + 1
)
(x+ 1) e−c2

c3

Verified OK.

1.92.4 Solving as homogeneousTypeMapleC ode

Let Y = y + y0 and X = x+ x0 then the above is transformed to new ode in Y (X)

d

dX
Y (X) = Y (X) + y0 + 2

X + x0 + 1

780



Solving for possible values of x0 and y0 which makes the above ode a homogeneous ode
results in

x0 = −1
y0 = −2

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d

dX
Y (X) = Y (X)

X

In canonical form, the ODE is

Y ′ = F (X,Y )

= Y

X
(1)

An ode of the form Y ′ = M(X,Y )
N(X,Y ) is called homogeneous if the functions M(X,Y ) and

N(X,Y ) are both homogeneous functions and of the same order. Recall that a function
f(X,Y ) is homogeneous of order n if

f(tnX, tnY ) = tnf(X,Y )

In this case, it can be seen that both M = Y and N = X are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode
is homogeneous, it is converted to separable ODE using the substitution u = Y

X
, or

Y = uX. Hence
dY
dX = du

dXX + u

Applying the transformation Y = uX to the above ODE in (1) gives

du
dXX + u = u

du
dX = 0

Or
d

dX
u(X) = 0

Which is now solved as separable in u(X). Which is now solved in u(X). Integrating
both sides gives

u(X) =
∫

0 dX

= c2
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Now u in the above solution is replaced back by Y using u = Y
X

which results in the
solution

Y (X) = Xc2

Using the solution for Y (X)

Y (X) = Xc2

And replacing back terms in the above solution using

Y = y + y0

X = x+ x0

Or

Y = y − 2
X = x− 1

Then the solution in y becomes

y + 2 = c2(x+ 1)
Summary
The solution(s) found are the following

(1)y + 2 = c2(x+ 1)

Figure 118: Slope field plot
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Verification of solutions

y + 2 = c2(x+ 1)

Verified OK.

1.92.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + 2
x+ 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x+ 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x+ 1dy

Which results in

S = y

x+ 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + 2
x+ 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x+ 1)2

Sy =
1

x+ 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 2

(x+ 1)2
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 2

(R + 1)2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − 2
R + 1 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x+ 1 = − 2
x+ 1 + c1

Which simplifies to
y

x+ 1 = − 2
x+ 1 + c1

Which gives

y = c1x+ c1 − 2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y+2
x+1

dS
dR

= 2
(R+1)2

R = x

S = y

x+ 1

Summary
The solution(s) found are the following

(1)y = c1x+ c1 − 2
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Figure 119: Slope field plot

Verification of solutions

y = c1x+ c1 − 2

Verified OK.

1.92.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y + 2

)
dy =

(
1

x+ 1

)
dx(

− 1
x+ 1

)
dx+

(
1

y + 2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − 1
x+ 1

N(x, y) = 1
y + 2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− 1
x+ 1

)
= 0
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And
∂N

∂x
= ∂

∂x

(
1

y + 2

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− 1
x+ 1 dx

(3)φ = − ln (x+ 1) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y+2 . Therefore equation (4) becomes

(5)1
y + 2 = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y + 2

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ ( 1
y + 2

)
dy

f(y) = ln (y + 2) + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x+ 1) + ln (y + 2) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x+ 1) + ln (y + 2)

The solution becomes
y = ec1x+ ec1 − 2

Summary
The solution(s) found are the following

(1)y = ec1x+ ec1 − 2

Figure 120: Slope field plot

Verification of solutions

y = ec1x+ ec1 − 2

Verified OK.
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1.92.7 Maple step by step solution

Let’s solve
y′ − y+2

x+1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

y+2 = 1
x+1

• Integrate both sides with respect to x∫
y′

y+2dx =
∫ 1

x+1dx+ c1

• Evaluate integral
ln (y + 2) = ln (x+ 1) + c1

• Solve for y
y = ec1x+ ec1 − 2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 10� �
dsolve(diff(y(x),x)= (y(x)+2)/(x+1),y(x), singsol=all)� �

y(x) = c1x+ c1 − 2
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3 Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 18� �
DSolve[y'[x]== (y[x]+2)/(x+1),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −2 + c1(x+ 1)
y(x) → −2
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1.93 problem 115
1.93.1 Solving as homogeneousTypeD ode . . . . . . . . . . . . . . . . 793
1.93.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 795
1.93.3 Solving as first order ode lie symmetry lookup ode . . . . . . . 797

Internal problem ID [3238]
Internal file name [OUTPUT/2730_Sunday_June_05_2022_08_39_49_AM_26650830/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 115.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD", "homoge-
neousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

xy′ − y + x e
y
x = 0

1.93.1 Solving as homogeneousTypeD ode

Writing the ode as

y′ = −e
y
x + y

x
(A)

The given ode has the form

y′ = y

x
+ g(x) f

(
b
y

x

) n
m (1)

Where b is scalar and g(x) is function of x and n,m are integers. The solution is given
in Kamke page 20. Using the substitution y(x) = u(x)x then

dy

dx
= du

dx
x+ u

Hence the given ode becomes
du

dx
x+ u = u+ g(x) f(bu)

n
m

u′ = 1
x
g(x) f(bu)

n
m (2)
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The above ode is always separable. This is easily solved for u assuming the integration
can be resolved, and then the solution to the original ode becomes y = ux. Comapring
the given ode (A) with the form (1) shows that

g(x) = −1
b = 1

f

(
bx

y

)
= e

y
x

Substituting the above in (2) results in the u(x) ode as

u′(x) = −eu(x)
x

Which is now solved as separable In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −eu
x

Where f(x) = − 1
x
and g(u) = eu. Integrating both sides gives

1
eu du = −1

x
dx∫ 1

eu du =
∫

−1
x
dx

−e−u = − ln (x) + c1

The solution is
−e−u(x) + ln (x)− c1 = 0

Therefore the solution is found using y = ux. Hence

−e−
y
x + ln (x)− c1 = 0

Summary
The solution(s) found are the following

(1)−e−
y
x + ln (x)− c1 = 0
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Figure 121: Slope field plot

Verification of solutions

−e−
y
x + ln (x)− c1 = 0

Verified OK.

1.93.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x(u′(x)x+ u(x))− u(x)x+ x eu(x) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −eu
x

Where f(x) = − 1
x
and g(u) = eu. Integrating both sides gives

1
eu du = −1

x
dx

795



∫ 1
eu du =

∫
−1
x
dx

−e−u = − ln (x) + c2

The solution is
−e−u(x) + ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

−e−
y
x + ln (x)− c2 = 0

−e−
y
x + ln (x)− c2 = 0

Summary
The solution(s) found are the following

(1)−e−
y
x + ln (x)− c2 = 0

Figure 122: Slope field plot

Verification of solutions

−e−
y
x + ln (x)− c2 = 0

Verified OK.
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1.93.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −x e y
x − y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type homogeneous Type D. Therefore we do not
need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = x2

η(x, y) = xy (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= xy

x2

= y

x

This is easily solved to give

y = c1x

Where now the coordinate R is taken as the constant of integration. Hence

R = y

x

And S is found from

dS = dx

ξ

= dx

x2

Integrating gives

S =
∫

dx

T

= −1
x
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Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −x e y
x − y

x

Evaluating all the partial derivatives gives

Rx = − y

x2

Ry =
1
x

Sx = 1
x2

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −e− y

x

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= S(R) e−R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1e−e−R (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

−1
x
= c1e−e−

y
x
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Which simplifies to

−1
x
= c1e−e−

y
x

Which gives

y = − ln
(
− ln

(
− 1
c1x

))
x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −x e
y
x−y
x

dS
dR

= S(R) e−R

R = y

x

S = −1
x

Summary
The solution(s) found are the following

(1)y = − ln
(
− ln

(
− 1
c1x

))
x
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Figure 123: Slope field plot

Verification of solutions

y = − ln
(
− ln

(
− 1
c1x

))
x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x*diff(y(x),x)= y(x)-x*exp(y(x)/x),y(x), singsol=all)� �

y(x) = − ln (ln (x) + c1)x

3 Solution by Mathematica
Time used: 0.426 (sec). Leaf size: 16� �
DSolve[x*y'[x]== y[x]-x*Exp[y[x]/x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x log(log(x)− c1)
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1.94 problem 116
1.94.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 803
1.94.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 807
1.94.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 811
1.94.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 814

Internal problem ID [3239]
Internal file name [OUTPUT/2731_Sunday_June_05_2022_08_39_50_AM_72756352/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 116.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "first_or-
der_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_exact , _Bernoulli]

sin (2x) y2 − 2y cos (x)2 y′ = −1

1.94.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = sin (2x) y2 + 1
2y cos (x)2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 41: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
y cos (x)2

(A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
y cos(x)2

dy

Which results in

S = y2 cos (x)2

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = sin (2x) y2 + 1
2y cos (x)2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −sin (2x) y2
2

Sy = y cos (x)2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

2 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y2 cos (x)2

2 = x

2 + c1

Which simplifies to

y2 cos (x)2

2 = x

2 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= sin(2x)y2+1
2y cos(x)2

dS
dR

= 1
2

R = x

S = y2 cos (x)2

2

Summary
The solution(s) found are the following

(1)y2 cos (x)2

2 = x

2 + c1
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Figure 124: Slope field plot

Verification of solutions

y2 cos (x)2

2 = x

2 + c1

Verified OK.

1.94.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= sin (2x) y2 + 1
2y cos (x)2

This is a Bernoulli ODE.

y′ = sin (x)
cos (x)y +

1
2 cos (x)2

1
y

(1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)
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The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) =
sin (x)
cos (x)

f1(x) =
1

2 cos (x)2

n = −1

Dividing both sides of ODE (1) by yn = 1
y
gives

y′y = sin (x) y2
cos (x) + 1

2 cos (x)2
(4)

Let

w = y1−n

= y2 (5)

Taking derivative of equation (5) w.r.t x gives

w′ = 2yy′ (6)

Substituting equations (5) and (6) into equation (4) gives

w′(x)
2 = sin (x)w(x)

cos (x) + 1
2 cos (x)2

w′ = 2 sin (x)w
cos (x) + 1

cos (x)2
(7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −2 tan (x)
q(x) = sec (x)2

Hence the ode is

w′(x)− 2 tan (x)w(x) = sec (x)2

The integrating factor µ is

µ = e
∫
−2 tan(x)dx

= cos (x)2

The ode becomes
d
dx(µw) = (µ)

(
sec (x)2

)
d
dx
(
cos (x)2w

)
=
(
cos (x)2

) (
sec (x)2

)
d
(
cos (x)2w

)
= dx

Integrating gives

cos (x)2w =
∫

dx

cos (x)2w = x+ c1

Dividing both sides by the integrating factor µ = cos (x)2 results in

w(x) = sec (x)2 x+ c1 sec (x)2

which simplifies to

w(x) = sec (x)2 (x+ c1)

Replacing w in the above by y2 using equation (5) gives the final solution.

y2 = sec (x)2 (x+ c1)

Solving for y gives

y(x) = sec (x)
√
x+ c1

y(x) = − sec (x)
√
x+ c1

809



Summary
The solution(s) found are the following

(1)y = sec (x)
√
x+ c1

(2)y = − sec (x)
√
x+ c1

Figure 125: Slope field plot

Verification of solutions

y = sec (x)
√
x+ c1

Verified OK.

y = − sec (x)
√
x+ c1

Verified OK.
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1.94.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
−2y cos (x)2

)
dy =

(
−1− sin (2x) y2

)
dx(

sin (2x) y2 + 1
)
dx+

(
−2y cos (x)2

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = sin (2x) y2 + 1
N(x, y) = −2y cos (x)2
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
sin (2x) y2 + 1

)
= 2y sin (2x)

And
∂N

∂x
= ∂

∂x

(
−2y cos (x)2

)
= 2y sin (2x)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
sin (2x) y2 + 1dx

(3)φ = x− cos (2x) y2
2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −y cos (2x) + f ′(y)

But equation (2) says that ∂φ
∂y

= −2y cos (x)2. Therefore equation (4) becomes

(5)−2y cos (x)2 = −y cos (2x) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = −2y cos (x)2 + y cos (2x)
= −y

Integrating the above w.r.t y results in∫
f ′(y) dy =

∫
(−y) dy

f(y) = −y2

2 + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = x− cos (2x) y2
2 − y2

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x− cos (2x) y2
2 − y2

2

Summary
The solution(s) found are the following

(1)x− cos (2x) y2
2 − y2

2 = c1
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Figure 126: Slope field plot

Verification of solutions

x− cos (2x) y2
2 − y2

2 = c1

Verified OK.

1.94.4 Maple step by step solution

Let’s solve
sin (2x) y2 − 2y cos (x)2 y′ = −1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0
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◦ Evaluate derivatives
2y sin (2x) = 4y sin (x) cos (x)

◦ Simplify
2y sin (2x) = 2y sin (2x)

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(sin (2x) y2 + 1) dx+ f1(y)

• Evaluate integral

F (x, y) = x− cos(2x)y2
2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
−2y cos (x)2 = −y cos (2x) + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −2y cos (x)2 + y cos (2x)

• Solve for f1(y)

f1(y) = −
y2
(
2 cos(x)2−cos(2x)

)
2

• Substitute f1(y) into equation for F (x, y)

F (x, y) = x− cos(2x)y2
2 −

y2
(
2 cos(x)2−cos(2x)

)
2

• Substitute F (x, y) into the solution of the ODE

x− cos(2x)y2
2 −

y2
(
2 cos(x)2−cos(2x)

)
2 = c1

• Solve for y{
y =

√
x−c1

cos(x) , y = −
√
x−c1

cos(x)

}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 24� �
dsolve((1+y(x)^2*sin(2*x))-(2*y(x)*cos(x)^2)*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = sec (x)
√
c1 + x

y(x) = − sec (x)
√
c1 + x

3 Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 32� �
DSolve[(1+y[x]^2*Sin[2*x])-(2*y[x]*Cos[x]^2)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
√
x+ c1 sec(x)

y(x) →
√
x+ c1 sec(x)
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1.95 problem 117
1.95.1 Solving as first order ode lie symmetry calculated ode . . . . . . 817
1.95.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 823

Internal problem ID [3240]
Internal file name [OUTPUT/2732_Sunday_June_05_2022_08_39_51_AM_92742251/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 117.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

2√yx− y − xy′ = 0

1.95.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −
−2√xy + y

x
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 −
(
−2√xy + y

)
(b3 − a2)

x
−
(
−2√xy + y

)2
a3

x2

−
(

y
√
xy x

+
−2√xy + y

x2

)
(xa2 + ya3 + a1)

+

(
− x√

xy
+ 1
)
(xb2 + yb3 + b1)
x

= 0

Putting the above in normal form gives

−
4(xy)

3
2 a3 − x2yb3 − 5x y2a3 − 2b2

√
xy x2 + 2√xy y2a3 + x3b2 + x2ya2 − xya1 −

√
xy xb1 +

√
xy ya1 + x2b1√

xy x2

= 0

Setting the numerator to zero gives

(6E)−4(xy)
3
2 a3 + 2b2

√
xy x2 − 2√xy y2a3 − x3b2 − x2ya2

+ x2yb3 + 5x y2a3 +
√
xy xb1 −

√
xy ya1 − x2b1 + xya1 = 0

Since the PDE has radicals, simplifying gives

−x3b2 + 2b2
√
xy x2 − x2ya2 + x2yb3 − 4xy√xy a3 + 5x y2a3

− 2√xy y2a3 − x2b1 +
√
xy xb1 + xya1 −

√
xy ya1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y,√xy}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2,
√
xy = v3}
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The above PDE (6E) now becomes

(7E)−v21v2a2 + 5v1v22a3 − 4v1v2v3a3 − 2v3v22a3 − v31b2
+ 2b2v3v21 + v21v2b3 + v1v2a1 − v3v2a1 − v21b1 + v3v1b1 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2, v3}

Equation (7E) now becomes

(8E)−v31b2 + (b3 − a2) v21v2 + 2b2v3v21 − v21b1 + 5v1v22a3
− 4v1v2v3a3 + v1v2a1 + v3v1b1 − 2v3v22a3 − v3v2a1 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
b1 = 0

−a1 = 0
−4a3 = 0
−2a3 = 0
5a3 = 0
−b1 = 0
−b2 = 0
2b2 = 0

b3 − a2 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y

Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(
−
−2√xy + y

x

)
(x)

= 2y − 2√xy

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

2y − 2√xy
dy

Which results in

S = ln (y − x)
2 −

ln
(√

xy + x
)

2 +
ln
(√

xy − x
)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −
−2√xy + y

x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx =
√
x+√

y
√
x (−2y + 2x)

Sy = −
√
x+√

y
√
y (−2y + 2x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=
(√

x+√
y
) (√

y x− 2
√
x
√
xy +

√
x y
)

x
3
2
√
y (−2y + 2x)

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − ln (R)
2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y − x)
2 −

ln
(√

x
√
y + x

)
2 +

ln
(√

x
√
y − x

)
2 = − ln (x)

2 + c1

Which simplifies to

ln (y − x)
2 −

ln
(√

x
√
y + x

)
2 +

ln
(√

x
√
y − x

)
2 = − ln (x)

2 + c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−2√xy+y

x
dS
dR

= − 1
2R

R = x

S = ln (y − x)
2 −

ln
(√

x
√
y + x

)
2 +

ln
(√

x
√
y − x

)
2

Summary
The solution(s) found are the following

(1)ln (y − x)
2 −

ln
(√

x
√
y + x

)
2 +

ln
(√

x
√
y − x

)
2 = − ln (x)

2 + c1
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Figure 127: Slope field plot

Verification of solutions

ln (y − x)
2 −

ln
(√

x
√
y + x

)
2 +

ln
(√

x
√
y − x

)
2 = − ln (x)

2 + c1

Verified OK.

1.95.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

(−x) dy = (−2√xy + y) dx
(2√xy − y) dx+(−x) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2√xy − y

N(x, y) = −x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2√xy − y)

= x
√
xy

− 1

And
∂N

∂x
= ∂

∂x
(−x)

= −1
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= −1

x

((
x

√
xy

− 1
)
− (−1)

)
= − 1

√
xy

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

2√xy − y

(
(−1)−

(
x

√
xy

− 1
))

= x(
−2√xy + y

)√
xy

Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

=
(−1)−

(
x√
xy

− 1
)

x
(
2√xy − y

)
− y (−x)

= − 1
2xy

Replacing all powers of terms xy by t gives

R = − 1
2t

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ (

− 1
2t
)
dt
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The result of integrating gives

µ = e−
ln(t)
2

= 1√
t

Now t is replaced back with xy giving

µ = 1
√
xy

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= 1
√
xy

(2√xy − y)

= −
−2√xy + y

√
xy

And

N = µN

= 1
√
xy

(−x)

= − x
√
xy

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0(

−
−2√xy + y

√
xy

)
+
(
− x
√
xy

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−
−2√xy + y

√
xy

dx

(3)φ = 2x− 2√xy + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − x

√
xy

+ f ′(y)

But equation (2) says that ∂φ
∂y

= − x√
xy
. Therefore equation (4) becomes

(5)− x
√
xy

= − x
√
xy

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = 2x− 2√xy + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = 2x− 2√xy

The solution becomes

y = c21 − 4c1x+ 4x2

4x
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Summary
The solution(s) found are the following

(1)y = c21 − 4c1x+ 4x2

4x

Figure 128: Slope field plot

Verification of solutions

y = c21 − 4c1x+ 4x2

4x

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 71� �
dsolve((2*sqrt(x*y(x))-y(x))-x*diff(y(x),x)=0,y(x), singsol=all)� �

x2c1y(x)− y(x)
√

xy (x) c1x− c1x
3 +

√
xy (x) c1x2 + x+

√
xy (x)

(−x+ y (x))
(√

xy (x)− x
)
x

= 0

3 Solution by Mathematica
Time used: 0.209 (sec). Leaf size: 26� �
DSolve[(2*Sqrt[x*y[x]]-y[x])-x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) →

(
x+ e

c1
2

)
2

x
y(x) → x
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1.96 problem 119
1.96.1 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 830
1.96.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 832

Internal problem ID [3241]
Internal file name [OUTPUT/2733_Sunday_June_05_2022_08_39_52_AM_49446695/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 2. First-Order and Simple Higher-Order Differential Equations. Page 78
Problem number: 119.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "dAlembert", "homogeneousTypeD2"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _dAlembert]

y′ = e
xy′
y

1.96.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

u′(x)x+ u(x) = e
d
dx

(u(x)x)
u(x)

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

=
−LambertW

(
− 1

u

)
u− u

x

Where f(x) = 1
x
and g(u) = −LambertW

(
− 1

u

)
u− u. Integrating both sides gives

1
−LambertW

(
− 1

u

)
u− u

du = 1
x
dx

∫ 1
−LambertW

(
− 1

u

)
u− u

du =
∫ 1

x
dx

ln
(
LambertW

(
−1
u

))
= ln (x) + c2
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Raising both side to exponential gives

LambertW
(
−1
u

)
= eln(x)+c2

Which simplifies to

LambertW
(
−1
u

)
= c3x

Therefore the solution y is

y = xu

= −e−c2e−c3ec2x

c3

Summary
The solution(s) found are the following

(1)y = −e−c2e−c3ec2x

c3

Figure 129: Slope field plot
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Verification of solutions

y = −e−c2e−c3ec2x

c3

Verified OK.

1.96.2 Solving as dAlembert ode

Let p = y′ the ode becomes

p = e
xp
y

Solving for y from the above results in

y = xp

ln (p) (1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p

ln (p)
g = 0

Hence (2) becomes

p− p

ln (p) = x

(
1

ln (p) −
1

ln (p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p

ln (p) = 0

Solving for p from the above gives

p = e
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Substituting these in (1A) gives

y = x e

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)

ln(p(x))

x
(

1
ln(p(x)) −

1
ln(p(x))2

) (3)

This ODE is now solved for p(x). In canonical form the ODE is

p′ = F (x, p)
= f(x)g(p)

= ln (p) p
x

Where f(x) = 1
x
and g(p) = ln (p) p. Integrating both sides gives

1
ln (p) p dp = 1

x
dx∫ 1

ln (p) p dp =
∫ 1

x
dx

ln (ln (p)) = ln (x) + c1

Raising both side to exponential gives

ln (p) = eln(x)+c1

Which simplifies to

ln (p) = c2x

Substituing the above solution for p in (2A) gives

y = x ec2ec1x
ln (ec2ec1x)

Summary
The solution(s) found are the following

(1)y = x e

(2)y = x ec2ec1x
ln (ec2ec1x)
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Figure 130: Slope field plot

Verification of solutions
y = x e

Verified OK.

y = x ec2ec1x
ln (ec2ec1x)

Verified OK.
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Maple trace

� �
`Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying homogeneous B
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 14� �
dsolve(diff(y(x),x)=exp(x*diff(y(x),x)/y(x)),y(x), singsol=all)� �

y(x) = −e−c1x

c1

3 Solution by Mathematica
Time used: 0.078 (sec). Leaf size: 21� �
DSolve[y'[x]==Exp[x*y'[x]/y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −ec1−e−c1x

835



2 Chapter 4. Linear Differential Equations. Page
183

2.1 problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
2.2 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
2.3 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847
2.4 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
2.5 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
2.6 problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
2.7 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
2.8 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
2.9 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
2.10 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
2.11 problem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
2.12 problem 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
2.13 problem 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
2.14 problem 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
2.15 problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
2.16 problem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943
2.17 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
2.18 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
2.19 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
2.20 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
2.21 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
2.22 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
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2.1 problem 1
2.1.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 838

Internal problem ID [3242]
Internal file name [OUTPUT/2734_Sunday_June_05_2022_08_39_53_AM_96870353/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 1.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 2y′′ + y′ − 2y = 0

The characteristic equation is

λ3 − 2λ2 + λ− 2 = 0

The roots of the above equation are

λ1 = 2
λ2 = i

λ3 = −i

Therefore the homogeneous solution is

yh(x) = e2xc1 + eixc2 + e−ixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = eix

y3 = e−ix
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Summary
The solution(s) found are the following

(1)y = e2xc1 + eixc2 + e−ixc3

Verification of solutions

y = e2xc1 + eixc2 + e−ixc3

Verified OK.

2.1.1 Maple step by step solution

Let’s solve
y′′′ − 2y′′ + y′ − 2y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 2y3(x)− y2(x) + 2y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 2y3(x)− y2(x) + 2y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

838



→
y
′
(x) =


0 1 0
0 0 1
2 −1 2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
2 −1 2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair
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e−Ix ·


−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (x)− I sin (x)) ·


−1
I
1


• Simplify expression

− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos (x)
sin (x)
cos (x)

 ,
→
y 3(x) =


sin (x)
cos (x)
− sin (x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = e2xc1 ·


1
4
1
2

1

+


−c2 cos (x) + c3 sin (x)
c2 sin (x) + c3 cos (x)
c2 cos (x)− c3 sin (x)


• First component of the vector is the solution to the ODE

y = e2xc1
4 + c3 sin (x)− c2 cos (x)
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)+diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1e2x + sin (x) c2 + cos (x) c3

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 24� �
DSolve[y'''[x]-2*y''[x]+y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
2x + c1 cos(x) + c2 sin(x)
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2.2 problem 2
2.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 843

Internal problem ID [3243]
Internal file name [OUTPUT/2735_Sunday_June_05_2022_08_39_53_AM_88550952/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + y′′ + 9y′ + 9y = 0

The characteristic equation is

λ3 + λ2 + 9λ+ 9 = 0

The roots of the above equation are

λ1 = −1
λ2 = 3i
λ3 = −3i

Therefore the homogeneous solution is

yh(x) = c1e−x + e−3ixc2 + e3ixc3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = e−3ix

y3 = e3ix

842



Summary
The solution(s) found are the following

(1)y = c1e−x + e−3ixc2 + e3ixc3
Verification of solutions

y = c1e−x + e−3ixc2 + e3ixc3

Verified OK.

2.2.1 Maple step by step solution

Let’s solve
y′′′ + y′′ + 9y′ + 9y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −y3(x)− 9y2(x)− 9y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −y3(x)− 9y2(x)− 9y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
−9 −9 −1

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−9 −9 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−3 I,


−1

9
I
3

1


 ,

3 I,


−1
9

− I
3

1





• Consider eigenpair−1,


1
−1
1




• Solution to homogeneous system from eigenpair

→
y 1 = e−x ·


1
−1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−3 I,


−1

9
I
3

1




• Solution from eigenpair

844



e−3 Ix ·


−1

9
I
3

1


• Use Euler identity to write solution in terms of sin and cos

(cos (3x)− I sin (3x)) ·


−1

9
I
3

1


• Simplify expression

− cos(3x)
9 + I sin(3x)

9
I
3(cos (3x)− I sin (3x))

cos (3x)− I sin (3x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos(3x)

9
sin(3x)

3

cos (3x)

 ,
→
y 3(x) =


sin(3x)

9
cos(3x)

3

− sin (3x)




• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−x ·


1
−1
1

+


− c2 cos(3x)

9 + c3 sin(3x)
9

c2 sin(3x)
3 + c3 cos(3x)

3

c2 cos (3x)− c3 sin (3x)


• First component of the vector is the solution to the ODE

y = c1e−x + c3 sin(3x)
9 − c2 cos(3x)

9
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 23� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)+9*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)� �

y(x) = e−xc1 + sin (3x) c2 + c3 cos (3x)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28� �
DSolve[y'''[x]+y''[x]+9*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c3e
−x + c1 cos(3x) + c2 sin(3x)
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2.3 problem 3
2.3.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 848

Internal problem ID [3244]
Internal file name [OUTPUT/2736_Sunday_June_05_2022_08_39_53_AM_94318382/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + y′′ − y′ − y = 0

The characteristic equation is

λ3 + λ2 − λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = −1
λ3 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2x e−x + c3ex

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = x e−x

y3 = ex
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Summary
The solution(s) found are the following

(1)y = c1e−x + c2x e−x + c3ex

Verification of solutions

y = c1e−x + c2x e−x + c3ex

Verified OK.

2.3.1 Maple step by step solution

Let’s solve
y′′′ + y′′ − y′ − y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −y3(x) + y2(x) + y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −y3(x) + y2(x) + y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
1 1 −1

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
1 1 −1


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−1,


0
0
0


 ,

1,


1
1
1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


1
−1
1




• First solution from eigenvalue − 1

→
y 1(x) = e−x ·


1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A
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λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0
0 0 1
1 1 −1

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
−1
1


• Choice of →

p

→
p =


1
0
0


• Second solution from eigenvalue − 1

→
y 2(x) = e−x ·

x ·


1
−1
1

+


1
0
0




• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 3 = ex ·


1
1
1


• General solution to the system of ODEs
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→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3

• Substitute solutions into the general solution

→
y = c1e−x ·


1
−1
1

+ c2e−x ·

x ·


1
−1
1

+


1
0
0


+ c3ex ·


1
1
1


• First component of the vector is the solution to the ODE

y = (c2(x+ 1) + c1) e−x + c3ex

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 19� �
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-diff(y(x),x)-y(x)=0,y(x), singsol=all)� �

y(x) = (c3x+ c2) e−x + exc1

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26� �
DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c2x+ c3e

2x + c1
)
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2.4 problem 4
2.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 853

Internal problem ID [3245]
Internal file name [OUTPUT/2737_Sunday_June_05_2022_08_39_53_AM_98960955/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 4.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ + 8y = 0

The characteristic equation is
λ3 + 8 = 0

The roots of the above equation are

λ1 = −2
λ2 = 1− i

√
3

λ3 = 1 + i
√
3

Therefore the homogeneous solution is

yh(x) = c1e−2x + e
(
1−i

√
3
)
x
c2 + e

(
1+i

√
3
)
x
c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e
(
1−i

√
3
)
x

y3 = e
(
1+i

√
3
)
x
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Summary
The solution(s) found are the following

(1)y = c1e−2x + e
(
1−i

√
3
)
x
c2 + e

(
1+i

√
3
)
x
c3

Verification of solutions

y = c1e−2x + e
(
1−i

√
3
)
x
c2 + e

(
1+i

√
3
)
x
c3

Verified OK.

2.4.1 Maple step by step solution

Let’s solve
y′′′ + 8y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = −8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = −8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
−8 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
−8 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2,


1
4

−1
2

1


 ,

1− I
√
3,


1(

1−I
√
3
)2

1
1−I

√
3

1


 ,

1 + I
√
3,


1(

1+I
√
3
)2

1
1+I

√
3

1





• Consider eigenpair−2,


1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·


1
4

−1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I

√
3,


1(

1−I
√
3
)2

1
1−I

√
3

1



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• Solution from eigenpair

e
(
1−I

√
3
)
x ·


1(

1−I
√
3
)2

1
1−I

√
3

1


• Use Euler identity to write solution in terms of sin and cos

ex ·
(
cos
(√

3x
)
− I sin

(√
3x
))

·


1(

1−I
√
3
)2

1
1−I

√
3

1


• Simplify expression

ex ·


cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)2

cos
(√

3x
)
−I sin

(√
3x
)

1−I
√
3

cos
(√

3x
)
− I sin

(√
3x
)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 2(x) = ex ·


−

cos
(√

3x
)

8 +
sin
(√

3x
)√

3
8

cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)

 ,
→
y 3(x) = ex ·


cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 −

sin
(√

3x
)

4

− sin
(√

3x
)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·


1
4

−1
2

1

+ c2ex ·


−

cos
(√

3x
)

8 +
sin
(√

3x
)√

3
8

cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)

+ c3ex ·


cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 −

sin
(√

3x
)

4

− sin
(√

3x
)


• First component of the vector is the solution to the ODE
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y =

(
−

e3x
(
−
√
3 c3+c2

)
cos
(√

3 x
)

2 +
e3x

(
c2

√
3+c3

)
sin
(√

3 x
)

2 +c1

)
e−2x

4

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$3)+8*y(x)=0,y(x), singsol=all)� �

y(x) =
(
c2e3x sin

(√
3x
)
+ c3e3x cos

(√
3x
)
+ c1

)
e−2x

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[y'''[x]+8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−2x + c3e

x cos
(√

3x
)
+ c2e

x sin
(√

3x
)
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2.5 problem 5
2.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 858

Internal problem ID [3246]
Internal file name [OUTPUT/2738_Sunday_June_05_2022_08_39_54_AM_43057242/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

y′′′ − 8y = 0

The characteristic equation is
λ3 − 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = −1− i

√
3

λ3 = −1 + i
√
3

Therefore the homogeneous solution is

yh(x) = e2xc1 + e
(
−1+i

√
3
)
x
c2 + e

(
−1−i

√
3
)
x
c3

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = e
(
−1+i

√
3
)
x

y3 = e
(
−1−i

√
3
)
x
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Summary
The solution(s) found are the following

(1)y = e2xc1 + e
(
−1+i

√
3
)
x
c2 + e

(
−1−i

√
3
)
x
c3

Verification of solutions

y = e2xc1 + e
(
−1+i

√
3
)
x
c2 + e

(
−1−i

√
3
)
x
c3

Verified OK.

2.5.1 Maple step by step solution

Let’s solve
y′′′ − 8y = 0

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve
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→
y
′
(x) =


0 1 0
0 0 1
8 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0
0 0 1
8 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−1− I
√
3,


1(

−1−I
√
3
)2

1
−1−I

√
3

1


 ,

−1 + I
√
3,


1(

−1+I
√
3
)2

1
−1+I

√
3

1





• Consider eigenpair2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I

√
3,


1(

−1−I
√
3
)2

1
−1−I

√
3

1



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• Solution from eigenpair

e
(
−1−I

√
3
)
x ·


1(

−1−I
√
3
)2

1
−1−I

√
3

1


• Use Euler identity to write solution in terms of sin and cos

e−x ·
(
cos
(√

3x
)
− I sin

(√
3x
))

·


1(

−1−I
√
3
)2

1
−1−I

√
3

1


• Simplify expression

e−x ·


cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)2

cos
(√

3x
)
−I sin

(√
3x
)

−1−I
√
3

cos
(√

3x
)
− I sin

(√
3x
)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 2(x) = e−x ·


−

cos
(√

3x
)

8 −
sin
(√

3x
)√

3
8

−
cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)

 ,
→
y 3(x) = e−x ·


−

cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 +

sin
(√

3x
)

4

− sin
(√

3x
)




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x)

• Substitute solutions into the general solution

→
y = e2xc1 ·


1
4
1
2

1

+ c2e−x ·


−

cos
(√

3x
)

8 −
sin
(√

3x
)√

3
8

−
cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)

+ c3e−x ·


−

cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 +

sin
(√

3x
)

4

− sin
(√

3x
)


• First component of the vector is the solution to the ODE

y = −
e−x

(√
3 c3+c2

)
cos
(√

3x
)

8 −
e−x

(
c2
√
3−c3

)
sin
(√

3x
)

8 + e2xc1
4
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$3)-8*y(x)=0,y(x), singsol=all)� �

y(x) = c1e2x + c2e−x sin
(√

3x
)
+ c3e−x cos

(√
3x
)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42� �
DSolve[y'''[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
(
c1e

3x + c2 cos
(√

3x
)
+ c3 sin

(√
3x
))
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2.6 problem 6
2.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 863

Internal problem ID [3247]
Internal file name [OUTPUT/2739_Sunday_June_05_2022_08_39_54_AM_97575065/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 6.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 4y = 0

The characteristic equation is
λ4 + 4 = 0

The roots of the above equation are

λ1 = 1− i

λ2 = 1 + i

λ3 = −1− i

λ4 = −1 + i

Therefore the homogeneous solution is

yh(x) = e(−1+i)xc1 + e(−1−i)xc2 + e(1+i)xc3 + e(1−i)xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e(−1+i)x

y2 = e(−1−i)x

y3 = e(1+i)x

y4 = e(1−i)x
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Summary
The solution(s) found are the following

(1)y = e(−1+i)xc1 + e(−1−i)xc2 + e(1+i)xc3 + e(1−i)xc4

Verification of solutions

y = e(−1+i)xc1 + e(−1−i)xc2 + e(1+i)xc3 + e(1−i)xc4

Verified OK.

2.6.1 Maple step by step solution

Let’s solve
y′′′′ + 4y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = −4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = −4y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 0 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 0 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1



 ,

−1 + I,


1
4 −

I
4

I
2

−1
2 −

I
2

1



 ,

1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1



 ,

1 + I,


−1

4 −
I
4

− I
2

1
2 −

I
2

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−1− I,


1
4 +

I
4

− I
2

−1
2 +

I
2

1




• Solution from eigenpair
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e(−1−I)x ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

e−x · (cos (x)− I sin (x)) ·


1
4 +

I
4

− I
2

−1
2 +

I
2

1


• Simplify expression

e−x ·



(1
4 +

I
4

)
(cos (x)− I sin (x))

− I
2(cos (x)− I sin (x))(

−1
2 +

I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) = e−x ·



cos(x)
4 + sin(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

 ,
→
y 2(x) = e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

sin(x)
2 + cos(x)

2

− sin (x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored1− I,


−1

4 +
I
4

I
2

1
2 +

I
2

1




• Solution from eigenpair
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e(1−I)x ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Use Euler identity to write solution in terms of sin and cos

ex · (cos (x)− I sin (x)) ·


−1

4 +
I
4

I
2

1
2 +

I
2

1


• Simplify expression

ex ·



(
−1

4 +
I
4

)
(cos (x)− I sin (x))

I
2(cos (x)− I sin (x))(1

2 +
I
2

)
(cos (x)− I sin (x))

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

sin(x)
2 + cos(x)

2

cos (x)

 ,
→
y 4(x) = ex ·



cos(x)
4 + sin(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−x ·



cos(x)
4 + sin(x)

4

− sin(x)
2

− cos(x)
2 + sin(x)

2

cos (x)

+ c2e−x ·



cos(x)
4 − sin(x)

4

− cos(x)
2

sin(x)
2 + cos(x)

2

− sin (x)

+ c3ex ·


− cos(x)

4 + sin(x)
4

sin(x)
2

sin(x)
2 + cos(x)

2

cos (x)

+ c4ex ·



cos(x)
4 + sin(x)

4
cos(x)

2
cos(x)

2 − sin(x)
2

− sin (x)


• First component of the vector is the solution to the ODE
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y = ((c1+c2) cos(x)+sin(x)(c1−c2))e−x

4 − ex((c3−c4) cos(x)−sin(x)(c3+c4))
4

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 33� �
dsolve(diff(y(x),x$4)+4*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin (x) ex + c2ex cos (x) + c3e−x sin (x) + c4e−x cos (x)

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 40� �
DSolve[y''''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−x
((
c4e

2x + c1
)
cos(x) +

(
c3e

2x + c2
)
sin(x)

)

867



2.7 problem 7
Internal problem ID [3248]
Internal file name [OUTPUT/2740_Sunday_June_05_2022_08_39_55_AM_49799157/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 7.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ + 18y′′ + 81y = 0

The characteristic equation is

λ4 + 18λ2 + 81 = 0

The roots of the above equation are

λ1 = 3i
λ2 = −3i
λ3 = 3i
λ4 = −3i

Therefore the homogeneous solution is

yh(x) = e−3ixc1 + x e−3ixc2 + e3ixc3 + x e3ixc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−3ix

y2 = x e−3ix

y3 = e3ix

y4 = x e3ix

868



Summary
The solution(s) found are the following

(1)y = e−3ixc1 + x e−3ixc2 + e3ixc3 + x e3ixc4
Verification of solutions

y = e−3ixc1 + x e−3ixc2 + e3ixc3 + x e3ixc4

Verified OK.

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x$4)+18*diff(y(x),x$2)+81*y(x)=0,y(x), singsol=all)� �

y(x) = (c4x+ c2) cos (3x) + sin (3x) (c3x+ c1)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30� �
DSolve[y''''[x]+18*y''[x]+81*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (c2x+ c1) cos(3x) + (c4x+ c3) sin(3x)

869



2.8 problem 8
2.8.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 871

Internal problem ID [3249]
Internal file name [OUTPUT/2741_Sunday_June_05_2022_08_39_55_AM_42962800/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 8.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 4y′′ + 16y = 0

The characteristic equation is

λ4 − 4λ2 + 16 = 0

The roots of the above equation are

λ1 = −i+
√
3

λ2 = i−
√
3

λ3 =
√
3 + i

λ4 = −i−
√
3

Therefore the homogeneous solution is

yh(x) = e
(
i−

√
3
)
x
c1 + e

(
−i+

√
3
)
x
c2 + e

(
−i−

√
3
)
x
c3 + e

(√
3+i

)
x
c4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e
(
i−

√
3
)
x

y2 = e
(
−i+

√
3
)
x

y3 = e
(
−i−

√
3
)
x

y4 = e
(√

3+i
)
x
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Summary
The solution(s) found are the following

(1)y = e
(
i−

√
3
)
x
c1 + e

(
−i+

√
3
)
x
c2 + e

(
−i−

√
3
)
x
c3 + e

(√
3+i

)
x
c4

Verification of solutions

y = e
(
i−

√
3
)
x
c1 + e

(
−i+

√
3
)
x
c2 + e

(
−i−

√
3
)
x
c3 + e

(√
3+i

)
x
c4

Verified OK.

2.8.1 Maple step by step solution

Let’s solve
y′′′′ − 4y′′ + 16y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 4y3(x)− 16y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 4y3(x)− 16y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1

−16 0 4 0

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1

−16 0 4 0


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−I−

√
3,



1(
−I−

√
3
)3

1(
−I−

√
3
)2

1
−I−

√
3

1




,


−I +

√
3,



1(
−I+

√
3
)3

1(
−I+

√
3
)2

1
−I+

√
3

1




,


I−

√
3,



1(
I−

√
3
)3

1(
I−

√
3
)2

1
I−

√
3

1




,


√
3 + I,



1(√
3+I

)3
1(√
3+I

)2
1√
3+I

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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
−I−

√
3,



1(
−I−

√
3
)3

1(
−I−

√
3
)2

1
−I−

√
3

1




• Solution from eigenpair

e
(
−I−

√
3
)
x ·



1(
−I−

√
3
)3

1(
−I−

√
3
)2

1
−I−

√
3

1


• Use Euler identity to write solution in terms of sin and cos

e−
√
3x · (cos (x)− I sin (x)) ·



1(
−I−

√
3
)3

1(
−I−

√
3
)2

1
−I−

√
3

1


• Simplify expression

e−
√
3x ·



cos(x)−I sin(x)(
−I−

√
3
)3

cos(x)−I sin(x)(
−I−

√
3
)2

cos(x)−I sin(x)
−I−

√
3

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system
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
→
y 1(x) = e−

√
3x ·



sin(x)
8

cos(x)
8 −

√
3 sin(x)

8

− cos(x)
√
3

4 + sin(x)
4

cos (x)

 ,
→
y 2(x) = e−

√
3x ·



cos(x)
8

− cos(x)
√
3

8 − sin(x)
8

cos(x)
4 +

√
3 sin(x)

4

− sin (x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

−I +
√
3,



1(
−I+

√
3
)3

1(
−I+

√
3
)2

1
−I+

√
3

1




• Solution from eigenpair

e
(
−I+

√
3
)
x ·



1(
−I+

√
3
)3

1(
−I+

√
3
)2

1
−I+

√
3

1


• Use Euler identity to write solution in terms of sin and cos

e
√
3x · (cos (x)− I sin (x)) ·



1(
−I+

√
3
)3

1(
−I+

√
3
)2

1
−I+

√
3

1


• Simplify expression
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e
√
3x ·



cos(x)−I sin(x)(
−I+

√
3
)3

cos(x)−I sin(x)(
−I+

√
3
)2

cos(x)−I sin(x)
−I+

√
3

cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) = e

√
3x ·



sin(x)
8

cos(x)
8 +

√
3 sin(x)

8
cos(x)

√
3

4 + sin(x)
4

cos (x)

 ,
→
y 4(x) = e

√
3x ·



cos(x)
8

cos(x)
√
3

8 − sin(x)
8

cos(x)
4 −

√
3 sin(x)

4

− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1e−

√
3x ·



sin(x)
8

cos(x)
8 −

√
3 sin(x)

8

− cos(x)
√
3

4 + sin(x)
4

cos (x)

+ c2e−
√
3x ·



cos(x)
8

− cos(x)
√
3

8 − sin(x)
8

cos(x)
4 +

√
3 sin(x)

4

− sin (x)

+ c3e
√
3x ·



sin(x)
8

cos(x)
8 +

√
3 sin(x)

8
cos(x)

√
3

4 + sin(x)
4

cos (x)

+ c4e
√
3x ·



cos(x)
8

cos(x)
√
3

8 − sin(x)
8

cos(x)
4 −

√
3 sin(x)

4

− sin (x)


• First component of the vector is the solution to the ODE

y = (c1 sin(x)+c2 cos(x))e−
√
3 x

8 + e
√
3 x(c3 sin(x)+cos(x)c4)

8

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 48� �
dsolve(diff(y(x),x$4)-4*diff(y(x),x$2)+16*y(x)=0,y(x), singsol=all)� �

y(x) = −c1e
√
3x sin (x) + c2e−

√
3x sin (x) + c3e

√
3x cos (x) + c4e−

√
3x cos (x)

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 55� �
DSolve[y''''[x]-4*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−
√
3x
((

c3e
2
√
3x + c2

)
cos(x) +

(
c1e

2
√
3x + c4

)
sin(x)

)
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2.9 problem 9
2.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 878

Internal problem ID [3250]
Internal file name [OUTPUT/2742_Sunday_June_05_2022_08_39_55_AM_83864776/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 9.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 2y′′′ + 2y′′ − 2y′ + y = 0

The characteristic equation is

λ4 − 2λ3 + 2λ2 − 2λ+ 1 = 0

The roots of the above equation are

λ1 = i

λ2 = −i

λ3 = 1
λ4 = 1

Therefore the homogeneous solution is

yh(x) = c1ex + c2x ex + eixc3 + e−ixc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = ex

y2 = x ex

y3 = eix

y4 = e−ix
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Summary
The solution(s) found are the following

(1)y = c1ex + c2x ex + eixc3 + e−ixc4

Verification of solutions

y = c1ex + c2x ex + eixc3 + e−ixc4

Verified OK.

2.9.1 Maple step by step solution

Let’s solve
y′′′′ − 2y′′′ + 2y′′ − 2y′ + y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 2y4(x)− 2y3(x) + 2y2(x)− y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 2y4(x)− 2y3(x) + 2y2(x)− y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 2 −2 2

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 2 −2 2


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1
1



 ,

1,


0
0
0
0



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1






• Consider eigenpair, with eigenvalue of algebraic multiplicity 21,


1
1
1
1




• First solution from eigenvalue 1
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→
y 1(x) = ex ·


1
1
1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 1 is the eigenvalue, and →
v is the eigenvector

→
y 2(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 1

• Substitute →
y 2(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 2(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 1


0 1 0 0
0 0 1 0
0 0 0 1
−1 2 −2 2

− 1 ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 · →p =


1
1
1
1


• Choice of →

p

→
p =


−1
0
0
0


• Second solution from eigenvalue 1
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→
y 2(x) = ex ·

x ·


1
1
1
1

+


−1
0
0
0




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair

e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (x)− I sin (x)) ·


−I
−1
I
1


• Simplify expression

−I(cos (x)− I sin (x))
− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system
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
→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution to the system of ODEs

→
y = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x)

• Substitute solutions into the general solution

→
y = c1ex ·


1
1
1
1

+ c2ex ·

x ·


1
1
1
1

+


−1
0
0
0



+


−c3 sin (x)− cos (x) c4
−c3 cos (x) + sin (x) c4
c3 sin (x) + cos (x) c4
c3 cos (x)− sin (x) c4


• First component of the vector is the solution to the ODE

y = ((x− 1) c2 + c1) ex − c3 sin (x)− cos (x) c4

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(y(x),x$4)-2*diff(y(x),x$3)+2*diff(y(x),x$2)-2*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = ex(c2x+ c1) + c3 sin (x) + c4 cos (x)
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3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 27� �
DSolve[y''''[x]-2*y'''[x]+2*y''[x]-2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(c4x+ c3) + c1 cos(x) + c2 sin(x)
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2.10 problem 10
2.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 885

Internal problem ID [3251]
Internal file name [OUTPUT/2743_Sunday_June_05_2022_08_39_56_AM_70210603/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 10.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y′′′′ − 5y′′′ + 5y′′ + 5y′ − 6y = 0

The characteristic equation is

λ4 − 5λ3 + 5λ2 + 5λ− 6 = 0

The roots of the above equation are

λ1 = 1
λ2 = 2
λ3 = 3
λ4 = −1

Therefore the homogeneous solution is

yh(x) = c1e−x + c2ex + c3e2x + e3xc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e−x

y2 = ex

y3 = e2x

y4 = e3x

884



Summary
The solution(s) found are the following

(1)y = c1e−x + c2ex + c3e2x + e3xc4
Verification of solutions

y = c1e−x + c2ex + c3e2x + e3xc4

Verified OK.

2.10.1 Maple step by step solution

Let’s solve
y′′′′ − 5y′′′ + 5y′′ + 5y′ − 6y = 0

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = 5y4(x)− 5y3(x)− 5y2(x) + 6y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = 5y4(x)− 5y3(x)− 5y2(x) + 6y1(x)]

• Define vector
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→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
6 −5 −5 5

 · →y (x)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
6 −5 −5 5


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


−1
1
−1
1



 ,

1,


1
1
1
1



 ,

2,


1
8
1
4
1
2

1



 ,

3,


1
27
1
9
1
3

1






• Consider eigenpair−1,


−1
1
−1
1




• Solution to homogeneous system from eigenpair
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→
y 1 = e−x ·


−1
1
−1
1


• Consider eigenpair1,


1
1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1
1


• Consider eigenpair2,


1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 3 = e2x ·


1
8
1
4
1
2

1


• Consider eigenpair
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3,


1
27
1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 4 = e3x ·


1
27
1
9
1
3

1


• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4

• Substitute solutions into the general solution

→
y = c1e−x ·


−1
1
−1
1

+ c2ex ·


1
1
1
1

+ c3e2x ·


1
8
1
4
1
2

1

+ e3xc4 ·


1
27
1
9
1
3

1


• First component of the vector is the solution to the ODE

y = −c1e−x + c2ex + c3e2x
8 + e3xc4

27

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(diff(y(x),x$4)-5*diff(y(x),x$3)+5*diff(y(x),x$2)+5*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)� �

y(x) = c1e3x + c2e2x + c3e−x + c4ex

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36� �
DSolve[y''''[x]-5*y'''[x]+5*y''[x]+5*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
−x + c2e

x + c3e
2x + c4e

3x
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2.11 problem 11
2.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 891

Internal problem ID [3252]
Internal file name [OUTPUT/2744_Sunday_June_05_2022_08_39_56_AM_32753829/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 11.
ODE order: 5.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y(5) − 6y′′′′ + 9y′′′ = 0

The characteristic equation is

λ5 − 6λ4 + 9λ3 = 0

The roots of the above equation are

λ1 = 0
λ2 = 0
λ3 = 0
λ4 = 3
λ5 = 3

Therefore the homogeneous solution is

yh(x) = c3x
2 + c2x+ c1 + e3xc4 + x e3xc5
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The fundamental set of solutions for the homogeneous solution are the following

y1 = 1
y2 = x

y3 = x2

y4 = e3x

y5 = x e3x

Summary
The solution(s) found are the following

(1)y = c3x
2 + c2x+ c1 + e3xc4 + x e3xc5

Verification of solutions

y = c3x
2 + c2x+ c1 + e3xc4 + x e3xc5

Verified OK.

2.11.1 Maple step by step solution

Let’s solve
y(5) − 6y′′′′ + 9y′′′ = 0

• Highest derivative means the order of the ODE is 5
y(5)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Define new variable y5(x)
y5(x) = y′′′′
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◦ Isolate for y′5(x) using original ODE
y′5(x) = 6y5(x)− 9y4(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y5(x) = y′4(x) , y′5(x) = 6y5(x)− 9y4(x)]

• Define vector

→
y (x) =



y1(x)
y2(x)
y3(x)
y4(x)
y5(x)


• System to solve

→
y
′
(x) =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −9 6


· →y (x)

• Define the coefficient matrix

A =



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −9 6


• Rewrite the system as

→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A
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


0,



1
0
0
0
0




,


0,



0
0
0
0
0




,


0,



0
0
0
0
0




,


3,



1
81
1
27
1
9
1
3

1




,


3,



0
0
0
0
0






• Consider eigenpair

0,



1
0
0
0
0




• Solution to homogeneous system from eigenpair

→
y 1 =



1
0
0
0
0


• Consider eigenpair

0,



0
0
0
0
0




• Solution to homogeneous system from eigenpair
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→
y 2 =



0
0
0
0
0


• Consider eigenpair

0,



0
0
0
0
0




• Solution to homogeneous system from eigenpair

→
y 3 =



0
0
0
0
0


• Consider eigenpair, with eigenvalue of algebraic multiplicity 2

3,



1
81
1
27
1
9
1
3

1




• First solution from eigenvalue 3
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→
y 4(x) = e3x ·



1
81
1
27
1
9
1
3

1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = 3 is the eigenvalue, and →
v is the eigenvector

→
y 5(x) = eλx

(
x
→
v + →

p
)

• Note that the x multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = 3

• Substitute →
y 5(x) into the homogeneous system

λ eλx
(
x
→
v + →

p
)
+ eλx→v =

(
eλxA

)
·
(
x
→
v + →

p
)

• Use the fact that →
v is an eigenvector of A

λ eλx
(
x
→
v + →

p
)
+ eλx→v = eλx

(
λx

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

y 5(x) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue 3



0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 −9 6


− 3 ·



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




· →p =



1
81
1
27
1
9
1
3

1


• Choice of →

p
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→
p =



− 1
243

0
0
0
0


• Second solution from eigenvalue 3

→
y 5(x) = e3x ·


x ·



1
81
1
27
1
9
1
3

1


+



− 1
243

0
0
0
0




• General solution to the system of ODEs

→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 + c4

→
y 4(x) + c5

→
y 5(x)

• Substitute solutions into the general solution

→
y = e3xc4 ·



1
81
1
27
1
9
1
3

1


+ c5e3x ·


x ·



1
81
1
27
1
9
1
3

1


+



− 1
243

0
0
0
0




+



c1

0
0
0
0


• First component of the vector is the solution to the ODE

y = ((3x−1)c5+3c4)e3x
243 + c1

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 24� �
dsolve(diff(y(x),x$5)-6*diff(y(x),x$4)+9*diff(y(x),x$3)=0,y(x), singsol=all)� �

y(x) = (c5x+ c4) e3x + c3x
2 + c2x+ c1

3 Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 35� �
DSolve[y'''''[x]-6*y''''[x]+9*y'''[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
27e

3x(c2(x− 1) + c1) + x(c5x+ c4) + c3
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2.12 problem 12
2.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 899

Internal problem ID [3253]
Internal file name [OUTPUT/2745_Sunday_June_05_2022_08_39_57_AM_29914027/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 12.
ODE order: 6.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

y(6) − 64y = 0

The characteristic equation is
λ6 − 64 = 0

The roots of the above equation are

λ1 = 2
λ2 = −2

λ3 =
√

−2 + 2i
√
3

λ4 = −
√
−2 + 2i

√
3

λ5 =
√

−2i
√
3− 2

λ6 = −
√
−2i

√
3− 2

Therefore the homogeneous solution is

yh(x) = c1e−2x+ c2e2x+e
√

−2i
√
3−2xc3+e−

√
−2+2i

√
3xc4+e

√
−2+2i

√
3xc5+e−

√
−2i

√
3−2xc6
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e−2x

y2 = e2x

y3 = e
√

−2i
√
3−2x

y4 = e−
√

−2+2i
√
3x

y5 = e
√

−2+2i
√
3x

y6 = e−
√

−2i
√
3−2x

Summary
The solution(s) found are the following

(1)y = c1e−2x + c2e2x + e
√

−2i
√
3−2xc3 + e−

√
−2+2i

√
3xc4 + e

√
−2+2i

√
3xc5 + e−

√
−2i

√
3−2xc6

Verification of solutions

y = c1e−2x + c2e2x + e
√

−2i
√
3−2xc3 + e−

√
−2+2i

√
3xc4 + e

√
−2+2i

√
3xc5 + e−

√
−2i

√
3−2xc6

Verified OK.

2.12.1 Maple step by step solution

Let’s solve
y(6) − 64y = 0

• Highest derivative means the order of the ODE is 6
y(6)

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′
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◦ Define new variable y5(x)
y5(x) = y′′′′

◦ Define new variable y6(x)
y6(x) = y(5)

◦ Isolate for y′6(x) using original ODE
y′6(x) = 64y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y5(x) = y′4(x) , y6(x) = y′5(x) , y′6(x) = 64y1(x)]

• Define vector

→
y (x) =



y1(x)
y2(x)
y3(x)
y4(x)
y5(x)
y6(x)


• System to solve

→
y
′
(x) =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
64 0 0 0 0 0


· →y (x)

• Define the coefficient matrix

A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
64 0 0 0 0 0


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• Rewrite the system as
→
y
′
(x) = A · →y (x)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−2,



− 1
32
1
16

−1
8

1
4

−1
2

1




,


2,



1
32
1
16
1
8
1
4
1
2

1




,



−1− I
√
3,



1(
−1−I

√
3
)5

1(
−1−I

√
3
)4

1(
−1−I

√
3
)3

1(
−1−I

√
3
)2

1
−1−I

√
3

1





,



−1 + I
√
3,



1(
−1+I

√
3
)5

1(
−1+I

√
3
)4

1(
−1+I

√
3
)3

1(
−1+I

√
3
)2

1
−1+I

√
3

1





,



1− I
√
3,



1(
1−I

√
3
)5

1(
1−I

√
3
)4

1(
1−I

√
3
)3

1(
1−I

√
3
)2

1
1−I

√
3

1





,



1 + I
√
3,



1(
1+I

√
3
)5

1(
1+I

√
3
)4

1(
1+I

√
3
)3

1(
1+I

√
3
)2

1
1+I

√
3

1






• Consider eigenpair

−2,



− 1
32
1
16

−1
8

1
4

−1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e−2x ·



− 1
32
1
16

−1
8

1
4

−1
2

1


• Consider eigenpair
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
2,



1
32
1
16
1
8
1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 2 = e2x ·



1
32
1
16
1
8
1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

−1− I
√
3,



1(
−1−I

√
3
)5

1(
−1−I

√
3
)4

1(
−1−I

√
3
)3

1(
−1−I

√
3
)2

1
−1−I

√
3

1




• Solution from eigenpair
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e
(
−1−I

√
3
)
x ·



1(
−1−I

√
3
)5

1(
−1−I

√
3
)4

1(
−1−I

√
3
)3

1(
−1−I

√
3
)2

1
−1−I

√
3

1


• Use Euler identity to write solution in terms of sin and cos

e−x ·
(
cos
(√

3x
)
− I sin

(√
3x
))

·



1(
−1−I

√
3
)5

1(
−1−I

√
3
)4

1(
−1−I

√
3
)3

1(
−1−I

√
3
)2

1
−1−I

√
3

1


• Simplify expression

e−x ·



cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)5

cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)4

cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)3

cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)2

cos
(√

3x
)
−I sin

(√
3x
)

−1−I
√
3

cos
(√

3x
)
− I sin

(√
3x
)


• Both real and imaginary parts are solutions to the homogeneous system
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

→
y 3(x) = e−x ·



<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)5

)

<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)4

)
cos
(√

3x
)

8

−
cos
(√

3x
)

8 −
sin
(√

3x
)√

3
8

−
cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)



,
→
y 4(x) = e−x ·



=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)5

)

=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)4

)

−
sin
(√

3x
)

8

−
cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 +

sin
(√

3x
)

4

− sin
(√

3x
)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

1− I
√
3,



1(
1−I

√
3
)5

1(
1−I

√
3
)4

1(
1−I

√
3
)3

1(
1−I

√
3
)2

1
1−I

√
3

1




• Solution from eigenpair

e
(
1−I

√
3
)
x ·



1(
1−I

√
3
)5

1(
1−I

√
3
)4

1(
1−I

√
3
)3

1(
1−I

√
3
)2

1
1−I

√
3

1


• Use Euler identity to write solution in terms of sin and cos
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ex ·
(
cos
(√

3x
)
− I sin

(√
3x
))

·



1(
1−I

√
3
)5

1(
1−I

√
3
)4

1(
1−I

√
3
)3

1(
1−I

√
3
)2

1
1−I

√
3

1


• Simplify expression

ex ·



cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)5

cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)4

cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)3

cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)2

cos
(√

3x
)
−I sin

(√
3x
)

1−I
√
3

cos
(√

3x
)
− I sin

(√
3x
)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 5(x) = ex ·



<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)5

)

<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)4

)

−
cos
(√

3x
)

8

−
cos
(√

3x
)

8 +
sin
(√

3x
)√

3
8

cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)



,
→
y 6(x) = ex ·



=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)5

)

=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)4

)
sin
(√

3x
)

8

cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 −

sin
(√

3x
)

4

− sin
(√

3x
)




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• General solution to the system of ODEs
→
y = c1

→
y 1 + c2

→
y 2 + c3

→
y 3(x) + c4

→
y 4(x) + c5

→
y 5(x) + c6

→
y 6(x)

• Substitute solutions into the general solution

→
y = c1e−2x ·



− 1
32
1
16

−1
8

1
4

−1
2

1


+ c2e2x ·



1
32
1
16
1
8
1
4
1
2

1


+ c3e−x ·



<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)5

)

<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)4

)
cos
(√

3x
)

8

−
cos
(√

3x
)

8 −
sin
(√

3x
)√

3
8

−
cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)



+ c4e−x ·



=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)5

)

=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
−1−I

√
3
)4

)

−
sin
(√

3x
)

8

−
cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 +

sin
(√

3x
)

4

− sin
(√

3x
)



+ c5ex ·



<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)5

)

<

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)4

)

−
cos
(√

3x
)

8

−
cos
(√

3x
)

8 +
sin
(√

3x
)√

3
8

cos
(√

3x
)

4 +
sin
(√

3x
)√

3
4

cos
(√

3x
)



+ c6ex ·



=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)5

)

=

(
cos
(√

3x
)
−I sin

(√
3x
)

(
1−I

√
3
)4

)
sin
(√

3x
)

8

cos
(√

3x
)√

3
8 +

sin
(√

3x
)

8

cos
(√

3x
)√

3
4 −

sin
(√

3x
)

4

− sin
(√

3x
)


• First component of the vector is the solution to the ODE

y =
(
c6e3x=

(
sin
(√

3x
)
+I cos

(√
3x
)

(√
3+I

)5
)

+ c5e3x<
(

sin
(√

3x
)
+I cos

(√
3x
)

(√
3+I

)5
)

− c4=

(
sin
(√

3x
)
+I cos

(√
3x
)

(
I−

√
3
)5

)
ex − c3<

(
sin
(√

3x
)
+I cos

(√
3x
)

(
I−

√
3
)5

)
ex + e4xc2

32 − c1
32

)
e−2x

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 53� �
dsolve(diff(y(x),x$6)-64*y(x)=0,y(x), singsol=all)� �

y(x) = e−2x
((

c4e3x + c6ex
)
cos
(√

3x
)
+
(
c3e3x + c5ex

)
sin
(√

3x
)
+ e4xc1 + c2

)
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3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 68� �
DSolve[y''''''[x]-64*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → e−2x
(
c1e

4x + ex
(
c2e

2x + c3
)
cos
(√

3x
)
+ ex

(
c6e

2x + c5
)
sin
(√

3x
)
+ c4

)
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2.13 problem 13
2.13.1 Solving as second order linear constant coeff ode . . . . . . . . 908
2.13.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 911
2.13.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 916

Internal problem ID [3254]
Internal file name [OUTPUT/2746_Sunday_June_05_2022_08_39_57_AM_76916014/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 13.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 6y′ + 10y = 3x e−3x − 2 cos (x) e3x

2.13.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 6, C = 10, f(x) = 3x e−3x − 2 cos (x) e3x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 10y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 6, C = 10. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 6λ eλx + 10 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 6λ+ 10 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 6, C = 10 into the above gives

λ1,2 =
−6

(2) (1) ±
1

(2) (1)
√

62 − (4) (1) (10)

= −3± i

Hence

λ1 = −3 + i

λ2 = −3− i

Which simplifies to
λ1 = −3 + i

λ2 = −3− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −3 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e−3x(c1 cos (x) + c2 sin (x))

Therefore the homogeneous solution yh is

yh = e−3x(c1 cos (x) + c2 sin (x))

909



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3x e−3x − 2 cos (x) e3x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−3x, e−3x}, {cos (x) e3x, e3x sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−3x cos (x) , e−3x sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e−3x + A2e−3x + A3 cos (x) e3x + A4e3x sin (x)

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A1x e−3x + A2e−3x + 36A3 cos (x) e3x − 12A3 sin (x) e3x

+ 36A4e3x sin (x) + 12A4e3x cos (x) = 3x e−3x − 2 cos (x) e3x

Solving for the unknowns by comparing coefficients results in[
A1 = 3, A2 = 0, A3 = − 1

20 , A4 = − 1
60

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Therefore the general solution is

y = yh + yp

=
(
e−3x(c1 cos (x) + c2 sin (x))

)
+
(
3x e−3x − cos (x) e3x

20 − e3x sin (x)
60

)
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Summary
The solution(s) found are the following

(1)y = e−3x(c1 cos (x) + c2 sin (x)) + 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Figure 131: Slope field plot

Verification of solutions

y = e−3x(c1 cos (x) + c2 sin (x)) + 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Verified OK.

2.13.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 6y′ + 10y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)
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Comparing (1) and (2) shows that

A = 1
B = 6 (3)
C = 10

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 55: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
6
1 dx

= z1e
−3x

= z1
(
e−3x)
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Which simplifies to
y1 = e−3x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 6

1 dx

(y1)2
dx

= y1

∫
e−6x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−3x cos (x)

)
+ c2

(
e−3x cos (x) (tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 6y′ + 10y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e−3x cos (x) c1 + e−3x sin (x) c2

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

3x e−3x − 2 cos (x) e3x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e−3x, e−3x}, {cos (x) e3x, e3x sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−3x cos (x) , e−3x sin (x)}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1x e−3x + A2e−3x + A3 cos (x) e3x + A4e3x sin (x)

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

A1x e−3x + A2e−3x + 36A3 cos (x) e3x − 12A3 sin (x) e3x

+ 36A4e3x sin (x) + 12A4e3x cos (x) = 3x e−3x − 2 cos (x) e3x

Solving for the unknowns by comparing coefficients results in[
A1 = 3, A2 = 0, A3 = − 1

20 , A4 = − 1
60

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Therefore the general solution is

y = yh + yp

=
(
e−3x cos (x) c1 + e−3x sin (x) c2

)
+
(
3x e−3x − cos (x) e3x

20 − e3x sin (x)
60

)

Which simplifies to

y = e−3x(c1 cos (x) + c2 sin (x)) + 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60
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Summary
The solution(s) found are the following

(1)y = e−3x(c1 cos (x) + c2 sin (x)) + 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Figure 132: Slope field plot

Verification of solutions

y = e−3x(c1 cos (x) + c2 sin (x)) + 3x e−3x − cos (x) e3x
20 − e3x sin (x)

60

Verified OK.

2.13.3 Maple step by step solution

Let’s solve
y′′ + 6y′ + 10y = 3x e−3x − 2 cos (x) e3x

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + 6r + 10 = 0
• Use quadratic formula to solve for r

r = (−6)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−3− I,−3 + I)

• 1st solution of the homogeneous ODE
y1(x) = e−3x cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = e−3x sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = e−3x cos (x) c1 + e−3x sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 3x e−3x − 2 cos (x) e3x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−3x cos (x) e−3x sin (x)
−3 e−3x cos (x)− e−3x sin (x) −3 e−3x sin (x) + e−3x cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−6x

◦ Substitute functions into equation for yp(x)
yp(x) = e−3x(cos (x) (∫ sin (x) (2 cos (x) e6x − 3x) dx

)
− sin (x)

(∫ (
2 cos (x)2 e6x − 3 cos (x)x

)
dx
))

◦ Compute integrals

yp(x) = (−3 cos(x)−sin(x))e3x
60 + 3x e−3x

• Substitute particular solution into general solution to ODE

y = e−3x cos (x) c1 + e−3x sin (x) c2 + (−3 cos(x)−sin(x))e3x
60 + 3x e−3x

917



Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 35� �
dsolve(diff(y(x),x$2)+6*diff(y(x),x)+10*y(x)=3*x*exp(-3*x)-2*exp(3*x)*cos(x),y(x), singsol=all)� �

y(x) = (cos (x) c1 + sin (x) c2 + 3x) e−3x −
e3x
(
cos (x) + sin(x)

3

)
20

3 Solution by Mathematica
Time used: 0.426 (sec). Leaf size: 46� �
DSolve[y''[x]+6*y'[x]+10*y[x]==3*x*Exp[-3*x]-2*Exp[3*x]*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
60e

−3x(180x− 3
(
e6x − 20c2

)
cos(x)−

(
e6x − 60c1

)
sin(x)

)
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2.14 problem 14
2.14.1 Solving as second order linear constant coeff ode . . . . . . . . 919
2.14.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 923
2.14.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 928

Internal problem ID [3255]
Internal file name [OUTPUT/2747_Sunday_June_05_2022_08_39_58_AM_23095541/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 14.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 8y′ + 17y = e4x
(
x2 − 3x sin (x)

)
2.14.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −8, C = 17, f(x) = e4xx(−3 sin (x) + x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 8y′ + 17y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −8, C = 17. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 8λ eλx + 17 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 8λ+ 17 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −8, C = 17 into the above gives

λ1,2 =
8

(2) (1) ±
1

(2) (1)
√
−82 − (4) (1) (17)

= 4± i

Hence

λ1 = 4 + i

λ2 = 4− i

Which simplifies to
λ1 = 4 + i

λ2 = 4− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 4 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e4x(c1 cos (x) + c2 sin (x))

Therefore the homogeneous solution yh is

yh = e4x(c1 cos (x) + c2 sin (x))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e4xx(−3 sin (x) + x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e4x, x2e4x, e4x}, {e4x cos (x) , e4x sin (x) , x cos (x) e4x, e4x sin (x)x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e4x cos (x) , e4x sin (x)}

Since e4x cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x.
The UC_set becomes

[{x e4x, x2e4x, e4x}, {x cos (x) e4x, x2 cos (x) e4x, x2e4x sin (x) , e4x sin (x)x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e4x + A2x
2e4x + A3e4x + A4x cos (x) e4x

+ A5x
2 cos (x) e4x + A6x

2e4x sin (x) + A7e4x sin (x)x

The unknowns {A1, A2, A3, A4, A5, A6, A7} are found by substituting the above trial
solution yp into the ODE and comparing coefficients. Substituting the trial solution
into the ODE and simplifying gives

A3e4x + 2A6e4x sin (x) + 4A6x e4x cos (x) + 2A7e4x cos (x)− 4A5x sin (x) e4x

+ 2A5 cos (x) e4x − 2A4 sin (x) e4x + 2A2e4x +A2x
2e4x +A1x e4x = e4xx(−3 sin (x) + x)

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 = 1, A3 = −2, A4 = 0, A5 =

3
4 , A6 = 0, A7 = −3

4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4
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Therefore the general solution is

y = yh + yp

=
(
e4x(c1 cos (x) + c2 sin (x))

)
+
(
x2e4x − 2 e4x + 3x2 cos (x) e4x

4 − 3 e4x sin (x)x
4

)

Summary
The solution(s) found are the following

(1)y = e4x(c1 cos (x) + c2 sin (x)) + x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4

Figure 133: Slope field plot

Verification of solutions

y = e4x(c1 cos (x) + c2 sin (x)) + x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4

Verified OK.
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2.14.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 8y′ + 17y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −8 (3)
C = 17

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 57: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−8
1 dx
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= z1e
4x

= z1
(
e4x
)

Which simplifies to
y1 = e4x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−8

1 dx

(y1)2
dx

= y1

∫
e8x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1
(
e4x cos (x)

)
+ c2

(
e4x cos (x) (tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 8y′ + 17y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = e4x cos (x) c1 + e4x sin (x) c2
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e4xx(−3 sin (x) + x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e4x, x2e4x, e4x}, {e4x cos (x) , e4x sin (x) , x cos (x) e4x, e4x sin (x)x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e4x cos (x) , e4x sin (x)}

Since e4x cos (x) is duplicated in the UC_set, then this basis is multiplied by extra x.
The UC_set becomes

[{x e4x, x2e4x, e4x}, {x cos (x) e4x, x2 cos (x) e4x, x2e4x sin (x) , e4x sin (x)x}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e4x + A2x
2e4x + A3e4x + A4x cos (x) e4x

+ A5x
2 cos (x) e4x + A6x

2e4x sin (x) + A7e4x sin (x)x

The unknowns {A1, A2, A3, A4, A5, A6, A7} are found by substituting the above trial
solution yp into the ODE and comparing coefficients. Substituting the trial solution
into the ODE and simplifying gives

2A6e4x sin (x) + 4A6x e4x cos (x) + 2A7e4x cos (x) + 2A5 cos (x) e4x − 4A5x sin (x) e4x

+ A3e4x + 2A2e4x − 2A4 sin (x) e4x + A2x
2e4x + A1x e4x = e4xx(−3 sin (x) + x)

Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 = 1, A3 = −2, A4 = 0, A5 =

3
4 , A6 = 0, A7 = −3

4

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4
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Therefore the general solution is

y = yh + yp

=
(
e4x cos (x) c1 + e4x sin (x) c2

)
+
(
x2e4x − 2 e4x + 3x2 cos (x) e4x

4 − 3 e4x sin (x)x
4

)

Which simplifies to

y = e4x(c1 cos (x) + c2 sin (x)) + x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4

Summary
The solution(s) found are the following

(1)y = e4x(c1 cos (x) + c2 sin (x)) + x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4

Figure 134: Slope field plot

Verification of solutions

y = e4x(c1 cos (x) + c2 sin (x)) + x2e4x − 2 e4x + 3x2 cos (x) e4x
4 − 3 e4x sin (x)x

4

Verified OK.
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2.14.3 Maple step by step solution

Let’s solve
y′′ − 8y′ + 17y = e4xx(−3 sin (x) + x)

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −3 e4x sin (x)x+ x2e4x + 8y′ − 17y

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − 8y′ + 17y = −e4xx(3 sin (x)− x)

• Characteristic polynomial of homogeneous ODE
r2 − 8r + 17 = 0

• Use quadratic formula to solve for r

r = 8±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (4− I, 4 + I)

• 1st solution of the homogeneous ODE
y1(x) = e4x cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = e4x sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = e4x cos (x) c1 + e4x sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = −e4xx(3 sin (x)− x)

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 e4x cos (x) e4x sin (x)
4 e4x cos (x)− e4x sin (x) 4 e4x sin (x) + e4x cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = e8x

◦ Substitute functions into equation for yp(x)
yp(x) = e4x

(
cos (x)

(∫
−x sin (x) (−3 sin (x) + x) dx

)
− sin (x)

(∫
−x cos (x) (−3 sin (x) + x) dx

))
◦ Compute integrals

yp(x) = −
(
−3x2 cos(x)+3x sin(x)−4x2+8

)
e4x

4

• Substitute particular solution into general solution to ODE

y = e4x cos (x) c1 + e4x sin (x) c2 −
(
−3x2 cos(x)+3x sin(x)−4x2+8

)
e4x

4

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 39� �
dsolve(diff(y(x),x$2)-8*diff(y(x),x)+17*y(x)=exp(4*x)*(x^2-3*x*sin(x)),y(x), singsol=all)� �

y(x) = ((3x2 + 4c1) cos (x) + (−3x+ 4c2) sin (x) + 4x2 − 8) e4x
4
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3 Solution by Mathematica
Time used: 0.263 (sec). Leaf size: 47� �
DSolve[y''[x]-8*y'[x]+17*y[x]==Exp[4*x]*(x^2-3*x*Sin[x]),y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
8e

4x(8(x2 − 2
)
+
(
6x2 − 3 + 8c2

)
cos(x) + (−6x+ 8c1) sin(x)

)
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2.15 problem 15
2.15.1 Solving as second order linear constant coeff ode . . . . . . . . 931
2.15.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 935
2.15.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 940

Internal problem ID [3256]
Internal file name [OUTPUT/2748_Sunday_June_05_2022_08_39_59_AM_87006663/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + 2y = (x+ ex) sin (x)

2.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 2, f(x) = (x+ ex) sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = −2, C = 2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 2 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)
√
−22 − (4) (1) (2)

= 1± i

Hence

λ1 = 1 + i

λ2 = 1− i

Which simplifies to
λ1 = 1 + i

λ2 = 1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = ex(c1 cos (x) + c2 sin (x))

Therefore the homogeneous solution yh is

yh = ex(c1 cos (x) + c2 sin (x))
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

(x+ ex) sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) ex, ex sin (x)}, {x sin (x) , cos (x)x, cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) ex, ex sin (x)}

Since cos (x) ex is duplicated in the UC_set, then this basis is multiplied by extra x.
The UC_set becomes

[{exx cos (x) , exx sin (x)}, {x sin (x) , cos (x)x, cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1exx cos (x) + A2exx sin (x) + A3x sin (x) + A4 cos (x)x+ A5 cos (x) + A6 sin (x)

The unknowns {A1, A2, A3, A4, A5, A6} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

A6 sin (x) + A5 cos (x)− 2A4 sin (x)− 2A4 cos (x) + 2A4 sin (x)x
− 2A1ex sin (x) + 2A2ex cos (x)− 2A3 sin (x)− 2A3x cos (x) + A3x sin (x)
+ A4 cos (x)x− 2A6 cos (x) + 2A3 cos (x) + 2A5 sin (x) = (x+ ex) sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = 0, A3 =
1
5 , A4 =

2
5 , A5 =

14
25 , A6 =

2
25

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −exx cos (x)
2 + x sin (x)

5 + 2 cos (x)x
5 + 14 cos (x)

25 + 2 sin (x)
25
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Therefore the general solution is

y = yh + yp

= (ex(c1 cos (x) + c2 sin (x)))

+
(
−exx cos (x)

2 + x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

)

Summary
The solution(s) found are the following

(1)
y = ex(c1 cos (x) + c2 sin (x))−

exx cos (x)
2

+ x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

Figure 135: Slope field plot

Verification of solutions

y = ex(c1 cos (x)+c2 sin (x))−
exx cos (x)

2 + x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

Verified OK.
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2.15.2 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 59: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx
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= z1e
x

= z1(ex)

Which simplifies to
y1 = cos (x) ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(tan (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (x) ex) + c2(cos (x) ex(tan (x)))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = ex cos (x) c1 + ex sin (x) c2

937



The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

(x+ ex) sin (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) ex, ex sin (x)}, {x sin (x) , cos (x)x, cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (x) ex, ex sin (x)}

Since cos (x) ex is duplicated in the UC_set, then this basis is multiplied by extra x.
The UC_set becomes

[{exx cos (x) , exx sin (x)}, {x sin (x) , cos (x)x, cos (x) , sin (x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1exx cos (x) + A2exx sin (x) + A3x sin (x) + A4 cos (x)x+ A5 cos (x) + A6 sin (x)

The unknowns {A1, A2, A3, A4, A5, A6} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

−2A3 sin (x)− 2A3x cos (x)− 2A4 cos (x) + 2A4 sin (x)x− 2A1ex sin (x)
+ 2A2ex cos (x)− 2A4 sin (x) + A5 cos (x) + A6 sin (x) + 2A5 sin (x)
− 2A6 cos (x) + 2A3 cos (x) + A4 cos (x)x+ A3x sin (x) = (x+ ex) sin (x)

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 = 0, A3 =
1
5 , A4 =

2
5 , A5 =

14
25 , A6 =

2
25

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp = −exx cos (x)
2 + x sin (x)

5 + 2 cos (x)x
5 + 14 cos (x)

25 + 2 sin (x)
25
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Therefore the general solution is

y = yh + yp

= (ex cos (x) c1 + ex sin (x) c2)

+
(
−exx cos (x)

2 + x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

)

Which simplifies to

y = ex(c1 cos (x)+c2 sin (x))−
exx cos (x)

2 + x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

Summary
The solution(s) found are the following

(1)
y = ex(c1 cos (x) + c2 sin (x))−

exx cos (x)
2

+ x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

Figure 136: Slope field plot
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Verification of solutions

y = ex(c1 cos (x)+c2 sin (x))−
exx cos (x)

2 + x sin (x)
5 + 2 cos (x)x

5 + 14 cos (x)
25 + 2 sin (x)

25

Verified OK.

2.15.3 Maple step by step solution

Let’s solve
y′′ − 2y′ + 2y = (x+ ex) sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 2 = 0

• Use quadratic formula to solve for r

r = 2±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (1− I, 1 + I)

• 1st solution of the homogeneous ODE
y1(x) = cos (x) ex

• 2nd solution of the homogeneous ODE
y2(x) = ex sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = ex cos (x) c1 + ex sin (x) c2 + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = (x+ ex) sin (x)

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 cos (x) ex ex sin (x)
−ex sin (x) + cos (x) ex ex sin (x) + cos (x) ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)

yp(x) =
ex
(
sin(x)

(∫
sin(2x)

(
x e−x+1

)
dx
)
−2 cos(x)

(∫
sin(x)2

(
x e−x+1

)
dx
))

2

◦ Compute integrals
yp(x) = (−25x ex+20x+28) cos(x)

50 + sin(x)(2+5x)
25

• Substitute particular solution into general solution to ODE
y = ex cos (x) c1 + ex sin (x) c2 + (−25x ex+20x+28) cos(x)

50 + sin(x)(2+5x)
25

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 36� �
dsolve(diff(y(x),x$2)-2*diff(y(x),x)+2*y(x)=(x+exp(x))*sin(x),y(x), singsol=all)� �

y(x) = ((−25x+ 50c1) ex + 20x+ 28) cos (x)
50 +

(
5c2ex + x+ 2

5

)
sin (x)

5
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3 Solution by Mathematica
Time used: 0.333 (sec). Leaf size: 48� �
DSolve[y''[x]-2*y'[x]+2*y[x]==(x+Exp[x])*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
50((−5(5ex − 4)x+ 50c2ex + 28) cos(x) + 2(5x+ 25c1ex + 2) sin(x))
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2.16 problem 16
2.16.1 Solving as second order linear constant coeff ode . . . . . . . . 943
2.16.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 948
2.16.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 954

Internal problem ID [3257]
Internal file name [OUTPUT/2749_Sunday_June_05_2022_08_40_00_AM_6769952/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 16.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 4y = sinh (x) sin (2x)

2.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 4, f(x) = sinh (x) sin (2x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 0, C = 4. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 4 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 4 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 4 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (4)

= ±2i

Hence

λ1 = +2i
λ2 = −2i

Which simplifies to
λ1 = 2i
λ2 = −2i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 2. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (2x) + c2 sin (2x))

Or
y = c1 cos (2x) + c2 sin (2x)
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Therefore the homogeneous solution yh is

yh = c1 cos (2x) + c2 sin (2x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 = sin (2x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ cos (2x) sin (2x)
d
dx
(cos (2x)) d

dx
(sin (2x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)

∣∣∣∣∣∣
Therefore

W = (cos (2x)) (2 cos (2x))− (sin (2x)) (−2 sin (2x))
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Which simplifies to
W = 2 cos (2x)2 + 2 sin (2x)2

Which simplifies to
W = 2

Therefore Eq. (2) becomes

u1 = −
∫ sin (2x)2 sinh (x)

2 dx

Which simplifies to

u1 = −
∫ sin (2x)2 sinh (x)

2 dx

Hence

u1 = −ex
8 + ex cos (4x)

136 + sin (4x) ex
34 − e−x

8 + e−x cos (4x)
136 − e−x sin (4x)

34

And Eq. (3) becomes

u2 =
∫ sin (2x) sinh (x) cos (2x)

2 dx

Which simplifies to

u2 =
∫ sinh (x) sin (4x)

4 dx

Hence

u2 = −ex cos (4x)
34 + sin (4x) ex

136 − ex cos (2x)
10 + ex sin (2x)

20
− ex(−2 cos (2x) + sin (2x))

20 + e−x cos (4x)
34 + e−x sin (4x)

136
+ e−x cos (2x)

10 + e−x sin (2x)
20 + e−x(− sin (2x)− 2 cos (2x))

20
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Which simplifies to

u1 =
(−17 + cos (4x)− 4 sin (4x)) e−x

136 + ex(−17 + cos (4x) + 4 sin (4x))
136

u2 =
(−ex + e−x) cos (4x)

34 + sin (4x) (ex + e−x)
136

Therefore the particular solution, from equation (1) is

yp(x) =
(
(−17 + cos (4x)− 4 sin (4x)) e−x

136 + ex(−17 + cos (4x) + 4 sin (4x))
136

)
cos (2x)

+
(
(−ex + e−x) cos (4x)

34 + sin (4x) (ex + e−x)
136

)
sin (2x)

Which simplifies to

yp(x) =
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34

Therefore the general solution is

y = yh + yp

= (c1 cos (2x) + c2 sin (2x)) +
(
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34

)

Summary
The solution(s) found are the following

(1)y = c1 cos (2x) + c2 sin (2x) +
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34
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Figure 137: Slope field plot

Verification of solutions

y = c1 cos (2x) + c2 sin (2x) +
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34

Verified OK.

2.16.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 4y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 4

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −4
1 (6)

Comparing the above to (5) shows that

s = −4
t = 1

Therefore eq. (4) becomes

z′′(x) = −4z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 61: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −4 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (2x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= cos (2x)

Which simplifies to
y1 = cos (2x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (2x)
∫ 1

cos (2x)2
dx

= cos (2x)
(
tan (2x)

2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1(cos (2x)) + c2

(
cos (2x)

(
tan (2x)

2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 4y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (2x) +
c2 sin (2x)

2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = cos (2x)

y2 =
sin (2x)

2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
cos (2x) sin(2x)

2

d
dx
(cos (2x)) d

dx

(
sin(2x)

2

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ cos (2x) sin(2x)
2

−2 sin (2x) cos (2x)

∣∣∣∣∣∣
Therefore

W = (cos (2x)) (cos (2x))−
(
sin (2x)

2

)
(−2 sin (2x))

Which simplifies to
W = cos (2x)2 + sin (2x)2

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ sin(2x)2 sinh(x)

2
1 dx

Which simplifies to

u1 = −
∫ sin (2x)2 sinh (x)

2 dx

Hence

u1 = −ex
8 + ex cos (4x)

136 + sin (4x) ex
34 − e−x

8 + e−x cos (4x)
136 − e−x sin (4x)

34

And Eq. (3) becomes

u2 =
∫ sin (2x) sinh (x) cos (2x)

1 dx
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Which simplifies to

u2 =
∫ sinh (x) sin (4x)

2 dx

Hence

u2 = −ex cos (4x)
17 + sin (4x) ex

68 − ex cos (2x)
5 + ex sin (2x)

10
− ex(−2 cos (2x) + sin (2x))

10 + e−x cos (4x)
17 + e−x sin (4x)

68
+ e−x cos (2x)

5 + e−x sin (2x)
10 + e−x(− sin (2x)− 2 cos (2x))

10

Which simplifies to

u1 =
(−17 + cos (4x)− 4 sin (4x)) e−x

136 + ex(−17 + cos (4x) + 4 sin (4x))
136

u2 =
(−4 ex + 4 e−x) cos (4x)

68 + sin (4x) (ex + e−x)
68

Therefore the particular solution, from equation (1) is

yp(x) =
(
(−17 + cos (4x)− 4 sin (4x)) e−x

136 + ex(−17 + cos (4x) + 4 sin (4x))
136

)
cos (2x)

+

( (
−4 ex+4 e−x

)
cos(4x)

68 + sin(4x)
(
ex+e−x

)
68

)
sin (2x)

2

Which simplifies to

yp(x) =
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34

Therefore the general solution is

y = yh + yp

=
(
c1 cos (2x) +

c2 sin (2x)
2

)
+
(
(−4 ex − 4 e−x) cos (2x)

34 + sin (2x) (ex − e−x)
34

)
Summary
The solution(s) found are the following

(1)y = c1 cos (2x) +
c2 sin (2x)

2 + (−4 ex − 4 e−x) cos (2x)
34 + sin (2x) (ex − e−x)

34
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Figure 138: Slope field plot

Verification of solutions

y = c1 cos (2x) +
c2 sin (2x)

2 + (−4 ex − 4 e−x) cos (2x)
34 + sin (2x) (ex − e−x)

34

Verified OK.

2.16.3 Maple step by step solution

Let’s solve
y′′ + 4y = sinh (x) sin (2x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 4 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−16
)

2

• Roots of the characteristic polynomial
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r = (−2 I, 2 I)
• 1st solution of the homogeneous ODE

y1(x) = cos (2x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (2x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (2x) + c2 sin (2x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = sinh (x) sin (2x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (2x) sin (2x)
−2 sin (2x) 2 cos (2x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = −
cos(2x)

(∫
sin(2x)2 sinh(x)dx

)
2 + sin(2x)

(∫
sinh(x) sin(4x)dx

)
4

◦ Compute integrals

yp(x) =
(
−4 ex−4 e−x

)
cos(2x)

34 + sin(2x)
(
ex−e−x

)
34

• Substitute particular solution into general solution to ODE

y = c1 cos (2x) + c2 sin (2x) +
(
−4 ex−4 e−x

)
cos(2x)

34 + sin(2x)
(
ex−e−x

)
34
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 42� �
dsolve(diff(y(x),x$2)+4*y(x)=sinh(x)*sin(2*x),y(x), singsol=all)� �

y(x) = (34c1 − 4 ex − 4 e−x) cos (2x)
34 +

(
c2 +

ex
34 − e−x

34

)
sin (2x)

3 Solution by Mathematica
Time used: 0.119 (sec). Leaf size: 46� �
DSolve[y''[x]+4*y[x]==Sinh[x]*Sin[2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

34(−(4− i) cos((2+ i)x)− (4+ i) cosh((1+ 2i)x) + 34c1 cos(2x) + 34c2 sin(2x))
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2.17 problem 17
2.17.1 Solving as second order linear constant coeff ode . . . . . . . . 957
2.17.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 962
2.17.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 968

Internal problem ID [3258]
Internal file name [OUTPUT/2750_Sunday_June_05_2022_08_40_00_AM_3854497/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 2y′ + 2y = cosh (x) sin (x)

2.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 2, C = 2, f(x) = cosh (x) sin (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0
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Where in the above A = 1, B = 2, C = 2. Let the solution be y = eλx. Substituting this
into the ODE gives

λ2eλx + 2λ eλx + 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 2λ+ 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2, C = 2 into the above gives

λ1,2 =
−2

(2) (1) ±
1

(2) (1)
√

22 − (4) (1) (2)

= −1± i

Hence

λ1 = −1 + i

λ2 = −1− i

Which simplifies to
λ1 = −1 + i

λ2 = −1− i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = −1 and β = 1. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e−x(c1 cos (x) + c2 sin (x))

Therefore the homogeneous solution yh is

yh = e−x(c1 cos (x) + c2 sin (x))
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The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x cos (x)

y2 = e−x sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ e−x cos (x) e−x sin (x)
d
dx
(e−x cos (x)) d

dx
(e−x sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e−x cos (x) e−x sin (x)
−e−x cos (x)− e−x sin (x) −e−x sin (x) + e−x cos (x)

∣∣∣∣∣∣
Therefore

W =
(
e−x cos (x)

) (
−e−x sin (x)+e−x cos (x)

)
−
(
e−x sin (x)

) (
−e−x cos (x)−e−x sin (x)

)
Which simplifies to

W = e−2x sin (x)2 + e−2x cos (x)2
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Which simplifies to
W = e−2x

Therefore Eq. (2) becomes

u1 = −
∫ e−x sin (x)2 cosh (x)

e−2x dx

Which simplifies to

u1 = −
∫

cosh (x) sin (x)2 exdx

Hence

u1 = −(2 sin (x)− 2 cos (x)) e2x sin (x)
16 − e2x

16 + sin (x) cos (x)
4 − x

4

And Eq. (3) becomes

u2 =
∫ e−x cos (x) cosh (x) sin (x)

e−2x dx

Which simplifies to

u2 =
∫ cosh (x) sin (2x) ex

2 dx

Hence

u2 =
e2x(2 sin (2x)− 2 cos (2x))

32 − cos (x)2

4

Which simplifies to

u1 =
(−2 + cos (2x) + sin (2x)) e2x

16 − x

4 + sin (2x)
8

u2 =
(
−2 cos (x)2 + 2 sin (x) cos (x) + 1

)
e2x

16 − cos (x)2

4
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Therefore the particular solution, from equation (1) is

yp(x) =
(
(−2 + cos (2x) + sin (2x)) e2x

16 − x

4 + sin (2x)
8

)
e−x cos (x)

+
((

−2 cos (x)2 + 2 sin (x) cos (x) + 1
)
e2x

16 − cos (x)2

4

)
e−x sin (x)

Which simplifies to

yp(x) = −e−x cos (x)x
4 − ex(cos (x)− sin (x))

16

Therefore the general solution is

y = yh + yp

=
(
e−x(c1 cos (x) + c2 sin (x))

)
+
(
−e−x cos (x)x

4 − ex(cos (x)− sin (x))
16

)

Summary
The solution(s) found are the following

(1)y = e−x(c1 cos (x) + c2 sin (x))−
e−x cos (x)x

4 − ex(cos (x)− sin (x))
16
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Figure 139: Slope field plot

Verification of solutions

y = e−x(c1 cos (x) + c2 sin (x))−
e−x cos (x)x

4 − ex(cos (x)− sin (x))
16

Verified OK.

2.17.2 Solving using Kovacic algorithm

Writing the ode as

y′′ + 2y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
1 (6)

Comparing the above to (5) shows that

s = −1
t = 1

Therefore eq. (4) becomes

z′′(x) = −z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 63: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −1 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (x)

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
2
1 dx

= z1e
−x

= z1
(
e−x
)

Which simplifies to
y1 = e−x cos (x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− 2

1 dx

(y1)2
dx

= y1

∫
e−2x

(y1)2
dx

= y1(tan (x))
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x cos (x)

)
+ c2

(
e−x cos (x) (tan (x))

)
This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 2y′ + 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x cos (x) + c2e−x sin (x)

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x cos (x)

y2 = e−x sin (x)

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ e−x cos (x) e−x sin (x)
d
dx
(e−x cos (x)) d

dx
(e−x sin (x))

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣ e−x cos (x) e−x sin (x)
−e−x cos (x)− e−x sin (x) −e−x sin (x) + e−x cos (x)

∣∣∣∣∣∣
Therefore

W =
(
e−x cos (x)

) (
−e−x sin (x)+e−x cos (x)

)
−
(
e−x sin (x)

) (
−e−x cos (x)−e−x sin (x)

)
Which simplifies to

W = e−2x sin (x)2 + e−2x cos (x)2

Which simplifies to
W = e−2x

Therefore Eq. (2) becomes

u1 = −
∫ e−x sin (x)2 cosh (x)

e−2x dx

Which simplifies to

u1 = −
∫

cosh (x) sin (x)2 exdx

Hence

u1 = −(2 sin (x)− 2 cos (x)) e2x sin (x)
16 − e2x

16 + sin (x) cos (x)
4 − x

4

And Eq. (3) becomes

u2 =
∫ e−x cos (x) cosh (x) sin (x)

e−2x dx
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Which simplifies to

u2 =
∫ cosh (x) sin (2x) ex

2 dx

Hence

u2 =
e2x(2 sin (2x)− 2 cos (2x))

32 − cos (x)2

4

Which simplifies to

u1 =
(−2 + cos (2x) + sin (2x)) e2x

16 − x

4 + sin (2x)
8

u2 =
(
−2 cos (x)2 + 2 sin (x) cos (x) + 1

)
e2x

16 − cos (x)2

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
(−2 + cos (2x) + sin (2x)) e2x

16 − x

4 + sin (2x)
8

)
e−x cos (x)

+
((

−2 cos (x)2 + 2 sin (x) cos (x) + 1
)
e2x

16 − cos (x)2

4

)
e−x sin (x)

Which simplifies to

yp(x) = −e−x cos (x)x
4 − ex(cos (x)− sin (x))

16

Therefore the general solution is

y = yh + yp

=
(
c1e−x cos (x) + c2e−x sin (x)

)
+
(
−e−x cos (x)x

4 − ex(cos (x)− sin (x))
16

)

Which simplifies to

y = e−x(c1 cos (x) + c2 sin (x))−
e−x cos (x)x

4 − ex(cos (x)− sin (x))
16
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Summary
The solution(s) found are the following

(1)y = e−x(c1 cos (x) + c2 sin (x))−
e−x cos (x)x

4 − ex(cos (x)− sin (x))
16

Figure 140: Slope field plot

Verification of solutions

y = e−x(c1 cos (x) + c2 sin (x))−
e−x cos (x)x

4 − ex(cos (x)− sin (x))
16

Verified OK.

2.17.3 Maple step by step solution

Let’s solve
y′′ + 2y′ + 2y = cosh (x) sin (x)

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
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r2 + 2r + 2 = 0
• Use quadratic formula to solve for r

r = (−2)±
(√

−4
)

2

• Roots of the characteristic polynomial
r = (−1− I,−1 + I)

• 1st solution of the homogeneous ODE
y1(x) = e−x cos (x)

• 2nd solution of the homogeneous ODE
y2(x) = e−x sin (x)

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x cos (x) + c2e−x sin (x) + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cosh (x) sin (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x cos (x) e−x sin (x)
−e−x cos (x)− e−x sin (x) −e−x sin (x) + e−x cos (x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = e−2x

◦ Substitute functions into equation for yp(x)

yp(x) =
e−x

(
sin(x)

(∫
cosh(x) sin(2x)exdx

)
−2 cos(x)

(∫
cosh(x) sin(x)2exdx

))
2

◦ Compute integrals

yp(x) = − e−x cos(x)x
4 − ex(cos(x)−sin(x))

16

• Substitute particular solution into general solution to ODE

y = c1e−x cos (x) + c2e−x sin (x)− e−x cos(x)x
4 − ex(cos(x)−sin(x))

16
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 38� �
dsolve(diff(y(x),x$2)+2*diff(y(x),x)+2*y(x)=cosh(x)*sin(x),y(x), singsol=all)� �

y(x) = ((−x+ 4c1) cos (x) + 4 sin (x) c2) e−x

4 − ex(− sin (x) + cos (x))
16

3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 47� �
DSolve[y''[x]+2*y'[x]+2*y[x]==Cosh[x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
16e

−x
((
e2x + 2 + 16c1

)
sin(x)−

(
e2x + 4(x− 4c2)

)
cos(x)

)
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2.18 problem 18
2.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 975

Internal problem ID [3259]
Internal file name [OUTPUT/2751_Sunday_June_05_2022_08_40_01_AM_96669158/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 18.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

y′′′ + y′ = sin (x) + cos (x)x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ + y′ = 0

The characteristic equation is
λ3 + λ = 0

The roots of the above equation are

λ1 = 0
λ2 = i

λ3 = −i

Therefore the homogeneous solution is

yh(x) = c1 + eixc2 + e−ixc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = eix

y3 = e−ix

Now the particular solution to the given ODE is found

y′′′ + y′ = sin (x) + cos (x)x

Let the particular solution be

yp = U1y1 + U2y2 + U3y3

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣
y1 y2 y3

y′1 y′2 y′3

y′′1 y′′2 y′′3

∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


1 eix e−ix

0 ieix −ie−ix

0 −eix −e−ix


|W | = −2ieixe−ix

The determinant simplifies to

|W | = −2i
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Now we determine Wi for each Ui.

W1(x) = det

 eix e−ix

ieix −ie−ix


= −2i

W2(x) = det

 1 e−ix

0 −ie−ix


= −ie−ix

W3(x) = det

 1 eix

0 ieix


= ieix

Now we are ready to evaluate each Ui(x).

U1 = (−1)3−1
∫

F (x)W1(x)
aW (x) dx

= (−1)2
∫ (sin (x) + cos (x)x) (−2i)

(1) (−2i) dx

=
∫

−2i(sin (x) + cos (x)x)
−2i dx

=
∫

(sin (x) + cos (x)x) dx

= x sin (x)

U2 = (−1)3−2
∫

F (x)W2(x)
aW (x) dx

= (−1)1
∫ (sin (x) + cos (x)x) (−ie−ix)

(1) (−2i) dx

= −
∫

−i(sin (x) + cos (x)x) e−ix

−2i dx

= −
∫ ((sin (x) + cos (x)x) e−ix

2

)
dx

= −
(∫ (sin (x) + cos (x)x) e−ix

2 dx

)
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U3 = (−1)3−3
∫

F (x)W3(x)
aW (x) dx

= (−1)0
∫ (sin (x) + cos (x)x) (ieix)

(1) (−2i) dx

=
∫

i(sin (x) + cos (x)x) eix
−2i dx

=
∫ (

−(sin (x) + cos (x)x) eix
2

)
dx

= −x2

8 − ix

4 + i(−i+ 2x) e2ix
16

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3

Hence

yp = (x sin (x))

+
(
−
(∫ (sin (x) + cos (x)x) e−ix

2 dx

))(
eix
)

+
(
−x2

8 − ix

4 + i(−i+ 2x) e2ix
16

)(
e−ix

)
Therefore the particular solution is

yp =
(−4x2 − 1) cos (x)

16 −
3 sin (x)

(
i− 4x

3

)
16

Which simplifies to

yp =
(−4x2 − 1) cos (x)

16 −
3 sin (x)

(
i− 4x

3

)
16

Therefore the general solution is

y = yh + yp

=
(
c1 + eixc2 + e−ixc3

)
+
(
(−4x2 − 1) cos (x)

16 −
3 sin (x)

(
i− 4x

3

)
16

)

Summary
The solution(s) found are the following

(1)y = c1 + eixc2 + e−ixc3 +
(−4x2 − 1) cos (x)

16 −
3 sin (x)

(
i− 4x

3

)
16
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Verification of solutions

y = c1 + eixc2 + e−ixc3 +
(−4x2 − 1) cos (x)

16 −
3 sin (x)

(
i− 4x

3

)
16

Verified OK.

2.18.1 Maple step by step solution

Let’s solve
y′′′ + y′ = sin (x) + cos (x)x

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
y′3(x) = cos (x)x+ sin (x)− y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = cos (x)x+ sin (x)− y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
0 −1 0

 · →y (x) +


0
0

sin (x) + cos (x)x


• Define the forcing function
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→
f (x) =


0
0

sin (x) + cos (x)x


• Define the coefficient matrix

A =


0 1 0
0 0 1
0 −1 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
0
0


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair0,


1
0
0




• Solution to homogeneous system from eigenpair

→
y 1 =


1
0
0


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair
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e−Ix ·


−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (x)− I sin (x)) ·


−1
I
1


• Simplify expression

− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos (x)
sin (x)
cos (x)

 ,
→
y 3(x) =


sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


1 − cos (x) sin (x)
0 sin (x) cos (x)
0 cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)
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Φ(x) =


1 − cos (x) sin (x)
0 sin (x) cos (x)
0 cos (x) − sin (x)

 · 1
1 −1 0
0 0 1
0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 sin (x) − cos (x) + 1
0 cos (x) sin (x)
0 − sin (x) cos (x)


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute
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→
y p(x) =


x(sin(x)−cos(x)x)

4
x2 sin(x)

4 + sin(x)
4 − cos(x)x

4
x(cos(x)x+3 sin(x))

4


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


x(sin(x)−cos(x)x)

4
x2 sin(x)

4 + sin(x)
4 − cos(x)x

4
x(cos(x)x+3 sin(x))

4


• First component of the vector is the solution to the ODE

y =
(
−x2−4c2

)
cos(x)

4 + (4c3+x) sin(x)
4 + c1

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = cos(_a)*_a+sin(_a)-_b(_a), _b(_a)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 29� �
dsolve(diff(y(x),x$3)+diff(y(x),x)=sin(x)+x*cos(x),y(x), singsol=all)� �

y(x) = (−x2 − 4c2 + 2) cos (x)
4 + (x+ 4c1) sin (x)

4 + c3

3 Solution by Mathematica
Time used: 0.237 (sec). Leaf size: 36� �
DSolve[y'''[x]+y'[x]==Sin[x]+x*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −1
8
(
2x2 − 3 + 8c2

)
cos(x) +

(x
4 + c1

)
sin(x) + c3
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2.19 problem 19
2.19.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 983

Internal problem ID [3260]
Internal file name [OUTPUT/2752_Sunday_June_05_2022_08_40_02_AM_40663654/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 19.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _linear , _nonhomogeneous ]]

y′′′ − 2y′′ + 4y′ − 8y = e2x sin (2x) + 2x2

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 2y′′ + 4y′ − 8y = 0

The characteristic equation is

λ3 − 2λ2 + 4λ− 8 = 0

The roots of the above equation are

λ1 = 2
λ2 = 2i
λ3 = −2i

Therefore the homogeneous solution is

yh(x) = e2xc1 + e2ixc2 + e−2ixc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = e2x

y2 = e2ix

y3 = e−2ix

Now the particular solution to the given ODE is found

y′′′ − 2y′′ + 4y′ − 8y = e2x sin (2x) + 2x2

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

e2x sin (2x) + 2x2

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x cos (2x) , e2x sin (2x)}, {1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{e2x, e−2ix, e2ix}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1e2x cos (2x) + A2e2x sin (2x) + A3 + A4x+ A5x
2

The unknowns {A1, A2, A3, A4, A5} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

−8A1e2x sin (2x)− 16A1e2x cos (2x) + 8A2e2x cos (2x)− 16A2e2x sin (2x)
− 4A5 + 4A4 + 8A5x− 8A3 − 8A4x− 8A5x

2 = e2x sin (2x) + 2x2

Solving for the unknowns by comparing coefficients results in[
A1 = − 1

40 , A2 = − 1
20 , A3 = 0, A4 = −1

4 , A5 = −1
4

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = −e2x cos (2x)
40 − e2x sin (2x)

20 − x

4 − x2

4

Therefore the general solution is

y = yh + yp

=
(
e2xc1 + e2ixc2 + e−2ixc3

)
+
(
−e2x cos (2x)

40 − e2x sin (2x)
20 − x

4 − x2

4

)

Summary
The solution(s) found are the following

(1)y = e2xc1 + e2ixc2 + e−2ixc3 −
e2x cos (2x)

40 − e2x sin (2x)
20 − x

4 − x2

4
Verification of solutions

y = e2xc1 + e2ixc2 + e−2ixc3 −
e2x cos (2x)

40 − e2x sin (2x)
20 − x

4 − x2

4

Verified OK.

2.19.1 Maple step by step solution

Let’s solve
y′′′ − 2y′′ + 4y′ − 8y = e2x sin (2x) + 2x2

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
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y′3(x) = e2x sin (2x) + 2x2 + 2y3(x)− 4y2(x) + 8y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = e2x sin (2x) + 2x2 + 2y3(x)− 4y2(x) + 8y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
8 −4 2

 · →y (x) +


0
0

e2x sin (2x) + 2x2


• Define the forcing function

→
f (x) =


0
0

e2x sin (2x) + 2x2


• Define the coefficient matrix

A =


0 1 0
0 0 1
8 −4 2


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

2,


1
4
1
2

1


 ,

−2 I,


−1

4
I
2

1


 ,

2 I,


−1
4

− I
2

1





• Consider eigenpair
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2,


1
4
1
2

1




• Solution to homogeneous system from eigenpair

→
y 1 = e2x ·


1
4
1
2

1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


−1

4
I
2

1




• Solution from eigenpair

e−2 Ix ·


−1

4
I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


−1

4
I
2

1


• Simplify expression

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system→

y 2(x) =


− cos(2x)

4
sin(2x)

2

cos (2x)

 ,
→
y 3(x) =


sin(2x)

4
cos(2x)

2

− sin (2x)



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• General solution of the system of ODEs can be written in terms of the particular solution →
y p(x)

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


e2x
4 − cos(2x)

4
sin(2x)

4
e2x
2

sin(2x)
2

cos(2x)
2

e2x cos (2x) − sin (2x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


e2x
4 − cos(2x)

4
sin(2x)

4
e2x
2

sin(2x)
2

cos(2x)
2

e2x cos (2x) − sin (2x)

 · 1

1
4 −1

4 0
1
2 0 1

2

1 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


e2x
2 + cos(2x)

2 − sin(2x)
2

sin(2x)
2

e2x
8 − cos(2x)

8 − sin(2x)
8

e2x − sin (2x)− cos (2x) cos (2x) e2x
4 + sin(2x)

4 − cos(2x)
4

2 e2x − 2 cos (2x) + 2 sin (2x) −2 sin (2x) e2x
2 + cos(2x)

2 + sin(2x)
2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)
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◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


(5−cos(2x)−2 sin(2x))e2x

40 − x2

4 − x
4 −

cos(2x)
10 + 3 sin(2x)

40
(5−3 cos(2x)−sin(2x))e2x

20 − x
2 +

3 cos(2x)
20 + sin(2x)

5 − 1
4

(5−4 cos(2x)+2 sin(2x))e2x
10 + 2 cos(2x)

5 − 3 sin(2x)
10 − 1

2


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2(x) + c3

→
y 3(x) +


(5−cos(2x)−2 sin(2x))e2x

40 − x2

4 − x
4 −

cos(2x)
10 + 3 sin(2x)

40
(5−3 cos(2x)−sin(2x))e2x

20 − x
2 +

3 cos(2x)
20 + sin(2x)

5 − 1
4

(5−4 cos(2x)+2 sin(2x))e2x
10 + 2 cos(2x)

5 − 3 sin(2x)
10 − 1

2


• First component of the vector is the solution to the ODE

y = (10c1−cos(2x)−2 sin(2x)+5)e2x
40 + (−2−5c2) cos(2x)

20 + (10c3+3) sin(2x)
40 − x2

4 − x
4

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �

987



3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 58� �
dsolve(diff(y(x),x$3)-2*diff(y(x),x$2)+4*diff(y(x),x)-8*y(x)=exp(2*x)*sin(2*x)+2*x^2,y(x), singsol=all)� �

y(x) = (80c2 − 2 cos (2x)− 4 sin (2x)− 5) e2x
80

+ (80c1 − 5) cos (2x)
80 + (80c3 + 5) sin (2x)

80 − x2

4 − x

4

3 Solution by Mathematica
Time used: 0.241 (sec). Leaf size: 61� �
DSolve[y'''[x]-2*y''[x]+4*y'[x]-8*y[x]==Exp[2*x]*Sin[2*x]+2*x^2,y[x],x,IncludeSingularSolutions -> True]� �
y(x)→ 1

80
(
−20x(x+1)+5(−1+16c3)e2x−2

(
e2x−40c1

)
cos(2x)−4

(
e2x−20c2

)
sin(2x)

)

988



2.20 problem 20
2.20.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 991

Internal problem ID [3261]
Internal file name [OUTPUT/2753_Sunday_June_05_2022_08_40_04_AM_76247354/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 20.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_y ]]

y′′′ − 4y′′ + 3y′ = x2 + x e2x

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′ − 4y′′ + 3y′ = 0

The characteristic equation is

λ3 − 4λ2 + 3λ = 0

The roots of the above equation are

λ1 = 0
λ2 = 3
λ3 = 1

Therefore the homogeneous solution is

yh(x) = c1 + c2ex + e3xc3
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The fundamental set of solutions for the homogeneous solution are the following

y1 = 1

y2 = ex

y3 = e3x

Now the particular solution to the given ODE is found

y′′′ − 4y′′ + 3y′ = x2 + x e2x

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

x2 + x e2x

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{x e2x, e2x}, {1, x, x2}]

While the set of the basis functions for the homogeneous solution found earlier is

{1, ex, e3x}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x e2x, e2x}, {x, x2, x3}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x e2x + A2e2x + A3x+ A4x
2 + A5x

3

The unknowns {A1, A2, A3, A4, A5} are found by substituting the above trial solution
yp into the ODE and comparing coefficients. Substituting the trial solution into the
ODE and simplifying gives

−A1e2x − 2A1x e2x − 2A2e2x + 6A5 − 8A4 − 24A5x+ 3A3 + 6A4x+ 9A5x
2 = x2 + x e2x

Solving for the unknowns by comparing coefficients results in[
A1 = −1

2 , A2 =
1
4 , A3 =

26
27 , A4 =

4
9 , A5 =

1
9

]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = −x e2x
2 + e2x

4 + 26x
27 + 4x2

9 + x3

9

Therefore the general solution is

y = yh + yp

=
(
c1 + c2ex + e3xc3

)
+
(
−x e2x

2 + e2x
4 + 26x

27 + 4x2

9 + x3

9

)

Summary
The solution(s) found are the following

(1)y = c1 + c2ex + e3xc3 −
x e2x
2 + e2x

4 + 26x
27 + 4x2

9 + x3

9
Verification of solutions

y = c1 + c2ex + e3xc3 −
x e2x
2 + e2x

4 + 26x
27 + 4x2

9 + x3

9

Verified OK.

2.20.1 Maple step by step solution

Let’s solve
y′′′ − 4y′′ + 3y′ = x2 + x e2x

• Highest derivative means the order of the ODE is 3
y′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Isolate for y′3(x) using original ODE
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y′3(x) = x e2x + x2 + 4y3(x)− 3y2(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y′3(x) = x e2x + x2 + 4y3(x)− 3y2(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)


• System to solve

→
y
′
(x) =


0 1 0
0 0 1
0 −3 4

 · →y (x) +


0
0

x2 + x e2x


• Define the forcing function

→
f (x) =


0
0

x2 + x e2x


• Define the coefficient matrix

A =


0 1 0
0 0 1
0 −3 4


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

0,


1
0
0


 ,

1,


1
1
1


 ,

3,


1
9
1
3

1





• Consider eigenpair
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0,


1
0
0




• Solution to homogeneous system from eigenpair

→
y 1 =


1
0
0


• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
y 2 = ex ·


1
1
1


• Consider eigenpair3,


1
9
1
3

1




• Solution to homogeneous system from eigenpair

→
y 3 = e3x ·


1
9
1
3

1


• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.
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φ(x) =


1 ex e3x

9

0 ex e3x
3

0 ex e3x


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix

Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


1 ex e3x

9

0 ex e3x
3

0 ex e3x

 · 1
1 1 1

9

0 1 1
3

0 1 1


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =


1 −4

3 +
3 ex
2 − e3x

6
1
3 −

ex
2 + e3x

6

0 3 ex
2 − e3x

2 − ex
2 + e3x

2

0 3 ex
2 − 3 e3x

2 − ex
2 + 3 e3x

2


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)
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◦ Integrate to solve for →
v (x)

→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =


347
324 +

(1−2x)e2x
4 + x3

9 + 4x2

9 + 26x
27 − 3 ex

2 + 29 e3x
162

−x e2x + x2

3 + 8x
9 + 29 e3x

54 + 26
27 −

3 ex
2

8
9 + (−1− 2x) e2x + 2x

3 − 3 ex
2 + 29 e3x

18


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1 + c2

→
y 2 + c3

→
y 3 +


347
324 +

(1−2x)e2x
4 + x3

9 + 4x2

9 + 26x
27 − 3 ex

2 + 29 e3x
162

−x e2x + x2

3 + 8x
9 + 29 e3x

54 + 26
27 −

3 ex
2

8
9 + (−1− 2x) e2x + 2x

3 − 3 ex
2 + 29 e3x

18


• First component of the vector is the solution to the ODE

y = 347
324 +

(1−2x)e2x
4 + (29+18c3)e3x

162 + (−3+2c2)ex
2 + x3

9 + 4x2

9 + 26x
27 + c1
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = exp(2*_a)*_a+_a^2-3*_b(_a)+4*(diff(_b(_a), _a)), _b(_a)` *** Sublev

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x$3)-4*diff(y(x),x$2)+3*diff(y(x),x)=x^2+x*exp(2*x),y(x), singsol=all)� �

y(x) = (1− 2x) e2x
4 + x3

9 + 4x2

9 + c1e3x
3 + c2ex +

26x
27 + c3

3 Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 58� �
DSolve[y'''[x]-4*y''[x]+3*y'[x]==x^2+x*Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x3

9 + 4x2

9 + 26x
27 + 1

4e
2x(1− 2x) + c1e

x + 1
3c2e

3x + c3

996



2.21 problem 21
Internal problem ID [3262]
Internal file name [OUTPUT/2754_Sunday_June_05_2022_08_40_05_AM_24257591/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 21.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_y ]]

y′′′′ + 2y′′ = 7x− 3 cos (x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 2y′′ = 0

The characteristic equation is
λ4 + 2λ2 = 0

The roots of the above equation are

λ1 = 0
λ2 = 0
λ3 = i

√
2

λ4 = −i
√
2

Therefore the homogeneous solution is

yh(x) = c2x+ c1 + e−i
√
2xc3 + ei

√
2xc4
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The fundamental set of solutions for the homogeneous solution are the following

y1 = 1
y2 = x

y3 = e−i
√
2x

y4 = ei
√
2x

Now the particular solution to the given ODE is found

y′′′′ + 2y′′ = 7x− 3 cos (x)

The particular solution is found using the method of undetermined coefficients. Looking
at the RHS of the ode, which is

7x− 3 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{1, x}, {cos (x) , sin (x)}]
While the set of the basis functions for the homogeneous solution found earlier is{

1, x, ei
√
2x, e−i

√
2x
}

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x, x2}, {cos (x) , sin (x)}]
Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x2, x3}, {cos (x) , sin (x)}]
Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A2x
3 + A1x

2 + A3 cos (x) + A4 sin (x)

The unknowns {A1, A2, A3, A4} are found by substituting the above trial solution yp
into the ODE and comparing coefficients. Substituting the trial solution into the ODE
and simplifying gives

−A3 cos (x)− A4 sin (x) + 12A2x+ 4A1 = 7x− 3 cos (x)
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Solving for the unknowns by comparing coefficients results in[
A1 = 0, A2 =

7
12 , A3 = 3, A4 = 0

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
7x3

12 + 3 cos (x)

Therefore the general solution is

y = yh + yp

=
(
c2x+ c1 + e−i

√
2xc3 + ei

√
2xc4

)
+
(
7x3

12 + 3 cos (x)
)

Summary
The solution(s) found are the following

(1)y = c2x+ c1 + e−i
√
2xc3 + ei

√
2xc4 +

7x3

12 + 3 cos (x)

Verification of solutions

y = c2x+ c1 + e−i
√
2xc3 + ei

√
2xc4 +

7x3

12 + 3 cos (x)

Verified OK.
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = -2*_b(_a)+7*_a-3*cos(_a), _b(_a)` *** Sublevel 2 ***

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful
<- differential order: 4; linear nonhomogeneous with symmetry [0,1] successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 36� �
dsolve(diff(y(x),x$4)+2*diff(y(x),x$2)=7*x-3*cos(x),y(x), singsol=all)� �

y(x) = 7x3

12 −
cos
(√

2x
)
c1

2 −
c2 sin

(√
2x
)

2 + 3 cos (x) + c3x+ c4

3 Solution by Mathematica
Time used: 0.603 (sec). Leaf size: 51� �
DSolve[y''''[x]+2*y''[x]==7*x-3*Cos[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 7x3

12 + 3 cos(x) + c4x− 1
2c1 cos

(√
2x
)
− 1

2c2 sin
(√

2x
)
+ c3
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2.22 problem 22
2.22.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1006

Internal problem ID [3263]
Internal file name [OUTPUT/2755_Sunday_June_05_2022_08_40_05_AM_87500085/index.tex]

Book: Differential equations for engineers by Wei-Chau XIE, Cambridge Press 2010
Section: Chapter 4. Linear Differential Equations. Page 183
Problem number: 22.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _linear , _nonhomogeneous ]]

y′′′′ + 5y′′ + 4y = sin (x) cos (2x)

This is higher order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE And yp is a particular solution to
the nonhomogeneous ODE. yh is the solution to

y′′′′ + 5y′′ + 4y = 0

The characteristic equation is
λ4 + 5λ2 + 4 = 0

The roots of the above equation are

λ1 = 2i
λ2 = −2i
λ3 = i

λ4 = −i
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Therefore the homogeneous solution is

yh(x) = e2ixc1 + eixc2 + e−2ixc3 + e−ixc4

The fundamental set of solutions for the homogeneous solution are the following

y1 = e2ix

y2 = eix

y3 = e−2ix

y4 = e−ix

Now the particular solution to the given ODE is found

y′′′′ + 5y′′ + 4y = sin (x) cos (2x)

Let the particular solution be

yp = U1y1 + U2y2 + U3y3 + U4y4

Where yi are the basis solutions found above for the homogeneous solution yh and Ui(x)
are functions to be determined as follows

Ui = (−1)n−i

∫
F (x)Wi(x)
aW (x) dx

Where W (x) is the Wronskian and Wi(x) is the Wronskian that results after deleting
the last row and the i-th column of the determinant and n is the order of the ODE
or equivalently, the number of basis solutions, and a is the coefficient of the leading
derivative in the ODE, and F (x) is the RHS of the ODE. Therefore, the first step is to
find the Wronskian W (x). This is given by

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 y3 y4

y′1 y′2 y′3 y′4

y′′1 y′′2 y′′3 y′′4

y′′′1 y′′′2 y′′′3 y′′′4

∣∣∣∣∣∣∣∣∣∣∣
Substituting the fundamental set of solutions yi found above in the Wronskian gives

W =


e2ix eix e−2ix e−ix

2ie2ix ieix −2ie−2ix −ie−ix

−4 e2ix −eix −4 e−2ix −e−ix

−8ie2ix −ieix 8ie−2ix ie−ix


|W | = 72 e2ixeixe−2ixe−ix
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The determinant simplifies to

|W | = 72

Now we determine Wi for each Ui.

W1(x) = det


eix e−2ix e−ix

ieix −2ie−2ix −ie−ix

−eix −4 e−2ix −e−ix


= −6ie−2ix

W2(x) = det


e2ix e−2ix e−ix

2ie2ix −2ie−2ix −ie−ix

−4 e2ix −4 e−2ix −e−ix


= −12ie−ix

W3(x) = det


e2ix eix e−ix

2ie2ix ieix −ie−ix

−4 e2ix −eix −e−ix


= 6ie2ix

W4(x) = det


e2ix eix e−2ix

2ie2ix ieix −2ie−2ix

−4 e2ix −eix −4 e−2ix


= 12ieix

Now we are ready to evaluate each Ui(x).

U1 = (−1)4−1
∫

F (x)W1(x)
aW (x) dx

= (−1)3
∫ (sin (x) cos (2x)) (−6ie−2ix)

(1) (72) dx

= −
∫

−6i sin (x) cos (2x) e−2ix

72 dx

= −
∫ (

−i sin (x) cos (2x) e−2ix

12

)
dx

=
i
(
− e−2ix cos(x)

6 − ie−2ix sin(x)
3 − 3 e−2ix cos(3x)

10 − ie−2ix sin(3x)
5

)
12
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U2 = (−1)4−2
∫

F (x)W2(x)
aW (x) dx

= (−1)2
∫ (sin (x) cos (2x)) (−12ie−ix)

(1) (72) dx

=
∫

−12i sin (x) cos (2x) e−ix

72 dx

=
∫ (

−i sin (x) cos (2x) e−ix

6

)
dx

=
∫

−i sin (x) cos (2x) e−ix

6 dx

U3 = (−1)4−3
∫

F (x)W3(x)
aW (x) dx

= (−1)1
∫ (sin (x) cos (2x)) (6ie2ix)

(1) (72) dx

= −
∫ 6i sin (x) cos (2x) e2ix

72 dx

= −
∫ (

i sin (x) cos (2x) e2ix
12

)
dx

= −
i
(
− e2ix cos(x)

6 + ie2ix sin(x)
3 − 3 e2ix cos(3x)

10 + ie2ix sin(3x)
5

)
12

U4 = (−1)4−4
∫

F (x)W4(x)
aW (x) dx

= (−1)0
∫ (sin (x) cos (2x)) (12ieix)

(1) (72) dx

=
∫ 12i sin (x) cos (2x) eix

72 dx

=
∫ (

i sin (x) cos (2x) eix
6

)
dx

=
∫

i sin (x) cos (2x) eix
6 dx

Now that all the Ui functions have been determined, the particular solution is found
from

yp = U1y1 + U2y2 + U3y3 + U4y4
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Hence

yp =

i
(
− e−2ix cos(x)

6 − ie−2ix sin(x)
3 − 3 e−2ix cos(3x)

10 − ie−2ix sin(3x)
5

)
12

(e2ix)
+
(∫

−i sin (x) cos (2x) e−ix

6 dx

)(
eix
)

+

−
i
(
− e2ix cos(x)

6 + ie2ix sin(x)
3 − 3 e2ix cos(3x)

10 + ie2ix sin(3x)
5

)
12

(e−2ix)
+
(∫

i sin (x) cos (2x) eix
6 dx

)(
e−ix

)
Therefore the particular solution is

yp =
2 cos (x)2 sin (x)

15 +sin (x)
45 −

i
(∫

sin (x) cos (2x) e−ixdx
)
eix

6 +
i
(∫

sin (x) cos (2x) eixdx
)
e−ix

6

Which simplifies to

yp = −
(∫

sin (x)2 cos (2x) dx
)
cos (x)

3 +
2
(
cos (x)2 + 5

(∫
sin(4x)dx

)
8 + 1

6

)
sin (x)

15

Therefore the general solution is

y = yh + yp

=
(
e2ixc1 + eixc2 + e−2ixc3 + e−ixc4

)
+

−
(∫

sin (x)2 cos (2x) dx
)
cos (x)

3 +
2
(
cos (x)2 + 5

(∫
sin(4x)dx

)
8 + 1

6

)
sin (x)

15


Summary
The solution(s) found are the following

(1)
y = e2ixc1 + eixc2 + e−2ixc3 + e−ixc4 −

(∫
sin (x)2 cos (2x) dx

)
cos (x)

3

+
2
(
cos (x)2 + 5

(∫
sin(4x)dx

)
8 + 1

6

)
sin (x)

15
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Verification of solutions

y = e2ixc1 + eixc2 + e−2ixc3 + e−ixc4 −
(∫

sin (x)2 cos (2x) dx
)
cos (x)

3

+
2
(
cos (x)2 + 5

(∫
sin(4x)dx

)
8 + 1

6

)
sin (x)

15

Verified OK.

2.22.1 Maple step by step solution

Let’s solve
y′′′′ + 5y′′ + 4y = sin (x) cos (2x)

• Highest derivative means the order of the ODE is 4
y′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable y1(x)

y1(x) = y

◦ Define new variable y2(x)
y2(x) = y′

◦ Define new variable y3(x)
y3(x) = y′′

◦ Define new variable y4(x)
y4(x) = y′′′

◦ Isolate for y′4(x) using original ODE
y′4(x) = sin (x) cos (2x)− 5y3(x)− 4y1(x)
Convert linear ODE into a system of first order ODEs
[y2(x) = y′1(x) , y3(x) = y′2(x) , y4(x) = y′3(x) , y′4(x) = sin (x) cos (2x)− 5y3(x)− 4y1(x)]

• Define vector

→
y (x) =


y1(x)
y2(x)
y3(x)
y4(x)


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• System to solve

→
y
′
(x) =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 −5 0

 · →y (x) +


0
0
0

sin (x) cos (2x)


• Define the forcing function

→
f (x) =


0
0
0

sin (x) cos (2x)


• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−4 0 −5 0


• Rewrite the system as

→
y
′
(x) = A · →y (x) +

→
f

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−2 I,


− I

8

−1
4

I
2

1



 ,

−I,


−I
−1
I
1



 ,

I,


I
−1
−I
1



 ,

2 I,


I
8

−1
4

− I
2

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−2 I,


− I

8

−1
4

I
2

1




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• Solution from eigenpair

e−2 Ix ·


− I

8

−1
4

I
2

1


• Use Euler identity to write solution in terms of sin and cos

(cos (2x)− I sin (2x)) ·


− I

8

−1
4

I
2

1


• Simplify expression

− I
8(cos (2x)− I sin (2x))

− cos(2x)
4 + I sin(2x)

4
I
2(cos (2x)− I sin (2x))

cos (2x)− I sin (2x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 1(x) =


− sin(2x)

8

− cos(2x)
4

sin(2x)
2

cos (2x)

 ,
→
y 2(x) =


− cos(2x)

8
sin(2x)

4
cos(2x)

2

− sin (2x)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−I
−1
I
1




• Solution from eigenpair
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e−Ix ·


−I
−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (x)− I sin (x)) ·


−I
−1
I
1


• Simplify expression

−I(cos (x)− I sin (x))
− cos (x) + I sin (x)
I(cos (x)− I sin (x))
cos (x)− I sin (x)


• Both real and imaginary parts are solutions to the homogeneous system

→
y 3(x) =


− sin (x)
− cos (x)
sin (x)
cos (x)

 ,
→
y 4(x) =


− cos (x)
sin (x)
cos (x)
− sin (x)




• General solution of the system of ODEs can be written in terms of the particular solution →

y p(x)
→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +

→
y p(x)

� Fundamental matrix
◦ Let φ(x) be the matrix whose columns are the independent solutions of the homogeneous system.

φ(x) =


− sin(2x)

8 − cos(2x)
8 − sin (x) − cos (x)

− cos(2x)
4

sin(2x)
4 − cos (x) sin (x)

sin(2x)
2

cos(2x)
2 sin (x) cos (x)

cos (2x) − sin (2x) cos (x) − sin (x)


◦ The fundamental matrix, Φ(x) is a normalized version of φ(x) satisfying Φ(0) = I where I is the identity matrix
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Φ(x) = φ(x) · 1
φ(0)

◦ Substitute the value of φ(x) and φ(0)

Φ(x) =


− sin(2x)

8 − cos(2x)
8 − sin (x) − cos (x)

− cos(2x)
4

sin(2x)
4 − cos (x) sin (x)

sin(2x)
2

cos(2x)
2 sin (x) cos (x)

cos (2x) − sin (2x) cos (x) − sin (x)

 · 1

0 −1
8 0 −1

−1
4 0 −1 0

0 1
2 0 1

1 0 1 0


◦ Evaluate and simplify to get the fundamental matrix

Φ(x) =



−2 cos(x)2
3 + 1

3 +
4 cos(x)

3 − sin(2x)
6 + 4 sin(x)

3 −2 cos(x)2
3 + 1

3 +
cos(x)

3 − sin(2x)
6 + sin(x)

3
2 sin(2x)

3 − 4 sin(x)
3 −2 cos(x)2

3 + 1
3 +

4 cos(x)
3

2 sin(2x)
3 − sin(x)

3 −2 cos(x)2
3 + 1

3 +
cos(x)

3
8 cos(x)2

3 − 4
3 −

4 cos(x)
3

2 sin(2x)
3 − 4 sin(x)

3
8 cos(x)2

3 − 4
3 −

cos(x)
3

2 sin(2x)
3 − sin(x)

3

−8 sin(2x)
3 + 4 sin(x)

3
8 cos(x)2

3 − 4
3 −

4 cos(x)
3 −8 sin(2x)

3 + sin(x)
3

8 cos(x)2
3 − 4

3 −
cos(x)

3


� Find a particular solution of the system of ODEs using variation of parameters

◦ Let the particular solution be the fundamental matrix multiplied by →
v (x) and solve for →

v (x)
→
y p(x) = Φ(x) · →v (x)

◦ Take the derivative of the particular solution
→
y
′
p(x) = Φ′(x) · →v (x) + Φ(x) · →v

′
(x)

◦ Substitute particular solution and its derivative into the system of ODEs

Φ′(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system

A · Φ(x) · →v (x) + Φ(x) · →v
′
(x) = A · Φ(x) · →v (x) +

→
f (x)

◦ Cancel like terms

Φ(x) · →v
′
(x) =

→
f (x)

◦ Multiply by the inverse of the fundamental matrix
→
v
′
(x) = 1

Φ(x) ·
→
f (x)

◦ Integrate to solve for →
v (x)
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→
v (x) =

∫ x

0
1

Φ(s) ·
→
f (s) ds

◦ Plug →
v (x) into the equation for the particular solution

→
y p(x) = Φ(x) ·

(∫ x

0
1

Φ(s) ·
→
f (s) ds

)
◦ Plug in the fundamental matrix and the forcing function and compute

→
y p(x) =



cos(x)2 sin(x)
20 + (15x−28 sin(x)) cos(x)

180 + sin(x)
45

3 cos(x)3
20 − 14 cos(x)2

45 − x sin(x)
12 + cos(x)

180 + 7
45

−9 cos(x)2 sin(x)
20 + (−15x+112 sin(x)) cos(x)

180 − 4 sin(x)
45

−27 cos(x)3
20 + 56 cos(x)2

45 + x sin(x)
12 + 131 cos(x)

180 − 28
45


• Plug particular solution back into general solution

→
y (x) = c1

→
y 1(x) + c2

→
y 2(x) + c3

→
y 3(x) + c4

→
y 4(x) +



cos(x)2 sin(x)
20 + (15x−28 sin(x)) cos(x)

180 + sin(x)
45

3 cos(x)3
20 − 14 cos(x)2

45 − x sin(x)
12 + cos(x)

180 + 7
45

−9 cos(x)2 sin(x)
20 + (−15x+112 sin(x)) cos(x)

180 − 4 sin(x)
45

−27 cos(x)3
20 + 56 cos(x)2

45 + x sin(x)
12 + 131 cos(x)

180 − 28
45


• First component of the vector is the solution to the ODE

y = (−5c2+sin(x)) cos(x)2
20 + ((−28−45c1) sin(x)+15x−180c4) cos(x)

180 + (1−45c3) sin(x)
45 + c2

8

Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 43� �
dsolve(diff(y(x),x$4)+5*diff(y(x),x$2)+4*y(x)=sin(x)*cos(2*x),y(x), singsol=all)� �

y(x) = (40c3 + sin (x)) cos (x)2

20 + (24c4 sin (x) + x+ 12c1) cos (x)
12

+ (360c2 − 7) sin (x)
360 − c3

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 50� �
DSolve[y''''[x]+5*y''[x]+4*y[x]==Sin[x]*Cos[2*x],y[x],x,IncludeSingularSolutions -> True]� �
y(x) → sin(x)

72 + 1
80 sin(3x) +

( x

12 + c3
)
cos(x) + c1 cos(2x) + c4 sin(x) + c2 sin(2x)
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